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Objectives 
 

฀ To provide a powerful but simple circuit analysis tool based on Kirchhoff’s 

current law (KCL) only.
 

1 Node voltage analysis 
 

In the previous lesson-4, it has been discussed in detail the analysis of a dc network by 

writing a set of simultaneous algebraic equations (based on KVL only) in which the 

variables are currents, known as mesh analysis or loop analysis. On the other hand, the 

node voltage analysis (Nodal analysis) is another form of circuit or network analysis 

technique, which will solve almost any linear circuit. In a way, this method completely 

analogous to mesh analysis method, writes KCL equations instead of KVL equations, and 

solves them simultaneously. 
 

2.Solution of Electric Circuit Based on Node Voltage Method 
 

In the node voltage method, we identify all the nodes on the circuit. Choosing one of them 

as the reference voltage (i.e., zero potential) and subsequently assign other node voltages 

(unknown) with respect to a reference voltage (usually ground voltage taken as 

 

zero (0) potential and denoted by ( 
  ). If the circuit has “n” nodes there are “n-1”  

  
  

node voltages are unknown (since we are always free to assign one node to zero or ground 

potential). At each of these “n-1” nodes, we can apply KCL equation. The unknown node 

voltages become the independent variables of the problem and the solution of node 

voltages can be obtained by solving a set of simultaneous equations. 

Let us consider a simple dc network as shown in Figure 5.1 to find the currents 

through different branches using “Node voltage” method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

KCL equation at “Node-1”: 
 

I  − I  −  V1 −V2 − V1 −V3   0 ; → I  − I  −  1  1 V −  1 V −  1 V  0  
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where  Gii  = sum of total conductance (self conductance) connected to Node-1.  
KCL equation at “Node-2”: 
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KCL equation at “Node-3”: 
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Is3  − G31 V1 − G32 V2  G33 V3  (5.3) 

In general, for the i
th

  Node the KCL equation can be written as 
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where, 
 



∑Iii = algebraic sum of all the current sourcesconnected to ‘Node- i 

’, 
i  1, 2, N. (Currents entering the node from current source is assigned as +ve sign  
and the current leaving the node from the current source is assigned as –ve sign).  

Gii  the sum of the values of conductance (reciprocal of resistance) connected to the 

node ' i ' . 
 

Gij   the sum of the values of conductance connected between the nodes ' i ' and ' j '. 
 

Summarize the steps to analyze a circuit by node voltage method are as follows: 

 

Step-1: Identify all nodes in the circuit. Select one node as the reference node (assign as 

ground potential or zero potential) and label the remaining nodes as unknown node 

voltages with respect to the reference node. 
 

Step-2: Assign branch currents in each branch. (The choice of direction is arbitrary). 

 

Step-3: Express the branch currents in terms of node assigned voltages. 

 

Step-4: Write the standard form of node equations by inspecting the circuit. (No of node 

equations = No of nodes (N) – 1). 
 

Step-5: Solve a set of simultaneous algebraic equation for node voltages and ultimately 

the branch currents. 
 

Remarks:  

฀ Sometimes it is convenient to select the reference node at the bottom of a circuit or 

the node that has the largest number of branches connected to it.
฀ One usually makes a choice between a mesh and a node equations based on the 

least number of required equations.
 

Example-L-5.1: Find the value of the current I flowing through the battery using ‘Node 

voltage’ method



 
 
 

 
Solution: All nodes are indicated in fig.5.2 and ‘Node-g’ is selected as reference voltage. If a 
voltage source is connected directly between the two nodes, the current flowing through the 

voltage source cannot be determined directly since the source voltage Vs is independent of 

current. Further to note that the source voltage Vs fixes the voltage  

between the nodes only. For the present example, the voltage of the central node is known 

since it is equal to (Va −10) volt . 
 

KCL equation at node-a: 

3  Va − 0  I → 10I  V   30   (5.4)  
   

 

10 
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KCL equation at node-b:    
 

 (Va − 10) − Vb  6  Vb − 0 → V − 7V  370 (5.5)  
    

60 10  a b  
 

    
 

To solve the equations (5.4)-(5.5), we need one more equation which can be obtained by 

applying KCL at the central node (note central node voltage is (Va −10 ). 
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Substituting the current expression (5.6) in equation (5.4) we get, 
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  V 30→10V−V220 

 
6 a a b 

 

Equations (5.5) and (5.7) can be solved to find Vb  − 50.43V and Va 16.99V . 

 
 

(5.6) 
 
 
 

(5.7) 

 

We can now refer to original circuit (fig.5.2) to find directly the voltage across every 

element and the current through every element. The value of current flowing through the 

voltage source can be computed using the equation (5.6) and it is given by I 1.307 A .  
Note that the current I (+ve) is entering through the positive terminal of the voltage source 

and this indicates that the voltage source is absorbing the power, in other words this 

situation is observed when charging a battery or source. 
 

Example-L-5.2: Find the current through 'ab-branch' ( Iab ) and voltage (Vcg ) across the 

current source using Node-voltage method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Solution:  

KCL at node-a: ( note Va  3V ) 
 

i  Va − Vb   Va −Vc → i   1   1   V −  1  V −   1  V → i  1.33V − V − 1 V (5.8)  
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KCL at node-b: (note Vg  0V  )                              
 

V − V  
V −V  
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KCL at node-c:                                            
 

2  Vb − Vc  Va −Vc  0  → 1  1 V −  1 V − 1 V  2    (5.10)  
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Using the value of Va  3V in equations (5.8)-(5.10) we get the following equations: 
 

 V   1 V  3.99 − i                                      (5.11)  
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1.75 V  −  V  3                                          (5.12)  
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b c 
 

0.583 V − 1 V  3                                          (5.13)  
                                          

 

c 4 b 
 

Simultaneous solution of the above three equations, one can get Vc  6.26V , Vb  2.61V  

and  hence Iab  Va − Vb  3 − 2.61  0.39 A ( current flowing in the direction from ‘a’ to  

   
 

 R2 1   
 

‘b’). 
 

Example-L-5.3 Determine the current, i shown in fig. 5.4 using node-voltage method ---  

(a) applying voltage to current source conversion (b) without any source conversion. 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 
 

Part(a):  
In node voltage analysis, sometimes the solution turns out to be very simple while we 

change all series branches containing voltage sources to their equivalent current sources. 

On the other hand, we observed in the loop analysis method that the conversion of current 

source to an equivalent voltage makes the circuit analysis very easy (see example-L4.2) 

and simple. For this example, both the practical voltage sources (one is left of ‘node-a’ 
and other is right of ‘node-b’) are converted into practical current sources. After 

transformation, the circuit is redrawn and shown in fig. 5.5(a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

KCL at node ‘b’:  

i  i1  2  1  3 (5.14) 

KCL at node ‘a’:  

i  2  3  i1 → i − i1 1 (5.15) 

From equations (5.14)-(5.15), one can get i  2 mA (current flows from ‘b’ to ‘a’) and  

i1 1 mA . 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Part(b):  

Let us assume i1 is the current flowing through the 8V battery source from ‘right to left’ 
and i2 is the current flowing through the 12V battery source from ‘bottom to top’(see  
Fig.5.5(b)).  

KCL at node ‘b’: It is assumed that the current flowing in 4 kΩ resistor from bottom to 

top terminal. This implies that the bottom terminal of 4 kΩ resistor is higher potential than 

the top terminal.(currents are in m A , note Va Vb )  

i  1  i1 → i  1  
0 − (Va − 8)     

(5.16) 
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KCL at node ‘a’: (currents are in m A )    
 

i  i  2  0 → i  − i − 2 → i  −  − 12 −Va  − 2 (5.17)  
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From (6.16) and (5.17), we get Va  4V and i  2 mA (current flows from ‘b’ to ‘a’). 
 

3 Test Your Understanding [Marks: 50] 
 
 

T.5.1 Node analysis makes use of Kirchhoff’s----------- law just as loop analysis makes 

use of Kirchhoff’s --------- law. [1] 
 

T.5.2 Describe a means of telling how many node voltage equations will be required for  

a given circuit. [1] 
 

T.5.3 In nodal analysis how are voltage sources handled when (i) a voltage source in a 

circuit is connected between a non-reference node and the reference node (ii) a voltage  

source connected between two non-reference nodes in nodal analysis. [4] 

T.5.4 A voltage in series with a resistance can be represented by an equivalent circuit 

that consists of ------------ in parallel with that -------------. [2] 

T.5.5 The algebraic sum of the currents ----------- in a node must be equal to the 

algebraic sum of currents --------- the node. [2] 
 

 



T.5.6 Apply node voltage analysis to find i0  and the power dissipated in each resistor in 
 

the circuit of Fig.5.6. [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Ans. i0  2.73 A, P6  44.63W , P5  3.8W , P3  0.333W (note → Vc  5.36V , Vb  4.36V ) 

T.5.7 For the circuit shown in fig. 5.7, find Va using the node voltage method. Calculate 
 

power delivered or absorbed by the sources. [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Answer: Va  72 V , P( voltage source)  72 W ( absorbed ), P( current source)  
 

 

T.5.8 Using nodal analysis, solve the voltage (Vx ) across the 

circuit of fig. 5.8. Calculate power delivered or absorbed by the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

201.8 W ( delivered ) ) 
 
 

6A current source for the 
 

sources [10] 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Answer: 

V
a 


 

60V
 

,
 

P
(12 A ideal current source) 


 

720W
 

(delivered
 

),
 

P
( ideal voltage source) 


 

288W
 

(absorbed
 

),
 

P
(6 A ideal current source) 


 

360W
 

(delivered
 

)
 

 

T.8 Determine the voltage across the 10 Ω resistor of fig. 5.9 using nodal analysis. [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Answer: Vab 34.29V (a is higher potential than b ) 
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Introduction of Electric 

Circuit 

 

Objectives 
 

฀ Familiarity with and understanding of the basic elements encountered in electric 

networks.
฀ To learn the fundamental differences between linear and nonlinear circuits.
฀ To understand the Kirchhoff’s voltage and current laws and their applications to 

circuits.
฀ Meaning of circuit ground and the voltages referenced to ground.
฀ Understanding the basic principles of voltage dividers and current dividers.
฀ Potentiometer and loading effects.
฀ To understand the fundamental differences between ideal and practical voltage 

and current sources and their mathematical models to represent these source 

models in electric circuits.
฀ Distinguish between independent and dependent sources those encountered in 

electric circuits.
฀ Meaning of delivering and absorbing power by the source.

 

L.3.1 Introduction 
 

The interconnection of various electric elements in a prescribed manner 

comprises as an electric circuit in order to perform a desired function. The electric 

elements include controlled and uncontrolled source of energy, resistors, capacitors, 

inductors, etc. Analysis of electric circuits refers to computations required to determine 

the unknown quantities such as voltage, current and power associated with one or more 

elements in the circuit. To contribute to the solution of engineering problems one must 

acquire the basic knowledge of electric circuit analysis and laws. Many other systems, 

like mechanical, hydraulic, thermal, magnetic and power system are easy to analyze and 

model by a circuit. To learn how to analyze the models of these systems, first one needs to 

learn the techniques of circuit analysis. We shall discuss briefly some of the basic circuit 

elements and the laws that will help us to develop the background of subject. 
 

L-3.1.1 Basic Elements & Introductory Concepts 
 

Electrical Network: A combination of various electric elements (Resistor, Inductor, 

Capacitor, Voltage source, Current source) connected in any manner what so ever is 

called an electrical network. We may classify circuit elements in two categories, passive 

and active elements. 
 

Passive Element: The element which receives energy (or absorbs energy) and then 

either converts it into heat (R) or stored it in an electric (C) or magnetic (L ) field is called 

passive element. 
 



Active Element: The elements that supply energy to the circuit is called active element. 

Examples of active elements include voltage and current sources, generators, and 

electronic devices that require power supplies. A transistor is an active circuit element, 

meaning that it can amplify power of a signal. On the other hand, transformer is not an 

active element because it does not amplify the power level and power remains same both 

 



in primary and secondary sides. Transformer is an example of passive element. 

 

Bilateral Element: Conduction of current in both directions in an element (example:  
Resistance; Inductance; Capacitance) with same magnitude is termed as bilateral element.  

 
 
 
 
 
 
 
 
 

 

Unilateral Element: Conduction of current in one direction is termed as unilateral  
(example: Diode, Transistor) element.  

 
 
 
 
 
 
 
 
 
 
 

 

Meaning of Response: An application of input signal to the system will produce an 

output signal, the behavior of output signal with time is known as the response of the 

system. 
 

L-3.2 Linear and Nonlinear Circuits 

 

Linear Circuit: Roughly speaking, a linear circuit is one whose parameters do not 

change with voltage or current. More specifically, a linear system is one that satisfies (i) 

homogeneity property [response of α u ( t) equals α times the response of u (t) , S (α u ( t))  

= α S ( u ( t)) for all α ; and u (t) ] (ii) additive property [that is the response of system due to 

an input (α1 u1 ( t )  α2 u 2 ( t) ) equals the sum of the response of input α1 u1 (t ) and the  

response of inputα2 u 2 (t ) , 
 

S (α1 u1 (t ) α2 u 2 (t)) = α1 S (u1 (t )) α2 S (u 2 (t )) .] When an 
 

input u1 (t ) or u 2 (t ) is applied to a system “ S ”, the corresponding output response of 

the system is observed as S (u1 (t ))  y1 (t ) or S (u 2 (t ))  y2 (t ) respectively. Fig. 3.1 

explains the meaning of homogeneity and additive properties of a system. 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Non-Linear Circuit: Roughly speaking, a non-linear system is that whose parameters 
change with voltage or current. More specifically, non-linear circuit does not obey the 

homogeneity and additive properties. Volt-ampere characteristics of linear and non-linear 

elements are shown in figs. 3.2 - 3.3. In fact, a circuit is linear if and only if its input and 

output can be related by a straight line passing through the origin as shown in fig.3.2. 

Otherwise, it is a nonlinear system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Potential Energy Difference: The voltage or potential energy difference between two 

points in an electric circuit is the amount of energy required to move a unit charge 

between the two points. 



 



3 Kirchhoff’s Laws 

 

Kirchhoff’s laws are basic analytical tools in order to obtain the solutions of currents and 

voltages for any electric circuit; whether it is supplied from a direct-current system or an 

alternating current system. But with complex circuits the equations connecting the 

currents and voltages may become so numerous that much tedious algebraic work is 

involve in their solutions.  
Elements that generally encounter in an electric circuit can be interconnected in 

various possible ways. Before discussing the basic analytical tools that determine the 

currents and voltages at different parts of the circuit, some basic definition of the 

following terms are considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

฀ Node- A node in an electric circuit is a point where two or more components are 

connected together. This point is usually marked with dark circle or dot. The 

circuit in fig. 3.4 has nodes a, b, c, and g. Generally, a point, or a node in an circuit 

specifies a certain voltage level with respect to a reference point or node.
฀ Branch- A branch is a conducting path between two nodes in a circuit containing 

the electric elements. These elements could be sources, resistances, or other 

elements. Fig.3.4 shows that the circuit has six branches: three resistive branches 

(a-c, b-c, and b-g) and three branches containing voltage and current sources (a-, 

a-, and c-g).
฀ Loop- A loop is any closed path in an electric circuit i.e., a closed path or loop in a 

circuit is a contiguous sequence of branches which starting and end points for 

tracing the path are, in effect, the same node and touches no other node more than 

once. Fig. 3.4 shows three loops or closed paths namely, a-b-g-a; b-c-g-b; and a-c-

b-a. Further, it may be noted that the outside closed paths a-c-g-a and a-b-c-g-a are 

also form two loops.
฀ Mesh- a mesh is a special case of loop that does not have any other loops within it 

or in its interior. Fig. 3.4 indicates that the first three loops (a-b-g-a; b-c-g-b; and 

a-c-b-a) just identified are also ‘meshes’ but other two loops (a-c-g-a and a-b-c-g-
 
 

a) are not.  



With the introduction of the Kirchhoff’s laws, a various types of electric circuits 

can be analyzed.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Kirchhoff’s Current Law (KCL): KCL states that at any node (junction) in a circuit the 

algebraic sum of currents entering and leaving a node at any instant of time must be equal to 

zero. Here currents entering(+ve sign) and currents leaving ( - ve sign) the node must be 

assigned opposite algebraic signs (see fig. 3.5 (a), I1 − I 2  I 3 − I 4  I 5 − I 6  0 ). 

 

Kirchhoff’s Voltage Law (KVL): It states that in a closed circuit, the algebraic sum of 
all source voltages must be equal to the algebraic sum of all the voltage drops. Voltage 

drop is encountered when current flows in an element (resistance or load) from the 

higher-potential terminal toward the lower potential terminal. Voltage rise is encountered 

when current flows in an element (voltage source) from lower potential terminal (or 

negative terminal of voltage source) toward the higher potential terminal (or positive 

terminal of voltage source). Kirchhoff’s voltage law is explained with the help of fig. 

3.5(b).  
KVL equation for the circuit shown in fig. 3.5(b) is expressed as (we walk in clockwise 

direction starting from the voltage source V1 and return to the same point)  

V1 − IR1 − IR2 − V2 − IR3 − IR4  V3 − IR5 − V4  0 

 

V1 − V2  V3 − V4  IR1  IR2  IR3  IR4  IR5 
 

Example: L-3.1 For the circuit shown in fig. 3.6, calculate the potential of points A, B , C , 

and E with respect to point D . Find also the value of voltage sourceV1 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution Let us assume we move in clockwise direction around the close path D-E-A-B-

C-D and stated the following points. 

 

฀ 50 volt source is connected between the terminals D & E and this indicates that 

the point E is lower potential than D. So, VED (i.e., it means potential of E with
 

respect to D ) is -50 volt and similarlyVCD  50 volt orVDC  −50 volt . 
 

฀  500 mA current  is flowing through 200 Ω resistor from A to E and this implies that 

point A is higher potential than E .  If we move from lower potential ( E ) to 
 
 

higher   potential   (A),   this   shows there   is   a   rise   in   potential. 

Naturally,VAE  500 10−3
  200  100 volt and V AD  −50  100  50volt . 



Similarly, V   350  10 −3
  100  35volt  

CB  

 

฀ V1 voltage source is connected between A & B and this indicates that the terminal B 

is lower potential than A i.e., V AB  V1 volt or VBA  −V1 volt. . One can write the 

voltage of point B with respect to D is VBD 50 −V1 volt.  

฀ One can write KVL law around the closed-loop D-E-A-B-C-D as  

VED  V AE  VBA  VCB  VDC  0 
 

−50  100 − V1  35 − 50  0 ⇒ V1 35 volt. 
 

Now we have VED  −50 volt , VAD  − 50  100  50 volt , VBD  50 − 35  

15 volt, VCD  15  35  50 volt. 

 

L-3.4 Meaning of Circuit Ground and the Voltages referenced 

to Ground 

 

In electric or electronic circuits, usually maintain a reference voltage that is named 

“ground voltage” to which all voltages are referred. This reference voltage is thus at 

ground potential or zero potential and each other terminal voltage is measured with 

respect to ground potential, some terminals in the circuit will have voltages above it 

(positive) and some terminals in the circuit will have voltages below it (negative) or in 

other words, some potential above or below ground potential or zero potential.  
Consider the circuit as shown in fig. 3.7 and the common point of connection of elements 

V1 & V3 is selected as ground (or reference) node. When the voltages at different nodes 

are referred to this ground (or reference) point, we denote them with double subscripted 

voltagesVED ,V AD ,VBD , and VCD . Since the point D is selected as ground potential or 

zero potential, we can write VED as VE , VAD as VA and so on. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In many cases, such as in electronic circuits, the chassis is shorted to the earth itself for 

safety reasons. 
 

L-3.5 Understanding the Basic Principles of Voltage Dividers 

and Current dividers 

 

L-3.5.1 Voltage Divider 

 

Very often, it is useful to think of a series circuit as a voltage divider. The basic idea behind 

the voltage divider is to assign a portion of the total voltage to each resistor. In Figure 3.8 (a), 

suppose that the source voltage is E . By the circuit configuration shown one can divide off 

any voltage desired (Vout ), less than the supply voltage E , by adjusting  

R1 , R2  and R3 .  
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From figure 3.8(a) the output of the voltage divider Vout  is computed by the relation 
 

Vout  I Rn  

  E R
n (3.1) 

 

R1  R2  .....  Rn 
 

   
 

Equation (3.1) indicates that the voltage across any resistor Ri ( Ri  i  1,2,.....n ) in a 
 

series circuit is equal to the applied voltage ( E ) across the circuit multiplied by a 

factor 
Ri . It should be noted that this expression is only valid if the same current  

n 
 

 ∑ 

R
j  

 

j 1  

I flows through all the resistors. If a load resistor RL is connected to the voltage divider 

(see figure 3.8(b)), one can easily modify the expression (3.1) by simply combining RL & 

Rn in parallel to find a new Rn and replacing Rn by Rn in equation (3.1). 
 
 

Example: L-3.2 For the circuit shown in Figure 3.9, 
 

(i) CalculateVout , ignoring the internal resistance Rs of the source E . Use voltage 

division. 

(ii) RecalculateVout taking into account the internal resistance Rs of the source. 

What percent error was introduced by ignoring Rs in part (i)? 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: Part (i): From equation (3.1) the output voltage Vout across the resistor R2 = 
 

 E R  100  60  37.9 volt (when the internal resistance R of the source is  
    

 

 R1  R2 2  100  60      s  
 

          
 

considered zero.) Similarly, Vout = 37.27 volt when Rs is taken into account for 
 

calculation. Percentage error is computed as = 
 37.9 − 37.27 100 =1.69% 

 
 

37.27 
 

 

          
 

L-3.5.2 Current divider 

 

Another frequently encountered in electric circuit is the current divider. Figure 3.10 

shows that the current divider divides the source current Is between the two resistors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The parallel combination of two resistors is sometimes termed as current divider, because 

the supply current is distributed between the two branches of the circuit. For the circuit, 

assume that the voltage across the branch is V and the current expression in R1 resistor 

can be written as 

 
 
 
 
 
 
 
 
 

 

 

               
 



 

 

I1     R1     R2 or I  R2  I 
s . Similarly, the current flowing through  

           

I s 
  

 
1 

  

1 
 

 1 
R1  R2 

 
 

     R1  R2   
 

  

V 
   

 

 

       
 

  

R1 
        

 

      
R

2        
  

the R2  can be obtained as I2   R1   Is . It can be noted that the expression for I1 has  

   
 

  R1  R2  
 

R2 on its top line, that for I2 has R1 on its top line.  
 

Example:  L-3.3  Determine I1 , I 2 , I 3 & I5 using  only  current  divider  formula when 
 

I4  4A.      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution-    Using  the    current  division   formula   we can write 
 

I 

4 

  5 I 
3 

  5 I 

3 

→ I 

3 

 4 8  6.4 A . Similarly, − I 

5 

 3  I 

3 

→ I 

5 

  3  6.4  2.4 A .   

5  3 8 
 

8 8 
 

 

      5                 
 

Furthermore, we can write I   6  I   6  I → I  7.879  6.4  8.404 A and 
 

        

                3   6  (3 5) 1  6 1.879 1  1    6       
 

I 
2 
  1.879   I   2.004 A.                         

 

                              
 

  6 1.879 
  1                             

 

                                   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



6 Potentiometer and its function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The potentiometer has a resistance Rp and its wiper can move from top position x  xmax 

to bottom position x  0 . The resistance Rx corresponds to the position x of the wiper such 

that 

R  R p  Rp  
 

x   ⇒ Rx   x   (assumed  that  the  per  unit  length  resistance  of  the  

x 
x

max 

 
 

 
x

max 
 

potentiometer is same through out its length). Figure 3.12 represents a potentiometer 
whose output is connected to a voltmeter. In true sense, the measurement of the output 

voltage Vo with a voltmeter is affected by the voltmeter resistance Rv and the 
 

relationship between Vo and x ( x = wiper distance from the bottom position) can easily be 

established. We know that the voltmeter resistance is very high in M Ω range and  
practically negligible current is flowing through the voltmeter. Under this condition, one 

can write the expression for voltage between the wiper and the bottom end terminal of the 

potentiometer as 

V  ( I R )  
VT (  I Rp )  x  ⇒ V   V  x 

= V   V  R 
 

   x  

     

out x  x
max 

out T x
max 

 out T R
p  

        
 

It may be noted that depending on the position of movable tap terminal the output voltage 

(Vout ) can be controlled. By adjusting the wiper toward the top terminal, we can increase 

Vout . The opposite effect can be observed while the movable tap moves toward the 
 

bottom terminal. A simple application of potentiometer in real practice is the volume 

control of a radio receiver by adjusting the applied voltage to the input of audio amplifier 

 
 

 



of a radio set. This audio amplifier boosts this voltage by a certain fixed factor and this 

voltage is capable of driving the loudspeaker. 
 

Example- L-3.4 A 500 − k Ω potentiometer has 110 V applied across it. Adjust the 

position of Rbot such that 47.5 V appears between the movable tap and the bottom end 

terminal (refer fig.3.12). 
 

Solution- Since the output voltage (Vbot ) is not connected to any load, in turn, we can 

write the following expression 

V  V  x  
V

bot  
R

bot → R  
V

bot  R  47.5  500000  216 − kΩ.  

     
 

out T 

x
max 

    bot  

VT 

T 

110 

 
 

   VT      RT    
 

L-3.7 Practical Voltage and Current Sources 

 

L-3.7.1 Ideal and Practical Voltage Sources 

 

฀ An ideal voltage source, which is represented by a model in fig.3.13, is a device 

that produces a constant voltage across its terminals (V  E ) no matter what 

current is drawn from it (terminal voltage is independent of load (resistance) 

connected across the terminals) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the circuit shown in fig.3.13, the upper terminal of load is marked plus (+) and its 

lower terminal is marked minus (-). This indicates that electrical potential of upper 

terminal is VL volts higher than that of lower terminal. The current flowing through the 

load RL is given by the expression Vs  VL  I L RL and we can represent the terminal V − I 

characteristic of an ideal dc voltage as a straight line parallel to the x-axis. This means 

that the terminal voltage VL remains constant and equal to the source voltage Vs  

irrespective of load current is small or large. The V − I characteristic of ideal voltage 

source is presented in Figure 3.14. 
 
 
 
 
 



฀ However, real or practical dc voltage sources do not exhibit such characteristics 

(see fig. 3.14) in practice. We observed that as the load resistance RL connected 

across the source is decreased, the corresponding load current IL increases while 

the terminal voltage across the source decreases (see eq.3.1). We can realize such 

voltage drop across the terminals with increase in load current provided a 

resistance element ( Rs ) present inside the voltage source. Fig. 3.15 shows the 

model of practical or real voltage source of valueVs . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The terminal V − I characteristics of the practical voltage source can be described by an 

equation  

VL  Vs − I L Rs (3.1) 

and this equation is represented graphically as shown in fig.3.16. In practice, when a load 

resistance RL more than 100 times larger than the source resistance Rs , the source 

can be considered approximately ideal voltage source. In other words, the internal 

resistance of the source can be omitted. This statement can be verified using the relation 

RL  100Rs in equation (3.1). The practical voltage source is characterized by two  

parameters namely known as (i) Open circuit voltage (Vs ) (ii) Internal resistance in the 
 

source’s circuit model. In many practical situations, it is quite important to determine the 

source parameters experimentally. We shall discuss briefly a method in order to obtain 

source parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Method-: Connect a variable load resistance across the source terminals (see fig. 3.15). A 

voltmeter is connected across the load and an ammeter is connected in series with the load 

resistance. Voltmeter and Ammeter readings for several choices of load resistances are 

presented on the graph paper (see fig. 3.16). The slope of the line is −Rs , while the  

curve intercepts with voltage axis ( at IL  0 ) is the value of Vs . 

 

The V − I characteristic of the source is also called the source’s “regulation 

curve” or “load line”. The open-circuit voltage is also called the “no-load” voltage, Voc . 

The maximum allowable load current (rated current) is known as full-load current IFl and 

the corresponding source or load terminal voltage is known as “full-load” voltageVFL . 

We know that the source terminal voltage varies as the load is varied and this  
is due to internal voltage drop inside the source. The percentage change in source terminal 
voltage from no- load to full-load current is termed the “voltage regulation” of the source. 

It is defined as 

Voltage regulation (%)  
V

oc 
−V

FL 100  V
FL  

For ideal voltage source, there should be no change in terminal voltage from no-load to 

full-load and this corresponds to “zero voltage regulation”. For best possible performance, 

the voltage source should have the lowest possible regulation and this indicates a smallest 

possible internal voltage drop and the smallest possible internal resistance. 
 

Example:-L-3.5 A practical voltage source whose short-circuit current is 1.0A and open-

circuit voltage is 24 Volts. What is the voltage across, and the value of power dissipated 

in the load resistance when this source is delivering current 0.25A? 

 

Solution:  From fig. 3.10, I 
sc 

 Vs  1.0 A (short-circuit test) V  V  24 volts (open-  
  

     Rs 
oc   s  

 

           
 

circuit test).  Therefore, the value  of internal  source  resistance is  obtained  as 
 

R = Vs  24 Ω . Let us assume that the source is delivering current I 

L 

 0.25A when the  

I
sc 

 

s           
 

 



load resistance RL is connected across the source terminals. Mathematically, we can write 

the following expression to obtain the load resistance RL . 
24  0.25 → RL  72 Ω .

  

24  RL

 
  

Now, the voltage across the load RL = IL RL  0.25  72  18 volts. , and the power 

consumed by the load is given by PL  I L 
2
 RL  0.0625  72  4.5 watts. 

 

Example-L-3.6 (Refer fig. 3.15) A certain voltage source has a terminal voltage of 50 V 

when I= 400 mA; when I rises to its full-load current value 800 mA the output voltage is 

recorded as 40 V. Calculate (i) Internal resistance of the voltage source ( Rs ). (ii) No-load 
 

voltage (open circuit voltage Vs ). (iii) The voltage Regulation. 

 

Solution- From equation (3.1) (VL  Vs − I L Rs ) one can write the following expressions 
 

under different loading conditions.  

50  Vs − 0.4 Rs & 40  Vs − 0.8 Rs → solving these equations we get,Vs  60V & 

Rs  25Ω . 

Voltage regulation (%)  
V

oc 
−V

FL 100 = 
60

 
−

 
40

  100  33.33%  

VFL 60 

 

L-3.7.2 Ideal and Practical Current Sources 
 

฀ Another two-terminal element of common use in circuit modeling is `current 

source` as depicted in fig.3.17. An ideal current source, which is represented by a 

model in fig. 3.17(a), is a device that delivers a constant current to any load 

resistance connected across it, no matter what the terminal voltage is developed 

across the load (i.e., independent of the voltage across its terminals across the 

terminals).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



It can be noted from model of the current source that the current flowing from the 

source to the load is always constant for any load resistance (see fig. 3.19(a)) i.e. 

whether RL is small (VL is small) or RL is large (VL is large). The vertical dashed line  

in fig. 3.18 represents the V − I characteristic of ideal current source. In practice, when 

a load RL is connected across a practical current source, one can observe that the 

current flowing in load resistance is reduced as the voltage across the current source’s 

terminal is increased, by increasing the load resistance RL . Since the  
distribution of source current in two parallel paths entirely depends on the value of 

external resistance that connected across the source (current source) terminals. This 

fact can be realized by introducing a parallel resistance Rs in parallel with the  

practical current source Is , as shown in fig. 3.17(b). The dark lines in fig. 3.18 show 

 
 

 

the V − I characteristic (load-line) of practical current source. The slope of the curve 

represents the internal resistance of the source. One can apply KCL at the top terminal 

of the current source in fig. 3.17(b) to obtain the following expression. 

I 
L 
 I 

s 
− VL Or V  I R − R I 

L 
 V − R I 

L 
(3.2)  

  

   R
s 

L s   ss oc s  
 

            
 

The open circuit voltage and the short-circuit current of the practical current 

source are given by Voc  I s Rs and Ishort  Is respectively. It can be noted from the 

fig.3.18 that source 1 has a larger internal resistance than source 2 and the slope the 

curve indicates the internal resistance Rs of the current source. Thus, source 1 is  

closer to the ideal source. More specifically, if the source internal resistance Rs ≥ 100 

RL then source acts nearly as an ideal current source.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L-3.7.3 Conversion of a Practical Voltage Source to a Practical 

Current source and vise-versa 
 

฀ Voltage Source to Current Source


For the practical voltage source in fig. 3.19(a), the load current is calculated as 



 
IL  

 Vs  
(3.3) 

 

  

Rs  RL 
 

     
 

Note that the maximum current delivered by the source when RL  0 (under short- 
 

circuit condition) is given by I max  Is   Vs . From eq.(3.3) one can rewrite the  
  

 

expression for load current as 
  Rs  

 

 

Is  Rs 

   
 

 
IL  

  
(3.4) 

 

 

Rs  RL 
 

   
 

 
 
 
 



A simple current divider circuit having two parallel branches as shown in fig.3.19 (b) 

can realize by the equation (3.4). 
 

Note: A practical voltage source with a voltage Vs  and an internal source resistance 
 

Rs  can be replaced by an equivalent practical current source with a current Is  
V

s
 Rs  

 

and a source internal resistance Rs (see fig. 3.19(b)).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

฀ Current source to Voltage Source
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the circuit in fig. 3.15(a), the load voltage VL  is given by 
 

 Rs   RL   RL   
 

V
L  


 
I
 L 

R
L 

=  
 
I
s   

R
L 

=
 
I
 s 

R
s  

 

=V
s  

 
(3.5)  

Rs  RL 
  

 

   
R

s 


 

R
L  

R
s 


 

R
L  

 

Equation (3.5) represents output from the voltage source across a load resistance and 

this act as a voltage divider circuit. Figure 3.20(b) describes the situation that a 

voltage source with a voltage value Vs  I s Rs and an internal source resistance Rs has  
an equivalent effect on the same load resistor as the current source in figure 3.20(a). 

Note: A current source with a magnitude of current Is and a source internal resistance 
 

Rs can be replaced by an equivalent voltage source of magnitude Vs  I s Rs and an 

internal source resistance Rs (see fig. 3.20(b)). 

 

Remarks on practical sources: ( i ) The open circuit voltage that appears at the 

terminals A & B for two sources (voltage & current) is same (i.e., Vs ).  
( ii ) When the terminals A & B are shorted by an ammeter, the shot-circuit results 

same in both cases (i.e., Is ).  

( iii ) If an arbitrary resistor ( RL ) is connected across the output terminals A & B of 

either source, the same power will be dissipated in it. 

( iv ) The sources are equivalent only as concerns on their behavior at the external 

terminals. 

( v ) The internal behavior of both sources is quite different (i.e., when open circuit the 

voltage source does not dissipate any internal power while the current source 

dissipates. Reverse situation is observed in short-circuit condition). 
 

8 Independent and Dependent Sources that encountered in 

electric circuits 
 

฀ Independent Sources
 

So far the voltage and current sources (whether ideal or practical) that have been 

discussed are known as independent sources and these sources play an important role 

 



to drive the circuit in order to perform a specific job. The internal values of these 

sources (either voltage source or current source) – that is, the generated voltage Vs or 
 

the generated current Is (see figs. 3.15 & 3.17) are not affected by the load connected 
 

across the source terminals or across any other element that exists elsewhere in the 

circuit or external to the source. 
 

฀ Dependent Sources
 

Another class of electrical sources is characterized by dependent source or controlled 

source. In fact the source voltage or current depends on a voltage across or a current 

through some other element elsewhere in the circuit. Sources, which exhibit this 

dependency, are called dependent sources. Both voltage and current types of sources 

may be dependent, and either may be controlled by a voltage or a current. In general,  

dependent source is represented by a diamond ( )-shaped symbol as not to confuse 

it with an independent source. One can classify dependent voltage and current sources 

into four types of sources as shown in fig.3.21. These are listed below: 
 

(i) Voltage-controlled voltage source (VCVS) (ii) Current-controlled voltage source 

(ICVS) (iii) Voltage-controlled current source(VCIS) (iv) Current-controlled current 

source(ICIS) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: When the value of the source (either voltage or current) is controlled by a 

voltage ( vx ) somewhere else in the circuit, the source is said to be voltage-controlled 



 

 

source. On the other hand, when the value of the source (either voltage or current) is 

controlled by a current ( ix ) somewhere else in the circuit, the source is said to be 
 

current-controlled source. KVL and KCL laws can be applied to networks containing 

such dependent sources. Source conversions, from dependent voltage source models 

to dependent current source models, or visa-versa, can be employed as needed to 

simplify the network. One may come across with the dependent sources in many 

equivalent-circuit models of electronic devices (transistor, BJT(bipolar junction 

transistor), FET( field-effect transistor) etc.) and transducers. 
 

9 Understanding Delivering and Absorbing Power by the 

Source. 

 

It is essential to differentiate between the absorption of power (or dissipating power) and 

the generating (or delivering) power. The power absorbed or dissipated by any circuit 

element when flows in a load element from higher potential point (i.e +ve terminal) 

toward the lower terminal point (i.e., - ve terminal). This situation is observed when 

charging a battery or source because the source is absorbing power. On the other hand, 

when current flows in a source from the lower potential point (i.e., -ve terminal) toward 

the higher potential point (i.e., +ve terminal), we call that source is generating power or 

delivering power to the other elements in the electric circuit. In this case, one can note 

that the battery is acting as a “source” whereas the other element is acting as a “sink”. 

Fig.3.22 shows mode of current entering in a electric element and it behaves either as 

source (delivering power) or as a sink (absorbing or dissipating power). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

____________________________________________________________________ 

 

L.3.10 Test Your Understanding [marks distribution shown 

inside the bracket] 
 

T.1 If a 30 V source can force 1.5 A through a certain linear circuit, how much current 

can 10 V force through the same circuit? (Ans. 500 m A. ) [1] 

T.2 Find the source voltage Vs  in the circuit given below [1] 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Ans. 40 V)  

T.3  For the circuit shown in Figure T.3 [1x4]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Calculate Vout , ignoring the internal resistance of the source Rs (assuming it’s 

zero). Use Voltage division method. (Ans.33.333 V) 

(b) Recalculate Vout , taking into account Rs . What percentage error was introduced 

by ignoring Rs in part (a). (Ans. 31.29 V , 6.66%) 
 

(c) Repeat part (a) & (b) with the same source and replacing R1  20 Ω by 20kΩ &  

R2  10 Ω by 1k Ω . Explain why the percent error is now so much less than in part 
 

(b). (Ans. 33.333 V, 33.331 V, 0.006%) 

 

T.4 

 
 

For the circuit shown in figure T.4 

 
 

[1x6] 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Find , in any order, I2 , I 3 , and I (b) Find, in any order, R1 , R3 , and Req .  

(Ans. (a) 20 mA, 30 mA and 100 mA (b) 2 kΩ , 3.33 kΩ and 1kΩ .)  

T.5  Refer to the circuit shown in Figure T.5 [1x4]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) What value of R4 will balance the bridge (i.e., Vab  0.0 ) (b) At balanced 

condition, find the values of Vag & Vbg . (Ans. 150Ω , 24V (a is higher potential 

than ‘g’, since current is flowing from ‘a’ to ‘b’), 24V ( b is higher potential than 

‘g’)  
(b) Does the value of Vag depend on whether or not the bridge is balanced? Explain 

this. (Ans. No., since flowing through the 80 Ω branch will remain same and hence 

potential drop across the resistor remains same.)  

(c) Repeat part (b) for Vbg . (Ans. Yes . Suppose the value of R4 is increased from its 

balanced condition, this in turn decreases the value of current in that branch and 

subsequently voltage drop across the 100 Ω is also decreases. The indicates that 

the voltage across Vbg will increase to satisfy the KVL. )  
(d) If the source voltage is changed to 50 V will the answer to part (a) change? 

Explain this. (Ans. No.) 
 
 
 
 
 
 

 



T.6 If an ideal voltage source and an ideal current source are connected in parallel, then 

the combination has exactly the same properties as a voltage source alone. Justify this  

statement. [1] 
 

T.7 If an ideal voltage source and an ideal current source are connected in series, the 

combination has exactly the same properties as a current source alone. Justify this  

statement.         [1] 

T.8 When ideal arbitrary voltage sources are connected in parallel, this connection 

violates KVL. Justify.        [1] 

T.9 When ideal arbitrary current sources are connected in series, this connection 

violates KCL. Justify.         

[1]           
 

T.10 Consider the nonseries-parallel circuit shown in figure T.10. Determine R and the 

equivalent resistance Req between the terminals “a” & “b” when v1 8V . 
 

(Appling basic two Kirchhoff’s laws) (Ans. R  4 Ω & Req  4Ω ) [3]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T.11 A 20 V voltage source is connected in series with the two series-resistors R1  5 Ω & 

R2  10Ω . (a) Find I, VR1 , VR2 . (Ans. 1.333 A, 6.6667 V, 13.33 V)  
(b) Find the power absorbed or generated by each of the three elements. (8.88 W 

(absorbed), 17.76 W (absorbed), 26.66 W delivered or generated (since current is leaving  

the plus terminal of that source.) [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

T.12 Consider the circuit of figure T.12  
 
 
 
 
 
 
 
 
 
 
 
 

 

Find powers involved in each of the five elements and whether absorbed or 

generated. (Ans. 48 W (G), 36 W (A), 60 W (G), 108 W (A) and 36 W (G). ( results  

correspond to elements from left to right, CS, R, VS, R, CS). [4] 

T.13 For the circuit of Figure T.13 Suppose Vin  20V .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Find the output voltage and output current. [2] 

(b) Find the ratio of output voltage (Vout ) to input voltage (Vin ) i.e. 
V

out
 = voltage 

V
in 

 
gain.  

[1] 

(c) Find the power delivered by each source(dependent & independent sources).[2] 
 



 

(Ans. (a) 100 V, 20 A (note that 6 I1 is the value of dependent voltage source with the 

polarity as shown in fig. T.13 whereas 4 I2 represents the value of dependent current 

source) (b) 5 (voltage gain). (c) 100 W (VS), 150 W (DVS), 2000 W (DCS)). 
 

T.14 Find the choice of the resistance R2 (refer to Fig. T.13) so that the voltage gain is 
 

30. (Ans. R2  1Ω [1] 
 

T.15 Find equivalent resistance between the terminals ‘a’ & ‘b’ and assume all resistors  

values are 1Ω . [2] 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

DC Transient 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Study of DC transients in 

R-L-C Circuits 

 
 
 
 

 

Objectives 
 

฀ Be able to write differential equation for a dc circuits containing two storage 

elements in presence of a resistance.
฀ To develop a thorough understanding how to find the complete solution of second 

order differential equation that arises from a simple R − L − C circuit.
฀ To understand the meaning of the terms (i) overdamped (ii) criticallydamped, and 

(iii) underdamped in context with a second order dynamic system.
฀ Be able to understand some terminologies that are highly linked with the 

performance of a second order system.
 

L.11.1 Introduction 

 

In the preceding lesson, our discussion focused extensively on dc circuits having 

resistances with either inductor ( L ) or capacitor ( C ) (i.e., single storage element) but not 

both. Dynamic response of such first order system has been studied and discussed in 

detail. The presence of resistance, inductance, and capacitance in the dc circuit introduces 

at least a second order differential equation or by two simultaneous coupled linear first 

order differential equations. We shall see in next section that the complexity of analysis of 

second order circuits increases significantly when compared with that encountered with 

first order circuits. Initial conditions for the circuit variables and their derivatives play an 

important role and this is very crucial to analyze a second order dynamic system. 



 

L.11.2 Response of a series R-L-C circuit due to a dc 

voltage source 

 

Consider a series R − L − C circuit as shown in fig.11.1, and it is excited with a dc 

voltage source Vs . Applying KVL around the closed path for t  0 ,  

L di (t) R i (t )  v (t)  V (11.1)  
  

 
dt c s  

 

    
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The current through the capacitor can be written as 
 
 
 
 

 



i (t )  C 
 dvc (t)     

 

  

dt 
   

 

       
 

Substituting the current ‘ i (t) ’expression in eq.(11.1) and rearranging the terms, 
 

LC d 
2
 v (t )  R C dv (t)  vc ( t)  Vs (11.2) 

 

dt2  dt  

  c    c   
 

 

The above equation is a 2
nd

-order linear differential equation and the parameters associated 

with the differential equation are constant with time. The complete solution of the above 

differential equation has two components; the transient response vc n (t ) and the  

steady state response vc f (t ) . Mathematically, one can write the complete solution as 
 

vc (t )  vc n (t )  vc f ( t )   A1 eα
1 

t
   A2 eα 2 

t
   A (11.3) 

 

Since the system is linear, the nature of steady state response is same as that of forcing 

function (input voltage) and it is given by a constant value A . Now, the first part vc n (t ) of 
 

the total response is completely dies out with time while R  0 and it is defined as a 

transient or natural response of the system. The natural or transient response (see 

Appendix in Lesson-10) of second order differential equation can be obtained from the 

homogeneous equation (i.e., from force free system) that is expressed by  

LC 

d
 
2

 

v
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(t
 

)
 

  

dt 2 

a 
d

 
2

 

v
c2

(t
 

)
 

dt 
 

 

 R C 

dv
c 

(t)
  vc 

(t) dt  

 b 

dv
c 

(t)
  c vc ( t) 

dt 

  
 

 0 

d 
2
 v (t )  R  dv (t) 1 

vc (t)  0 

 
 

c 

 

  c 

 

  
 

dt 
2
 L  dt LC  

 

 0 (where a  1, b  
R  

and c  
1 

) (11.4)  

L LC 
 

           
 

 

The characteristic equation of the above homogeneous differential equation (using the 

operator α  d  , α 2  d 
2
 and v (t ) ≠ 0 ) is given by     

 

      
 

    dt   dt
2
 c     

 

 

R 

     

R 

     

α 2  α  1   0 a α 
2
  b α  c  0 (where a  1, b  and c  1 ) (11.5)  

 

LC L LC 
 

 L        
 

and solving the roots of this equation (11.5) one can find the constants α1  and α2 of the 
 

exponential terms that associated with transient part of the complete solution (eq.11.3) 

and they are given below.  
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where, b  R and c  1 .  
L 

 
 

  LC 
 

The roots of the characteristic equation (11.5) are classified in three groups depending 

upon the values of the parameters R , L , and C of the circuit. 



 

  

Case-A (overdamped response): When 
 R  

2
 1  

, this implies that the roots are  

 

 

 −   0  

 

LC 

 

  2L    
 

distinct with negative real parts. Under this situation, the natural or transient part of the 

complete solution is written as 

v (t )  A eα
1 

t
  A e

α
2 

t (11.7) 
c n 1 2  

and each term of the above expression decays exponentially and ultimately reduces to 

zero as t →∞ and it is termed as overdamped response of input free system. A system  

that is overdamped responds slowly to any change in excitation. It may be noted that the 

exponential term A1 eα
1 t takes longer time to decay its value to zero than the term A1 eα

2 t . 

One can introduce a factor ξ that provides an information about the speed of system 

response and it is defined by damping ratio 

( ξ )  

Actual damping 

 

 b 

 

 R L 

1 

      

(11.8) 
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LC 

      
 

               
 

Case-B ( critically damped response): When 
 R  

2
 1  

, this implies that the roots  
 

 

 −   0  

 

LC 

 

          2L    
  

of eq.(11.5) are same with negative real parts. Under this situation, the form of the 

natural or transient part of the complete solution is written as 
 

vc n (t )   A1 t  A2 eα 
t
 (where α  − 

R 
) (11.9) 

 

2L  

    
 

where the natural or transient response is a sum of two terms: a negative exponential and 

a negative exponential multiplied by a linear term. The expression (11.9) that arises from 

the natural solution of second order differential equation having the roots of characteristic 

equation are same value can be verified following the procedure given below. 
 

The roots of this characteristic equation (11.5) are same α  α 1  α2  
R 

when 
 

2L 
 

            
 

 R  
2
  1   R  

2
 1 

and the corresponding homogeneous equation (11.4)  

 

 

 −   0     
 

 

LC 

 

LC 
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can be rewritten as 
 
 
 
 

 

or 

 

or 

 

or 

 
 
 

 d 
2
 v (t )    R   dv (t)  1   

vc (t)  0 

 
 

    c    

2 

    c 
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   dt 
2
     2L   dt LC  

 

  d 
2
 v (t ) 

 
 
2α 

 dv (t) 
 α 

2
v (t)  0 

  
 

     c    
 

  c 
 

  
 

               

   dt 
2
          dt      c      

 

                       
 

 d  dvc (t )        dvc (t )     
 

   

 

       

 α vc (t )  α 
    

 α vc (t )  0 
 

dt 
 

dt 
      

dt 
 

                  
 

df  
 α f  0 

  
where 

 
f  

dvc (t) 
α vc (t) 

 
 

 
dt 

    
dt 

   
 

                         
 

 
 

 



The solution of the above first order differential equation is well known and it is given by 

f  A eα t                   
 

  1             

dvc (t) 

       
 

Using the value of f  in the expression 
 
f  α vc (t) we can get, 

    
 

 
dt 

    
 

 

dvc (t) 

       

dvc (t) 

   

d 

     
 

  α vc (t )  A1 e − α 
t
e α 

t
   eα 

t
 α vc (t )  A1  eα 

t
 vc (t )  A1  

   

dt 
 

 

 dt             dt     
 

Integrating the above equation in both sides yields,       
 

vc n ( t )   A1 t  A2  eα t              
 

In fact, the term A eα t (with α  − R ) decays exponentially with the time and tends to  
 

 

         2    
2L 

          
 

                     

R 
 

 

zero as t →∞ . On the other hand, the value of the term A t e α 
t
 (with α  − ) in  

 
 

                  1   
2L  

                    

2L 
 

 

equation (11.9) first increases from its zero value to a maximum value A e−1
  at a time  

 
 

  
1 

   
2L 

 
2L 

       1 R 
 

t  − 
                 

 

  − −  
   and then decays with time, finally reaches to zero. One can  

α R R 

 

                    
 

easily verify above statements by adopting the concept of maximization problem of a 

single valued function. The second order system results the speediest response possible 

without any overshoot while the roots of characteristic equation (11.5) of system having 

the same negative real parts. The response of such a second order system is defined as a 

critically damped system’s response. In this case damping ratio 
 

( ξ )  
Actual damping  

b   

critical damping 2  ac 
 

   
  

 

Case-C (underdamped response): 
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(11.10) 
 
 

 

 0 , this implies that the roots of
 

eq.(11.5) are complex conjugates
 and 

 
they are expressed as  
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   β − j γ . The 
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form of the natural or transient part of the complete solution is written as    
 

v (t )  A eα
1 

t
  A e

α
 2 

t
  A e  β 


 
j
 
γ

 


  A 

2 e
β − j γ                    

 

c n   1  2  1                      
 

   = e β 
t
    A1  A 2 cos γ t   j  A1 − A 2 sin γ t       

 
    

2  
(11.11) 

 

  = e β 
t
 B cos γ t   B sin γ t   where B  A  A 

2 
; B  j A − A  

 

     1    2     1  1    2   1   
  

For real system, the response vcn (t ) must also be real. This is possible only if A1 and A2 

conjugates. The equation (11.11) further can be simplified in the following form: 
 

e β 
t
  K sin γ t θ  (11.12) 

 
 
 
 



where  β  real   part   of  the  root   , γ  complex   part of the root, 
 

K  B 
2
  B 

2
 and θ  tan−1

  
B

1   .  Truly speaking the value of K and θ can be  
 

 

 

 

 1 2  

B2 
     

 

           
  

calculated using the initial conditions of the circuit. The system response exhibits 

oscillation around the steady state value when the roots of characteristic equation are 

complex and results an under -damped system’s response. This oscillation will die down 

with time if the roots are with negative real parts. In this case the damping ratio 

( ξ )  

Actual damping 

 

 b 

 

 R L 

 1 (11.13) 
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Finally, the response of a second order system when excited with a dc voltage source is 

presented in fig.L.11.2 for different cases, i.e., (i) under-damped (ii) over-damped (iii) 

critically damped system response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Example: L.11.1 The switch S1 was closed for a long time  as  shown in fig.11.3. 

Simultaneously  at   t  0 ,  the  switch S1   is  opened  and S2  is  closed Find 

( a ) iL (0  ); (b ) vc (0  ); ( c ) iR (0  );  ( d ) v L (0  ) ; ( e ) ic ( 0  ) ;  ( f )  dv (0 

 ) .  

                   c    

dt 
 

Solution: When the switch S1 is kept in position ‘1’ for a sufficiently long time, the 

circuit reaches to its steady state condition. At time t 0− , the capacitor is completely 

charged and it acts as a open circuit. On other hand,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

the inductor acts as a short circuit under steady state condition, the current in inductor can 

be found as  

i (0− )  50   6  2 A   
 

     
 

L  100  50    
 

   

i (0 − )  6 − 2  4A 
 

 

Using the KCL, one can find the current through the resistor and 
 

      R  
 

subsequently the voltage across the capacitor vc (0 − )  4  50  200 volt. 
 

Note at t  0

  not only the current source is removed, but 100 Ω resistor is shorted or  

removed as well. The continuity properties of inductor and capacitor do not permit the 

current through an inductor or the voltage across the capacitor to change instantaneously.  

Therefore, at t 0

 the current in inductor, voltage across the capacitor, and the values of 

other variables at t  0

 can be computed as  

iL (0 

 )  iL (0 − )  2 A ; vc (0 


 )  vc (0 − )  200 volt. 

 

Since the voltage across the capacitor at t  0

 is 200 volt , the same voltage will appear across 

the inductor and the 50 Ω resistor. That is, vL (0 

 )  vR (0 


 )  200 volt. and hence,  

the current iR (0 

 ) in 50 Ω resistor = 

200
50  4 A . Applying KCL at the bottom terminal 

 
 
 
 
 
 
 

 



of the  capacitor   we   obtain i (0 

 )  − (4  2)  − 6 A and   subsequently, 

 

          c  
 

 dv (0 

 ) 
 

i (0 

 ) 
 

− 6 
 − 600 volt. / sec. 

  
 

 c  c      
 

 

dt 
  

C 0.01 
  

 

        
 

Example: L.11.2 The switch ‘ S ’ is closed sufficiently long time and then it is opened at  

time ‘ t  0 ’ as shown in fig.11.4. Determine  

(i ) v (0 

 ) (ii) dvc (t ) 

 

  

(iii ) i (0 

 ), and (iv ) diL (t ) 

   

( v) dv0 (t ) 
 

when 

 

      
 

      
 

0 dt  
t 0


 L dt  

t 0

 
 dt   

 

     t0  
 

               

R1  R2  3Ω .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: At t  0− (just before opening the switch), the capacitor is fully charged and current 

flowing through it totally blocked i.e., capacitor acts as an open circuit). The voltage across 

the capacitor is vc (0 − )  6 V  vc (0 

 ) = vbd (0 


 ) and terminal ‘ b ’ is higher potential than 

terminal ‘ d ’. On the other branch, the inductor acts as a short circuit (i.e., voltage across the 

inductor is zero) and the source voltage 6V will appear across the  

resistance R . Therefore, the current through inductor i (0− )  6   2 A  i 
L 

(0

 ) . Note at  

 
 

 2 L 3    
 

t  0

 , 

    

= v   − 6V ) 
 

v  (0 

 ) = 0 (since the voltage drop across the resistance R  3Ω 

 

 ad     1  ab 
 

and v (0 

 )  6V and this implies that v  (0 


 )  6V = voltage across the inductor ( note, 

 

cd  ca       
 

terminal ‘ c ’ is + ve terminal and inductor acts as a source of energy ).  

Now, the voltage across the terminals ‘ b ’ and ‘ c ’ ( v0 (0 

 ) ) = vbd (0 


 ) − vcd (0 


 ) 

= 0V . The following expressions are valid at t  0

 

C 
dvc   ic (0 

 
)  2A 

dvc   1 volt / sec. (note, voltage across the capacitor will  

dt 
  

dt 
  

 

  
t  0 


 

  
 
 
t 0


  

     
 

 
 

 



decrease with time i.e., 
 
dvc 

    

 −1 volt / sec ). We have just calculated the voltage 

 

    
 

 dt  
t 0


   

                   
 

across the inductor at t 0

 as          

 

vca (0 
 
)  L 

diL (t) 

 

 6V  
 diL (t) 

  

 
6 

 12 A / sec. 

 

   
 

 

dt 
    

dt 
   

0.5 
 

      
t  0 


 

        
 
 

t 0

 

 
 

                
 

Now,  dv (0 

 )  dv (0 


 )     di (0 


 )  1 − 12  3   − 35 volt / sec. 

 

0    c  − R2 L  
 

                   

   dt     dt       dt       
 

 

Example: L.11.3 Refer to the circuit in fig.11.5(a). Determine,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i)  i (0 
 
), iL (0 

 
) and v(0 

 
)  (ii) 

di 0

  

and 
dv(0 


 ) 

(iii) i  ∞, iL ∞  and v ∞  

   dt dt  

           
 

(assumed vc (0)  0 ; iL (0)  0 ) 
 

Solution: When the switch was in ‘off’ position i.e., t < 0 
 

i(0
-
 ) = iL (0

-
 ) = 0, v(0

-
 ) = 0 and vC (0

-
 ) = 0 

 
The switch ‘ S1’ was closed in position ‘1’ at time t = 0 and the corresponding circuit is 

shown in fig 11.5 (b). 
 

(i) From continuity property of inductor and capacitor, we can write the following 

expression for t = 0
+
 

i  (0
+
 ) = i  (0

-
 ) = 0, v (0

+
 ) = v (0

-
 ) = 0 i (0


 )  1 v (0


 )  0  

   
 

 L  L c c   6 
c
 

 

v(0
+
 ) = iL (0

+
 )  6 = 0 volt . 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(ii) KCL at point ‘a’ 

 

8  i (t )  ic (t )  iL (t ) 
 

At t  0 

  , the above expression is written as  

8  i (0 

 )  ic (0 


 )  iL (0 


 ) 

 
We know the current through the capacitor 

 

ic (t) = C 
dvc (t) 

 

dt  

 
 

  

ic (0 

 ) 8 A 

 

ic (t ) can be expressed as 

 

i (0 + ) = C 

dv
 c 

(0
 
+

 

)
 

 

c dt 
dv

 c 

(0
 
+

 

)
 = 8 × 

1
 = 2 volt./sec. .  

dt4  
Note the relations        

 

 dvc  0

  
 change in voltage drop in 6 Ω resistor = change in current through 6 Ω  

 

dt 
 

   

di  0

  

 

di 0

  

     
 

resistor6 = 6   
2  

1 
amp./ sec.  

dt dt 6 3 
 

        
 

Applying KVL around the closed path ‘b-c-d-b’, we get the following expression. 

vc (t )  vL (t )  v (t ) 

 

At, t  0 

  the following expression 

v (0 

 )  v 

L 
(0 


 )  i (0 


 ) 12            

 

c     L              
 

0  v L (0 
 
)  0 12v L (0 

 
)  0  L 

 di (0 

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 0 

di (0 

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 0 
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dt 

 
dt 

  
 

diL (0
+
 ) 

        

diL (0
+
 ) 

   

dv(0
+
 ) 

 
 

= 0 and this implies 12 = 12 0 = 0 v/sec = = 0  

dt dt 
   

dt 
 

                 
 

 
 



 



Now, v ( t )  R i L (t ) also at t  0

  

 

 dv (0 

 )  R 

di L (0 

 )   12 

diL (0 

 )  0 volt / sec.  

 

dt dt 
 

dt  

      
 

(iii) At t  α , the circuit reached its steady state value, the capacitor will block the flow of 

dc current and the inductor will act as a short circuit. The current through 6 Ω and 12 

Ω resistors can be formed as  

i(∞ ) = 
12×8 

= 
16 

= 5.333A,  iL (∞) = 8 -5.333 = 2.667 A 
 

 18  3  

   
 

vc ( ∞ )  32 volt. 

 

Example: L.11.4 The switch S1 has been closed for a sufficiently long time and then it is  

opened at t  0 (see fig.11.6(a)). Find the expression for (a) vc (t ) , (b) ic (t ),  t  0 for 
 

inductor values of (i ) L  0.5 H (ii ) L  0.2 H  (iii ) L 1.0 H and plot 

vc (t ) − vs −t and 
 

i (t ) − vs − t for each case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: At t  0 − (before the switch is opened) the capacitor acts as an open circuit or 

block the current through it but the inductor acts as short circuit. Using the properties of 

inductor and capacitor, one can find the current in inductor at time t  0

 as 

i (0

 )  i (0− )  12  2A  (note inductor acts as a short circuit) and voltage across the  

 
 

L L 1 5  
 

   
 

5 Ω resistor = 2  5 10 volt. The capacitor is fully charged with the voltage across the 
 

5 Ω resistor and the capacitor voltage at t  0

  is given by 

 

vc (0 

 )  vc (0 − ) 10 volt. The circuit is opened at time t  0  and the corresponding circuit 

 

diagram is shown in fig. 11.6(b). 
 

Case-1: L  0.5H , R  1Ω and C  2F 

 

Let us assume the current flowing through the circuit is i (t ) and apply KVL equation 

around the closed path is 



 
 
 

Vs  R i (t )  L 

di ( t) 

 vc ( t )    Vs  R C 

dv ( t ) 

 LC 

d 
2
 v ( t) 

 

    c c 
 

 dt dt dt
2
 

 

Vs  

d 
2
 v ( t )   R dv ( t) 1 

vc ( t) 

   
 

c 

 

   c 

 

    
 

dt 
2
 L  dt LC    

 

 

The solution of the above differential equation is given by  

vc (t )  vcn (t )  vcf (t )  

  

 vc (t) (note, i (t )  C 
dv

c 
(t)

 ) 

dt 
 

(11.14) 
 
 

 

(11.15) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The solution of natural or transient response vcn (t ) is obtained from the force free 

equation or homogeneous equation which is 

 d 
2
 v ( t )   R dv ( t)  1               (11.16) 

 

 dt2    L   dt  LC 
v

c 
(

 
t)

 


 
0            

 c          c                     
 

The characteristic   equation of  the above homogeneous equation  is  written  as 
 

α 2    R  α  1   0               (11.17)  
 

L 
                 

 

         LC                    
 

The roots of the characteristic equation are given as        
 

      R   R  
2
  1     R   R  

2
 1  

 

α1  − 
      

  

 

 − 
  

  −1.0 ; α2  − 
 −  

 − 
 

  −1.0 
 

 2 L 
     2 L 

  
 

        2L   LC       2L LC  
 

                                  
  

and the roots are equal with negative real sign. The expression for natural response is 
given by 

vcn (t )   A1 t  A 2 eα 
t
   (where α α 1  α2  −1 ) (11.18) 

 

The forced or the steady state response vcf (t ) is the form of applied input voltage and it is 

constant ‘ A ’. Now the final expression for vc (t ) is 

vc (t )   A1 t  A 2  eα 
t
  A   A1t  A2 e − 

t
  A (11.19) 

 

The initial and final conditions needed to evaluate the constants are based on vc 

(0 

 )  vc (0 − )  10 volt ; iL (0 


 )  iL (0 − )  2 A (Continuity property). 



 
 
 

  

At t 0

 ;            

 

v (t ) 
  

   A e −
10

  A  A  A 

 

A  A 10 (11.20) 

 

   
 

 c t 0   2    2   2   
 

Forming 
  dvc (t) 

(from eq.(11.19)as 
  

 

  

dt 
   

 

 

dvc (t) 

             
 

 α  A1t  A2  eα 
t
  A1 eα 

t
  −  A1t  A2 e − 

t
  A1 e−t

  

  
 

 dt                
 

 

dvc (t) 
   

 A1 − A 2      A1 − A2 1 

  

(11.21) 

 

      
 

 

dt 
  

t 0

 

  
 

              
 

              
 

(note, C dv (0 

 )  ic (0  )  iL (0  )  2 dv (0 


 ) 1 volt / sec. )  

 c   c  

               

       dt        dt  
 

It may be seen that the capacitor is fully charged with the applied voltage when t  ∞ and 

the capacitor blocks the current flowing through it. Using t  ∞ in equation (11.19) we get,  

vc ( ∞ )  A A 12  

Using the value of A in equation (11.20) and then solving (11.20) and (11.21) we get, A1  

− 1; A2  − 2 .  
The total solution is 

 

vc (t )  −  t  2  e − 
t
  12  12 −  t  2 e−t

 ; 
 

dvc (t)  − t 
 

− t 
 (11.22) 

 

   −t 
 

i (t )  C 
 

 2   t  2  e 
 

− e 
 

 2   t 1e 
  

dt   
 

       
 

The circuit responses (critically damped) for L  0.5 H are shown fig.11.6 (c) and 
 

fig.11.6(d).       
 

 

Case-2:  L  0.2 H , R  1Ω and C  2F  

It can be noted that the initial and final conditions of the circuit are all same as in case-1 

but the transient or natural response will differ. In this case the roots of characteristic 

equation are computed using equation (11.17), the values of roots are  

α1  − 0.563; α2  − 4.436  
The total response becomes 

v (t )  A eα
1 

t
   A 

2 
e

α
 2 

t
  A  A e − 4.436t   A 

2 
e − 0.563t  A   (11.23) 

 

 c 1      1         
 

 dvc (t) α A e
α

1 

t
  α 

2 
A 

2 
e

α
 2

t
  − 4.435 A e

−
 

4.436t
  − 0.563 A 

2 
e−0.536t (11.24)  

    

 
dt 

1 1       1      
 

             

dv (0 

 ) 

    
 

Using the initial conditions( vc (0  ) 10 , 1 volt / sec.) that obtained in case-1 are  
  c  

                    

               dt     
 

used in  equations  (11.23)-(11.24) with  A 12 (  final  steady state  condition)  and 
  

simultaneous solution gives  

A1  0.032; A2  − 2.032 



 
 

 

The total response is 

v (t )  0.032 e − 
4.436t

 − 2.032 e−0.563t
 12   

 

c       

(11.25) 

 

 dvc (t )  − 0.563t  − 4.436t 
 

i (t )  C 
 

 2 1 .14 e 
 

− 0.14 e 
 

 

 
 

dt   

L  0.2 H are presented in fig.11.6(c) and 

 

      
 

The system responses (overdamped) for 
  

fig.11.6 (d). 

 

Case-3: L  8.0 H , R  1Ω and C  2F 
 

Again the initial and final conditions will remain same and the natural response of the 

circuit will be decided by the roots of the characteristic equation and they are obtained 

from (11.17) as  

α1  β  jγ  − 0.063  j 0.243; α 2  β − jγ  − 0.063 − j 

0.242 The expression for the total response is  

vc (t )  vcn (t )  vcf (t )  e β 
t
  K sin  γ t  θ   A   (11.26) 

 

(note, the natural response vcn (t )  e β 
t
 K sin γ t θ  is written from eq.(11.12) when 

 

roots are complex conjugates and detail derivation is given there.) 
 

 dvc (t)  K e β t   β sin  γ t θ   γ cos γ t θ  (11.27)  
   

 

 
dt 

        
 

     

dv (0 

 ) 

 
 

Again the initial conditions ( vc (0  ) 10 , 1 volt / sec.) that obtained in case-1 are  
  c   

          

       dt  
 

used  in  equations  (11.26)-(11.27)  with  A 12 (final  steady  state  condition)  and 
 

simultaneous solution gives  

K  4.13; θ  − 28.98
0
  deg ree 

 

The total response is 

vc (t )  e β 
t
 K sin γ t  θ   12  e−0.063t

 4.13sin 0.242 t − 28.99 
0
   12   

 

vc (t )  12  4.13 e−0.063t
 sin  0.242 t − 28.99

0
      (11.28) 

 

 dvc (t )  −0.063t 0   0  
 

i (t )  C 

  

 2e 0.999*cos  0.242 t − 28.99 

 

 − 0.26sin 0.242 t − 28.99 

 

 

 

 dt   
 

The system responses (under-damped) for L 8.0 H are presented in fig.11.6(c) and fig.  
11.6(d). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Remark: One can use t  0 and t  ∞ in eq. 11.22 or eq. 11.25 or eq. 11.28 to verify  

whether it satisfies the initial and final conditions ( i.e., initial capacitor voltage  

vc (0 

 ) 10 volt. , and the steady state capacitor voltage vc ( ∞) 12 volt. ) of the circuit. 

 

Example: L.11.5 The switch ‘ S1’ in the circuit of Fig. 11.7(a) was closed in position ‘1’ 
sufficiently long time and then kept in position ‘2’. Find (i) vc (t ) (ii) ic (t ) for t ≥ 0 if C 

 

is (a) 
1 

F (b) 
1 

F (c) 
1 

F .  

9 4 8 
 

      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: When the switch was in position ‘1’, the steady state current in inductor is 

given by  

iL (0
-
 ) = 1+

30
2 = 10A, vc (0

-
 ) = iL (0

-
 ) R = 10×2 = 20 volt. 

Using the continuity property of inductor and capacitor we get 
 

iL (0
+
 ) = iL (0

-
 ) = 10, vc (0

+
 ) = vc (0

-
 ) = 20 volt. 

 

The switch ‘ S1’ is kept in position ‘2’ and corresponding circuit diagram is shown in 

Fig.11.7 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Applying KCL at the top junction point we get, 
v c (t)

 + i c (t) + i L (t) = 0 
 

R



 v c (t)  
+ C 

dv c (t) 
+ i L (t) = 0 

 
 

 
R dt 

  
 

     

d 
2

i L 

     
 

 L   di L (t) 
+ C.L 

(t)  
+ i L (t) = 0 

 

 

R 
  

dt 
  

dt
2

 
 

 

              
 

or 

d 
2

i L (t) 

+ 

 1  di L (t) 

+ 

1 

i L (t) = 0 

 

 dt
2

   RC  dt LC 
 

 
 
 
 

 

[note: vc (t )  L 
di

L 
(t)

 ] 

dt  
 

(11.29) 

 

The roots of the characteristics equation of the above homogeneous equation can obtained 

for C  
1

9 F 
 

   1   1 
2
      9   9  

2
  4×9    

 

  − 
RC 

+  
 − 4 LC    

 −    +  
  

 −      
 

      

2 
  

2 
   

 

α1 = 
   RC 

= 
    2      

= −1.5 
 

    
2 

          
2 

      
 

                          
 

   1   1 
2
      9    9 

2
  4×9   

 

  − 
RC 

−  
 − 4 LC    −    −  

 
 −      

 

      

2 
  

2 
   

 

α2 = 
    RC 

= 
      2    

= −3.0 
 

     
2 

          
2 

      
 

         

1 

                
 

Case-1  ξ 1.06, over damped system : C = 
 

F , the values of roots of characteristic 
 

9 
 

                            
  

equation are given as 

α1  − 1.5 , α2  − 3.0  
The transient or neutral solution of the homogeneous equation is given by 

i 
L 

(t) = A e 
- 1.5t

 + A e-3.0t       (11.30) 
 

 1  2           
 

To determine A1 and A2 , the following initial conditions are used.  
 

At t 0

 ;                

 

i 
L 

(0 
+
 ) = i 

L 
(0 

-
 ) = A  A 

2 
      

 

   1        
(11.31) 

 

10  A1  A2 
          

 

           
 

vc (0
+
 ) = vc (0

-
 ) = vL (0

+
 ) = L 

diL (t) 
   

 

   
 

dt 
 

t = 0
+
 

 
 

  

 

          
 

            
 

    

-1.5 e 
- 1.5t 

- 3.0  A2e 
- 3.0t 

(11.32) 
 

20 = 2×  A1      
 

= 2-1.5A1 - 3A2  = - 3A1 - 6A2 
 

Solving equations (11.31) and (11,32) we get , A 2  − 16.66 , A1  26.666 . 

 

The natural response of the circuit is  

iL  
80

3 e − 
1.5t

 − 
50

3 e −3.0t
   26.66e −1.5t

 −16.66e−3.0t
 

 



 diL 

 2 

 

 −1.5e 

−1.5t 

− 16.66  −3.0 e 

−3.0t 
 

L 
 

26.66 
 

 

 

dt  
 

       
 

v (t )  v (t) = 100e
- 3.0t

 - 80e
- 1.5t

  

Lc 

 

ic (t )  c 

dvc (t) 

 

1 

 −300.0e 

- 3.0t 

 120e 

- 1.5t 

 13.33e 

- 1.5t 

− 33.33e 

- 3.0t 

 
 

dt 9       
 

Case-2 ξ  0.707,under damped system: For C = 
 1 

F , the roots of the characteristic 
 

4 
 

               
 

equation are  

α1  − 1.0  j1.0  β  j γ 
 

α2  − 1.0 − j1.0  β − j γ 
 

The natural response becomes 1  

iL (t) = k e 
β
 
t
 sin(γ t +θ )               (11.33) 

 

Where k and θ are the constants to be evaluated from initial condition.   
 

At t 0

 , from the expression (11.33) we get,            

 

iL 0+
  = k sinθ                   

 

10 = k sinθ                  (11.34) 
 

 
di(t) 

     
 

 

β t 

      

β t 

   
 

    
 

                

 

  
 

                   
 

L 
      

= 2  k β e 

 

sin(γ t +θ ) + e 
 

γ cos(γ t +θ )  t = 0 

 

(11.35) 
 

dt 
      + 

 

   t = 0 
+            

 

                     
 

Using equation (11.34) and the values of β and γ  in equation (11.35) we get,  
 

20  2 k ( β snθ  γ cosθ )  k cos θ  (note: β  −1, γ  1 and k sinθ  10 )  (11.36) 
 

From equation ( 11.34 ) and ( 11.36 ) we obtain the values of θ and k as   
 

tanθ = 
1 θ = tan -1   1 

= 26.56 o and k  
10  22.36 

 
 

   
 

  
 

    
 

2 

     

sinθ 

 
 

          2            
 

The natural or transient solution is  

i L (t) = 22.36 e 
- t

 sin t + 26.56
o
  

 

 
L 

di(t)  
= vc (t) = 2 k  β sin (γ t + θ) + γ cos (γ t + θ)e 

β
 
t
 
 

 

 
dt 

  
 

                  
 

    
= 44.72 

  o 
) - sin (t + 26.56 

o    −t  
 

    cos (t + 26.56   )  e   
 

 dvc (t)  1   d    o    o   -t 
 

ic (t )  c 
  

 
  

 44.72 
  

 cos (t + 26.56 
 

) - sin (t + 26.56 
 

)  e 
  

dt  4  dt    
 

                
  

 − 22.36cos(t  26.56) e−t
 

 
 
 
 



Case-3 ξ 1, critically damped system :  For C = 
1 

F ;  the  roots  of  characteristic 
 

8 
 

   
 

equation are α1  − 2; α2  − 2 respectively. The natural solution is given by 
 

iL (t )   A1 t  A 2 eα 
t
  (11.37) 

  
where constants are computed using initial conditions. 

 

At t 0

  ; from equation ( 11.37) one can write      

 

i 
L 

(0

 )  A 

2 
A  10            

 

        2             
 

  

 

di(t) 
    

 

 

α t 
   

α t 
   

α t 
 

 
 

              
 

L 
        

= 2 A 2 α e 
 

 α A1 t e 
 

 A1 e 
 

t 0 
  

  

dt 
        

 

  

  

 

t = 0
+
 
 

 

 A 2α  e 

α t 

   

α t  

   
 

          
 

                
 

           2  A1  α A1 t e t 0

   

 

L 
di(t) 

   

 vc (0

 )  20  2 A1 − 2 A 2  A1  30 

 

   
 

dt 
 

t = 0
+
 

 

   

 

              
 

                 
 

The natural response is then 

 

iL (t )  10  30t  e − 
2t

 

L di
L 

(t)
  2 

d
  10  30t  e−2t  

dtdt   

L 
di

L 

(t)
 = vc (t ) = 210 − 60t  e 

−
 

2t dt  
 dvc (t)  1   

d
  − 2 t   − 2t  −2t 

 

ic (t )  c 
 

 
 

 2  
 

10 − 60t  e 
 

 − 20 e 
  

 30t e 
 

 

dt 8 dt   
 

        

1 

   
 

Case-4  ξ  2, over damped system  : For C = F 
 

 

32 
 

 

              
 

Following the procedure as given in case-1 one can obtain the expressions for (i) current 

in inductor i L ( t) (ii) voltage across the capacitor vc (t )  

iL (t )  11.5 e −
1.08t

  −1.5e −
14.93t

 

L 

di
 
(t)

  v (t )  44.8 e − 14.93 t  − 24.8 e−
1.08 t 

dt
c
 

 

ic (t )  c 
dvc (t)  

1  d 
44.8 e −

14.93
 
t
  − 24.8 e−1.08

 
t
  

dt 32 
 

 

   dt  
 

 0.837 e −
1.08t

 − 20.902 e −
14.93t

 

L.11.3 Test your understanding (Marks: 80) 

T.11.1 Transient response of a second-order ------------------ dc network is the sum of two 

real exponentials. [1] 



T.11.2 The complete response of a second order network excited from dc sources is the  
sum of -------- response and ---------------- response. [2] 

 

T.11.3 Circuits containing two different classes of energy storage elements can be  

described by a ------------------- order differential equations. [1] 

T.11.4 For the circuit in fig.11.8, find the following [6]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−  dv (0 − )  dv (0 

 )  di (0 − )  di 

L 
(0 


 ) 

 

( a ) vc (0 )  ( b ) vc (0 ) ( c ) 
c 

( d ) 
c 

( e ) 
L 

( f ) 
  

 

dt dt dt  dt  

      
 

(Ans. (a ) 6 volt . (b ) 6 volt . ( c ) 0 V / sec. ( d ) 0 V / sec. ( e ) 0 amp / sec. ( f ) 3 amp. / sec. ) 

 

T.11.5 In the circuit of Fig. 11.9,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fin



( a ) v R (0 
 
) and v L (0 

 
) (b ) 

dv R (0 

 ) 

and 
dvL (0 


 ) 

( c ) v R ( ∞) and vL ( ∞) 
[8] 

 

  
dt dt  

         
 

(Assume the capacitor is initially uncharged and current through inductor is zero).  
 

(Ans. (a ) 0 V , 0 V (b ) 0 V , 2 Volt . / Sec. ( c ) 32 V , 0V )   
 

 

T.11.6 For the circuit shown in fig.11.10, the expression for current through inductor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

is given by iL (t )  10  30t  e −
2t

    for  t ≥ 0    
 

Find, (a) the values of L ,C  (b) initial condition v (0 − ) ( c) the expression for v (t ) 0 . 
 

   c  c 
 

(Ans. (a ) L  2H , C  
1 

F (b ) vc (0
− )  20V (c ) vc (t )   20 −120t  e −

2t
 V . ) [8]   

 

8     
 

T.11.7 The response of a series RLC circuit are given by  
 

v (t )  12  0.032 e −
4.436t

 − 2.032 e−0.563t  
 

c    
 

iL (t )  2.28 e −
0.563t

 − 0.28e−4.436t
 

 

where vc (t ) and iL (t ) are capacitor voltage and inductor current respectively. Determine 
 

(a) the supply voltage (b) the values R, L , C of the series circuit. [4+4] 

(Ans. (a ) 12 V (b ) R  1 Ω , L  0.2 H and C  2 F )  
 

T.11.8 For the circuit shown in Fig. 11.11, the switch ‘ S ’was in position ‘1’ for a long 

time and then at t  0 it is kept in position ‘2’. 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Find,         
 

( a ) i (0 − ); (b ) v (0 

 ); ( c ) v 

R 
(0 


 ); ( d ) i ( ∞); [8] 

 

L  c    L  
 

Ans.         
 

( a ) i (0 − )  10 A ; (b ) v (0 

 )  400 V ;  

 

L    c     
 

( c ) v 
R 

(0 

 )  400 V ( d ) i ( ∞)  − 20 A  

 

   L     
  

T.11.9 For the circuit shown in Fig.11.12, the switch ‘ S ’ has been in position ‘1’ for a 

long time and at t  0 it is instantaneously moved to position ‘2’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Determine i (t ) for t ≥ 0 and sketch its waveform. Remarks on the system’s 
 

response. 

7 

   

1 

 [8] 
 

  −7 t   − t 
 

(Ans. i (t )   e  −  e amps.)  

3 

 

3 

 

      
  

T.11.10 The switch ‘ S ’ in the circuit of Fig.11.13 is opened at t  0 having been closed 

for a long t



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Determine (i) vc (t ) for t ≥ 0 (ii) how long must the switch remain open for the voltage 
 

vc (t ) to be less than 10% ot its value at t  0 ? [10] 

(Ans. (i) (i ) vc (t )  16  240t  e −
10t

  (ii) 0.705sec. )  

T.11.11 For the circuit shown in Fig.11.14, find the capacitor voltage vc (t ) and inductor 

current i L ( t) for all t  (t  0 and t ≥ 0). [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Plot the wave forms vc (t ) and i L ( t) for t ≥ 0 . 
 

(Ans. vc ( t )  10 e −
0.5t

 sin(0.5t ); iL (t )  5cos(0.5t ) −sin(0.5t ) e−0.5t
 ) 

T.11.12 For the parallel circuit RLC shown in Fig.11.15, Find the response 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

of iL (t ) and vc (t ) respectively.   [10] 
 

 
−2 t 

1 

  
−2t 

 
 

(Ans. iL (t )  4 − 4 e  2 t  amps. ; vc (t )  48 t e volt. ) 

 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
UNIT-1 

 
DC Circui



 
 
 
 
 
 

Superposition Theorem in the 
context of dc voltage and 
current sources acting in a 

resistive network 

 
 
 
 



Objectives 
 

฀ Statement of superposition theorem and its application to a resistive d.c network 
containing more than one source in order to find a current through a branch or to 
find a voltage across the branch.

 

1 Introduction 

 

If the circuit has more than one independent (voltage and/or current) sources, one 
way to determine the value of variable (voltage across the resistance or current through a 
resistance) is to use nodal or mesh current methods as discussed in detailed in lessons 4 
and 5. Alternative method for any linear network, to determine the effect of each 
independent source (whether voltage or current) to the value of variable (voltage across 
the resistance or current through a resistance) and then the total effects simple added. This 
approach is known as the superposition. In lesson-3, it has been discussed the properties 
of a linear circuit that satisfy (i) homogeneity property [response of output due to input=α 
u ( t) equals to α times the response of output due to input= u (t) , S (α u ( t)) =  
α S ( u ( t)) for all α ; and u (t) = input to the system] (ii) additive property [that is the  

response of u1 (t )  u 2 (t ) equals the sum of the response of u1 (t ) and the response of 
 

u 2 (t ) , S (u1 (t )  u 2 (t )) = S (u1 (t ))  S (u 2 (t )) ]. Both additive and multiplicative properties 
 

of a linear circuit help us to analysis a complicated network. The principle of 
superposition can be stated based on these two properties of linear circuits. 

 

1.1 Statement of superposition theorem 

 

In any linear bilateral network containing two or more independent sources 
(voltage or current sources or combination of voltage and current sources ), the resultant 
current / voltage in any branch is the algebraic sum of currents / voltages caused by each 
independent sources acting along, with all other independent sources being replaced 
meanwhile by their respective internal resistances.  

Superposition theorem can be explained through a simple resistive network as 
shown in fig.7.1 and it has two independent practical voltage sources and one practical 
current source. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

One may consider the resistances R1 and R3 are the internal resistances of the voltage 

sources whereas the resistance R4 is considered as internal resistance of the current 

source. The problem is to determine the response I in the in the resistor R2 . The current 

I can be obtained from  

I
 


 

I
 
′

 

|
due to E ( alone ) 


 

I
 
′′|

 due to E ( alone ) 


 

I′′′|
due to I 

s 
( alone) 

 

1 2   
 

 

according to the application of the superposition theorem. It may be noted that each 
independent source is considered at a time while all other sources are turned off or killed. 
To kill a voltage source means the voltage source is replaced by its internal resistance (i.e. 

R1 or R3 ; in other words E1 or E2 should be replaced temporarily by a short circuit)  
whereas to kill a current source means to replace the current source by its internal 

resistance (i.e. R4 ; in other words Is should be replaced temporarily by an open circuit). 
 

Remarks: Superposition theorem is most often used when it is necessary to determine the 

individual contribution of each source to a particular response. 
 

1.2 Procedure for using the superposition theorem 

 

Step-1: Retain one source at a time in the circuit and replace all other sources with their 

internal resistances. 
 

Step-2: Determine the output (current or voltage) due to the single source acting alone 

using the techniques discussed in lessons 3 and 4. 
 

Step-3: Repeat steps 1 and 2 for each of the other independent sources. 
 

Step-4: Find the total contribution by adding algebraically all the contributions due to the 

independent sources. 
 
 
 

 



2 Application of superposition theorem 

 

Example- L.7.1 Consider the network shown in fig. 7.2(a). Calculate Iab and Vcg using 

superposition theorem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: Voltage Source Only (retain one source at a time):  

First consider the voltage source Va  that acts only in the circuit and the current  
source is replaced by its internal resistance ( in this case internal resistance is infinite ( ∞ 
)). The corresponding circuit diagram is shown in fig.7.2(b) and calculate the current 
flowing through the ‘a-b’ branch.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



R  [( R  R ) 
 

 

 
R ]  R  7  2  23 Ω 

 

   

  
 

eq ac cb    ab bg 
8 8 

 
 

          
 

 

I  23
3

 A  1.043A; Now current through a to b, is given by 
  

8 

 

Iab  
7

8  
24

23  0.913A ( a to b) 

 

I acb   1.043 − 0.913  0.13A 

 

Voltage across c-g terminal : 
 

Vcg  Vbg  Vcb  2  1.043  4  0.13  2.61volts (Note: we are moving opposite to the 
 

direction of current flow and this indicates there is rise in potential). Note ‘ c ’ is higher 

potential than ‘ g ’. 
 

Current source only (retain one source at a time):  
Now consider the current source Is  2 A only and the voltage source Va  is replaced by its  

internal resistance which is zero in the present case. The corresponding the simplified 

circuit diagram is shown below (see fig.7.2(c)& fig.7.2(d)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Current in the following branches:  
 

3Ω resistor  
 (14 / 3)  2  1.217 A ; 4 Ω resistor  2 − 1.217  0.783A  

(14 / 3)  3 
 

   
 

  2     
 

1Ω resistor   
  0.783  0.522 A ( b to a)  

3 
 

      
  

Voltage across 3Ω resistor (c & g terminals) Vcg  1.217  3  3.651volts     

The total current flowing through 1Ω resistor (due to the  both sources) from a to b = 

0.913 (due to voltage source only; current flowing from ‘ a ’ to ‘ b ’) – 0.522 ( due to 

current source only; current flowing from ‘ b ’to ‘ a ’)  0.391 A .     

Total voltage across the current source Vcg  2.61volt (due to voltage source ; ‘ c ’ is 

higher potential than ‘ g ’) +  3.651 volt (due to current source only; ‘ c ’  is higher 

potential than ‘ g ’)  6.26 volt .        

Example L.7.2 For the circuit shown in fig.7.3(a), the value of Vs1  and Is are fixed. 

When Vs 2  0 , the current I  4 A . Find the value of I when Vs 2  32V .      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Solution: Let us assume that the current flowing 6 Ω 

current sources are given by (assume circuit linearity) 
 

I  α Vs1  β Vs 2 ′ ′′ ′′′ 
)  

 
ηI

 s 


 

I
 ( due to V ) 


 

I
 ( due to V 

 

I
(due to I 

 

 s 1 s 2) s  
 

 
resistors due to the voltage and 
 
 

(7.1) 
 

where the parametersα , β , and η represent the positive constant numbers. The parameters 

α and β are the total conductance of the circuit when each voltage source  
acting alone in the circuit and the remaining sources are replaced by their internal 
resistances. On the other hand, the parameter η represents the total resistance of the  
circuit when the current source acting alone in the circuit and the remaining voltage 
sources are replaced by their internal resistances. The expression (7.1) for current I is 
basically written from the concept of superposition theorem.  
From the first condition of the problem statement one can write an expression as (when 

the voltage source Vs1 and the current source Is acting jointly in the circuit and the other 

voltage source Vs 2  is not present in the circuit.) 
 

4  I  α Vs 1 ′ ′′′ 
) (Note both the sources are fixed) (7.2)  
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I
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I
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 s1 s    
  

Let us assume the current following through the 6 Ω resistor when all the sources acting 

in the circuit with Vs 2  32V is given by the expression (7.1). Now, one can determine the 

current following through 6 Ω resistor when the voltage source Vs 2  32V acting  
alone in the circuit and the other sources are replaced by their internal resistances. For the 
circuit shown in fig.7.3 (b), the current delivered by the voltage source to the 6 Ω resistor  
is given by  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I  

V
S 2  32  4 A (7.3)  

 

 8|| 8 4 

 

1 R
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The current following through the 6 Ω due to the voltage source VS 2  32V  only is 2 A  
(flowing from left to right; i,e. in the direction as indicated in the figure 7.3(b)). Using 
equation (7.1), the total current I flowing the 6 Ω resistor can be obtained as 
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′  ′′′  
)  4 A (see eq. 7.2)    

 

 4 A  2 A  6 A (note: I( due to V 
s 1 
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I
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Example L.7.3: Calculate the current Iab flowing through the resistor 3Ω as shown in 
 

fig.7.4(a), using the superposition theorem.      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: Assume that the current source 3 A ( left to the 1volt source) is acting alone in  
the circuit and the internal resistances replace the other sources. The current flowing 
through 3Ω resistor can be obtained from fig.7.4(b)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and it is given by  

I
1( due to 3 A current source) 


 

3
 


 
2 

 

6 

A ( a to b) (7.4) 
 

7 7  

    
 

 
 
 

 



Current flowing through 3Ω resistor due to 2V source (only) can be obtained from 

fig.7.4(c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and it is seen from no current is flowing. 
 

I
2( due to 2V voltage source) 


 

0
 

A
 

(
 

a to b)
 (7.5) 

Current through 3 Ω resistor due to 1V voltage source only (see fig.7.3(d)) is given by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I
3( due to 1V voltage source) 


 
1 

A ( b to a) (7.6) 
 

7 
 

    

Current through 3 Ω resistor due to 3 A current source only (see fig.7.3(e)) is obtained 

by 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I
4( due to 3 A current source) 
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3
 


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A ( a to b) (7.7) 
 

7 7  

    
  

Current through 3 Ω resistor due to 2V voltage source only (see fig.7.3(f)) is given by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I
5( due to 2V voltage source) 


 

2 

A ( b to a) (7.8) 
 

7 
 

Resultant current Iab 

  
 

flowing through 3Ω resistor due to the combination of all sources is 
 

obtained by the following expression (the algebraic sum of all currents obtained in eqs. 

(7.4)-(7.8) with proper direction of currents) 
 

I
 ab 


 

I
1( due to 3 A current source ) 
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I
2( due to 2 V voltage source ) 
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I
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 − 7
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 1.285 ( a to b)
 
 
 
 
 
 
 
 

 



3 Limitations of superposition Theorem 

 

฀ Superposition theorem doesn’t work for power calculation. Because power 
calculations involve either the product of voltage and current, the square of 
current or the square of the voltage, they are not linear operations. This statement 
can be explained with a simple example as given below.

 

Example: Consider the circuit diagram as shown in fig.7.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using superposition theorem one can find the resultant current flowing through 12 Ω  
resistor is zero and consequently power consumed by the resistor is also zero. For power 
consumed in an any resistive element of a network can not be computed using 
superposition theorem. Note that the power consumed by each individual source is given 
by 

P
W 1( due to 12 V source ( left )) 


 

12
 

watts
 

;
 

P
W 2( due to 12V source ( right )) 

12
 
watts

 

The total power consumed by 12 Ω  24 watts  (applying superposition theorem). This  
result is wrong conceptually. In fact, we may use the superposition theorem to find a 
current in any branch or a voltage across any branch, from which power is then can be 
calculated. 

 

฀ Superposition theorem can not be applied for non linear circuit ( Diodes or 
Transistors ).

฀ This method has weaknesses:- In order to calculate load current IL or the load 

voltage VL for the several choices of load resistance RL of the resistive network , 
one needs to solve for every source voltage and current, perhaps several times. 
With the simple circuit, this is fairly easy but in a large circuit this method 
becomes an painful experience.

 

4 Test Your Understanding [Marks: 40] 

 

T.7.1 When using the superposition theorem, to find the current
 produced  

independently by one voltage source, the other voltage source(s) must be ----------- and 

the current source(s) must be --------------. [2] 
 

 



 

T.7.2 For a linear circuit with independent sources p1 , p2 , p3 ……… pn  and if yi  is the 
 

response of the circuit to source pi , with all other independent sources set to zero), then 
 

resultant response y  . [1] 

T.7.3  Use superposition theorem to find the value of the voltage va  in fig.7.6. [8]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Ans. 14 volts ) 

 

T.7.4 

yields 

 

 

For the circuit shown in fig.7.7, calculate the value of source current Ix 
 

I  0 if V A  and VC  are kept fixed at 7 V and 28V .  

 

 

that 
 
[7] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Ans. Ix  − 5.833 A ) 

 

T.7.5 For the circuit shown below (see fig.7.8), it follows from linearly that we can  

write 

(i) ( i )α 

  
Vab  α I x  β V A η VB , where α , β , and η are constants. Find the values of  
(ii ) β and (iii) η . [7] 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Ans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
α  − 1; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

β  0.063; and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

η  − 0.063 )  
 

 
T.7.6 

fig.7.9. 

 
 

Using superposition theorem, find the current  

 
 
i 

 
 
through 

 
 

5 Ω resistor as shown in  
[8] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Ans. − 0.538 A ) 

 

T.7.7 Consider the circuit of fig.7.10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Find the linear relationship between Vout  and input sources Vs  and Is  
(b) If Vs   10 V and I s 1, find Vout  
(c) What is the effect of doubling all resistance values on the coefficients of the linear 

 

relationship found in part (a)? [7] 
 

(Ans. (a) Vout  0.3333Vs  6.666 Is ; (b)Vout  9.999V 

  

(c) Vout  0.3333Vs 13.332Is ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                       

UNIT-1 
 
 
 

DC Circuit 

 
 
 

 
 
 
 
 
 
 



 

 

 

 

 

 

Loop Analysis of resistive 

circuit in the context of dc 

voltages and currents. 

 

 

 

 

 

 

 



 

 

Objectives 
 

฀ Meaning of circuit analysis; distinguish between the terms mesh and loop.
฀ To provide more general and powerful circuit analysis tool based on Kirchhoff’s 

voltage law (KVL) only.
 

1 Introduction 
 

The Series-parallel reduction technique that we learned in lesson-3 for analyzing 

DC circuits simplifies every step logically from the preceding step and leads on logically 

to the next step. Unfortunately, if the circuit is complicated, this method (the simplify and 

reconstruct) becomes mathematically laborious, time consuming and likely to produce 

mistake in calculations. In fact, to elevate these difficulties, some methods are available 

which do not require much thought at all and we need only to follow a well-defined 

faithful procedure. One most popular technique will be discussed in this lesson is known 

as ‘mesh or loop’ analysis method that based on the fundamental principles of circuits 

laws, namely, Ohm’s law and Kirchhoff’s voltage law. Some simple circuit problems will 

be analyzed by hand calculation to understand the procedure that involve in mesh or loop 

current analysis. 
 

1.1 Meaning of circuit analysis 
 

The method by which one can determine a variable (either a voltage or a current) of a 

circuit is called analysis. Basic difference between ‘mesh’ and ‘loop’ is discussed in 

lesson-3 with an example. A ‘mesh’ is any closed path in a given circuit that does not 

have any element (or branch) inside it. A mesh has the properties that (i) every node in 

the closed path is exactly formed with two branches (ii) no other branches are enclosed 

by the closed path. Meshes can be thought of a resembling window partitions. On the 

other hand, ‘loop’ is also a closed path but inside the closed path there may be one or 

more than one branches or elements. 
 

 

2.Solution of Electric Circuit Based on Mesh (Loop) Current 

Method 
 

Let us consider a simple dc network as shown in Figure 4.1 to find the currents 

through different branches using Mesh (Loop) current method



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Applying KVL around mesh (loop)-1:(note in mesh-1, I1 is known as local current and 

other mesh currents I2 & I3 are known as foreign currents.)
 

Va − Vc −  I1 − I 3  R2 −  I1 − I 2 R4   0 

 

Va − Vc   R2  R4 I1 − R4 I 2 − R2 I3  R11 I1 − R12 I2 − R13 I3 
 

Applying KVL around mesh (loop)-2:(similarly in mesh-2, I2 is local current and 

I1 & I3 are known as foreign currents) 
 

−Vb −  I 2 − I 3  R3 −  I 2 − I1 R4  0 
 

− Vb  − R4 I1   R3  R4 I 2 − R3 I3   −R21 I1  R22 I2 − R23 I3  
Applying KVL around mesh (loop)-3: 

Vc − I 3 R1 −  I 3 − I 2  R3 −  I 3 − I1 R2  0 

Vc  − R2 I1 − R3 I 2   R1  R2  R3 I3   −R31 I1 − R32 I2  R33 I3 

** In general, we can write for i
th

 mesh ( for i  1, 2,..... N ) 

∑Vii  − Ri1 I1 − Ri 2 I 2 ........  Rii I i − Ri , i 1 I i 1 −.... RiN IN 
 

∑Vii → simply und the mesh. 

  
 
 

 

(4.1) 
 
 
 
 
 
 
 
 

(4.2) 
 
 
 
 

(4.3) 
 
 

 

 



Note: Generally, Rij  Rji  ( true only for linear bilateral circuits) 
 

Ii  → the unknown mesh currents for the network. 
 

Summarize: 
 

Step-I: Draw the circuit on a flat surface with no conductor crossovers. 
 

Step-2: Label the mesh currents ( Ii ) carefully in a clockwise direction. 
 

Step-3: Write the mesh equations by inspecting the circuit (No. of independent mesh 

(loop) equations=no. of branches (b) - no. of principle nodes (n) + 1). 
 

Note: 
 

To analysis, a resistive network containing voltage and current sources using 

‘mesh’ equations method the following steps are essential to note: 

 

฀ If possible, convert current source to voltage source.


฀ Otherwise, define the voltage across the current source and write the mesh 

equations as if these source voltages were known. Augment the set of equations 

with one equation for each current source expressing a known mesh current or 

difference between two mesh currents.
฀ Mesh analysis is valid only for circuits that can be drawn in a two-dimensional 

plane in such a way that no element crosses over another.
 

Example-L-4.1: Find the current through 'ab-branch' ( Iab ) and voltage (Vcg ) across the 

current source using Mesh-current method.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: Assume voltage across the current source is v1 (‘c’ is higher potential than ‘g’ 
(ground potential and assumed as zero potential) and note I2 = -2A (since assigned 

current direction ( I2 ) is opposite to the source current) 
 

Loop - 1: (Appling KVL) 

 

Va − ( I1 − I 3 ) R2 − ( I1 − I 2 )R4  0   3  3I1 − 2I2 − I3  

3I1 − I 3  −1 (4.4) 
 

Loop - 2: (Appling KVL) 
 

Let us assume the voltage across the current source is v1 and its top end is assigned with a 

positive sign.  

− v1 − ( I2 − I1 )R4 − ( I2 − I 3 )R3  0− v1  − 2I1  6I2 − 4I3  

2I1  12  4I3  v1 (note: I2  −2A ) (4.5) 

 

Loop - 3: (Appling KVL) 
 

− I 3 R1 − ( I3 − I 2 )R3 − ( I3 − I1 )R2  0   − I1 − 4I2  8I3  0 
 

I1 − 8I3  8 (Note, I2  −2A) (4.6) 
 
 

 

Solving equations (4.4) and (4.6), we get I1  − 
48 

 −0.6956 A and 
 

69  



     
 

I3 − 
25  −1.0869 A , Iab   I1 − I3  0.39A , Ibc   I2 − I3  −0.913A   and  

 
 

 23    
 

I
bg  I1 − I 2   1.304 A   

 

- ve sign of current means that the current flows in reverse direction (in our case, the 

current flows through 4Ω resistor from ‘c’ to ‘b’ point). From equation (4.5), one can get 

v1 == 6.27 volt. 
 

Another way: − v1  vbg  vbc  0 v1  vcg   6.27 volt. 

 

Example-L-4.2 For the circuit shown Figure 4.3 (a) find Vx using the mesh current 

method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: One can easily convert the extreme right current source (6 A) into a voltage 

source. Note that the current source magnitude is 6 A and its internal resistance is 6 Ω .  
The given circuit is redrawn and shown in Figure 4.3 (c) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Loop-1: (Write KVL, note I1 12 A )  

Vx − ( I1 − I 2 ) 3 − 18  0   Vx  3 I2 54 (4.7) 

 

Loop-2: (write KVL)  

18 − ( I2 − I1 )  3 − I 2  6 − 36  0 9 I 2  18 I 2  2 A  

Using the value of I2  2 A in equation (4.7), we get Vx  48volt. 

 

Example-L-4.3 Find vR  for the circuit shown in figure 4.4 using ‘mesh current method. 
 

Calculate the power absorbed or delivered by the sources and all the elements.  
 
 
 

 

Solution: Assume the voltage across the current source is ‘ v ’ and the bottom end of 

current source is marked as positive sign. 
 

For loop No. 1: (KVL equation)  

v − ( I1 − I 2 ) 100 − I1 100  0    v − 200 I1  100 I2 0 (4.8) 
 

It may be noted that from the figure that the current flowing through the 100 Ω resistor 
 

(in  the middle branch)  is10 mA . More specifically,  one can write the  following 
 

expression               
 

I − I 
2 
 1010−3

            (4.9) 
 

1                  
 

For loop No. 2: (KVL equation)           
 

− 20 − ( I 2 − I1 )  100 − v − I 2  100  0   v  200 I 2 − 100 I1  − 20    (4.10) 
 

Solving equations (4.8)–(4.10), one can obtained the loop  currents as 
 

I1  − 0.095  − 95 mA  (-ve sign indicates that the assigned loop current direction is not 
 

correct or in other words loop current ( I1 ) direction  is anticlockwise.) and 
 



I2  −0.105  −105 mA (note, loop current ( I2 ) direction is anticlockwise). Now the 
 

voltage across the 100 Ω resistor (extreme right branch) is given by 
 

vR  I 2 100  − 0.105 100  −10.5 volt. .This indicates  that the resistor terminal (b) 
 

adjacent to the voltage source is more positive than the other end of the resistor terminal 
 
 



(a). From equation (4.8) v  −8.5 volt and this implies that the ‘top’ end of the current source 

is more positive than the bottom ‘end’. 
 

Power delivered by the voltage source = 20 0.105  2.1W (note that the current is  

leaving the positive terminal of the voltage source). On the other hand, the power 

received or absorbed by the current source = 8.5 0.01  0.085W (since current entering  
to the positive terminal (top terminal) of the current source). Power absorbed by the all 

resistance is given 
 

= (0.105) 
2
 100  (0.095) 

2
 100  (10 10−3

 ) 
2
 100  2.015W . 

 

Further one can note that the power delivered ( Pd = 2.1W ) = power absorbed ( Pab = 

0.085  2.015  2.1W ) = 2.1W 
 
 
 

3 Test Your Understanding [Marks:50] 

 

T.4.1 To write the Kirchhoff’s voltage law equation for a loop, we proceed clockwise  
around the loop, considering voltage rises into the loop equation as ------- terms and 

voltage drops as -------- terms. [2] 

 

T.4.2 When writing the Kirchhoff’s voltage law equation for a loop, how do we handle  

the situation when an ideal current source is present around the loop? [2] 
 

T.4.3 When a loop current emerges with a positive value from mathematical solution of 

the system of equations, what does it mean? What does it mean when a loop current  

emerges with a negative value? [2] 

T.4.4 In mesh current method, the current flowing through a resistor can be computed 

with the knowledge of ------ loop current and ---------- loop current. [2] 

T.4.5 Find the current through  6 Ω resistor for the circuit Figure 4.5 using ‘mesh 

current’ method and hence calculate the voltage across the current source. [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



(Answer: 3.18 A ; 13.22 V ) 

 

T.4.6 For the circuit shown in Figure 4.6, find the current through  

I AB , I AC , I CD and IEF  using ‘mesh current’ method. [12]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Answer: I AB  − 3 A; I AC  − 3 A; I CD  − 2 A and I EF  0 A. ) 
 

T.4.7 Find the current flowing through the RL 1kΩ resistor for the circuit shown in 

Figure 4.7 using ‘mesh current’ method. What is the power delivered or absorbed by the  

independent current source? [10]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Answer: 1 mA;10 mW ) 
 

T.4.8 Using ‘mesh current’ method, find the current flowing through 2 Ω resistor for the 

circuit shown in Figure 4.8 and hence compute the power consumed by the same 2 Ω  

resistor. [10] 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Answer: 6 A; 72W ) 
 

____________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-2 
 

Three-phase AC Circuits



 
 
 
 
 

 

Three-phaseBalanced 

Supply 

 

In the module, containing six lessons (12-17), the study of circuits, consisting of the 

linear elements – resistance, inductance and capacitance, fed from single-phase ac supply, 

has been presented. In this module, which may also be termed as an extension of the 

previous one, containing three lessons (18-20), the solution of currents in the balanced 

circuits, fed from three-phase ac supply, along with the measurement of power, will be 

described. 
 

In this (first) lesson of this module, the generation of three-phase balanced voltages is 

taken up first. Then, the two types of connections (star and delta), normally used for the 

above supply, followed by line and phase quantities (voltages and currents) for the 

connections, in both supply and load sides (both being balanced), are described. 
 

Keywords: Three-phase balanced voltage, star- and delta-connections, balanced load. 
 

After going through this lesson, the students will be able to answer the following 

questions: 
 

1. How to generate three-phase balanced voltages? 
 

2. What are the two types of connections (star and delta) normally used for three-phase 

balanced supply? 
 

3. What are meant by the terms – line and phase quantities (voltages and currents), for 

the two types of connections in both supply and load sides (both being balanced) 

 

 

 
 

Generation of Three-phase Balanced Voltages 
 

In the first lesson (No. 12) of the previous module, the generation of single-phase 

voltage, using a multi-turn coil placed inside a magnet, was described. It may be noted 
that, the scheme shown was a schematic one, whereas in a machine, the windings are 

distributed in number of slots. Same would be the case with a normal three -phase 

generator. Three windings, with equal no. of turns in each one, are used, so as to obtain 
equal voltage in magnitude in all three phases. Also to obtain a balanced three-phase 

voltage, the windings are to be placed at an electrical angle of 120 with each other, such 

that the voltages in each phase are also at an angle of 120 with each other, which will be 

described in the next section. The schematic diagram with multi-turn coils, as was shown 

earlier in Fig. 12.1 for a single-phase one, placed at angle of 120 with each other, in a 2-

pole configuration, is shown in Fig. 18.1a. The waveforms in each of the three windings 



(R, Y & B), are also shown in Fig. 18.1b. The windings are in the stator, with the poles 

shown in the rotor, which is rotating at a synchronous speed of Ns (r/min, or 

rpm), to obtain a frequency of f  ( p Ns ) /120 (Hz), p being no. of poles [ p  2 ] (see 

lesson no. 12). 
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Fig. 18.1 (a) Schematic diagram of three windings of stator for the 

generation of three phased balanced voltage (2-pole rotor). 

 

Three-phase Voltages for Star Connection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The connection diagram of a star (Y)-connected three-phase system is shown in Fig. 

18.2a, along with phasor representation of the voltages (Fig. 18.2b). These are in conti-

nuation of the figures 18.1a-b. Three windings for three phases are R (+) & R’(−),Y (+)  
& Y’(−), and B (+) & Y’(−). Taking the winding of one phase, say phase R as an 
example, then R with sign (+) is taken as start, and R’ with sign (−) is taken as finish. 
Same is the case with two other phases. For making star (Y)-connection, R’, Y’ & B’ are 

connected together, and the point is taken as neutral, N. Three phase voltages are: 
 

eRN 
 

eBN 

  

 Em sin θ ; eYN  Em sin (θ −120) ;  Em sin 

(θ − 240)  Em sin (θ 120)  

It may be noted that, if the voltage in phase R ( eRN ) is taken as reference as stated 

earlier, then the voltage in phase Y( eYN ) lags eRN by 120 , and the voltage in phase B( 

eBN ) lags eYN by 120 , or leads eRN by 120 . The phasors are given as: 

 

 



ERN    0 E (1.0  j0.0) :   EYN    −120 E (−0.5 − j0.866) ; 
 

EBN    120 E (−0.5  j0.866) .     
 

 B 
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(b) 
 

Fig. 18.2 (a) Three-phase balanced voltages, with the source 

star-connected (the phase sequence, R-Y-B) 

(b) Phasor diagram of the line and phase voltages 
 

The phase voltages are all equal in magnitude, but only differ in phase. This is also 

shown in Fig. 18.2b. The relationship between E and Em is E  Em /  2 . The phase 
 

sequence is R- Y-B. It can be observed from Fig. 18.1b that the voltage in phase Y attains 

the maximum value, after θ  ω t  120 from the time or angle, after the voltage in 
 
 
 

 



phase R attains the maximum value, and then the voltage in phase B attains the maximum 

value. The angle of lag or lead from the reference phase, R is stated earlier. 
 

Reversal of phase sequence from R-Y-B to R-B-Y 
 

If the phase sequence is reversed from R-Y-B to R-B-Y, the waveforms and the 

corresponding phasor diagram are shown in figures 18.3 (a -b) respectively. It can be 

observed from Fig. 18.3a that the voltage in phase B attains the maximum value, after  

θ  120 from the time (or angle), after the voltage in phase R attains the maximum 

value, and then the voltage in phase Y attains the maximum value. The angle of lag or 

lead from the reference phase, R is stated earlier. The same sequence is observed in the 

phasor diagram (Fig. 18.3b), when the phase sequence is reversed to R-B-Y.  
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Fig. 18.3 (a) Three-phase balanced voltage waveforms with the source star-connected 

(the phase sequence, R-B-Y) 

(b) Phasor diagram of the line and phase voltages 

 

Relation between the Phase and Line Voltages for Star 

Connection 
 

Three line voltages (Fig. 18.4) are obtained by the following procedure. The line 

voltage, ERY is  

ERY   ERN  − EYN   E 0 − E −120 E [(1  j0) − (−0.5 − j0.866)]   

 E (1.5  j0.866)   3 E  30
 

The magnitude of the line voltage, ERY is  3 times the magnitude of the phase voltage 

ERN , and ERY leads ERN by 30 . Same is the case with other two line voltages as shown 

in brief (the steps can easily be derived by the procedure given earlier). 
  

EYB   EYN  − EBN 
 
 E −120 − 

 
E 120  

 
3E 

 

− 90 
  

EBR   EBN  − ERN 

 

 E 120− 

 

E  0  

 
3E 

 

 150 
 



So, the three line voltages are balanced, with their magnitudes being equal, and the 

phase angle being displaced from each other in sequence by 120 . Also, the line 

voltage, say ERY , leads the corresponding phase voltage, ERN by 30 

 
 
 
 
 

Relation between the Phase and Line Voltages for 

Delta Connection 
 

The connection diagram of a delta ( )-connected three-phase system is shown in Fig. 

18.4a, along with phasor representation of the voltages (Fig. 18.4b). For making delta ( )-

connection, the start of one winding is connected to the finish of the next one in 

sequence, for instance, starting from phase R, R’ is to connected to Y, and then Y’ to B, 

and so on (Fig. 18.4a). The line and phase voltages are the same in this case, and are 

given as 
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Fig. 18.4 (a) Three-phase balanced voltages, with the source delta-connected 

(the phase sequence, R-Y-B) 
 

(b) Phasor diagram of the line and phase voltages 

 

ERY   E 0 ; EYB   E −120 ; EBR   E 120 



 
 
 
 
 



     If the phasor sum of the above three phase (or line) voltages are taken, the result is zero  
(0). The phase or line voltages form a balanced one, with their magnitudes being equal, 

and the phase being displaced from each other in sequence by120 . 
 

Currents for Circuit with Balanced Load (Star-connected)  
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Fig. 18.5 (a) Circuit diagram for a three-phase balanced star-connected load  

(b) Phasor diagram of the phase voltages, and the line & phase currents 
 

A three-phase star (Y)-connected balanced load (Fig. 18.5a) is fed from a balanced 

three-phase supply, which may be a three-wire one. A balanced load means that, the  

magnitude of the impedance per phase, is same, i.e., Z p  Z RN′  ZYN ′  Z BN ′ , and their 

angle is also same, as φ p  φRN′  φYN′  φBN ′ . In other words, if the impedance per 

phase is given as, Z p φ p  Rp  j X p , then Rp  RRN′  RYN ′  RBN′ , and also 
 
 
 



X p  X RN ′  X YN′  X BN′ . The magnitude and phase angle of the impedance per phase 

are: Z p  Rp
2
  X p

2
 , and φ p  tan −1

 X p / Rp . For balanced load, the magnitudes of 

the phase voltages, Vp  VRN′  VYN ′  VBN ′ are same, as those of the source voltages per 

phase VRN  VYN  VBN , if it is connected in star, as given earlier. So, this means that, 
 

the point N′ , star point on the load side is same as the star point, N of the load side. The 

phase currents (Fig. 18.5b) are obtained as, 

I RN′    − φ p   
VRN    0  

V
RN − φ p 

  
 

      
 

 
Z

 RN ′   φ p 
Z

 RN′       
 

IYN′    − (120 φ p )  
VYN    −120  

V
YN  − (120 φ p )  

     
 

    
Z

YN′   φ p   
Z

YN′ 
 

I BN′   (120 − φ p )  
VBN    120  

V
BN  

(120 − φ p )  

 Z
 BN′ 

 

  
Z

 BN′   φ p    
 

In this case, the phase voltage, VRN is taken as reference. This shows that the phase 
 

currents are equal in magnitude, i.e., ( I p   I RN ′   IYN ′   I BN ′  ), as the magnitudes of the   
voltage and load impedance, per phase, are same, with their phase angles displaced from 
each other in sequence by 120 . The magnitude of the phase currents, is expressed as  

I p  Vp / Z p . These phase currents are also line currents ( IL  I R  IY  IB ), in this 

case. 
  

Total Power Consumed in the Circuit (Star-connected) 
 

In the lesson No. 14 of the previous module, the power consumed in a circuit fed 

from a single-phase supply was presented. Using the same expression for the above star-

connected balanced circuit, fed from three-phase supply (Fig. 18.4a-b), the power 

consumed per phase is given by 

Wp   Vp   I p   cos φ p   Vp   I p   cos Vp , I p   

It has  been shown  earlier  that  the magnitude  of  the phase  voltage  is  given  by 
 

Vp  VL  /  3 , where the magnitude of the line voltage is 

 

VL 

 

. The magnitudes of the 

 

  
 

phase and line current are same, i.e., 

 

I p 

 

 

 

I L 

 

. Substituting the two expressions, the total 
 

    
 

                  
power consumed is obtained as 

W  3 Vl /  3 I L  cos φ p    3 VL   I L  cos φ p 
 

Please note that the phase angle, φ p is the angle between the phase voltage Vp , and the 

phase current , I p . 
 

Before taking up an example, the formulas for conversion from delta-connected 

circuit to its star equivalent and vice versa (conversion from star to delta connection) 

using impedances, and also ideal inductances/capacitances, are presented here, starting 

with circuits with resistances, as derived in lesson #6 on dc circuits. 
 
 

 



Delta(∆)-Star(Y) conversion and Star-Delta conversion 

 

Before taking up the examples, the formula for Delta( )-Star(Y ) conversion and also 

Star-Delta conversion, using impedances as needed, instead of resistance as elements, 

which is given in lesson #6 in the module on DC circuit, are presented. The formulas for 

delta-star conversion, using resistances (Fig. 18.6), are,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ra   
 R2 R3 

Rb   
 R3 R1 

Rc   
 R1 R2 

 

R1  R2  R3 R1  R2  R3 R1  R2  R3 
 

   
 

The formulas for delta-star conversion, using resistance, are, 

R  R   R 
c 
 

R
b 

R
c  Ra Rb  Rb Rc  Rc Ra   

       
 

1 b     Ra 
     Ra  

              
 

R2  Rc  Ra  
  
R

c 

R
a  

  Ra Rb  Rb Rc  Rc Ra 
 

     

Rb 
 

         Rb      
 

R  R 
a 
 R 

b 
 Ra Rb    Ra Rb  Rb Rc  Rc Ra 

 

    
 

3       Rc 
     Rc  

              
 

The derivation of these formulas is given in lesson #6. If three equal resistances 

( R1  R2   R3   R ) connected in delta, are converted into its equivalent star, the  

resistances obtained are equal, its value being  Ra   Rb   Rc   (R / 3)  R′ , which is 
 

derived using formulas given earlier. Similarly, if three equal resistances connected in 

star, are converted into its equivalent delta, the resultant resistances, using formulas, are 

equal ( R1  R2  R3  3 R′  3 (R / 3)  R ).  
The formula for the above conversions using impedances, instead of resistances, are 

same, replacing resistances by impedances, as the formula for series and parallel 

combination using impedances, instead of resistances, remain same as shown in the 

previous module on ac single phase circuits. 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The formulas for delta-star conversion, using impedances (Fig. 18.7), are, 

Za  
 Z2 Z3         

Zb   
 Z3 Z1   

Zc   
 

Z
1 

Z
2 

 

Z1  Z2  Z3 
  

Z1  Z 2  Z3 
 

Z1  Z2  Z3 
 

       
 

The formulas for delta-star conversion, using impedance, are,  
 

Z1  Zb  Zc  
Zb Zc  

Za Zb  Zb Zc  Zc Za      
 

     

Z a 
     

 

     Z a         
 

Z2  Zc  Za  
 
Z

c 

Z
a  

  Za Zb  Zb Zc  Zc Za      
 

     

Zb 
     

 

     Zb         
 

Z3  Za  Zb  
 
Z

 a 

Z
b  

  Za Zb  Zb Zc  Zc Za      
 

     

Zc 
     

 

     Zc         
 

Please note that all the impedances used in the formula given here are complex 

quantities, like Z1 φ1 , , Za φa , , having both magnitude and angle as given. The 

formulas can be derived by the same procedure as given in lesson #6.  
An example is taken up, when three equal impedances connected in delta are to be 

converted into its equivalent star. The impedances are equal, both in magnitude and  

angle, such that Z1  Z2  Z3  Z , and φ1  φ2  φ3  φ . The impedances connected in 

delta are of the form Z φ  R  j X . Using the formula given here, the impedances of the 

star equivalent are also equal, having the magnitude as  

Z a   Zb   Zb   ( Z / 3)  Z ′ and angle as φa   φb   φc   φ .   

The angles of the equivalent impedance connected in star are equal to the angles of the 

impedances connected in delta. The impedances connected in delta are also equal, both in 

magnitude and angle, and are of the form Z ′ φ  (Z / 3) φ  (R / 3)  j ( X / 3) .  
Similarly, if three equal impedances connected in star are converted into its equivalent 

delta, the magnitude and angle of the impedances using the formulas given here, are  

Z1   Z2   Z3   (3  Z ′ )  Z  and φ1  φ2   φ2   φ respectively. This shows that three   

impedances are equal, both in magnitude and angle, with its value 

being Z φ  (3 Z ′) φ  [3 (R / 3)]  j[3 ( X / 3)]  R  j X  
which can also be obtained simply from the result given earlier. 

 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, let us use the above formula for the circuits (Fig. 18.8), using inductances only. 

The symbols used for the inductances are same ( L1 , , La , ). The impedances of the 
 

inductances connected in delta, are computed as Z1 φ1  0.0  jω L1  X1 90 , the angles 

in three cases are 90 . The magnitudes of the impedances are proportional to the 

respective inductances as Z1  X1 L1 . Converting the combination into its equivalent star, 

the inductances using the formulas given here, are  

La  
 L2 L3 

Lb   
 L3 L1 

Lc   
 L1 L2 

 

L1  L2  L3 L1  L2  L3 L1  L2  L3 
 

    
 

These relations can also be derived. Further, these are of the same form, as has been 

earlier obtained for resistances. It may be observed here that the formulas for series and 

parallel combination using inductances, instead of resistances, remain same, as shown in 

the previous module on ac single phase circuits, and also can be derived from first 

principles, such as relationship of induced emf in terms of inductance, as compared with 

Ohm’s law for resistance. The inductances are all ideal, i.e. lossless, having no resistive 

component. The formulas for star-delta conversion using inductances (conversion of star-

connected inductances into its equivalent delta) are,  

L  L   L   Lb Lc  La Lb  Lb Lc  Lc La  
 

        
 

1 b c   La 
     La 

 
 

             
 

L2  Lc  La  
 Lc La  

  La Lb  Lb Lc  Lc La  
 

    

Lb 
 

 

       Lb       
 

L  L 
a 
 L 

b 
 La Lb    La Lb  Lb Lc  Lc La  

 

     
 

3     Lc 
     Lc 

 
 

             
 

These are of the same form as derived for circuits with resistances.  

If three equal inductances ( L1  L2  L3  L ) connected in delta, are converted into 

its equivalent star, the inductances obtained are equal, its value being  

La  Lb  Lc  (L / 3)  L′ , which is derived using formulas given earlier. Similarly, if 

three equal inductances connected in star, are converted into its equivalent delta, the 

resultant inductances, using formulas, are equal ( L1  L2  L3  3 L′  3 (L / 3)  L ). 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The formulas for the circuits (Fig. 18.9) using capacitances are derived here. The 

symbols used for the capacitances are same ( C1 , , Ca , ). The impedances of the 
 

inductances connected in delta, are computed as Z1 φ1  0.0 − jX C  X1 − 90 , the 

angles in three cases are ( − 90 ). The magnitudes of the impedances are inversely 

proportional to the respective capacitances as, Z1  X C  X1  (1/ ω C) (1/ C1 ) .  
Converting the combination into its equivalent star, the resultant capacitances using the 

formulas given here, are 

1/ Ca   
  (1/ C2 ) (1/ C3 )       

 

1/ C1  1/ C2  1/ C3 
     

 

         
 

or  Ca   
C1 C2  C2 C3  C3 C1  C2  C3  

C2 C3 
 

      

C1 

 

Similarly, 
     C1         

 

       

C3 C1 

  

C1 C2  C2 C3  C3 C1 

  
 

C 
b 
 C 

3 
 C       

    
 

    1   C2 
      C2 

    
 

                     
 

C 
c 
 C    C 

2 
 C1 C2   C1 C2  C2 C3  C3 C1   

     
 

 1      C3 
      C3 

    
 

                     
 

The capacitances in this case are all ideal, without any loss, specially at power 

frequency, which is true in nearly all cases, except otherwise stated. The formulas for 

star-delta conversion using capacitances (conversion of star-connected capacitances into 

its equivalent delta) are,  

1/ C1  
(1/ Ca ) (1/ Cb )  (1/ Cb ) (1/ Cc )  (1/ Cc ) (1/ Ca ) 

 

  

1/ Ca 
 

      
 

or  C1  
  Cb Cc     

 

Ca  Cb  Cc 
    

 

      
 

Similarly, 

Cc Ca 

  

Ca Cb  
 

C2  
   

C3   
 

 

Ca  Cb  Cc 
 

Ca  Cb  Cc 
 

     
 

If three equal capacitances ( C1  C2  C3  C ) connected in delta, are converted into 

its equivalent star, the capacitances obtained are equal, its value being 

 
 

 



Ca  Cb  Cc  (3 C)  C′ , which is derived using formulas given earlier. Similarly, if 

three equal capacitances connected in star, are converted into its equivalent delta, the 

resultant capacitances, using formulas, are equal ( C1  C2  C3  C′ / 3  (3 C) / 3  C ).  
The formulas for conversion of three equal inductances/capacitances connected in 

delta into its equivalent star and vice versa (star-delta conversion) can also be obtained 
from the formulas using impedances as shown earlier, only by replacing inductance with 

impedance, and for capacitance by replacing it reciprocal of impedance (in both cases 

using magnitude of impedance only, as the angles are equal ( 90 for inductance and  

− 90 for capacitance). Another point to note is left for observation by the reader. Please 

have a close look at the formulas needed for delta-star conversion and vice versa (star-

delta conversion) for capacitances, including those with equal values of capacitances, and 

then compare them with the formulas needed for such conversion using 

resistances/inductances (may be impedances also). The rules for conversion of 

capacitances in series/parallel into its equivalent one can be compared to the rules for 

conversion of resistances/inductances in series/parallel into its equivalent one. 
 

The reader is referred to the comments given after the example 18.1. 
 

Example 18.1 
 

The star-connected load consists of a resistance of 15 Ώ, in series with a coil having 
resistance of 5 Ώ, and inductance of 0.2 H, per phase. It is connected in parallel with the 
delta-connected load having capacitance of 90 μF per phase (Fig. 18.10a). Both the  
loads being balanced, and fed from a three-phase, 400 V, 50 Hz, balanced supply, with 

the phase sequence as R-Y-B. Find the line current, power factor, total power & reactive 

VA, and also total volt-amperes (VA). 
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    (b)     
 

  Fig. 18.10   (a) Circuit diagram (Example 18.1) 
 

   (b) Equivalent balanced star-connected circuit 
 

Solution          
 

f  50 Hz  ω  2π f  2 π  50  314.16 rad / s 
 

For the balanced star-connected load, R  15 Ω 
 

For the inductance coil, r  5 Ω X L   ω L  314.16  0.2  62.83 Ω 
 

with the above values taken per phase.        
 

The impedance per phase is,        
 

Z1  R  (r  j X L )  15  (5  j 62.83)  (20  j 62.83)  65.94  72.34 Ω 
 

For the balanced delta-connected load, C  90  μF 
  

Converting the above load into its equivalent star, C1  C / 3  90 / 3  30 

μF X C1  1/ω C1  1/(314.16  30 10−6
 )  106.1 Ω  

The impedance per phase is Z 2′  − j106.1  106.1 − 90 
 

In the equivalent circuit for the load (Fig. 18.10b), the two impedances, Z1 & Z2′ are 

in parallel. So, the total admittance per phase is,  

Yp   Y1  Y2′  
1  

1  
1  

 1 
 

 

Z2′ 65.94   72.34 106.1  − 90 
 

 Z1   
 

 0.01517  − 72.34 0.009425   90 [(4.6 − j14.46)  j 9.425]10−3
 (4.6 − j 5.03) 10−3

   0.006816  − 47.56 Ω−1 
The total impedance per phase is, 

Z p   1/ Yp   1/(0.006816 − 47.56)  146.71 47.56(99.0j108.27)Ω 
 

The phasor diagram is shown in Fig. 18.10c.  

Taking the phase voltage, VRN  as reference, 
 

VRN   Vp   VL  /  3  400 /  3  231.0 V  
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      Fig. 18.10 (c) Phasor diagram 
 

The phase voltages are,     
 V

RN  231.0  0 ; 
V

YN  231.0  −120 ; VBN   231.0  120 
 

So, the phase current, I RN is,    
 I

 RN  

V
RN   231.0  0   1.575   − 47.56 (1.0625 − j1.162) A  

 

146.71    47.56 

 

  Z p   
 

The two other phase currents are,  
 I

YN  1.575  −167.56 ;  I BN   1.575   72.44 
 

As the total circuit (Fig. 18.5b) is taken as star-connected, the line and phase currents 

are same, i.e., I L  I p  1.575 A 
 

Also, the phase angle of the total impedance is positive. 

So, the power factor is cos φ p  cos 47.56 0.675 lag  

The total volt-amperes is S  3 Vp   I p   3 2311.575  1.0915 kVA 
 

The total VA is also obtained as S   3 VL I L   3  400 1.575  1.0915 kVA 

The total power is P  3 Vp I p cos φ p  3 2311.575  0.675  737 W  
The total reactive volt-amperes is,  

Q  3 Vp   I p  sin φ p   3 2311.575  sin 47.56 805 VAR 
 

This example can be solved by converting the star-connected part into its equivalent 

delta, as shown in Example 19.1 (next lesson). A simple example (20.1) of a balanced 

star-connected load is also given in the last lesson (#20) of this module. 
 

After starting with the generation of three- phase balanced voltage system, the phase 

and line voltages, both being balanced, first for star-connection, and then for delta-

connection (both on source side), are discussed. The currents (both phase and line) for 



balanced star-connected load, along with total power consumed, are also described in this 

lesson. An example is given in detail. In the next lesson, the currents (both phase and line) 

for balanced delta-connected load will be presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Problems 
 

18.1 A balance load of (16+j12)Ω per phase, connected in star, is fed from a three-

phase, 230V supply. Find the line current, power factor, total power, reactive VA 

and total VA. 

18.2 Find the three voltages Van, Vbn, & Vcn, in the circuit shown in Fig. 18.11. The 

circuit components are: R = 10 Ω, jXL = j17.3 Ω. 
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Three-phase Delta-

Connected Balanced 

Load 

 

 



In the previous (first) lesson of this module, the two types of connections (star and delta), 

normally used for the three-phase balanced supply in source side, along with the line and 

phase voltages, are described. Then, for balanced star-connected load, the phase and line 

currents, along with the expression for total power, are obtained. In this lesson, the phase 

and line currents for balanced delta-connected load, along with the expression for total 

power, will be presented. 
 

Keywords: line and phase currents, star- and delta-connections, balanced load. 
 

After going through this lesson, the students will be able to answer the following 

questions: 
 

1. How to calculate the currents (line and phase), for the delta-connected balanced load 

fed from a three-phase balanced system? 
 

2. Also how to find the total power fed to the above balanced load, for the two types of 

load connections – star and delta? 
 

Currents for Circuits with Balanced Load (Delta-connected)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 VBR 

IBR 

 

  
 

  Φ 
 

  120 
 

IYB 

 VRY 
 

Φ 
Φ 

 

 120  

  
 

  IRY 
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Fig. 19.1 (a) Balanced delta-connected load fed from a three-phase balanced 

supply 

(b) Phasor diagram 



A three-phase delta ( )-connected balanced load (Fig. 19.1a) is fed from a balanced 

three-phase supply. A balanced load means that, the magnitude of the impedance per 

phase,  is same,  i.e., 
 

Z p 

 

 
 

  Z
 RY 

 

 
 

 Z
YB 

 

 

 Z
 BR 

 

 

,  and  their angle  is  also same, as 

 

         
 

φ p   φRY  φYB   φBR . In  other   words,   if  the  impedance per  phase   is given as, 
 

Z p ∠φ p   Rp  j X p , then    Rp  RRY   RYB  RBR , and also X p   X RY    X Yb  X BR . 
 

The magnitude and phase angle of the impedance per phase are: Z p   Rp
2
  X p

2
  , and 

 

φ p   tan −1
 X p / Rp .In this case, the magnitudes of the phase voltages 

 

Vp  

 

are same, as 

 

  
 

those of the line voltages 

 

 

 V
L 

 

 

 V
RY 

 

    

 V
YB 

 

 

 V
BR 

 

. The phase currents (Fig. 19.1b) are 

 

         
 

obtained as,                                                  
 

IRY ∠ − φp  
VRY ∠0  

  
V

RY ∠ − φp 
                      

 

                           
 

  ZRY ∠φp    
Z

RY                                     
 

IYB ∠ − (120 φp )  
VYN ∠ −120  

V
YB   ∠ − (120 φp ) 

        
 

              
 

      ZYB ∠φp     
Z

YB                    
 

IBR ∠(120 − φp )  
VBR ∠  120  

 
V

BR   ∠(120 − φp ) 
        

 

             
 

     ZBR ∠φp           
Z

BR                       
  

In this case, the phase voltage, VRY is taken as reference. This shows that the phase 

currents are equal in magnitude, i.e., ( I p  IRY  IYB  IBR ), as the magnitudes of the 
 

voltage and load impedance, per phase, are same, with their phase angles displaced from 
each other in sequence by 120 . The magnitude of the phase currents, is expressed as 

I p   V p / Z p . 
  

The line currents (Fig. 19.1b) are given as  

I R ∠ −θ R   I RY − I BR  I p ∠(−φ p ) − I p ∠(120 − φ p )   3 I p ∠ − (30 φ p )   

 I L ∠ − (30 φ p ) 
 

IY ∠ −θY   IYB − I RY   I p ∠ − (120 φ p ) − I p ∠(−φ p )   3 I p ∠ − (150 φ p )   

 I L ∠ − (150 φ p )
 

I B ∠ −θ B   I BR − IYB  I p ∠(120 − φ p ) − I p ∠ − (120 φ p )   3 I p ∠(90 − φ p )   

 I L ∠(90 − φ p )  

The line currents are balanced, as their magnitudes are same and  3 times the magnitudes 

of the phase currents ( I L   3 ⋅ I p ), with the phase angles displaced from each other in 

sequence by 120 . Also to note that the line current, say I R , lags the  

corresponding phase current, I RY  by 30 . 
 

If the phase current, I RY  is taken as reference, the phase currents are 
 

I RY ∠0 I p (1.0  j0.0) : IYB ∠ −120 I p  (−0.5 − j0.866) ; 
 

I BR ∠  120 I p (−0.5  j0.866) . 
 

The line currents are obtained as 
 



I R  I RY ∠0 − I BR ∠  120  I p {(1.0  j 0.0) − (−0.5  j 0.866)}  I p (1.5 − j 0.866) 
 

  3 I p ∠ − 30 IL ∠ − 30   

IY  IYB ∠ −120 − I RY ∠0 I p {(−0.5 − j 0.866) − (1.0  j 0.0)}  −I p (1.5  j 0.866) 
 

  3 I p ∠ −150 I L ∠ −150  

I B  I BR ∠  120 − IYB ∠ −120 I p {(−0.5  j 0.866) − (−0.5 − j 0.866)} 
 

 I p ( j1.732)   3 I p ∠  90 I L ∠  90 
 

Total Power Consumed in the Circuit (Delta-connected) 
 

In the last lesson (No. 18), the equation for the power consumed in a star-connected 

balanced circuit fed from a three-phase supply, was presented. The power consumed per 

phase, for the delta-connected balanced circuit, is given by 

Wp   Vp ⋅ I p ⋅ cos φ p   Vp ⋅ I p ⋅ cos Vp , I p  
 

It has been shown earlier that the magnitudes of the phase and line voltages are same, i.e., 

Vp  VL . The magnitude of the phase current is (1/  3 ) times the magnitude of the line 
 

current, i.e., I p  I L /  3. Substituting the two expressions, the total power consumed 

is obtained as  

W  3⋅VL ⋅ I L /  3⋅ cos φ p    3 VL ⋅ I L ⋅ cos φ p 
 
 

It may be observed that the phase angle, φ p is the angle between the phase voltage Vp 

, and the phase current, I p . Also that the expression for the total power in a three-phase 

balanced circuit is the same, whatever be the type of connection – star or delta. 
 

Example 19.1 
 

The star-connected load having impedance of (12 − j16) Ω per phase is connected in 

parallel with the delta-connected load having impedance of (27  j18) Ω per phase (Fig.  
19.2a), with both the loads being balanced, and fed from a three-phase, 230 V, balanced 

supply, with the phase sequence as R-Y-B. Find the line current, power factor, total power 

& reactive VA, and also total volt-amperes (VA). 
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Fig. 19.2 (a) Circuit diagram (Example 19.1)  
(b) Equivalent circuit (delta-connected)  
(c) Phasor diagram 

 

 



Solution 
 

For the balanced star-connected load, the impedance per phase is, 

Z1  (12 − j16)  20.0 ∠ − 53.13 Ω 

The above load is converted into its equivalent delta. The impedance per phase is, 

Z1′  3 ⋅ Z1   3  (12 − j16)  (36 − j 48)  60.0 ∠ − 53.13 Ω  

For the balanced delta-connected load, the impedance per phase is, 

Z 2 (27  j18)  32.45 ∠  33.69 Ω  

In the equivalent circuit for the load (Fig. 19.2b), the two impedances, Z1′ & Z2 are in 

parallel. So, the total admittance per phase is, 

 

Yp   Y1′  Y2   
1  

1  
1  

1 
 

Z1′ 
 

60.0 ∠ − 53.13 32.45∠  33.69 
 

  Z2  
 

 0.0167 ∠  53.13 0.03082 ∠ − 33.69
 [(0.01  j 0.01333)  (0.02564 − j 0.017094)]  (0.03564 − j 0.003761)
 0.03584∠ − 6.024 Ω−1
The total impedance per phase is,  

Z p   1/ Yp   1/(0.03584 ∠ − 6.024)  27.902 ∠  6.024 (27.748  j 2.928) Ω 
 

The phasor diagram is shown in Fig. 19.2c.  

Taking the line voltage, VRY as reference, VRY  230 ∠0 V 

The other two line voltages are,  

VYB   230 ∠ − 120 ; VBR   230 ∠  120  
For the equivalent delta-connected load, the line and phase voltages are same.  

So, the phase current, I RY is, 
I

 RY  

V
RY  230.0 ∠0   8.243 ∠ − 6.024 (8.198 − j 0.8651) A  

 

27.902 ∠  6.024 

 

  Z p  
 

The two other phase currents are, 
 I

YB  8.243 ∠ − 126.024 ; I BR   8.243 ∠  113.976 
  

The magnitude of the line current is  3 times the magnitude of the phase current.  

So, the line current is I L    3 ⋅ I p    3  8.243  14.277  A   

The line current, I R  lags the corresponding phase current, I RY  by 30 . 
 

So, the line current, I R is I R  14.277 ∠ − 36.024 A 

The other two line currents are,  

IY   14.277 ∠ −156.024 ; I B   14.277 ∠  83.976  

Also, the phase angle of the total impedance is positive. 

So, the power factor is cos φ p  cos 6.024 0.9945 lag  

The total volt-amperes is S  3 ⋅Vp ⋅ I p   3 230  8.243  5.688 kVA 
 

The total VA is also obtained as S   3 ⋅VL ⋅ I L   3  230 14.277  5.688 kVA 

The total power is P  3 ⋅Vp ⋅ I p ⋅ cos φ p  3 230  8.243 0.9945  5.657 k W  
The total reactive volt-amperes is,  

Q  3 ⋅Vp ⋅ I p ⋅ sin φ p   3 230  8.243 sin 6.024 597.5 VAR 

 

 



An alternative method, by converting the delta-connected part into its equivalent star 

is given, as shown earlier in Ex. 18.1.  

For the balanced star-connected load, the impedance per phase is, 

Z1  (12 − j16)  20.0 ∠ − 53.13 Ω 

For the balanced delta-connected load, the impedance per phase is, 

Z 2 (27  j18)  32.45 ∠  33.69 Ω  

Converting the above load into its equivalent star, the impedance per phase is, 

Z 2′  Z 2 / 3  (27  j18) / 3  (9  j 6)  10.817 ∠  33.69 Ω  

In the equivalent circuit for the load, the two impedances, Z1  &  Z2′ are in parallel.  
So, the total admittance per phase is,    

 

Yp   Y1  Y2′  
1  

1  
1  

1 
 

 ′    
 

 Z1  20.0 ∠ − 53.13  10.817 ∠  33.69  

 Z2   
 

 0.05 ∠  53.13 0.09245 ∠ − 33.69  [(0.03  j 0.04)  (0.0769 − j 0.05128)]
 (0.1069 − j 0.01128)  0.1075 ∠ − 6.0235 Ω−1
The total impedance per phase is,  

Z p  1/ Yp  1/(0.1075∠ − 6.0235)  9.3023 ∠  6.0235 (9251  j 0.976) Ω 

The phasor diagram is shown in Fig. 18.5c. The magnitude of the phase voltage is,  

VRN   Vp   VL  /  3  230 /  3  132.8 V   

The line voltage, VRY is taken as reference as given earlier. The corresponding phase 
 

voltage, VRN lags VRY by 30 . So, the phase voltage, VRN  is VRN   132.8∠ − 30 
 

The phase current, I RN  is,  
 

I RN   

V
RN  

 132.8 ∠ − 30  14.276 ∠ − 36.0235 A  

  

9.3023 ∠  6.0235 
 

 
Z

 p   
 

As the total load is taken as star-connected, the line and phase currents are same, in 
this case. The phase angle of the total impedance is positive, with is value as  

φ  6.0235 . The power factor is cos 6.0235  0.9945 lag  

The total volt-amperes is S  3 ⋅Vp ⋅ I p  3132.8 14.276  5.688 kVA 

The remaining steps are not given, as they are same as shown earlier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Example 19.2 
 

A balanced delta-connected load with impedance per phase of (16 − j12) Ω shown in 

Fig. 19.3a, is fed from a three-phase, 200 V balanced supply with phase sequence as A-B-

C. Find the voltages, Vab , Vbc & Vca , and show that they (voltages) are balanced. 
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Fig. 19.3 (a) Circuit diagram (Example 19.2)  

(b) Phasor diagram 
 
 

 



Solution            
 

Rp  16 Ω  ; XCp  12 Ω   
 

ZAB  Z p  Rp − j XCp  16 − j12  20 ∠ − 36.87 Ω 
 

For delta-connected load, 

 

VL 

 

 

 

Vp 

 

 
 200 V 

 
 

     
 

Taking the line or phase voltage VAB as reference, the line or phase voltages are, 
 

VAB   200 ∠0 ; VBC   200 ∠ −120 ; VCA  200 ∠  120 
 

The phasor diagram is shown in Fig. 19.3b. The phase current, I AB  is, 
 

I AB   VAB / Z p   200 ∠020 ∠ − 36.87  10.0 ∠  36.87 (8.0  j 6.0)  A 
 

The other two phase currents are,   
 

IBC  10.0 ∠ − 83.13 (1.196 − j 9.928) A  
 

ICA  10.0 ∠  156.87 (−9.196  j 3.928) A 
  

The voltage, Vab  is,  

Vab   VaB  VBb   (− j X Cp ) ⋅ I AB  Rp ⋅ I BC 
 

 (12 10) ∠(36.87 − 90)  (16 10) ∠ − 83.13  120 ∠ − 53.13  160 ∠ − 83.13
 (72.0 − j 96.0)  (19.14 − j158.85)  (91.14 − j 254.85)  270.66 ∠ − 70.32 
V Alternatively,
Vab  (− j12)  (8.0  j 6.0)  16  (1.196 − j 9.928)  (91.14 − j 254.85)
 270.66 ∠ − 70.32 V
Similarly, the voltage, Vbc  is, 

 

Vbc   VbC  VCc   (− j X Cp ) ⋅ I BC  Rp ⋅ ICA 
 

 (12 10) ∠ − (83.13 90)  (16 10) ∠156.87  120 ∠ −173.13 160 ∠156.87
 −(119.14  j14.35)  (−147.14  j 62.85)  (−266.28  j 48.5)
 270.66 ∠  169.68 V
In the same way, the voltage, Vca is obtained as Vca  270.66 ∠  49.68 V 

The steps are not shown here.  
The three voltages, as computed, are equal in magnitude, and also at phase difference 

of 120 with each other in sequence. So, the three voltages can be termed as balanced 

ones. 
 

A simple example (20.3) of a balanced delta-connected load is given in the following 

lesson 
 

The phase and line currents for a delta-connected balanced load, fed from a three-

phase supply, along with the total power consumed, are discussed in this lesson. Also 

some worked out problems (examples) are presented. In the next lesson, the 

measurement of power in three-phase circuits, both balanced and unbalanced, will be 

described. 
 
 
 
 
 
 
 

 



Problems 

 

19.1 A balanced load of (9-j6) Ω per phase, connected in delta, is fed from a three 

phase, 100V supply. Find the line current, power factor, total power, reactive VA 

and total VA.  

19.2 Three star-connected impedances, Z1 = (8-jb) Ω per phase, are connected in 

parallel with three delta-connected impedances, Z2 = (30+j15) Ω per phase, across 

a three-phase 230V supply. Find the line current, total power factor, total power, 

reactive VA, and total VA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



List of Figures 

 

Fig. 19.1 (a) Balanced delta-connected load fed from a three-phase balanced supply 
 

(b) Phasor diagram 

 

Fig. 19.2 (a) Circuit diagram (Example 19.1) 
 

(b) Equivalent circuit (delta-connected) 
 

(c) Phasor diagram 
 

Fig. 19.3 (a) Circuit diagram (Example 19.2) 
 

(b) Phasor diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              UNIT-2 
 

 
 
 
 
 

Single-phase AC Circuits 
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CIRCUITS 

 

 



In the last lesson, the following points were described: 
 

1. How to compute the total impedance in parallel and series-parallel circuits? 
 

2. How to solve for the current(s) in parallel and series-parallel circuits, fed from single 

phase ac supply, and then draw complete phasor diagram? 
 

3. How to find the power consumed in the circuits and also the different components, 

and the power factor (lag/lead)? 
 

In this lesson, the phenomenon of the resonance in series and parallel circuits, fed 

from single phase variable frequency supply, is presented. Firstly, the conditions 

necessary for resonance in the above circuits are derived. Then, the terms, such as 

bandwidth and half power frequency, are described in detail. Some examples of the 

resonance conditions in series and parallel circuits are presented in detail, along with the 

respective phasor diagrams. 
 

Keywords:  Resonance, bandwidth, half power frequency, series and parallel circuits, 
 

After going through this lesson, the students will be able to answer the following 

questions; 
 

1. How to derive the conditions for resonance in the series and parallel circuits, fed from 

a single phase variable frequency supply? 
 

2. How to compute the bandwidth and half power frequency, including power and 

power factor under resonance condition, of the above circuits? 
 

3. How to draw the complete phasor diagram under the resonance condition of the 

above circuits, showing the currents and voltage drops in the different components? 
 

Resonance in Series circuit 
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Fig. 17.1 (a) Circuit diagram. 

 

The circuit, with resistance R, inductance L, and a capacitor, C in series (Fig. 17.1a) is 

connected to a single phase variable frequency ( f ) supply.  
The total impedance of the circuit is 
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Z ∠φ  R  j ω L     
 

    ω C 
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The current is 

 
 
 
 
 

 
 

φ  tan−1 (ω L −1/ω C) ;  ω  2π f 
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The current in the circuit is maximum, if ω L  
 1 

.  
ω C 

 

           
 

The frequency under the above condition is    
 

fo   
ω 

o  
 1       

 

2 

 

2π L C 

   
 

 π     
   

This condition under the magnitude of the current is maximum, or the magnitude of 

the impedance is minimum, is called resonance. The frequency under this condition with 

the constant values of inductance L, and capacitance C, is called resonant frequency. If 

the capacitance is variable, and the frequency, f is kept constant, the value of the  
capacitance needed to produce this condition is 

1 1 

C
 


 ω 2 L 


 (2π f )2 L 

 

The magnitude of the impedance under the above condition is Z  R , with the 

reactance X  0 , as the inductive reactance X l  ω L is equal to capacitive reactance X C 

 1/ω C . The phase angle is φ  0 , and the power factor is unity ( cos φ  1), which 

means that the current is in phase with the input (supply) voltage.. So, the magnitude of 

the current ( (V / R) ) in the circuit is only limited by resistance, R. The phasor diagram   
is shown in Fig. 17.1b.  

The magnitude of the voltage drop in the inductance L/capacitance C (both are equal, 

as the reactance are equal) is I ⋅ωo L  I ⋅ (1/ωo C) .  
The magnification of the voltage drop as a ratio of the input (supply) voltage is  

Q  

ωo L 
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2π fo L 
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1 L 
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Fig. 17.1 (b) Phasor Diagram 

It is termed as Quality (Q) factor of the coil. 
 

The impedance of the circuit with the constant values of inductance L, and capa-

citance C is minimum at resonant frequency ( fo ), and increases as the frequency is 

changed, i.e. increased or decreased, from the above frequency. The current is maximum 

at f  fo , and decreases as frequency is changed ( f  fo , or f  fo ), i.e. f ≠ fo . The  
variation of current in the circuit having a known value of capacitance with a variable 

frequency supply is shown in Fig. 17.2. 
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Fig. 17.2 Variation of current under variable frequency supply 
 

The maximum value of the current is (V / R ). If the magnitude of the current is 

reduced to (1/  2 ) of its maximum value, the power consumed in R will be half of that 

with the maximum current, as power is I 
2
 R . So, these points are termed as half power 

 
 

 



points. If the two frequencies are taken as 

f
1 and f2 , where f1  f0 −  f / 2 and 

 

f2   f0  f / 2 , the band width being given by f  f2 − f1 .    
 

The magnitude of the impedance with the two frequencies is    
 

         1      
 

 

       

2
 

 

 

 

    
 

    1 
  2     

 

Z   R
2
  2π ( f0   f / 2) L − 

    

  

    
 

2π ( f 
        

 

   
0 
  f / 2) C      

 

             
 

As ( 2π f0 L  1/ 2π f0C ) and the ratio ( f / 2 f0 ) is small, the magnitude of the 
 

reactance of the circuit at these frequencies is  X  X L0 (  f / f0 ) . As the current is   

(1/  2 ) of its maximum value, the magnitude of the impedance is (  2 ) of its minimum 

value (R) at resonant frequency.  
       1   

 

So, Z  2 ⋅ R  R
2
   X L0 (  f / f0 )2

  
   

 

2   
 

From the above, it can be obtained that   f / f0 X L0   R 
 

or  f  f2 − f1  
R f0  

 R f0  
R   

 

 

2π f0 L 2π L 
 

  
X

 L0  
 

The band width is given by f  f2 − f1  R /(2π L) 
  

It can be observed that, to improve the quality factor (Q) of a coil, it must be designed 

to have its resistance, R as low as possible. This also results in reduction of band width 

and losses (for same value of current). But if the resistance, R cannot be decreased, then 

Q will decrease, and also both band width and losses will increase. 
 

Example 17.1 
 

A constant voltage of frequency, 1 MHz is applied to a lossy inductor (r in series with 

L), in series with a variable capacitor, C (Fig. 17.3). The current drawn is maximum, 
 

when C = 400 pF; while current is reduced to (1/  2 ) of the above value, when C = 450 

pF. Find the values of r and L. Calculate also the quality factor of the coil, and the 

bandwidth.  

R L 
 

+  
 

V 

C 
 

- 
 

 
   

f = 1 MHz 
 

Fig. 17.3 Circuit diagram 

 

Solution 
 

f = 1 MHz = 10
6
 Hz ω  2π f C  400 pF  400 ⋅10−12

 F 

 
 
 

 

Imax   V / r 

 

as X L  X C 

 

Xc  

   1   

 

  1 

 398 Ω 

 

  2π f C  2π ⋅10
6
  400 ⋅10−12

 
 



X L  X C   2π f L  398 Ω 
 

L  
  398.0   

 63.34 μH 
 

 

  

2π ⋅10
6
 

 
 

                          
 

C1  450 pF 
   

X C1  
   1           

 353.7 Ω 
 

 

   2 π ⋅10 
6
  450 ⋅10−12

 
  

 

                    
 

Z ∠φ  r  j  X L − X C1   r  j (398.0 − 353.7)  (r  j 44.3) Ω  
 

I  

I
max  V  V    V                    

 

2 2 

 

Z r 
2
  (44.3)

2
 

               
 

  ⋅ r                    
 

From above,  2 ⋅ r   r 
2
  (44.3)

2
     or 2r 

2
  r 

2
  (44.3)

2
  

 

or r  44.3 Ω                               
 

The quality factor of the coil is Q  X L     398.0  8.984  
 

   

44.3 

  

The band with is 
           r         

 

                            
 

f  f  − f   r         44.3       44.3   0.1113 ⋅10
6
   0.1113 MHz  

2 
                          

  1   
2π L 

   
2π  63.34 ⋅10−6

 
     

398 ⋅10−6
 
  

 

                
  

 111.3 ⋅10
3
  111.3 kHz

 



 

         R    L           
I • 

R L 
                           

+ 

                       

+ 
I2 

 

I1                          
                            

V = 200 V                  C1 V = 200 V  C2 
                   

-                        -  

• 

  

f1 = 50Hz 

                      

f2 = 100Hz 

  

                         

 Fig. 17.6 (a) Circuit diagram         Fig. 17.6 (b) Circuit diagram 

Solution                            

 f1  = 50 Hz      V = 200 V    R = 15 Ω L = 0.75 H    

 From the condition of resonance at 50 Hz in the series circuit,    

 
X L1  ω1L  2π f1 L  X C1  

  1   
   1      

     

2 π f1 C1 
     

               ω1C1      

 So, C     1      1        13.5 ⋅10−6
   13.5 μF    

 

2π f1 2
 

  

2π ⋅ 502
 

         

  1   L  0.75        

 The maximum current drawn from the supply is, I max V / R  200 /15  13.33 A  

 f2  = 100 Hz      ω2  2π f2   2π ⋅100  628.3 rad / s    

 
X

 L2  2π f2 L  2π ⋅100 ⋅ 0.75  471.24 Ω      

 X
 C 2  

 1     

 

   1        

 117.8. Ω 

   

 2 π f 2 C 1  2π ⋅100 ⋅13.5 ⋅10−6
      

 Z1 ∠φ1  R  j  X L2 − X C 2   15  j (471.24 −117.8)  15  j 353.44     

 353.75∠87.57 Ω
 

Y ∠ − φ 
1 
  1  1  1  2.827 ⋅10−3

 ∠ − 87.57 
 

      

1  
Z1 ∠φ1 

 
15  j 353.44 

 
353.75∠87.57 

 
 

      
 

 (0.12 

− j 

2.824) 

⋅10−3
 

Ω−1
 Y2 

 1/ Z2 

 j ω2 

C2 
 

As the combination is resistive in nature, the total admittance is  

Y ∠0 Y  j 0  Y1  Y2   (0.12 − j 2.824) ⋅10−3
  jω2 C2 

From the above expression, ω2 C2   628.3⋅ C2   2.824 ⋅10−3
 

or, C2   
2.824

 
⋅10

−3
   4.5 ⋅10−

6   4.5 μF 
 

628.3 



The total admittance is Y  0.12 ⋅10−3
 Ω−1

 

The total impedance is Z  1/ Y  1/0.12 ⋅10−3
  

8.33 ⋅10
3
 Ω  8.33 kΩ The total current drawn from 

the supply is 

  

I  V ⋅Y  V / Z  200  0.12 ⋅10−3
  0.024 A  24 ⋅10−3

  24 mA The 

phasor diagram for the circuit (Fig. 17.6b) is shown in Fig. 17.6c.  
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Fig. 17.6 (c) Phasor diagram 
 

The condition for resonance in both series and parallel circuits fed from single phase 

ac supply is described. It is shown that the current drawn from the supply is at unity 

power factor (upf) in both cases. The value of the capacitor needed for resonant condition 

with a constant frequency supply, and the resonant frequency with constant value of 

capacitance, have been derived. Also taken up is the case of a lossy inductance coil in 

parallel with a capacitor under variable frequency supply, where the total current will be 

at upf. The quality factor of the coil and the bandwidth of the series circuit with known 

value of capacitance have been determined. This is the final lesson in this module of 

single phase ac circuits. In the next module, the circuits fed from three phase ac supply 

will be described. 



 
 
 
 
 

 

Problems 
 

17.1 A coil having a resistance of 20 Ω and inductance of 20 mH, in series with a 

capacitor is fed from a constant voltage variable frequency supply. The maximum 

current is 10 A at 100 Hz. Find the two cut-off frequencies, when the current is 

0.71 A. 
 

17.2 With the ac voltage source in the circuit shown in Fig. 17.7 operating a frequency 

of f, it was found that I =1.0 ∠0 A. When the source frequency was doubled (2f), 

the current became I = 0.707 ∠ – 45 A. Find:  
a) The frequency f, and 

b) The inductance L, and also the reactances, XL and XC at 2f 
 

17.3 For the circuit shown in Fig. 17.8,  

a) Find the resonant frequency f0, if R = 250 Ω, and also calculate Q0 (quality 

factor), BW (band width) in Hz, and lower and upper cut-off frequencies (f1 and 

f2) of the circuit.  
b) Suppose it was desired to increase the selectivity, so that BW was 65 Hz. What 

value of R would accomplish this? 
 

R = 100 Ω 
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   Single-phase AC Circuits 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution of Current in R-L-C        

Series Circuits 

 



In the last lesson, two points were described: 
 

1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current by a phasor? 
 

2. How to perform elementary mathematical operations, like addition/ subtraction and 

multiplication/division, of two or more phasors, represented as complex quantity? 
 

Some examples are also described there. In this lesson, the solution of the steady state 

currents in simple circuits, consisting of resistance R, inductance L and/or capacitance C 

connected in series, fed from single phase ac supply, is presented. Initially, only one of 

the elements R / L / C, is connected, and the current, both in magnitude and phase, is 

computed. Then, the computation of total reactance and impedance, and the current, in the 

circuit consisting of two components, R & L / C only in series, is discussed. The process 

of drawing complete phasor diagram with current(s) and voltage drops in the different 

components is described. Lastly, the computation of total power and also power 

consumed in the components, along with the concept of power factor, is explained. 
 

Keywords: Series circuits, reactance, impedance, phase angle, power, power factor. 
 

After going through this lesson, the students will be able to answer the following 

questions; 
 

1. How to compute the total reactance and impedance of the R-L-C series circuit, fed 

from single phase ac supply of known frequency? 
 

2. How to compute the current and also voltage drops in the components, both in 

magnitude and phase, of the circuit? 
 

3. How to draw the complete phasor diagram, showing the current and voltage drops? 
 

4. How to compute the total power and also power consumed in the components, along 

with power factor? 
 

Solution of Steady State Current in Circuits Fed from Single-

phase AC Supply 

 

Elementary Circuits 
 

1. Purely resistive circuit (R only) 
 

The instantaneous value of the current though the circuit (Fig. 14.1a) is given by, 
 

i  R
v

  
V

R
m

 sin ω t  I m sin ω t 
 
 

where,  

Im and Vm are the maximum values of current and voltage respectively. 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The rms value of current is given by 

I  
I
m  

V
m 

/  2
 − 

 

V  

−   
 

2 R R 
  

In phasor notation, 
− 

V  V  0 V (1  j 0)  V  j 0  
− 

I  I  0 I (1  j 0)  I  j 0  
The impedance or resistance of the circuit is obtained as,  
 −  

V  0 

 
 

 
V 

  Z  0 R  j 0 
 

− 
I  0 

 

 I   
 

    
 

Please note that the voltage and the current are in phase (φ  0 ), which can be  
observed from phasor diagram (Fig. 14.1b) with two (voltage and current) phasors, and 

also from the two waveforms (Fig. 14.1c).  
In ac circuit, the term, Impedance is defined as voltage/current, as is the resistance in 

dc circuit, following Ohm’s law. The impedance, Z is a complex quantity. It consists of 

real part as resistance R, and imaginary part as reactance X, which is zero, as there is no 

inductance/capacitance. All the components are taken as constant, having linear V-I 

characteristics. In the three cases being considered, including this one, the power 
 
 
 
 

consumed and also power factor in the circuits, are not taken up now, but will be 

described later in this lesson. 
 



2. Purely inductive circuit (L only) 
 

For the circuit (Fig. 14.2a), the current i, is obtained by the procedure described here.  

As v  L 
di

 Vm sin ω t  2 V sin ω t , 

 dt   

di  2 V sin (ω t) dt   
 L    

Integrating,   

i  − 2 V cos ω t  2 V sin (ω t − 90)  Im sin (ω t − 90)   2 I sin (ω t − 90) 

 ω L  ω L   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It may be mentioned here that the current i, is the steady state solution, neglecting the 

constant of integration. The rms value, I is 
   −   

 

−   
V 


 I   − 90 

  
 

I     
 

    
 

  ω L   
 

−     − 

 I   − 90 0 − j I 

 

V  V  0 V  j 0  ; I 
 

 

 



The impedance of the circuit is  
 − 

V  0 

    
 

Z  φ  
V 

  
V 

 jω L  0  j X L   X L    90ω L  90 
 

− 
I   − 90 − j I 

 

 I    
 

     

X L   ω L  2π f L . 
 

where, the inductive reactance is 
 

Note that the current lags the voltage by φ  90 . This can be observed both 

from phasor diagram (Fig. 14.2b), and waveforms (Fig. 14.2c). As the circuit has no 

resistance, but only inductive reactance X L  ω L (positive, as per convention), the 

impedance Z is only in the y-axis (imaginary). 
 

3. Purely capacitive circuit (C only) 
 

The current i, in the circuit (Fig. 14.3a), is,  

i  C 
dv

dt 
 

Substituting v   2 V sin ω t Vm sin ω t , i is   

i  C dt
d

  2 V sin ω t 2 ω C V cosω t  2 ω C V sin (ω t  

90)  2 I sin (ω t  90) 
 
 

 I m sin (ω t  90) 
The rms value, I is
     −                   

 

−  −   V 

 I  90 

             
 

I  ω CV  

                
 

1/(ω C)              
 

 −       − 

 I  90 0  j I 

    
 

V  V  0 V  j 0  ; I     
 

The impedance of the circuit is              
 

  −   

V  0 

                   
 

Z  φ  
V 

 
 
 

V 
 

 1  
− 

  j  
 0 − j X C  X C    − 90 

 1 
90 

 

− 
I  90 j I 

 

jω C 
 ω C 

 ω C 
 

  
I 

             
 

              

 1 

   

1 

    
 

where, the capacitive reactance is X C   
  
 . 

   
 

ω C 2π f C 
   

 

                    
  

Note that the current leads the voltage by φ  90  (this value is negative, i.e.  

φ  −90 ), as per convention being followed here. This can be observed both from 

phasor diagram (Fig. 14.3b), and waveforms (Fig. 14.3c). As the circuit has no resistance, 

but only capacitive reactance, X c  1/(ω C) (negative, as per convention), the impedance 

Z is only in the y-axis (imaginary). 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Series Circuits 
 

1. Inductive circuit (R and L in series) 
 

The voltage balance equation for the R-L series circuit (Fig. 14.4a) is,  

v  R i  L dt
di

 
  

where, v   2 V sin ω t Vm sin ω t   2 V sinθ , θ being ω t .   
The current, i (in steady state) can be found as  

i   2 I sin (ω t − φ )  I m sin (ω t − φ )   2 I sin (θ − φ )   
The current, i(t) in steady state is sinusoidal in nature (neglecting transients of the 

form shown in the earlier module on dc transients). This can also be observed, if one sees 
 

the expression of the current, i  Im sin (ω t) for purely resistive case (with R only), and 
 

i  Im sin (ω t − 90) for purely inductive case (with L only). 
 

Alternatively, if the expression for  i  is substituted in the voltage equation, the  
equation as given here is obtained.   



2 V sinω t  R 2 I sin (ω t − φ )  ω L 2 I cos (ω t − φ )  

If, first, the trigonometric forms in the RHS side is expanded in terms of sin ω t and  

cos ω t , and then equating the terms of sin ω t and cos ω t from two (LHS & RHS) 
 

sides, the two equations as given here are obtained.  

V  (R cosφ  ω L sin φ ) I , and 
 
 

 

0  (−R sin φ  ω L cosφ )  

From these equations, the magnitude and phase angle of the current, I are derived. 

From the second one, tan φ  (ω L / R) 
 

So, phase angle, φ  tan −
1
 (ω L / R)  

Two relations,  cosφ  (R / Z ) , and  sin φ  (ω L / Z ) , are derived, with the term   

(impedance), Z  R
2
  (ω L)

2
 

 

If these two expressions are substituted in the first one, it can be shown that the 

magnitude of the current is I  V / Z , with both V and Z in magnitude only. 
 

The steps required to find the rms value of the current I, using complex form of 

impedance, are given here. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

The impedance (Fig. 14.5) of the inductive (R-L) circuit is,  

Z φ  R  j X L   R  j ω L 
 

where,                    
 

Z  R2  X L
2
   R 2  (ω L)

2
 and  φ  tan−1

 
 X 

L 
 
 tan−1

 
 ω L 

 

 

 

  

  

 

 

   

R 
 

             R     
 

   −   j 0    V  j 0          
 

I   − φ   V  0    V           

−                     
 

                  
 

   Z  φ  R  j X L   R  jω L           
 

I  
V

   V   V            
 

Z   R 
2
  X L

2
  R 

2
  (ω L)

2
          

  
Note that the current lags the voltage by the angle φ , value as given above. In this  

case, the voltage phasor has been taken as reference phase, with the current phasor 

lagging the voltage phasor by the angle, φ . But normally, in the case of the series circuit,  

the current phasor is taken as reference phase, with the voltage phasor leading the current 

phasor by φ . This can be observed both from phasor diagram (Fig. 14.4b), and  

waveforms (Fig. 14.4c). The inductive reactance X L  is positive. In the phasor diagram, 
 

as one move from voltage phasor to current phasor, one has to go in the clockwise 

direction, which means that phase angle, φ is taken as positive, though both phasors are  
assumed to move in anticlockwise direction as shown in the previous lesson.  

The complete phasor diagram is shown in Fig. 14.4b, with the voltage drops across the 

two components and input (supply) voltage ( OA ), and also current ( OB ). The voltage 

phasor is taken as reference. It may be observed that  

VOC ( I R)  VCA [ I ( j X L )]  VOA ( I Z ) ,  

using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor 

diagram can also be drawn with the current phasor as reference, as will be shown in the 

next lesson. 

 

 

 

 

 

 

 

 

 

 

 
 

 



Power consumed and Power factor 
 

From the waveform of instantaneous power (W  v i ) also shown in Fig. 14.4c for the 

above circuit, the average power is, 
 
 
 
 

 

W  

1
 π∫ v i 

dθ  

1 

π∫  2 V sinθ 2 I sin (θ − φ ) dθ  

1
 π∫V I cos φ − cos (2θ − φ ) 

dθ 
 

    π 0   π 0          π 0  

                  
 

 1     π  V I     π    
 

 
   

V I cos φ θ 
  − 

    

 sin (2θ − φ ) 0  
   

 

π 
 0   

2 
    

 

                  
 

 1  V I cos φ (π − 0) − V I sin (2π − φ )  sinφ   V I cosφ  

   
 

 π 
         

2 
       

 

                 
  

Note that power is only consumed in resistance, R only, but not in the inductance, L.  

So, W  I 
2
 R . 

Power factor  average power  V I cos φ  cos φ  R  R 

 apparent power V I  Z  R
2
  (ω L)

2
   

The power factor in this circuit is less than 1 (one), as 0 ≤ φ ≤ 90 , φ being positive 

as given above. 
 

For the resistive (R) circuit, the power factor is 1 (one), as φ  0 , and the average 

power is V I . 
 

For the circuits with only inductance, L or capacitance, C as described earlier, the 

power factor is 0 (zero), as φ  90 . For inductance, the phase angle, or the angle of the  

impedance, φ  90 (lagging), and for capacitance, φ  − 90 (leading). It may be noted  
that in both cases, the average power is zero (0), which means that no power is consumed 

in the elements, L and C.  
The complex power, Volt-Amperes (VA) and reactive power will be discussed after 

the next section. 
 

2. Capacitive circuit (R and C in series) 
 

This part is discussed in brief. The voltage balance equation for the R-C series circuit 

(Fig. 14.6a) is, 
 

v  R i  C
1

 ∫i dt  2 V sin ω t 
 
 

The current is  
 

i   2 I sin (ω t  φ ) 
 

The reasons for the above choice of the current, i , and the steps needed for the 

derivation of the above expression, have been described in detail, in the case of the earlier 



example of inductive (R-L) circuit. The same set of steps has to be followed to derive the 

current, i in this case. 
 

Alternatively, the steps required to find the rms value of the current I, using complex 

form of impedance, are given here.  

The impedance of the capacitive (R-C) circuit is, 

Z − φ  R − j X C  R − j ω
1

C 
 
 



 

Z   R 
2
  X 

2
  

 
1 
 2 

 

R 
2
   and 

 

C      
 

   ω C  
  

φ  tan −1  − 

X
 C 

R   
− 

− φ  V 0 I  
Z − φ 

  
 

−1 
  

 

 tan  − 
 

   

    
 

 

 V  j 0 

R − j X C 

  

  1    −1  1  
 

    

  − tan 
  

 

  

 

 

        
 

           
 

ω C R     ω C R 
 

 

 V  j 0       
 

R − j (1/ω C)      
  

I  
V

  V  V 

Z  R 
2
  X C

2
  R 2  1 /ω C 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Note that the current leads the voltage by the angle φ , value as given above. In this 
 

case, the voltage phasor has been taken as reference phase, with the current phasor 

leading the voltage phasor by the angle, φ . But normally, in the case of the series circuit,  

the current phasor is taken as reference phase, with the voltage phasor lagging the current 

phasor by φ . This can be observed both from phasor diagram (Fig. 14.6b), and  

waveforms (Fig. 14.6c). The capacitive reactance X C  is negative. In the phasor diagram, 
 

as one move from voltage phasor to current phasor, one has to go in the anticlockwise 

direction, which means that phase angle, φ is taken as negative. This is in contrast to the  
case as described earlier. The complete phasor diagram is shown in Fig. 14.6b, with the 

voltage drops across the two components and input (supply) voltage, and also current. The 

voltage phasor is taken as reference. 

The power factor in this circuit is less than 1 (one), with φ being same as given above. 

The expression for the average power is P  V I cosφ , which can be obtained by  
the method shown above. The power is only consumed in the resistance, R, but not in the 

capacitance, C. One example is included after the next section. 
 

Complex Power, Volt-Amperes (VA) and Reactive Power 
 

The complex power is the product of the voltage and complex conjugate of the 

current, both in phasor form. For the inductive circuit, described earlier, the voltage (V 0 
) is taken as reference and the current ( I − φ  I cos φ − j I sin φ ) is lagging the  
voltage by an angle, φ . The complex power is 

 
− − 

I 
*
  V   0  I   φ  (V I )   φ  V I cos φ   j V I sin φ  P   j Q 

 

S  V 
 

The Volt-Amperes (S), a scalar quantity, is the product of the magnitudes the voltage 

and the current. So, S  V I  P 
2
  Q

2
 . It is expressed in VA. 

 
The active power (W) is 

 − 

P  Re (S)  Re (V I 
*
 )  V I cos φ , as derived earlier.  

 − 

The reactive power (VAr) is given by Q  Im (S)  Im (V I 
*
 )  V I sin φ .  

As the phase angle, φ is taken as positive in inductive circuits, the reactive power is 

positive. The real part, ( I cos φ ) is in phase with the voltage V , whereas the imaginary 

part, I sin φ is in quadrature ( − 90 ) with the voltage V . But in capacitive circuits, the 

current ( I φ ) leads the voltage by an angle φ , which is taken as negative. So, it can be 

stated that the reactive power is negative here, which can easily be derived 

 

 

Example 14.1 
 

A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance, 

C (Fig. 14.7a). The current drawn is 2 A, and the power loss in the resistance is 100 W. 

Calculate the resistance and the capacitance. 
 

Solution 
 

V = 120 V I = 2 A P = 100 W f  = 50 Hz 



 
 
 

  

R  P / I 
2
   100 / 2

2
   25 Ω   

Z   R 
2
  X C

2
   V / I  120 / 2  60 Ω  

 

X c  1/(2π f C)   Z 
2
 − R

2
   (60)

2
 − (25)

2
  54.54 Ω 

 

C  
1 

 
1  

 58.36 10−6
  58.36 μF 

 

 
2π f X C 2π  50.0  54.54 

 

     
 

The power factor is, cos φ  R / Z  25 / 60  0.417 (lead ) 
 

The phase angle is φ  cos−1
 (0.417)  65.38  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The phasor diagram, with the current as reference, is shown in Fig. 14.7b. The examples, 

with lossy inductance coil (r in series with L), will be described in the next lesson. The 

series circuit with all elements, R. L & C, along with parallel circuits, will be taken up in 

the next lesson. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Problems 

 

14.1 Calculate the power factor in the following cases for the circuit with the elements, 

as given, fed from a single phase ac supply. 
 

(i) With resistance, R only, but no L and C 
 

(a) 1.0 (Φ=0) (b) 0.0 lagging (Φ=+90) 
 

(c) 0.0 leading (Φ=-90) (d) None of the above 
 

(ii) with only pure/lossless inductance, L, but no R and C 
 

(a) 1.0 (Φ=0) (b) 0.0 lagging (Φ=+90) 
 

(c) 0.0 leading (Φ=-90) (d) None of the above 
 

(iii) with only pure capacitance, C, but no R and L. 
 

(a) 1.0 (Φ=0) (b) 0.0 lagging (Φ=+90) 
 

(c) 0.0 leading (Φ=-90) (d) None of the above 
 

14.2 Calculate the current and power factor (lagging / leading) in the following cases 

for the circuits having impedances as given, fed from an ac supply of 200 V. Also 

draw the phasor diagram in all cases. 

 

(i) Z = (15+j20) Ω 
 

(ii) Z = (14-j14) Ω  

(iii) Z = R + j (XL – XC), where R = 10 Ω, XL = 20 Ω, and XC = 10 Ω. 
 

14.3 A 200 V, 50 Hz supply is connected to a resistance (R) of 20 Ω in series with an 

iron cored choke coil (r in series with L). The readings of the voltmeters across the 

resistance and across the coil are 120 V and 150 V respectively. Find the loss in 

the coil. Also find the total power factor. Draw the phasor diagram. 
 



14.4 A circuit, with a resistance, R and a lossless inductance in series, is connected 

across an ac supply (V) of known frequency (f). A capacitance, C is now 

connected in series with R-L, with V and f being constant. Justify the following 

statement with reasons. 
 

The current in the circuit normally increases with the introduction of C. 
 

Under what condition, the current may also decrease. Explain the condition with 

reasons. 
 
 
 
 
 
 
 
 
 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

               UNIT-2 

Single-phase AC Circuits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Representation of 

Sinusoidal Signal by a 

Phasor and Solution of 

Current in R-L-C Series 

Circuits 

 

 



In the last lesson, two points were described: 
 

1. How a sinusoidal voltage waveform (ac) is generated? 
 

2. How the average and rms values of the periodic voltage or current waveforms, are 

computed? 
 

Some examples are also described there. In this lesson, the representation of 

sinusoidal (ac) voltage/current signals by a phasor is first explained. The polar/Cartesian 

(rectangular) form of phasor, as complex quantity, is described. Lastly, the algebra, 

involving the phasors (voltage/current), is presented. Different mathematical operations – 

addition/subtraction and multiplication/division, on two or more phasors, are discussed. 
 

Keywords: Phasor, Sinusoidal signals, phasor algebra 
 

After going through this lesson, the students will be able to answer the following 

questions; 
 

1. What is meant by the term, ‘phasor’ in respect of a sinusoidal signal? 
 

2. How to represent the sinusoidal voltage or current waveform by phasor? 
 

3. How to write a phasor quantity (complex) in polar/Cartesian (rectangular) form? 
 

4. How to perform the operations, like addition/subtraction and multiplication/division 

on two or more phasors, to obtain a phasor? 
 

This lesson forms the background of the following lessons in the complete module of 

single ac circuits, starting with the next lesson on the solution of the current in the steady 

state, in R-L-C series circuits. 
 

Symbols 
 

i or i(t) 

  

Instantaneous value of the current (sinusoidal form) 
 

I 
 
Current (rms value) 
 

I m 
 
Maximum value of the current 
 



− 

I Phasor representation of the current 
 

φ Phase angle, say of the current phasor, with respect to the reference phasor Same 

symbols are used for voltage or any other phasor. 
 

Representation of Sinusoidal Signal by a Phasor 
 

A sinusoidal quantity, i.e. current, i (t)  I m sin ω t , is taken up as an example. In Fig. 

13.1a, the length, OP, along the x-axis, represents the maximum value of the current I m , on a 

certain scale. It is being rotated in the anti-clockwise direction at an angular speed, 

ω , and takes up a position, OA after a time t (or angle, θ  ω t , with the x-axis). The  

vertical projection of OA is plotted in the right hand side of the above figure with respect 

to the angle θ . It will generate a sine wave (Fig. 13.1b), as OA is at an angle, θ with the 

x-axis, as stated earlier. The vertical projection of OA along y-axis is OC = AB = 
 

i (θ )  I m sinθ , which is the instantaneous value of the current at any time t or angle θ . 

The angle θ is in rad., i.e. θ  ω t . The angular speed, ω is in rad/s, i.e.ω  2π f , where f 

is the frequency in Hz or cycles/sec. Thus,  

i  I m sinθ  I m sinω t  I m sin 2πft 
 

So, OP represents the phasor with respect to the above current, i.  

The line, OP can be taken as the rms value, I  Im /  2 , instead of maximum value,   

Im . Then the vertical projection of OA, in magnitude equal to OP, does not represent 
exactly the instantaneous value of I, but represents it with the scale factor of   

1/  2  0.707 . The reason for this choice of phasor as given above, will be given in 

another lesson later in this module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Generalized case 
 

The current can be of the form, i (t)  I m sin (ω t − α ) as shown in Fig. 13.1d. The 

phasor representation of this current is the line, OQ, at an angle,α (may be taken as 

negative), with the line, OP along x-axis (Fig. 13.1c). One has to move in clockwise 

direction to go to OQ from OP (reference line), though the phasor, OQ is assumed to 

move in anti-clockwise direction as given earlier. After a time t, OD will be at an angle θ 

with OQ, which is at an angle (θ − α  ω t − α ), with the line, OP along x-axis. The  
vertical projection of OD along y-axis gives the instantaneous value of the current, 

 

i   2 I sin (ω t − α )  I m sin (ω t − α ) .  
 

Phasor representation of Voltage and Current 
 

The voltage and current waveforms are given as,   

v   2 V sinθ , and i   2 I sin (θ  φ )  

It can be seen from the waveforms (Fig. 13.2b) of the two sinusoidal quantities – 

voltage and current, that the voltage, V lags the current I, which means that the positive 

maximum value of the voltage is reached earlier by an angle, φ , as compared to the  



positive maximum value of the current. In phasor notation as described earlier, the voltage 

and current are represented by OP and OQ (Fig. 13.2a) respectively, the length of which 

are proportional to voltage, V and current, I in different scales as applicable to each one. 

The voltage phasor, OP (V) lags the current phasor, OQ (I) by the angleφ , as  

two phasors rotate in the anticlockwise direction as stated earlier, whereas the angleφ is  
also measured in the anticlockwise direction. In other words, the current phasor (I) leads 

the voltage phasor (V). 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mathematically, the two phasors can be represented in polar form, with the voltage 
− − 

0 

− 

 I ∠φ . 
 

phasor (V ) taken as reference, such as V  V ∠0 , and I 
 

In Cartesian or rectangular form, these are,    
 

− −    
 

V  V ∠0
0
  V  j 0 , and I  I ∠φ  I cos φ  j I sin φ , 

  

where, the symbol, j is given by j   − 1 .  

Of the two terms in each phasor, the first one is termed as real or its component in x-axis, 

while the second one is imaginary or its component in y-axis, as shown in Fig. 13.3a. The 

angle,φ is in degree or rad. 
 

Phasor Algebra 
 

Before discussing the mathematical operations, like addition/subtraction and multi-

plication/division, involving phasors and also complex quantities, let us take a look at the 

two forms – polar and rectangular, by which a phasor or complex quantity is represented. 

It may be observed here that phasors are also taken as complex, as given above.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Representation of a phasor and Transformation 
 

A phasor or a complex quantity in rectangular form (Fig. 13.3) is, 
− 

A  ax  j ay 

where ax and  a y are real and imaginary parts, of the phasor respectively. 
 

In polar form, it is expressed as 
− 

A  A∠θ a   Acosθ a  j Asinθ a 

where A and θ a are magnitude and phase angle of the phasor. 
 

From the two equations or expressions, the procedure or rule of transformation from 

polar to rectangular form is  

ax   Acosθ a  and  a y   Asinθ a 
 

From the above, the rule for transformation from rectangular to polar form is  

A   ax
2
  ay

2
  and θ a   tan−1

 ay / ax  
 

The examples using numerical values are given at the end of this lesson. 

 

Addition/Subtraction of Phasors 
 

Before describing the rules of addition/subtraction of phasors or complex quantities, 

everyone should recall the rule of addition/subtraction of scalar quantities, which may be 

positive or signed (decimal/fraction or fraction with integer). It may be stated that, for the 

two operations, the quantities must be either phasors, or complex. The example of phasor 

is voltage/current, and that of complex quantity is impedance/admittance, which will be 

explained in the next lesson. But one phasor and another complex quantity should not be 

used for addition/subtraction operation.  
For the operations, the two phasors or complex quantities must be expressed in 

rectangular form as 
− 

A  ax  

  

j ay ; 

 
− 

B  bx  

  

j by 
 

If they are in polar form as  
− 

  
−  

A  A 
 
∠θ 

 
a  ; B  B 

 
∠θ  



In this case, two phasors are to be transformed to rectangular form by the procedure or 

rule given earlier.  
The rule of addition/subtraction operation is that both the real and imaginary parts 

have to be separately treated as 

Say, for addition, real parts must 

be added, so also for imaginary parts. 

Same rule follows for subtraction. 

After the result is obtained in 

rectangular form, it can be transformed to polar one. It may be observed that the six 

values of a' s , b' s and c' s – parts of the two phasors and the resultant one, are all signed 

scalar quantities, though in the example, a' s and b' s are taken as positive, resulting in 

positive values of c' s . Also the phase angle θ ' s may lie in any of the four quadrants, 

though here the angles are in the first quadrant only.  
This rule for addition can be extended to three or more quantities, as will be illustrated 

through example, which is given at the end of this lesson. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The addition/subtraction operations can also be performed using the quantities as 
 − 

phasors in polar form (Fig. 13.4). The two phasors are A(OA) and B (OB) . The find the  
− 

sum C (OC) , a line AC is drawn equal and parallel to OB. The line BC is equal and 
 − − 

parallel to OA. Thus, C  OC  OA  AC  OA  OB  A  B . Also,  

OC  OB  BC  OB  OA 
− 

To obtain the difference D (OD) , a line AD is drawn equal and parallel to OB, but in 

opposite direction to AC or OB. A line OE is also drawn equal to OB, but in opposite 
− 

direction to OB. Both AD and OE represent the phasor ( − B ). 

  

The line, ED is equal to  
 − − 

OA. Thus, D  OD  OA  AD  OA − OB  A − B . Also OD  OE  ED  − OB  OA .  
The examples using numerical values are given at the end of this lesson. 

 

−−−   cx  j cy 
 

C  A  B  ax  bx   j ay  by 
 

where cx   ax  bx  ;  cy   a y  by  
 



Multiplication/Division of Phasors 
 

Firstly, the procedure for multiplication is taken up. In this case no reference is being 

made to the rule involving scalar quantities, as everyone is familiar with them. Assuming 
 

that 

  
the 

  

two 

  

phasors 

  

are 

  

available 

  

in 

  

polar 

  

from 

  

as 

 
− 

A  A∠θ a 

  

and 

 
− 

B  B 

  

∠θ 

  

b . 
 



Otherwise, they are to be transformed from rectangular to polar form. This is also valid 

for the procedure of division. Please note that a phasor is to be multiplied by a complex 

quantity only, to obtain the resultant phasor. A phasor is not normally multiplied by 

another phasor, except in special case. Same is for division. A phasor is to be divided by a 

complex quantity only, to obtain the resultant phasor. A phasor is not normally divided by 

another phasor. 
− 

To find the magnitude of the product C , the two magnitudes of the phasors are to be 

multiplied, whereas for phase angle, the phase angles are to added. Thus, 

 
 − − 

C  C ∠θ c   A⋅ B  A ∠θ A ⋅ B ∠θ B   ( A ⋅ B) ∠ θ a  θ b  
 

where C  A ⋅ B and θ c   θ a  θb  
− 

Please note that the same symbol, C is used for the product in this case. 
 − − 

To divide A .by B to obtain the result D ., the magnitude is obtained by division of the 

magnitudes, and the phase is difference of the two phase angles. Thus, 
 −   A∠θ  A  

− A    
 

       

∠ θ a −θb  
 

D  D ∠θ d   
  

  a  
 

 

−     
 

 B   B ∠θbB 
 

where D  A / B and θ d θa−θb 
 

If the phasors are expressed in rectangular form as 
 

−   −     
 

A  ax  j ay  and B  bx  j by 
 

where A   ax
2
  ay

2
  ; θ a   tan −1

 ay / ax  
  

− 

The values of B are not given as they can be obtained by substituting b' s for a' s . 

To find the product, 
−   − − 

 ax  j ay ⋅ bx  j by   ax bx − ay by  j ax by  ay bx  

 

C  C ∠θ c   A⋅ B 
 

Please note that j 2  −1 .The magnitude and phase angle of the result (phasor) are, 
 

     1   
 

C  ax bx − ay by 2
  ax by  ay bx 2

  

 

 ax
2
  ay

2
 ⋅  b x

2
  by

2
   A ⋅ B , and 

 

2 
 

       
 

θ   tan −
1
 ax by  ay bx  

 
 

c 
  

 

      
 

  
a

x 

b
x 
−

 

a
y 

b
y  

  

The phase angle,                     
a 

   
 b 

    
 

 

    a 
y    −1 b    −1  y / a 

x y / b 
x  

θ c   θ a  θ b   tan 
−1   

 tan 
 y 

 tan 
 

       

 

 

  

    

 

 

 

  

 

             

         − a y / ax  ⋅ by 
   

 

    
a

x     
b

x   
1 / bx  

 

                                 
 

                               
 

tan−
1 ax by  ay bx                            

 

                             

                               
 

a
x 

b
x 
−

 

a
y 

b
y                            

 

The above results are obtained by simplification.            
 

 − −          −                     
 

To divide A by B to obtain D as                  
 

  −    
ax  j ay  

                    
 

− A 
                       

 



D  dx  j d y  
  

                     
 

−   

bx  j by 

                    
 

 
− 

B                        
 

 

i.e. 
   

to 

 

obtain real and imaginary parts, both  numerator  and 

 

To  simplify D ,     
 

denominator, are to be multiplied by the complex conjugate of 

 −     
 

 B , so as to convert the 
 

−  
denominator into real value only. The complex conjugate of B is 

 

B
*
  bx  j by   B ∠ −θb 

 

In the complex conjugate, the sign of the imaginary part is negative, and also the phase 

angle is negative. 

−       a x  j ay  ⋅ b x − j by          ay by  
      

 

D  d   j d     
a
x

b
x 

  j ay bx − axby   

x y b x  j by  ⋅ b x − j by  
 

2 
     

 

          2      2 2  
 

            bx  by        bx  by  
 

The magnitude and phase angle of the result (phasor) are,       
 

                  1                    
 

   ax bx  ay by 2
  ay bx − ax by 2

  
 

 

  a x
2
  ay

2
  A 

    
 

D  

2       
 

               

 b x
2
  by

2
  


 B , and 

 
 

     b x
2
  by

2
          

 

                                     
 

θ  tan−
1 ay bx − axby                           

 

d 
                            

                                    
 

     
a

x

b
x 


 

a
y 

b
y                          

 

The phase angle,                               
 

         a 
y 
  b 

y 
      a 

y 
b 

x 
− a b 

y 
   

 

θ d θa−θb 
 

 tan 
−1    −1    

 tan 
−1    x      

 

    − tan                    
 

         
a

x   
b

x       
a

x 

b
x 


 

a
y 

b
y   

  
The steps are shown here in brief, as detailed steps have been given earlier. 

Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

− 

The phasor, A in the rectangular form (Fig. 13.5) is, 
−  

A  A∠θ a 

 
 

 

 
 

Acos 

 
 

θ a  

 
 

j Asin θ a 

 
 

 ax  

 
 

j ay 

 
 

 −2  

 
 

j 4 
  



where the real and imaginary parts are 
 
ax 

 

 −2 ; 
 
a y 

 

 4 
 



− 

To transform the phasor, A into the polar form, the magnitude and phase angle are 
 

  

A   ax
2
  a y

2
  (−2)

2
  4

2
  4.472 

 

 −1 ay −1    4 
 

θ a   tan     tan  116.565 2.034 rad  
    

  
a

x − 2  
 

Please note that θ a is in the second quadrant, as real part is negative and imaginary 

part is positive. 
− 

Transforming the phasor, A into rectangular form, the real and imaginary parts are 

ax  Acosθ a  4.472 ⋅ cos116.565  −2.0 

ay   Asinθ a   4.472 ⋅ sin116.565 4.0 
 

Phasor Algebra  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 − 

Another phasor, B in rectangular form is introduced in addition to the earlier one, A 
− 

B  6  j 6  8.485∠45  
Firstly, let us take the addition and subtraction of the above two phasors. The sum and 

      − − 
 

difference are given by the phasors, C and D respectively (Fig. 13.6). 
 

− − − 

 j 4) (6  j 6)  (−2  6)  j (4  6)  4  j10  10.77 ∠68.2 

 

C  A B  (−2 
 

− − − 

−(6  j 6)  (−2 − 6)  j (4 − 6)  −8 − j 2  8.246 ∠ − 166.0 

 

D  A− B  (−2  j 4) 
  

It may be noted that for the addition and subtraction operations involving phasors, 

they should be represented in rectangular form as given above. If any one of the phasors 



 

is in polar form, it should be transformed into rectangular form, for calculating the results 

as shown. 
 

If the two phasors are both in polar form, the phasor diagram (the diagram must be 

drawn to scale), or the geometrical method can be used as shown in Fig 13.6. The result 

obtained using the diagram, as shown are the same as obtained earlier. 
− − 

∠DOX  166.0 ] 

 

[ C (OC) = 10.77, ∠COX  68.2 ; and D ( OD) = 8.246, 
  

Now, the multiplication and division operations are performed, using the above two 

phasors represented in polar form. If any one of the phasors is in rectangular form, it may 

be transformed into polar form. Also note that the same symbols for the phasors are used 

here, as was used earlier. Later, the method of both multiplication and division using 

rectangular form of the phasor representation will be explained. 
−  

The resultant phasor C , i.e. the product of the two phasors is 
 

C  A⋅ B  4.472∠116.565 8.485∠45 (4.472 8.485) ∠116.565 45−−− 

 

 37.945∠161.565 −36  j12 
The product of the two phasors in rectangular form can be found as 

−    

 (−12 − 24)  j (24 − 12)  −36  j12 

 
 

C  (−2  j 4) ⋅ (6  j 6)  
 

   −     − −  
 

The result ( D ) obtained by the division of A by B is  
 

 −  
4.472 ∠116.565  4.472  

   
 

− A  ∠116.565 − 45  0.527 
 

 

D         ∠71.565  

− 

8.485∠45 

 

8.485 

 

 B        
 

          
 

 0.167  j 0.5 

The above result can be calculated by the procedure described earlier, using the 

rectangular form of the two phasors as 
 −  − 2  j 4  (−2  j 4) ⋅ (6 − j 6)  (−12  24)  j (24  12) 

 

D  A  

−       
 

        
 

 −  6  j 6  (6  j 6) ⋅ (6 − j 6)  6
2
  6

2
 

 

 B       
 

 
12

 


 
j
 
36

  0.167  j 0.5
72  

The procedure for the elementary operations using two phasors only, in both forms of 

representation is shown. It can be easily extended, for say, addition/multiplication, using 

three or more phasors. The simplification procedure with the scalar quantities, using the 

different elementary operations, which is well known, can be extended to the phasor 

quantities. This will be used in the study of ac circuits to be discussed in the following 

lessons. 
 

The background required, i.e. phasor representation of sinusoidal quantities 

(voltage/current), and algebra – mathematical operations, such as addition/subtraction and 

multiplication/division of phasors or complex quantities, including transformation of 

phasor from rectangular to polar form, and vice versa, has been discussed here. The study 

of ac circuits, starting from series ones, will be described in the next few lessons. 
 

 

 

 



Problems 

 

13.1 Use plasor technique to evaluate the expression and then find the numerical value at t 

= 10 ms. 
 

i  t  = 150 cos 100t - 45
0
  + 500 sin 100t  + dt

d
  cos 100t - 30

0
  

 

 

13.2 Find the result in both rectangular and polar forms, for the following, using complex 

quantities: 
 

a) 

  5 - j12        
 

 15 ∠ 53.1       
 

b)  5 - j12 +15 ∠ - 53.1   
 

c) 
 2 ∠ 30 - 4 ∠ 210     

 

  

5 ∠ 450 

1 

    
 

       
 

d) 
 

5 ∠ 0  + 
    

. 2 ∠ 210  

 

    

 
 

3 2 

  
 

   ∠ - 45   
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          UNIT-2 
 

 

R-L & R-C Transients 

 



Study of DC transients in R-L 

and R-C circuits 

 

Objectives 
 

฀ Definition of inductance and continuity condition for inductors.
฀ To understand the rise or fall of current in a simple series R − L circuit excited 

with dc source.
฀ Meaning of 'Time Constamt (τ ) ' for R − L circuit and explain its relationship to the 

performance of the circuit.
฀ Energy stored in an inductor
฀ Definition of capacitance and Continuity condition for capacitors.
฀ To understand the rise or fall voltage across the capacitor in a simple series R − C 

circuit excited with dc source.
฀ Meaning of 'Time Constamt (τ ) ' for R − C circuit and explain its relationship to 

the performance of the circuit.
฀ Energy stored in a capacitor

 

L.10.1 Introduction 

 

So far we have considered dc resistive network in which currents and voltages 
were independent of time. More specifically, Voltage (cause → input) and current (effect  
→ output) responses displayed simultaneously except for a constant multiplicative factor R 

(V  R  I ). Two basic passive elements namely, inductor ( L) and capacitor ( C ) are  
introduced in the dc network. Automatically, the question will arise whether or not the 
methods developed in lesson-3 to lesson-8 for resistive circuit analysis are still valid. The 
voltage/current relationship for these two passive elements are defined by the derivative 

(voltage across the inductor v 
L 

(t )  L diL (t) , where i (t ) =current flowing through the  
   

    
dt 

      L      
 

          

dvC (t) 
    

 

inductor ; current through the capacitor iC (t )  C ,  vC (t) = voltage across the 
 

 
dt  

      

L 

∫
0 

     

C 

∫
0 

 
 

              
 

capacitor) or in integral form as i (t )  1 t v 
L 

(t ) dt  i (0) or  v (t )  1 
t i (t ) dt  v (0)  

     
 

    L        L  C   C 
  

rather than the algebraic equation (V  IR ) for all resistors. One can still apply the KCL, 
KVL, Mesh-current method, Node-voltage method and all network theorems but they 
result in differential equations rather than the algebraic equations that we have considered 
in resistive networks (see Lession-3 to lesson-8). 

 

An electric switch is turned on or off in some circuit (for example in a circuit 
consisting of resistance and inductance), transient currents or voltages (quickly changing 
current or voltage) will occur for a short period after these switching actions. After the 
transient has ended, the current or voltage in question returns to its steady state situation 



(or normal steady value). Duration of transient phenomena are over after only a few micro 
or milliseconds, or few seconds or more depending on the values of circuit parameters 
(like R, L , and C ).The situation relating to the sudden application of dc  
voltage to circuits possessing resistance ( R ), inductance ( L ), and capacitance ( C ) will 



 
 

 

now be investigated in this lesson. We will continue our discussion on transients 
occurring in a dc circuit. It is needless to mention that transients also occur in ac circuit 
but they are not included in this lesson. 

 

L.10.2 Significance of Inductance of a coil and dc transients 

in a simple R-L circuit 

 

Fig.10.1 shows a coil of wire forming an inductance and its behavior is to resist 
any change of electric current through the coil. When an inductor carries current, it 
produces a certain amount of magnetic flux ( Φ ) in the core or space around it. The  

product of the magnetic flux ( Φ ) and the number of turns of a coil (an inductor) is called 

the ‘flux linkage’ of the coil.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Considering the physical fact that the voltage across the coil is directly proportional to 
the rate of change of current through the inductor and it is expressed by the equation  

emf  e (t )  L 
di (t ) 

L  
e (t) 

(10.1)  

dt di (t ) / dt 
 

   
 

where L is the constant of proportionality called inductance of coil and it is measured in  volt
 
−

 
s

 
ec

 
ond

  henry ( H ). The direction of induced emf is opposite to that of 

current ampere  
increases or decreases (Lenz’s Law)  

e (t )  − L 
di (t) 

(10.2)  

dt 
 

Let us assume that the coil of wire has 
'
 
N

 
'
 

 
 

turns and the core material has a relatively 
 

high permeability (or magnetic path reluctance is very low), so that the magnetic flux ( Φ 
) produced due to current flowing through the coil is concentrated within the core area. 
The basic fundamental principle according to Faraday, the changing flux through the coil 
creates an induced emf ( e ) and it is expressed as  

e (t )  − N 
d Φ(t) 

(10.3)  

dt 
 

  
 

 

 



In words, Faraday’s law states that the voltage induced in a coil (inductor) is proportional 
to the number of turns that the coil has, and also to the rate of change of the magnetic flux 
passing through its coils. From equations (10.2) and (10.3), one can write the following 
relation 

 

L  
N d Φ (t )  

change in flux linkage  
N Φ 

(10.4)  

di change in current I 
 

    
 

The inductance of a coil can also be defined as flux ( Φ ) linkage per unit of current 

flowing through the coil and it is illustrated through numerical example. 
 

Example-L.10.1: Consider two coils having the same number of turns ‘ 
N

 ’. One coil is 

wrapped in a nonmagnetic core (say, air) and the other is placed on a core of magnetic 
material as shown in fig.10.2. Calculate the inductances of both coils for same amount of 
current flowing through them.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case-A: Nonmagnetic material             
 

Inductance of nonmagnetic material = L  
N Φ  

200 (0.510−4
 )  5 m H 

 
 

 1     
 

        

  1  
I 

 2 
    

 

Case-B: Magnetic material 
        

 

 

N  Φ 2 

 

200 (0.05) 

     
 

Inductance of magnetic material L    5H ( Note: L  L )  
  

 

2 I 
    2 

   2 1 
 

           
 

 

L.10.2.1 Inductance calculation from physical dimension of coil 
 

A general formula for the inductance of a coil can be found by using an equivalent 

Ohm ' s law for magnetic circuit and the formula for reluctance. This topic  
will be discussed in detail in Lesson-21. Consider a solenoid-type electromagnet/toroid 



 

with a length much greater than its diameter (at least the length is ten times as great as its 
diameter). This will produce an uniform magnetic field inside the toroid. The length ‘l ’of 
a toroid is the distance around the center axis of its core , as indicated in fig.10.3 by  
dotted line. Its area ‘ A ’ is the cross-sectional area of the toroid, also indicated in that 

figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Appling ampere-circuital law for magnetic circuit (see Lesson-21) one can write the 
following relation 

N I  H l    H  
N I 

At / m (10.5)  

l 
 

   
 

We know, flux is always given by the product of flux density ( B ) and area ( A ) through 
which flux density ids uniform. That is,  

Φ  B  A  μ H A  μ 
N I 

A ( note, μ  μ0  μr  ) (10.6) 
 

l  

    
 

where  B  μ H and H is the uniform field intensity around the mean magnetic path  

length ‘ 
l
 ’. Substituting the equation (10.6) into the defining equation for inductance, 

equation (10.4) gives 

L  
N Φ  

μ N 
2
 I A  

μ N 2 A 
(10.7)  

I I l l 
 

 

     
  

Remark-1: The expression (10.7) is derived for long solenoids and toroids, computation 

of inductance is valid only for those types. 



 
 
 
 

 

L.10.2.2 Continuity condition of Inductors 

 

The current that flows through a linear inductor must always be a continuous. 
From the expression (10.1), the voltage across the inductor is not proportional to the 
current flowing through it but to the rate of change of the current with respect to 

time, 
di

dt
(t

 
)
 . The voltage across the inductor ( vL ) is zero when the current flowing through 

  
an inductor does not change with time. This observation implies that the inductor acts as a 
short circuit under steady state dc current. In other words, under the steady state 
condition, the inductor terminals are shorted through a conducting wire. Alternating 
current (ac), on the other hand, is constantly changing; therefore, an inductor will create 
an opposition voltage polarity that tends to limit the changing current. If current changes 
very rapidly with time, then inductor causes a large opposition voltage across its 
terminals. If current changes through the inductor from one level to another level 
instantaneously i.e. in dt 0 sec., then the voltage across it would become infinite and this 
would require infinite power at the terminals of the inductor. Thus, instantaneous changes 
in the current through an inductor are not possible at all in practice. 

 

Remark-2: (i) The current flowing through the inductor cannot change instantaneously 

(i.e. i(0− ) just right before the change of current = i(0

 ) just right after the change of  

current). However, the voltage across an inductor can change abruptly. (ii) The inductor 
acts as a short circuit (i.e. inductor terminals are shorted with a conducting wire) when the 
current flowing through the inductor does not change (constant). (iii) These properties of 
inductor are important since they will be used to determine “boundary conditions”. 

 

L.10.3 Study of dc transients and steady state response of a 

series R-L circuit. 

 

Ideal Inductor: Fig.10.4 shows an ideal inductor, like an ideal voltage source, has no 

resistance and it is excited by a dc voltage source VS . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 



The switch ‘ S ’ is closed at time ‘ t  0 ’ and assumed that the initial current flowing 

through the ideal inductor i (0) just before closing the switch is equal to zero. To find the 

system response ( i (t ) − vs − t ), one can apply KVL around the closed path. 
 

KVL 

V − L di (t)   0 d i (t)  

V
S       (10.8)  

          

S  dt  dt    L       
 

i ( t ) 

           
 

 V t V     V   
 

∫ d i (t )  s ∫ dt   i (t )   s t  i (0) i (t )   s t (note i (0)  0 ) (10.9) 
 

0   L 0   L      L   
 

Equation (10.9) implies that the current through inductor increases with increase in time 
and theoretically it approaches to infinity as t → ∞ but in practice, this is not really the  
case. 

 

Real or Practical inductor: 

 

Fig.10.5 shows a real or practical inductor has some resistance and it is exactly 

equal to the resistance of the wire used to wind the coil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us consider a practical inductor is connected in series with an external resistance R1 

and this circuit is excited with a dc voltage VS as shown in fig.10.6(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our problem is to study the growth of current in the circuit through two stages, namely; 

(i) dc transient response (ii) steady state response of the system. 
 

D.C Transients: The behavior of the current ( i ( t)) ; charge ( q (t)) and the voltage ( v ( t)) 
 

in the circuit (like R − L ; R − C : R − L − C circuit) from the time ( t (0

 ) ) switch is closed  

until it reaches its final value is called dc transient response of the concerned circuit. The 
response of a circuit (containing resistances, inductances, capacitors and switches) due to 
sudden application of voltage or current is called transient response. The most common 
instance of a transient response in a circuit occurs when a switch is turned on or off – a 
rather common event in an electric circuit. 

 

L.10.3.1 Growth or Rise of current in R-L circuit 
 

To find the current expression (response) for the circuit shown in fig. 10.6(a), we 

can write the KVL equation around the circuit 
 

VS −  R1  RL i (t ) − v L (t )  0   VS  R i (t )  L 
d i (t) 

(10.10) 
 

dt  

   
 

where VS is the applied voltage or forcing function , RL is the resistance of the coil, R1 is 

the external resistance. One can combine the resistance of coil RL to the external 

resistance R1 in order to obtain a simplified form of differential equation. The circuit  
configuration shown in fig. 10.6(a) is redrawn equivalently in fig.10.6(b) for our 
convenience. The equation (10.10) is the standard first order differential equation and its 
solution can be obtained by classical method. The solution of first or second order 
differential equation is briefly discussed in Appendix (at the end of this lesson-10). The 
following relation gives the solution of equation (10.10) 

 

i (t )  i (t )  i 
f 

(t )  A eα 
t
  A (10.11) 

 

n 1  
 

 

Here, in (t) is the complementary solution/natural solution of differential equation (10.10). 

It is also sometimes called as transient response of system (i.e. the first part of 

 



response is due to an initial condition of the system or force free response). The second 

part i f (t ) of eq. (10.11) is the particular integral solution/force response or steady state 

response of the system due to the forcing function ( f (t ) VS ) or input signal to the 
 

series R − L circuit. It may be noted the term A provide us the steady state solution of the 
first order differential equation while the forcing function (or input to the system) is step 
function (or constant input). More specifically, for a linear system, the steady state 
solution of any order differential equation is the same nature of forcing function ( f ( t)) or  
input signal but different in magnitude. We have listed in tabular form the nature of 
steady state solution of any order differential equation for various types of forcing 
functions (see in Appendix). To get the complete solution of eq. (10.10), the values of  
α , A1  and  A are to be computed following the steps given below: 

 

Step-1: How to find the value of α ?  

Assigning  VS = 0 and introducing an operator  α  dt
d

 in eq.(10.10) , we get a 
  

characteristic equation that will provide us the numerical value of α . This in turn, gives 

us the transient response of the system provided the constant A1 is known to us.  

The Characteristic equation of (10.10) is R  α L  0 α  − 
R

L . 
 
 

Step-2: How to obtain the constants A1  and A ?  
It may be noted that the differential eq. (10.10) must be satisfied by the particular integral 

solution or steady state solution i f (t) . The value of i f (t) at steady state condition (i.e.  
t → ∞ ) can be found out using the eq.(10.11) and it is given below.  
Using final condition ( t → ∞ )  

VS  R i f (t )  L 
 d i f (t)     

(10.12) 
 

  dt    
 

        
 

(note: at steady state ( t → ∞ ) i f (t )  A  cons tan t from eq. (10.11))  
 

VS  R A  L 
d A 

A  
 Vs  

(10.13) 
 

dt 
  

R 
 

      
 

 

Using initial condition ( t = 0 ) 

 

Case-A: Assume current flowing through the inductor just before closing the switch ‘S”  

(at t  0−  ) is i (0− )  0 .     
 

i  0   i (0 − )  i (0 

 )  A1  A (10.14) 

 

0  A  A   A  − A  − Vs   
 

  
 

1 1  R  
 

    
 

Using the values of α , A1  and A in equation (10.11), we get the current expression as 
 

 
 
 
 

 



 

i (t )  
V  − e 

− R 
t                

 

                
 

 S 1  L 
 

   (10.15)  
      

 

  

R 
                    

 

                       
 

    The table shows how the current i(t) builds up in a R-L circuit. 
 

                   

 

 

      Actual time (t) in sec Growth of current in inductor 
 

           (Eq.10.15)             
 

        t  0 i(0)  0             
 

         L i(τ )  0.632  
V

s  
 

        

t  τ    
 

             

          

R 

  

         R    
 

        t  2τ 
i(2 τ )  0.865  Vs      

             

R 
 

                  
 

        t  3τ 
i(3τ )  0.950  Vs     

            

R 
 

                  
 

        t  4τ 
i(4 τ )  0.982  Vs  

  

           

R 
 

                  
 

        t  5τ i(5 τ )  0.993  Vs    

            
 

                 R  
 

 

Note: Theoretically at time t → ∞ the current in inductor reaches its steady state value but 

in practice the inductor current reaches 99.3% of its steady state value at time 

t  5 τ (sec.) . 
 

The expression for voltage across the external resistance R1  (see Fig. 10.6(a)) 
 

= v 
 

 i (t ) R 
 V  − e 

− R 
t 

R 
 

 

    
 

R1   s 1  L 
 

(10.16)  
   

 

 1   

R 
    1  

 

            
  

The expression for voltage across the inductor or coil   
 

  V
s  

 − R t  
 

      

v
coil 

(t
 
)

 


 
v

inductor 
(t

 
)

 


 
V

S 
−

 
v

 R1 (t )  VS −  R1  1 − e 
 

L  (10.17) 
 

R 

 
 

        
 

 

Graphical representation of equations (10.15)-(10.17) are shown in Fig.10.7 for different 

choices of circuit parameters (i.e., L & R) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case-B: Assume current flowing through the inductor just before closing the switch ‘S” 
(at t  0− ) is i (0 − )  i0 ≠ 0 . 
Using equations   (10.13)  and (10.14), we get the values of 

 

A  VS  and A  i (0) − A  i − VS . Using  these values in equation (10.11), the  
    

 R  1       0  R       
 

                   
 

expression for current flowing through the circuit is given by     
 

 V  −  R 
t    − R 

t        
 

            
 

i (t )  S 1 − e   L 
 

 
 

i e  L 
 

    (10.18)  
        

 

  

R 
     0          

 

                    
 

The second part of the right hand side of the expression (10.18) indicates the current 

flowing to the circuit due to initial current i0 of inductor and the first part due to the 

forcing functionVS  applied to the circuit. This means that the complete response of the 
 

circuit is the algebraic sum of two outputs due to two inputs; namely (i) due to forcing 

function VS (ii) due to initial current i0 through the inductor. This implies that the  
superposition theorem is also valid for such type of linear circuit. Fig.10.8 shows the 

 
 
 
 



response of inductor current when the circuit is excited with a constant voltage source VS 

and the initial current through inductor is i0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Remark-3: One can also solve this differential equation by separating the variables and 

integrating. 
 

Time constant τ  for exponential growth response (τ ): We have seen that the current 

through inductor is represented by 

i (t )  
V

S 1 − e − R t  
R 

L
  

  

when a series R − L circuit is excited by a constant voltage source (VS ) and an initial 

current through the inductor i0 is assumed to be zero. Further it may be noted that the 

current through the inductor (see fig.10.7) increases as time increases. The shape of 
 
 
 
 



 

growing current before it reaches to a steady state value 
V

S
 
entirely depends on the R 

  
parameters of R − L  circuit (i.e.  R & L ) that associated with the exponential term 

 
 − R t 

. As ‘ t ’ grows larger and larger the transient, because of its negative exponential  
 

 
 e

  L  
 

     
 

factor, diminishes and disappears, leaving only the steady state. 
 

Definition of Time Constant τ  of R − L Circuit: It is the time required for any 
 

variable or signal (in our case either current ( i (t) ) or voltage vR1 or vL  ) to reach 63.2% 
 

     − R t      
 

          

(  i.e the  time  at  which  the factor  

  L   in eq.(10.15) becomes  −e   ×100  

1      

             
 

             
 

( 1 −e
−

1 )×100 = 63.2 %) of its final value. It is possible to write an exact mathematical 

expression to calculate the time constant τ  of any first-order differential equation. 
 

Let ‘ t ’ is the time required to reach 63.2% of steady-state value of inductor 

current (see fig. 10.6(a)) and the corresponding time ‘ t ’ expression can be obtained as 

V   V  
 

− 
R 

t 
 

− 
R 

t 
  

− 
R 

t 
 

− 1 
 

 

         
 

i (t)  0.632* S  S 1 − e  L 
 

0.632  1 − e  L  0.368  e  L   e  

t   

        
 

 

R 
 

R 
                

 

                   
 

R
L

 τ (sec.) 
  

The behavior of all circuit responses (for first-order differential equation) is fixed by a 

single time constant τ (for R − L circuitτ  R
L

 ) and it provides information about the 
 

speed of response or in other words, it indicates how first or slow the system response 
reaches its steady state from the instant of switching the circuit. Observe the equation 
(10.15) that the smaller the time constant (τ ), the more rapidly the current increases and 
subsequently it reaches the steady state (or final value) quickly. On the other hand, a 
circuit with a larger time constant (τ ) provides a slow response because it takes longer 
time to reach steady state. These facts are illustrated in fig.10.7(a). In accordance with  

convenience, the time constant of an exponential term say p (t )  p0 1− e − 
a t

  is the 

reciprocal of the coefficient ‘ a ’ associated with the ‘ t ’ in the power of exponential term. 
 

Remark -4: An interesting property of exponential term is shown in fig. 10.7(a) . The 
time constant τ of a first order differential equation may be found graphically from the 
response curve. It is necessary to draw a tangent to the exponential curve at time ‘ t  0 ’ 
and maintained the same slope until it intersects the steady state value of current curve at 
P point. A perpendicular is drawn from the point P to the time axis and it intersects the 
time axis at t τ (see fig. 10.7(a)). Mathematically, this can be easily verified by  
considering the equation of a straight line tangent to the current curve at t  0 , given by 

y  mt where m is the slope of the straight line, expressed as 
 
 
 

 



     V   
− R 

t      
 

          
 

    
 d S 1 − e  

L 
  

    
 

          
 

 

d i (t) 
   

 

R 
    

 

  

V 
 

           
 

m   | 
t 0 

         |   S 
 

          
 

 
dt 

     
dt 

    t  0   
L                

  
Here, we designated the value of time ‘ t ’ required to reach 

assuming a constant rate (slope) of growth. Thus, 
 

V
R

S
   

V
L

S
 t t  R

L
 τ (sec.) 

  
It is often convenient way of approximating the time constant 

response curve (see fig.10.7(a) for curve-2). 

 
 
 
 
 

(10.19) 
 

y from ‘ 0 ’ to 
V

R
S
  units , 

 
 

 

(10.20) 
 

τ  of a circuit from the 

 

L.10.3.2 Fall or Decay of current in a R-L circuit 
 

Let us consider the circuit shown in fig. 10.9(a). In this circuit, the switch ‘S’ is closed 
sufficiently long duration in position ‘1’. This means that the current through the inductor 

reaching its steady-state value ( I  
VS  

VS 
 I0 ) and it acts, as a short circuit i.e. the 

 

R R1  RL 
 

    
 

voltage across the inductor is nearly equal to zero since resistance RL R1 . If the switch 
 

‘S’ is opened at time ‘t’=0 and kept in position ‘2’ for t  0 as shown in fig. 10.9(b), this 

situation is referred to as a source free circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the current through an inductor cannot change instantaneously, the current through 

the inductor just before ( i (0 −) and after ( i (0

 ) opening the switch ‘S’ must be same.  

Because there is no source to sustain the current flow in inductor, the magnetic field in 
inductor starts to collapse and this, in turn, will induce a voltage across the inductor. The 
polarity of this induced voltage across the inductor is just in reverse direction compared to 
the situation that occurred during the growth of current in inductor (i.e. when the switch 
‘S’ is kept in position ‘1’). This is illustrated in fig. 10.9(b), where the voltage induced in 
inductor is positive at the bottom of the inductor terminal and negative at the top. This 
implies that the current through inductor will still flow in the same direction, but with a 
magnitude decaying toward zero. Appling KVL around the closed circuit in fig. 10.9(b), 
we obtain 

 

L 
d i (t)  R i (t)  0 (10.21)  

dt 
 

   
 

 

The solution of the homogeneous (input free), first-order differential equation with 
constant coefficients subject to the initial (boundary) inductor current (initial condition,  

i ( 0 − )  i ( 0 

 )  

V
R

S
  I ) is given by 

 

i (t )  i (t )  A e α 
t
     (10.22) 

 

n 1         
 

where α can be found from the characteristic equation of eq.(10.21) described by 
 

L α  R  0α  − 
 R  

(10.23)   
L  

       
 

At time t  0 , the initial condition i (0 − )  i (0 

 )  

VS 
is used in equation (10.22) to 

 

R  

         
 

compute the constant A1  and it is given below.  
 

i ( 0 )  A A  VS   I  
 

  
 

1 1  
R 

     
 

        
 

 
 



Using the values of A1 and α in equation (10.22), we get final expression as  
 

 
VS 

 R    
 

i (t )  e − 
 

t for t ≥ 0 (10.24) 
 

L  

 
 

 R    
 

A sketch of i ( t) for t ≥ 0 is shown in fig.10.10. Here, transient has ended and steady 
  

state has been reached when both current in inductor i (t) and voltage across the inductor 

including its internal resistance are zero. 
 

Time Constant τ  for exponential decay response: For the source free circuit, it is the 
 

time τ by which the current falls to 36.8 percent of its initial value. The initial condition in 
this case (see fig. 10.9(a) is considered to be the value of inductor’s current at the moment 
the switch S is opened and kept in position ‘ 2 ’. Mathematically, τ is computed as  

i (t)  0.368  VS  
VS e − 

R 
t 

 t  τ  
L (10.25) 

 

L  

R R 
 

R 
 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Alternatively, the time constant for an exponential decay response of a circuit may be 
computed graphically by adopting the steps (see equations (10.19) and (10.20)) as 
discussed before. In fig.10.10, a tangent is drawn to the exponential decay curve at time ‘ 
t  0 ’ and maintained the same slope until the straight line intercepts time axis at time  

t τ . Approximately, the value ofτ can thus be found directly from graphical 

representation of exponential decay curve. 
 

L.10.3.3 Energy stored in an inductor 

 

Let us turn our attention to power and energy consideration for an inductor. The 
instantaneous power absorbed by the inductor is expressed by product of the current 
through inductor i (t) and the voltage across it v (t) .  

p (t )  v (t ) i (t )  i (t ) L 
d i (t) 

(10.26)  

dt 
 

  
 

Since the energy is the product of power and time, the energy absorbed by an inductor 
over a period is expressed as 

 
 

 



 
t t 

d i (t ) 
 

1  
   

 

 
 

WL  ∫ p (t ) dt  ∫i (t ) 

L 

 2  2  
 

 

dt  

 

L i 

 

(t ) − i 

 

(t
0 
)
 (10.27) 

 

dt 2 
  

 

t0 t0        
 

         
 

where we select the current through inductor at time ‘ t0  − ∞ ’ is i ( − ∞ )  0 . Then, we 
 

have WL  
1

2 L i
2
 (t) and from this relation we see that the energy stored in an inductor is 

  
always non-negative. At any consequent time at which the current is zero, no energy is 
stored in the inductor. The ideal inductor ( RL =0 Ω ) never dissipates energy, but only 

 
stores. In true sense, a physical or practical inductor dissipates a very small amount of 

stored energy due to its small series resistance. 
 

Example-L.10.2 Fig.10.11 shows the plot of current i (t) through a series R − L circuit 

when a constant forcing function of magnitudeVS  50 V is applied to it. Calculate the 

values of resistance R and inductance L .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: From fig.10.11 one can easily see that the steady state current flowing through 

the circuit is 10 A and the time constant of the circuit τ  0.3 sec. The following  
relationships can be written as 

i  VS 10   50 R  5 Ω  

    

steady state   
R 

  
R  

 

L 
 

L 
 

and τ  
 

0.3  L  1.5 H  

R 
 

5 
 

 

       
 

 

Example-L.10.3 For the circuit shown in Fig.10.12, the switch ‘ S ’ has been closed for a 

long time and then opens at t  0 . 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Find,   
− ) 

  
(0 − ) , i 

 
(0 − ) 

  
(0 


 ) 
  

(0 

 ) (v)  i 

 
(t  ∞ ) (vi) 

  
 

(i)  v 
ab 

(0 (ii) i 
x L 

(iii) i 
x 

(iv)  v 
ab x 

v (t  ∞) 
 

             ab 
 

(vii) i x (t ) for  t  0              
 

Solution: When the switch S was in closed position for a long time, the circuit reached 
 

in steady state condition i.e. the current through inductor is constant and hence, the 
voltage across the inductor terminals a and b is zero or in other words, inductor acts as  

short circuit i.e., (i) vab (0 − )  0 V . It can be seen that the no current is flowing through 6 

Ω resistor. The following are the currents through different branches just before the 

switch ‘ S ’ is opened i.e., at t  0− .  

i 
x 

(0 − )  20  4 A and  the current  through 10 Ω resistor,  i 
Ω 

(0 − )  20  2 A  . The  
   

 5     10 10   
 

          
 

algebraic  sum of  these two  currents  is flowing  through  the  inductor  i.e., (ii) 
 

i (0− )  2  4  6 A .         
 

 L             
 

 
When the switch ‘ S ’ is in open position  

The current through inductor at time t  0

 is same as that of current iL (0− ) , since 

inductor cannot change its current instantaneously .Therefore, the current through ix (0 

 )  

is given by  

i x (0 

 )  i L (0 


 )  6 A . 

 

Applying KVL around the closed loop at t  0

  we get,  

20 − i x (0 

 )  R  vab (0 


 ) 20 − 6  5  vab (0 


 ) vab (0 


 )  −10V  

The negative sign indicates that inductor terminal ‘ b ’ as +ve terminal and it acts as a 

source of energy or mathematically, vba (0 

 ) 10V .  

At steady state condition ( t → ∞ ) the current through inductor is constant and hence 

inductor acts as a short circuit. This establishes the following relations:  

v  (t  ∞ )  0V and i 
x 

(t  ∞ )  20  4 A (10.28)  
 

 

ba  5 
  

 

     
 

       
 



 

The circuit expression i x (t) for t ≥ 0 can be obtained using the KVL around the closed 
 

path (see fig.10.12).   
 

KVL equation:   
 

V  − i 
x 

(t )  5 − L di x (t)  0  
 

    

S    dt   
 

        
 

i 
x 

(t )  5  L di x (t)  V (10.29)  
 

 

    dt S  
 

       
 

The solution of first order differential equation due to forcing function and initial 
condition is given by 
    R        

 

i (t )  A e − 
  t

   A 
     

(10.30) 
 

 L      
 

x  1           
 

Initial and final conditions are: (i) At t  0 , i x (0)  i L (0 − )  i L (0 

 )  6 A (ii) t → ∞ , 

 

current through inductor iL (t  ∞ )  4 A  (see Eq.  10.28).  Using initial  and  final 
 

conditions equation (10.30) we get, A1  6 − A and A  4A1  2  
 

         5 

t 

 
 

From equation (10.30), we get the final expression as i x (t )  4  2 e − 

 

for t ≥ 0 . 
 

1 
 

 

Example: L.10.4 The switch ‘ S ’ is closed in position ‘1’ sufficiently long time and then 

it is kept in position ‘ 2 ’ as shown in fig.10.13. Compute the value of vL and iL (i) the 

instant just prior to the switch changing; (ii) the instant just after the switch changes. Find  

also the rate of change of current through the inductor at time t  0   di (t) 
 

 

 

 
 

 i.e., l 
 .  

  
 

   

dt 
  

 

  

 

 

t 0
 

 

   
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: We assume that the circuit has reached at steady state condition when the 

switch was in position ‘1’. Note, at steady state the inductor acts as short circuit and 
voltage across the inductor is zero. 

 
 
 
 
 

 



 

At   t  0 − , the  current through  and the  voltage  across  the  inductor  are 
 

i 
L 

(0 − )  10   10  5 A and v 
L 

(0 − )  0V respectively. When the switch is kept in  
  

 

 10 10 
    

 

       
 

position ‘ 2 ’, current through the inductor cannot change instantaneously but this is not  

true for the voltage across  the inductor.  At t  0 

 ,  one  can write  the following 

expressions:  

iL (0

 )  5A and vL (0 


 )  − 10  10  5  −100V (‘ b ’ is more + ve potential than ‘ a ’ 

terminal). Note that the stored energy in inductor is dissipated in the resistors. Now, the 

rate of change of current through inductor at time t  0 

 is obtained as 

L 
dil (t) 

   

 − 100V 
dil (t) 

 

 

  
−100  − 25 amp./ sec. 

 

 
 
 

  

dt t  0 
 dt t 0

 4 
 

      
 

      
 

 

Example: L.10.5 Fig. 10.14(a) shows that a switch ‘ S ’ has been in position ‘1 ’ for a long 

time and is moved in position ‘ 2 ’ at time ‘ t  0 ’. Find the expression v (t) for t ≥ 0 .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: When the switch ‘ S ’ is in position ‘1’, the current through inductor (using the 

fundamental property of inductor currents) at steady state condition (see fig.10.14(b)) is  

IL  
 6 

 6  3 AIL (0− )  IL (0

 )  3 A (10.31) 

 

6  6  

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The circuit for the switch ‘ S is in position ‘ 2 ’ is shown in fig.10.14 (c). The current in 

inductor can be computed using following two different methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method-1: Using Thevenin’s theorem 

 

Convert the part of a circuit containing independent sources and resistances into an 

equivalent Thevenin’s voltage source as shown in fig.10.14.(d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the KVL around the closed path is  

9 i 
L 

(t)  2  diL (t)  5    (10.32)  
     

 

     dt     
 

          
 

The solution of the above equation is given by  
 

i (t )  A e − 
9 

t  A  i (t )  i 
 

( t) (10.33) 
 

2 
f 

 

L  1     n    
 

where, in (t ) = complementary/natural/transient solution of eq.(10.32)  
i f (t ) = particular/ steady state/final solution of eq.(10.32)  

The constants A1  and A are computed using the initial and final conditions of the circuit 
 

when the switch is kept in position ‘ 2 ’.  
At time t  0 , 

i (0)  i (0 

 )  3  A  A (10.34) 

L L 1  

At time t → ∞ , the current in inductor reached its steady state condition and acts as a short 

circuit in a dc source network. The current through inductor is  

iL (t  ∞ )  
 5  

 0.555 amp.  i f  A (10.35) 
 

3  6  

    
 

Using the above two equations in (10.33), one can obtain the final voltage expression for 
voltage v (t) across the terminals ‘ a ’ and ‘ b ’ as 

 

 

2.445 e 
− 9 t 

 0.555 
 

 3 
 

3.339 − 7.335e 
− 9 t 

V 
 

   

vab (t )  v (t )  5 − iL (t) 3  5 −  2   =  2  
 

               
 

 

Method-2: Mesh current method 

 

Assign the loop currents in clockwise directions and redrawn the circuit as shown in Fig. 
10.14(e). The voltage across the terminals ‘ a ’ and ‘ b ’ can be obtained by solving the 
following loop equations. 

 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Loop-1:  

10 − 6 i1 (t ) − 6  i1 (t ) − i2 (t)  0   10  12 i1 (t ) − 6 i2 (t )   i1 (t )  

1 

10  6 i2 (t)  (10.36) 
 

12 
 

Loop-2:        
 

− 6 i2 (t ) − L 
di2 (t) − 6  i2 (t ) − i1 (t )  0   − 6 i1 (t )  12 i2 (t)  2 

di2 ( t) 
 0 (10.37) 

 

dt dt  

        
 

Using the value of i1 (t ) in equation (10.37) , we get       
 

9 i (t)  2  di2 (t)   5      (10.38)  
      

 

2   dt        
 

          
 

To solve the above first order differential equation we must know inductor’s initial and 

final conditions and their values are already known (see, i2 (0− )  i2 (0

 )  3 A and  

i2 (t  ∞ )  
 5   

 0.555 amp. ). The solution of differential equation (10.38) provides an 
 

3  6 
 

 

                          
 

expression of current i2 (t ) and this, in turn, will give us the expression of i1 (t ) . The 
 

voltage across the terminals ‘ a ’ and ‘ b ’ is given by          
 

v 
 
 10 − 6 i (t )  6i (t)  2 

 di (t) 
 

 
3.339 − 7.335e 

− 9 
t  

V 
    

 

       
 

 
 

2 
 

 2  
 

    
 

        

ab    1      2  

dt 
             

 

                            
 

where,  i2 (t ) , i1 (t ) can be obtained by  solving  equations (10.38) and (10.36). The 
 

expressions for i2 (t ) and hence i1 (t ) arte given below:         
 

        − 9 t        
1 10  6 i2 (t)  

   − 9 t  

                  

i2 (t )  2.445 e 
 

2 
  0.555 

 and 
i
1 (t )  

  = 1.111.2225e  2  

   

12 

 
 

                           
 

 
 
 
 
 
 
 
 
 

 



L.10.4 Capacitor and its behavior 

 

Fig.10.15 shows a capacitor consists of two pieces of metal (the plates) separated 
from each other by a good insulator (the dielectric), with two wires (the leads) attached to 
the metal plates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A battery is connected across the capacitor to transport charge from one plate to the other 
until the capacitor charge voltage buildup is equal to the battery voltage V . The voltage 
across the capacitor depends on how much charge was deposited on the plates and also 
how much capacitance the capacitor has. In other words, there is a relationship between 
the voltage (V ), charge ( Q ) and capacitance ( C ), they are related with a mathematical 
expression as  

C  
Q (coulumb ) 

(10.39)  

V ( volt) 
 

  
  

where Q = magnitude of charge stored on each plate, V = voltage applied to the plates  
and the unit of capacitance is in Farad. Although the capacitance C of a capacitor is the 
ratio of charge per plate to the applied voltage but it mainly depends on the physical 
dimension of the capacitor. If the area of the plates is larger, the more would be the 
amount of charge stored over the surface of the plates, resulting higher value of 
capacitance. On the other hand, if the spacing ‘ d ’ between the plates is closer, 
accumulates more charge over the parallel plates and thus increases the value of the 
capacitance. The quality of dielectric material has an effect on capacitance between the 
plates. The good quality of dielectric material indicates that higher the permittivity, 
resulting greater the capacitance. The value of capacitance can be expressed in terms 
physical parameters of capacitor as  

C  
ε A  

ε0 εr A 
where A is the area of each plate, d is the distance between the plates,  

d d 
 

   
 

ε0 (= 8.8510 −12
 ) is the permittivity of free-space, εr = relative permittivity of dielectric 

material and C is the capacitance in Farad. It is important to note that when the applied 
 
 
 



voltage across the capacitor exceeds a certain value the dielectric material breaks down 

and loses it insulation property. 
 

L.10.4.1 Continuity condition of capacitors 

 

To find the current-voltage relationship of the capacitor, one can take the 
derivative of both sides of Eq.(10.39) 

C 

d vc (t) 

 

d q (t) 

 i(t)i (t )  C 

d vc (t) 
 

dt dt dt 
 

 

The voltage-current relation can also be represented by another form as  

vc (t )  
1

 ∫t
 i (t ) dt  vc (t0 ) where vc (t0 ) is voltage across the capacitor at 

C
 

t0  

  
(10.40) 

 
 
 

 

time ‘ t0 ’. It can 

 

be seen that when the voltage across a capacitor is not changing with time, or, in other 
words, the capacitor is fully charged and the current through the capacitor is zero (see 
Eq.10.40). This means that the capacitor resembles as an open circuit and blocks the flow 
of current through the capacitor. Equation (10.40) shows that an instantaneous ( t  0 )  
change in capacitance voltage must be accompanied by an infinite current that requiring 
an infinite power source. In practice, this situation will not occur in any circuits 
containing energy storing elements. Thus, the voltage across the capacitor (or electric 
charge q(t) ) cannot change instantaneously ( i.e. , t  0 ) , that is we cannot have any  
discontinuity in voltage across the capacitor. 

 

Remark-5  

(i) The voltage across and charge on a capacitor cannot change instantaneously (i.e. vc (0 
− ) just right before the change of voltage = vc (0 


 ) just right after the change of  

voltage). However, current through a capacitor can change abruptly. (ii) The capacitor 
acts as an open circuit (i.e., when the capacitor is fully charged) when voltage across the 
capacitor does not change (constant). (iii) These properties of capacitor are important 
since they will be used to determine “boundary conditions”. 

 

L.10.4.2 Study of dc transients and steady state response of a series 

R-C circuit. 
 

Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and 

plates (made of metals) that have zero resistance. However, an ideal capacitor does not 
exist as all dielectrics have some leakage current and all capacitor plates have some 
resistance. A capacitor’s leakage resistance is a measure of how much charge (current) it 
will allow to leak through the dielectric medium. Ideally, a charged capacitor is not 
supposed to allow leaking any current through the dielectric medium and also assumed 
not to dissipate any power loss in capacitor plates resistance. Under this situation, the 
model as shown in fig. 10.16(a) represents the ideal capacitor. However, all real or 
practical capacitor leaks current to some extend due to leakage resistance of dielectric 
medium. This leakage resistance can be visualized as a resistance connected in parallel 

 
 
 



with the capacitor and power loss in capacitor plates can be realized with a resistance 
connected in series with capacitor. The model of a real capacitor is shown in fig. 10.16(b).  

 
 
 
 
 
 
 
 
 
 

 

In present discussion, an ideal capacitor is considered to study the behavior of dc 
transients in R − C circuit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L.10.4.3 Charging of a capacitor or Growth of a capacitor voltage in 

dc circuits 

 

Let us consider a simple series R − C circuit shown in fig. 10.17(a) is connected through a 

switch ‘S’ to a constant voltage source VS .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The switch ‘ S ’ is closed at time ‘ t  0 ’ (see fig. 10.7(a)). It is assumed that the capacitor 

is initially charged with a voltage vc (0)  v0 and the current flowing through the circuit at 

any instant of time ‘ t ’ after closing the switch is i ( t) . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The KVL equation around the loop can be written as  

VS  R i (t )  vc (t )   VS  R C 
d vc (t)  vc ( t) (10.41) 

 

dt  

   
 

 

The solution of the above first-order differential equation (10.41) due to forcing function 

Vs is given by  

vc ( t )  vc n ( t) (natural response/transient response) + vc f ( t) (steady-state response) 

= A eα 
t
  A (10.42) 

 1  

The constants A1, and A are computed using the initial and boundary conditions. The  
value of α is obtained from the characteristic equation given by (see in detail in 

Appendix)  

R C α  1  0 α  − RC
1

 
 
 

Eq. (10.42) is then rewritten as  
  1  

t
  A 

    
 

v (t )  A e − 
 

 

   

(10.43) 
 

RC    
 

c 1         
 

At steady state, the voltage across the capacitor is vc ( ∞)  vc f   A which satisfy the 
 

original differential equation (10.41). i.e., 
 

V  R C d vcf   v R C d A  A A V  

    
 

 S dt  cf  dt  S 
 

       
 

Using the initial condition (at t  0 ) in equation (10.43), we get 
 
 
 
 



  1 0 A   A  v − A  v −V 
 

v (0)  v  A e − 
 

 

RC 
 

c 0 1  1 0 0 S 
  

The values of A1 ,  A , and Eq. (10.43) together will give us the final expression for 

capacitor voltage as               
   − 1   t      − 1 t − 1 t 
v (t )  v − V e R C   V  v (t )  V  1 − e  R C   v e R C (10.44) 

c 0 S       S  c S     0   

                   

Thus, 
 v        

 

  0  
 

  
1 

t 
 

 

v (t)     
− −  

v (t )  V − e R C 
 

c 
 

1    v e 
 

 c S     0 
 

          
 

Response of capacitor voltage with time 

 
t  0 

 
1 t  

 

R C t  0 
 

 
 

 

is shown in fig. 10.18. 
  

Special Case: Assume initial voltage across the capacitor at time ‘ t  0 ’ is zero i.e., vc 

(0)  v0  0 . The voltage expression for capacitor at any instant of time can be written 
 

from Eq.(10.44) with vc (0)  v0  0 .        
 

    − 1 t  
 

Voltage across the capacitance v (t )  V − e R C (10.45) 
 

1   
 

c S      
 

        
  

         − 1  
t  

Voltage across the resistance v 
R 

(t )  V − v (t )  V e RC 
 

   
 

   S c S      
 

      
vR 

 V
S 
e − 

 1 
t 

 

Charging current through the capacitor i (t )   
R C 

 

R R 
   

 

            
 

Charge accumulated on either plate of capacitor at any instant of time is given by 

 
    − 1 t   − 1 t  
q (t )  C v (t )  C V − e R C − e R C 

 

1    Q 1   
 

c S          
 

            
 

 
 

(10.46) 

 

(10.47) 
 
 
 

 

(10.48) 

 

where Q is the final charge accumulated in the capacitor at steady state ( i.e., t →∞ ). Once 

the voltage across the capacitor vc (t) is known, the other quantities (like, vR (t ), i (t ), and 

q (t ) ) can easily be computed using the above expressions. Fig. 10.19(a) shows growth of 

capacitor voltage vc (t) for different choices of circuit parameters (assumed that the 

capacitor is initially not charged). A sketch for q (t ) and i (t) is shown in fig. 10.19(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Following the definition given in section L.10.3.1, time constant of each of the 
exponential expressions described in Eqs. 10.45 to 10.48 may be found as τ  RC (for  
RC circuit). 

 

L.10.4.4 Discharging of a capacitor or Fall of a capacitor voltage in dc 

circuits 

 
Fig. 10.17(b) shows that the switch ‘ S ’ is closed at position ‘1 ’ for sufficiently long 

time and the circuit has reached in steady-state condition. At ‘t  0 ’ the switch’ S ’ is 

opened and kept in position ‘ 2 ’ and remains there. Our job is to find the expressions for  

(i) voltage across the capacitor vc  (ii) voltage across the resistance vR  (iii) current ( i 

( t)) through the capacitor (discharging current) (iv) discharge of charge ( q( t)) through the 

circuit. 
 
 

 



Solution: For t  0 , the switch ‘ S ’ in position 1. The capacitor acts like an open circuit 

to dc, but the voltage across the capacitor is same as the supply voltage VS . Since, the 
 

capacitor voltage cannot change instantaneously, this implies that 

vc (0 − )  vc (0 

 ) VS  

When the switch is closed in position ‘ 2 ’, the current i (t) will flow through the circuit  
until capacitor is completely discharged through the resistance R . In other words, the 

discharging cycle will start at t  0 . Now applying KVL around the loop, we get  

R C 
d vc (t)  

 vc (t)  0 (10.49) 
 

dt  

    
 

The solution of input free differential equation (10.49) is given by  
 

v (t )  A e α 
t
   (10.50) 

 

c 1     
 

where the value of α is obtained from the characteristic equation and it is equal to 
 

α  − RC
1

 . The constant  A1  is obtained using the initial condition of the circuit in 
  

Eq.(10.50). Note, at ‘ t  0 ’( when the switch is just closed in position ‘ 2 ’) the voltage 

across the capacitor vc (t ) VS . Using this condition in Eq.(10.50), we get 
  1 

0 

  
 

v (0)  V  A e − 
 

A  V 
 

RC 
 

c S 1   1 S 
 

Now the following expressions are written as  
    − 1  t         

 

Voltage across the capacitance v (t ) V e R C          (10.51) 
 

  c S              
 

         − 1  t    
 

Voltage across the resistance v 
R 

(t )  − v (t )  −V e  R C     (10.52) 
 

  c     S        
 

      
vR 

  
VS 

 

e − 
1 

t 
 

 

Charging current through the capacitor i (t)   −  R C (10.53)  
     

 

       R   R      
 

An inspection of the above exponential terms of equations from (10.51) to (10.53) reveals 
that the time constant of RC circuit is given by 

τ  RC (sec.) 

This means that at time t  τ , the capacitor’s voltage vc  drops to 36.8% of its initial value 
 

(see fig. 10.20(a)). For all practical purposes, the dc transient is considered to end after a 

time span of 5τ . At such time steady state condition is said to be reached. Plots of above  
equations as a function of time are depicted in fig. 10.20(a) and fig. 10.20(b) respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L.10.5 Energy stored in a capacitor 

 

The ideal capacitor does not dissipate any of the energy supplied by the source. It 

stores energy in the form of an electric field between the conducting plates. Let us 

consider a voltage source VS is connected to a series R − C circuit and it is assumed that  
the capacitor is initially uncharged. The capacitor voltage (vc (t))  and current (ic (t)) 

 
waveforms during the charging period are shown in fig.10.21 (see the expressions (10.45) 

and (10.47)) and instantaneous power ( pc (t )  vc (t ) i (t) ) supplied to the capacitor is  
also shown in the same figure. 

 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us consider the instantaneous power supplied to the capacitor is given by  
pc (t )  vc (t ) i (t) (10.54) Now, the energy supplied to the capacitor in dt 

second is given by 

w  pc (t )  dt  vc (t ) C 
d vc (t) 

 dt  C vc ( t ) dvc ( t) (10.55) 
 

 dt   

          
 

Total energy supplied to the capacitor in t seconds is expressed as 
 

v ( t ) v   

 1 
   

1 
 

q 
2
 (t) 

  
 

w(t )  C c  ∫ 

vc (t ) dvc (t )  

 

C vc
2
   (Joules) (10.56) 

 

2 
   

 

vc (0) 0     2  C  
 

            
 

(Note initial voltage across capacitor is zero and q(t) is the charge accumulated on each 
 

plate at a time t ) .            
 

 

When the capacitor is fully charged, its terminal voltage is equal to the source voltageVS . 

The amount of energy stored in capacitor in the form of electric field is given by 
 

W  1 C V 2  1  Q
2
 (Joules) (10.57)  

      

 2 
S   2 

 
C 

  
 

       
 

 
 
 
 



where Q is the final charge accumulated on each plate of the capacitor at steady state ( 

i.e., t →∞ ) i.e., when the capacitor is fully charged. 
 

Example: L.10.6 The switch ‘ S ’ shown in fig.L.10.22 is kept open for a long time and 

then it is closed at time ‘ t  0 ’. Find (i) vc (0 − ) (ii) vc (0 

 ) (iii) ic (0 − ) (iv) ic (0 


 ) (v)  

dvc (t)  
dy t 0 

 
(iv) vc (∞)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: As we know the voltage across the capacitor vc (t) cannot change 

instantaneously due to the principle of conservation of charge. Therefore, the voltage 

across the capacitor just before the switch is closed vc (0 − )  voltage across the capacitor 

just after the switch is closed vc (0 

 ) = 40 V (note the terminal ‘ a ’ is positively charged. 

It may be noted that the capacitor current before the switch ‘ S ’ is closed is ic (0 − )  0 A . 

On the other hand, at t  0 , the current through 10 Ω resistor is zero but the current 

through capacitor can be computed as 

i (0 

 )  vc (0)  40  6.66 A  (note,  voltage  across  the  capacitor  cannot  change  

  
 

c 6 6   

  
 

instantaneously at instant of switching). The rate of change of capacitor voltage at time  
‘ t  0 ’ is expressed as       

 

C 
dv (t) 

 

 i (0)  
dv (0 


 ) 
 

i (0 

 ) 
 

6.66 
 1.665 volt / sec. 

 

 
 

c  
 

c c  
 

     
 

 

dt 
  c  

dt 
 

C 
 

4 
 

 

   
t  0

 
 

 
  

 

      
 

 
Time constant of the circuit before the switch was closed = τ  R C  10  4  40 sec. Time  
constant of the circuit after the switch is closed is τ  RTh C  

10
 

 
6

  4 15sec. (replace 10  

6  
the part of the circuit than contains only independent sources and resistive elements by an 

 
 
 
 

(vi) find the time constants of the circuit before and after the switch is closed 



equivalent Thevenin’s voltage source. In this case, we need only to find the Thevenin 

resistance RTh ). 
 

Note: When the switch is kept in closed position, initially the capacitor will be in 

discharge state and subsequently its voltage will decrease with the increase in time. 
Finally, at steady state the capacitor is charged with a voltage 

v ( t  ∞ )  
40

 615V(theoretically, time required to reach the capacitor voltage at 
 

c 10  6   
 

steady value is 5 τ  5  15  75 sec. ). 

 

Example: L.10.7 The circuit shown in Fig.10.23 has been established for a long time.  

The switch is  closed  at time t  0 . Find the current (i) 
 

i1 (0 
 
), i2 (0 

 
), i3 (0 

 
), and 

dvde 
  

(ii) at steady state the voltage across the capacitors, 

 

  
 

   

dt 
 

t 0
 

 

                
 

                
 

i1 (∞), i2 (∞) and i3 (∞) .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: (i) At t  0− no current flowing through the circuit, so the voltage at points ‘ b ’ 
and ‘ d ’ are both equal to 50 volt. When the switch ‘ S ’ closes the capacitor voltage 

remains constant and does not change its voltage instantaneously. The current i1 (0

 ) 

through a − b branch must then equal to zero, since voltage at terminal ‘ b ’ is equal to vb 

(0 

 ) = 50 volt. , current through b − c is also zero. One can immediately find 

 
 
 

 



out the current through c − e equal to i (0 

 )  50 1 A . Appling KCL at point ‘ c ’,  

  

 2 50   

   
 

i3 (0 

 ) 1 A which is the only current flow at t  0


 around the loop ‘ d − c − e − d . Note 

the capacitor across ‘ d − e ’ branch acts as a voltage source, the change of capacitor 

voltage 

dv
de 

  

 

1 

i3 (0 

 

)  2 k volt / sec. 

 

  
 

dt 
 
t 0

 500 10−6
 

 
 

      
 

(ii) at steady state the voltage across each capacitor is given 

= 150
50

× 50 =16.666 volt. 
 

At steady state current delivered by the source to the different branches are given by  

i1(∞) = 150
50

 =0.333 A; i2 (∞) =0.333 A and i3(∞) =0A 
 
 

Example: L.10.8 The circuit shown in fig. 10.24(a) is switched on at time t  0 . How 

long it takes for the capacitor to attain 70 % of its final voltage? Assume the capacitor is 
 

initially not charged. Find also the time constant (τ ) of the circuit after the switch is 

closed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The circuit containing only resistive elements and independent current source (i.e., non-
transient part of the circuit) is converted to an equivalent voltage source which is shown 
in fig.10.24(b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.10.24(c) shows the capacitor C is connected across the Thevenin’s voltage terminals ‘ a ’ 
and ‘ b ’ in series with Thevenin’s resistance RTh . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The parameters of Thevenin’s voltage source are computed below: 
 

V   200  1 100  50V and  R   100 300  75Ω 
 

200  100 100 100  300 
 

Th  Th   
 

 
 
 
 

Using KVL around the closed path, one can find the current through the capacitor and 

hence, the voltage across the capacitor. 
 

50  75  i (t )  vc (t)  0.75 dvc (t)  vc (t) (10.58) 
 

  t  0.91sec. 



dt  

       
 

The solution of the differential equation is given by  
 

 − 1 t     
 

v (t )  A e RC   A   (10.59) 
 

c 1       
 

 
Using the initial and boundary conditions of the circuit, we obtain the final expression of 

voltage across the capacitor vc (t) as 

vc (t )  50 1− e−1.33t
  (10.60)  

Let ‘ t ’ is the time required to reach the capacitor voltage 70% of its final (i.e., steady 
state) voltage.  

50  0.7  35  50 1 − e − 
1.33t

 

 

Example: L.10.9 The switch ‘ S of the circuit shown in fig.10.25(a) is closed at position 

‘1’ at t  0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Find voltage vc (t) and current ic (t) expressions for t ≥ 0 . Assume that the capacitor is initially 

fully uncharged (i.e., . vc (0)  0 ).  

(i) find the mathematical expressions for vc (t) and ic (t) if the switch ‘ S ’ is 

thrown into position ‘ 2 ’ at t τ (sec.) of the charging phase.  
(ii) plot the waveforms obtained in parts (i) to (ii) on the same time axis for the 

voltage vc (t) and the current ic (t) using the identified polarity of voltage and 

current directions. 
 

 



 

Solution: (i) The current source is converted to an equivalent voltage source and it is 

redrawn in fig.10.25(b) when the switch ‘ S ’ is in position ‘1’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

KVL around the closed path: 
 

40  10 i (t )  vc (t ),  where i (t ) i s in mA. 
 

40  10 C 
dvc (t) 

 vc (t) (10.61) 
 

dt  

   
 

The voltage expression across the capacitor using the initial and boundary conditions of 

the circuit, one can write vc (t) as  

   −  1  t   −3 −6 

t
     

 

             1     

1− e − 10 t  

 

vc (t )  40 1− e 
      

 40 1− e  1010 1010 
  

 

 40 
 

   RC    
 

 

 

       

 

         
 

                 
 

i (t)  
40 − v (t)  

 40 e − 10 t  4e − 
10

 
t
 (in mA) 

  
 

 c          
 

           
 

c 10       10           
 

                  

Note that the time constant of the circuit in part (i) is τ  RC 100  

(ii) The switch ‘ S ’ is thrown into position ‘ 2 ’ at t τ  0.1sec. 

circuit diagram is shown in fig.10.25(c). 

 
 

 

(10.62) 
 

 

(10.63) 
 

m sec.  
and the corresponding 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note, at time t  τ  0.1sec.,  the capacitor is  charged  with  a  voltage = 
 

vc (τ  0.1)  40 1 − e − 10 0.1  40  0.632  25.28V and at the same time ( t  τ  0.1sec.) 
 

the current in  capacitor is 4e − 10 t =  4  0.368  1.472 in mA . Considering the 
 

fig.10.25(c), one can write KVL around the closed path  
 

vc (t )  C 
dvc (t) 

 Req   0 
   

(10.64) 
 

dt     
 

         
 

where Req  4  6  10 kΩ and the capacitor is now in discharging phase.  
 

The solution of Eq.(10.64) can be found using the initial and final voltage of the capacitor 

(initial voltage vc (t  τ  0.1)  25.28 V , vc (t −τ  ∞ )  0 V ) and it is given by 

 
 − 1  t −τ  

 t −τ  

 
 

v (t )  v (τ  0.1) e 
R

eq 

C
  25.28e − 

10
 (10.65) 

 

c c     
 

Discharging current expression is given by (note, current direction is just opposite to the 
assigned direction and it is taken into account with a –ve sign) 

 

 v (t )  25.28e − 10 t −τ  − 10 t −τ    
 

i (t)  − c  −    − 2.528 e  (in mA) (10.66)       
 

c R
eq 

 

10 

     
 

       
 

(Note, the above two expressions are valid only for t ≥ τ )  
The circuit responses for charging and discharging phases in (i) and (ii) are shown in 

fig.10.25 (d). 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Remark-6 Note that the current through the capacitor (see fig. 10.25(d)) can change 

instantaneously like the voltage across the inductor. 
 

Appendix-A 
 

L.10.A Solution of n
th

 order linear time invariant differential equation excited by forcing 
function. 

 
Let us consider a linear time invariant circuit having several energy source 

elements is described by the following dynamic equation. 

an 

d 
n
 x 

 

a
n −1 

d n −1 x 
 

a
n −2 

d n−2 x  
 i i i  a1 

dx 
 a0 x  f (t) (10.A1) 

 

dt 
n
 dt n −1 dtn −2 dt

n
 

 

      
 

where a 1 , a 2 , a 3 , i i i a n −1 , an are constant coefficients associated in the differential 
 

equation and they are dependent on circuit parameters (like, R, L , and C for electric 
 

circuit) but independent of time,  f (t) is the forcing or driving function and x(t) is the 
  

solution of differential equation or response of the system. We shall discussion the 
 
 



solution of differential equation restricted to second order differential, say 

equation (10.A1). 
 

a  d 
2
 x  a  dx  a x  f (t)  

2  dt 2 
1
 dt 

 

  0 
 

 
n  2  in 
 
 
 

(10.A2) 

 

The solution of this differential equation provides the response of circuit and it is given by 
 

x ( t )  xn ( t )  x f ( t) (10.A3) 
 

where xn (t) is the natural response of circuit, obtained by setting f (t)  0 , and xf (t) is the 

forced response that satisfies the original differential equation (10.A2). 
 

By setting  f (t)  0 in equation (10.A2), as given in equation (10.A4), the force free 
 

equation is obtained.   
 

a  d 
2
 x  a  dx  a x  0 (Homogeneous equation) (10.A4)  

 

dt 
2
 

 

dt 
 

 2  1 0    
  

The solution of such differential equation (or homogeneous equation) is known as natural 

solution or complementary solution or transient solution and it is denoted by xn (t) . To get 
 

the natural solution xn (t) of equation (10.A4) the following steps are considered. 

Let us use the following operators 

 d 
 α ; 

d 
2
 d  d  

α 
2 

 

     
 

 

 

 

  

 

dt dt 
2    

 

    dt  dt   
 

in equation (10.A4) and results an equation given by 
  

 a 2 α 
2
  a 1 α  a0  x  0  

Since x ≠ 0 , the above equation can be written as  

a 2 α 
2
  a 1 α  a0   0 (10.A5) 

 
which is known as characteristic equation for a circuit whose force free equation is 
Eq.(10.A4). The natural or transient solution of Eq.(10.A4) is expressed by the 
exponential terms as given below. 

x (t )  A e α 1 
t
  A 

2 
e 

α
 2 

t
 (10.A6) 

 

n 1    
  

where α1  and α2  are the roots of characteristic equation (10.A5). The roots of second 
 

order characteristic equation with real coefficients is either real or complex occur in 

conjugate pairs. The constants A1 and A2 are evaluated from initial or boundary 

conditions of circuit. The principles of continuity of inductance current and capacitance 

voltage are used to establish the required boundary conditions. 
 
 
 
 
 



If xn (t) is the natural or transient solution of unforced (or homogeneous) equation 

differential, it must satisfy its own differential equation 

a 
 d 

2
 x 

n 
 
 a 

   dx   a x 
 
 0 

   
(10.A7)  

    
 

  
 
  n     

 

 

dt 
2
 

           
 

 2     1   dt  0  n       
 

Further, if x( t )  xn ( t )  x f ( t)  is the complete solution of given differential Eq.(10.A2), it 
 

must satisfy its own equation    
 

  d 
2
  x   x 

f  
    d  x    x 

f   a0  xn  xf  f (t) 

 
 

a 2 
  n    a 1 

 n  (10.A8)  

   2        

dt 
  

 

     dt                 
 

Using the equation (10.A7) in Eq.(10.A8), we get  
 

a  d 
2
 x f   a    dx f   a  x    f (t) (10.A9)  

 

dt 
2
 

     

dt 
  

f 

 
 

 2     1   0        
  

The above equation implies that xf (t) is the forced solution or steady state solution of 
 

second order differential equation (10.A2). Steady state solution of some common forcing 

functions is listed in Table (assume a2 > 0 , a1 > 0 and a0 >0 ). 

Table: Steady state solution x f (t ) for any order differential equation excited by some 

common forcing function.    
   

Type of forcing function f (t) (input)  Steady state solution xf (t) (output) 

฀ f (t )  K (constant)  ฀ xf (t )  A (constant) 

฀   f (t )  K t  ฀   xf (t )  At  B 

฀   f (t )  K t
2
  ฀   xf (t )  At 

2
  B t  C 

   

฀   f (t )  K e 
a t

  ฀   xf (t )  Ae 
at

 
     

฀ f ( t )  sin b t  ฀ i f ( t )  A sin b t  B cos b t 

฀   f (t )  cos b t  ฀ i f ( t )  A sin b t  B cos b t 

฀ f (t )  e 
a t

 sin b t  ฀ i f (t )  e 
at

  A sin b t  B cos b t  

฀ f (t )  e 
a t

 cos b t  ฀ i f (t )  e 
at

  A sin b t  B cos b t  
 

Coefficients involve in the steady state solution can be found out by using the boundary 

conditions of the circuit. 
 

Remark-7 
 

(i) Eq. (10.A2) is the differential equation description of a linear circuit, superposition 
may be used to find the complete solution of a forcing function which is sum of natural 

and steady state responses. (ii) Eq.(10.A6) is the natural solution of force-free linear 

differential equation. Note that the constants α1 and α2 are the roots of the characteristic  
equation (10.A5) and they are entirely depending on the circuit parameters. The roots of 
the characteristic equation may be classified as 

 
 



Case-1: Real or Complex but distinct 
 

The natural solution of homogeneous equation (10.A4) is given as  

xn (t )  A1 e α 1 
t
 

 

Case-2: Roots are repeated (i.e. α1 α 2  α or multiplicity of roots of order 2) 

The natural solution of homogeneous equation (10.A4) is given as 

x (t )  β 
0 

e α t β 
1 
t       

 

n          
 

Using initial and final conditions of the circuit, β 0  and β1 constants are computed. 
 

More discussions on these issues can be seen in Lesson-11.    
 

L.10.6 Test your understanding   ( Marks: 70) 
 

T.10.1 Inductor tends to block ----------- current but pass ---------- current.  
 

T.10.2 The basic fundamental principle that explains the action of an inductor is known 
 

as -------------  law.         
 

T.10.3 Exponential waveforms start ------ and finish --------------- .   
 

T.10.4 A transient approximately always has a duration of -------- time constants. 
 

T.10.5 After the first time constant, a transient goes through ---------- % of its steady 
 

state value.          
 

T.10.6 -------- through inductor cannot change --------- but -------- across the inductor 
 

can --------- instantaneously at the switching phase.     
 

T.10.7 A simple series R − L  circuit is excited with a constant voltage source, the 
 

speed of response depends on ---------- and ------- of the circuit.    
 

T.10.8 The energy stored in an inductor in the form of --------------- .   
 

T.10.9 In a first order circuit if the resistor value is doubled, the time constant is halved 
 

for an --------  circuit.       
 

T.10.10 An inductor acts as ----------- for a ---------- current through it.   
 

T.10.11 Once a capacitor has been charged up, it is able to act like a -------- .  
 

T.10.12 If the spacing between the plates is doubled, the capacitance value is ----------. 
 

T.10.13 After a capacitor is fully charged in a dc circuit, it ---------- dc current. 
 

T.10.14 The time rate of change of capacitor voltage is represented by the ------- tangent 
 

line to the vc (t) -versus- t curve.       
 

T.10.15 Immediately after a switch has been thrown, a capacitor’s ---------- must 
 

maintain the same value that excited just before the switching instant.   
  

T.10.16  At the instant of switching, current through the capacitor -------------  

instantaneously. 
 
 

 

 A 2 e α 2 
t
 



T.10.17  At steady state condition in a dc circuit, the capacitor acts as an ----- circuit. 
 

T.10.18  A first order circuit with a single resistor, if the resistor is doubled in value, the  

time constant is also ----- for an R − C circuit.     

T.10.19  Time constant of a first order system is the measure of ----------- response of the 

circuit.        

T.10.20  The energy stored in a capacitor in the form of -------------- .  [ 1 20 ] 

T.10.21 For the circuit of fig.10.26, find (i) i (0− ), i (0− )  (ii) i (0

 ), i (0


 )  (iii) 

    1 L 1 L 
i (t  ∞ ) , i (t  ∞) (iv) v  (0 


 ), v  ( t  ∞) .     

1 L ab ab      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Ans. (i ) 0 , 0.666 A (ii ) 1.333 A, 0.666 A (iii ) 2 A, 0 A (iv ) −1.332 V , 0 V ) [8] 

 

T.10.22 For the circuit shown in Fig.10.12, the switch ‘ S ’ has been opened for a long 

time and then closes at t=0. 
 

Find,  
(0 − )  (ii) 

  
(0 − ) 

  
(0 


 ) 
  

(0 

 ) (v) i 

 
(t  ∞ ) 

 
 

(i)  v 
ab 

i 
x 

(iii) i 
x 

(iv)  v 
ab x 

(vi) v  (t  ∞)  (vii) 
 

          ab 
 

i x (t ) for  t  0              
 

(Ans.               [10] 
 

 

T.10.23 In the circuit shown in fig.10.27, the switch was initially open and no current was 
flowing in inductor ( L ). The switch was closed at t  0 and than re opened at t  2τ 

sec. At t  0 , 
d

 
i

L 
(t)

 was 50 A / s . 
 

dt 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Find,        
 

(i) The value of L     
 

(ii) Find the current iL (t ) and voltage vbc (t) expressions for t ≥ 0 . Assume, no 
 

 current was flowing through the inductor at t  0 (i.e., . iL (0)  0 ).  
 

(iii) Find the mathematical expressions for iL (t ) and vbc (t) if the switch ‘ S ’ is 
 

 reopened at t  2τ (sec.).    
 

(iv) Plot the waveforms obtained in parts (ii) to (iii) on the same time axis (time → 
 

 in ms.) for the current iL (t ) and the voltage vbc (t) considering the indicated 
 

 current directions and identified polarity of voltage across the b − c terminals. 
 

(Ans. (i) 0.3 H  (ii) i L (t )  1.25  1− e − 
40t

  amp. , vbc (t )  15 e − 
40t

  
 

(iii) i 
L 
( t )  1.081 e − 

40t
 −τ 


 , v (t )  12.96 e − 

40
 
t

 − 
2τ 

 ,  for  t ≥ 2τ .) [10] 

 

   bc    
 

T.10.24 At steady state condition, find the values of I1 , I 2 , I 3 , I 4 , I 5  , V1    and V2  for 
 

the circuit shown in fig.10.28.     
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

(Ans. I1  I 2  I 5  1 A, I 4  I 3  0, V1  40 V and V2  30V  ) [6] 
 

 



T.10.25  Switch ‘ S ’ shown in fig.10.29 is kept in position ‘1’for a long time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When the switch is thrown in position ‘ 2 ’, find at steady state condition  
(i) the voltage across the each capacitor (ii) the charge across the each capacitor (iii) the 

energy stored by the each capacitor 

(Ans. (i) (i ) 
V 

(ii ) C 
V 

(iii ) C V
 2 

) [6]  

 2  2  8 
 

     
 

 
T.10.26 For the circuit shown in fig.10.30, Switch ‘ S ’ is kept in position ‘1 ’ for a long 

time and then it is thrown in position ‘ 2 ’ at time t  0 . Find (a) the current expression  

i (t) for t ≥ 0 (b) calculate the time constants of the circuit before and after the switching 

phases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Ans. ( a ) i (t )  1.5  0.5e −
105 

t
  (b) 12 μ s (before the switch is opened), (b) 10 μ s (after 

the switch is opened, i.e., when the switch is in position ‘ 2 ’)) [10] 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Single-phase AC Circuits 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generation of Sinusoidal 

Voltage Waveform (AC) and 

Some Fundamental Concepts 

 
 

In this lesson, firstly, how a sinusoidal waveform (ac) is generated, is described, and then 

the terms, such as average and effective (rms) values, related to periodic voltage or 

current waveforms, are explained. Lastly, some examples to find average and root mean 

square (rms) values of some periodic waveforms are presented. 
 

Keywords: Sinusoidal waveforms, Generation, Average and RMS values of Waveforms. 
 

After going through this lesson, the students will be able to answer the following 

questions: 
 

1. What is an ac voltage waveform?  
2. How a sinusoidal voltage waveform is generated, with some detail? 

3. For periodic voltage or current waveforms, to compute or obtain the average and rms 

values, and also the time period. 

4. To compare the different periodic waveforms, using above values. 

 

 

 

 

 

 



 

Generation of Sinusoidal (AC) Voltage Waveform  
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Fig. 12.1 Schematic diagram for single phase ac generation 

 

A multi-turn coil is placed inside a magnet with an air gap as shown in Fig. 12.1. The flux 

lines are from North Pole to South Pole. The coil is rotated at an angular speed,  

ω  2π n (rad/s).  

n  2
ωπ = speed of the coil (rev/sec, or rps) 

 
 

N  60 n = speed of the coil (rev/min, or rpm)  
l = length of the coil (m) 

b = width (diameter) of the coil (m) 

T = No. of turns in the coil 



 

 

B = flux density in the air gap (Wb / m
2
 ) 

v  π b n = tangential velocity of the coil (m/sec) 
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Fig. 12.2 (a) Coil position for Fig. 12.1, and (b) Details 

 

At a certain instant t, the coil is an angle (rad), θ  ω t with the horizontal (Fig. 12.2). 

The emf (V) induced on one side of the coil (conductor) is B l v sin θ ,  
θ can also be termed as angular displacement.  

The emf induced in the coil (single turn) is 2 B l v sin θ  2 B l π b n sin 

θ The total emf induced or generated in the multi-turn coil is  

e(θ )  T 2 B l π b n sinθ  2π B l b nT sinθ  Em sinθ 
 

This emf as a function of time, can be expressed as, e(t)  Em sin ω t . The graph of 

e(t) or e(θ ) , which is a sinusoidal waveform, is shown in Fig. 12.4a 
 

Area of the coil (m
2
 )  a  l b  

Flux cut by the coil (Wb) = φ  a B  l b B 
 

Flux linkage (Wb) = ψ  T φ  T B l b  

It may be noted these values of flux φ and flux linkage ψ , are maximum, with the coil 

being at horizontal position, θ  0 . These values change, as the coil moves from the 

horizontal position (Fig. 12.2). So, also is the value of induced emf as stated earlier.  
The maximum value of the induced emf is,  

Em   2π n B l bT  2π n φ T  2π n ψ  ω ψ  ψ 
dθ

 

dt  
Determination of frequency (f) in the ac generator 

 

In the above case, the frequency (Hz) of the emf generated is 



 
 

f  ω /(2π )  n , no. of poles being 2, i.e. having only one pole pair.  
In the ac generator, no. of poles = p, and the speed (rps) = n, then the frequency in Hz 

or cycles/sec, is  
f = no. of cycles/sec = no. of cycles per rev × no. of rev per sec = no. of pairs of 

poles × no. of rev per sec = ( p / 2) n  

or, f  120
pN

  2
p

  2
ωπ 

  

Example 
 

For a 4-pole ac generator to obtain a voltage having a frequency of 50 Hz,  

the speed is, n  
2 f  

2  50  25 rps = 25 60  1,500 rpm  

p 4 
 

   
 

For a 2-pole (p = 2) machine, the speed should be 3,000 rpm.  
Similarly, the speed of the machine having different no. of poles, required to generate 
a frequency of 50 Hz can be computed.  

Sinusoidal voltage waveform having frequency, f with time period (sec), T  1  f 
 

Periodic Voltage or Current Waveform 

 

Average value 
 

The current waveform shown in Fig. 12.3a, is periodic in nature, with time period, T.  
It is positive for first half cycle, while it is negative for second half cycle.  

The average value of the waveform, i(t) is defined as 
 

 
Area over half cycle 

 
1 

T 2 
2 

T 2 
 

I av    i(t) dt  i(t) dt  

Time period of half cycle T 2 T 
 

  ∫
0 ∫

0 
  

Please note that, in this case, only half cycle, or half of the time period, is to be used 

for computing the average value, as the average value of the waveform over full cycle is 

zero (0).       

T ), 
 

If the half time period (T/2) is divided into 6 equal time intervals ( 
 

I av   
(i1  i2  i3  i6 )  T 

 
(i1  i2  i3    i6 ) 

 
Area over half cycle 

 

6  T 
 

6 Time period of half cycle 
 

    
  

Please note that no. of time intervals is n = 6. 
 

Root Mean Square (RMS) value 
 

For this current in half time period subdivided into 6 time intervals as given above, in 

the resistance R, the average value of energy dissipated is given by 

  2 2 2  2 ) 
  

 

  
(i1  i2  i3 i6 

 R  

  

6 

   
 

         
 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The graph of the square of the current waveform, i
2
 (t) is shown in Fig. 12.3b. Let I 

 

be the value of the direct current that produces the same energy dissipated in the 

resistance R, as produced by the periodic waveform with half time period subdivided into 

n time intervals,  
   2  2 2  2 T 

  
 

I 
2
 R   (i1  i2   i3 in ) 

 R  

    

n T 

 
 

         
 

I  (i 
2
  i 

2
  i 

2
   i 

2
 )  T   Area of i 

2
  curve over half cycle 

 

1   2 3   n   
 

         
 

      n T     Time period of half cycle 
 



 
 

1 
T 2 

2 
T 2 

 

 ∫i
2
 dt  

∫i
2
 

dt 

 

T 2 T 
 

 0 0 
  

This value is termed as Root Mean Square (RMS) or effective one. Also to be noted 

that the same rms value of the current is obtained using the full cycle, or the time period. 
 

Average and RMS Values of Sinusoidal Voltage Waveform 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As shown earlier, normally the voltage generated, which is also transmitted and 

then distributed to the consumer, is the sinusoidal waveform with a frequency of 50 Hz in 



 

this country. The waveform of the voltage v(t) , and the square of waveform, v
2
 (t) , are 

shown in figures 12.4a and12.4b respectively. 
 

Time period, T  1/ f  (2π ) / ω ; in angle (ω T  2π ) 
 

Half time period, T / 2  1/(2 f )  π / ω ; in angle (ω T / 2 π )  

v(θ )  Vm sinθ for π ≤ θ ≤ 0;  v(t)  Vm sin ω t  for (π ω) ≤ t ≤ 0 
 

V
av  


 1 

π 

v(θ ) dθ  
1 

 π 

Vm sin θ dθ  
Vm 

cos θ 

 
0  

2 
Vm   0.637 Vm 

 

∫  ∫  
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    0        0                        
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1 

 

π 

  

 

  

 

1 
 
π 

    

 

 

 

 

 

Vm
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π 1 
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V  
   ∫ v 

 

dθ 
 

 
    ∫V

m sin 
 θ dθ 

 

 
   ∫ 

  

(1 − cos 2θ ) dθ 
 

         

π 

  

2 

 
 π

 0      π
 0        0     

   
2
   1 

  
 

 
V
m 

(θ − sin 2θ ) π0 
 

 

2 
 

2π     
 

or, Vm   2 V 
  

  
1    1    

 

 

 

 
2 

 

     

2 2    
 

 


 

V
m π 

  
V
m  0.707 Vm  

2π 

 

2 

 

      
  

 

If time t, is used as a variable, instead of angleθ ,  
 

1 
π ω 

ω 
π ω 

ωVm 
  

0 

 

2 
 

 

Vav   ∫ 
v(t) dt  ∫ 

Vm sin ω t dt  cos (ω t) 

 

 Vm   0.637 Vm 
 

 
 

π ω π π ω π  

     π   
 

  0   0         
  

In the same way, the rms value, V can be determined. 
 

If the average value of the above waveform is computed over total time period T, it 

comes out as zero, as the area of first (positive) half cycle is the same as that of second 

(negative) half cycle. However, the rms value remains same, if it is computed over total 

time period. 
 

The different factors are defined as: 
 

Form factor  
 RMS value   

0.707 Vm   1.11  

 

Average value 0.637 Vm 
 

      
 

Peak factor  

Maximum value 

 

Vm  

 1.414 

 

 Average value  0.707 Vm  
 

Note: The rms value is always greater than the average value, except for a rectangular 

waveform, in which case the heating effect remains constant, so that the average 

and the rms values are same. 
 

Example 
 

The examples of the two waveforms given are periodic in nature. 
 

1. Triangular current waveform (Fig. 12.5) 

Time period = T 

i(t)  I m  
t
 for T ≤ t ≤ 0  

T 



Im 
 

 

i 
 
 
 

 

0 T 2T 
 

t 
 

Fig. 12.5 Triangular current waveform 
 

  

1 

 

T 

    

1 T 

   

t 
    

I m  t 
2
 

 

T 

   

 
I m  T 

2
 

 

                  
 

I av   
    ∫i(t) dt  
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I      

∫i 
2 dt      

∫ 
I 

2    dt 

 

   m  
 

      
 

 

T 
 T 

        

3 
     

      m
 T 2    T 

3
        

 

     0        0                     0  
 

 
I
 
m
3  0.57735 I m

 

Two factors of the waveform are: 

  

I 

  2
m

   0.5 I m 
 
      1   1 

 

 
2 

 

T 3 
 

 

 
2 

 

  

 2 2 
 

 
I m 

 

 

 


 

I m 
 

 

3   

3 

 

T
  3    

 

 

Form factor   RMS value   0.57735 I m  1.1547  
 

Average value 

  
 

     0.5 I m 
 

 Maximum value   Im 
 

Peak factor  

   

 

 

 2.0 

 

 Average value  0.5 Im 
 

To note that the form factor is slightly higher than that for the sinusoidal waveform, 

while the peak factor is much higher. 
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Fig. 12.6 Trapezoidal voltage waveform 
 

2. Trapezoidal voltage waveform (Fig. 12.6) 
 

Time period (T) = 8 ms  
Half time period (T 2 )  8 2  4 



v(t)  m t  (5 1) t  5t for 1 ≤ t ≤ 0 ; v(t)  5 for 3 ≤ t ≤ 1 ; v(t)  

5(4 − t) for 4 ≤ t ≤ 3 
 

Please note that time, t is in ms, and slope, m is in V/ms. Also to be noted that, as in 

the case of sinusoidal waveform, only half time period is taken here for the computation 

of the average and rms values. 
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Two factors of the waveform are: 
 

Form factor   RMS value   4.0825  1.0887  
 

Average value 

    

     3.75   
 

Peak factor  Maximum value   5.0   1.3333  
 

3.75 

 
 

  Average value      
 

To note that the both the above factors are slightly lower than those for the sinusoidal 

waveform. 
 

Similarly, the average and rms or effective values of periodic voltage or current 

waveforms can be computed. 
 

In this lesson, starting with the generation of single phase ac voltage, the terms, such 

as average and rms values, related to periodic voltage and current waveforms are 

explained with examples. In the next lesson, the background material required – the 

representation of sinusoidal voltage/current as phasors, the rectangular and polar forms of 

the phasors, as complex quantity, and the mathematical operations – addition/subtraction 

and multiplication/division, using phasors as complex quantity, are discussed in detail 

with numerical examples. In the following lessons, the study of circuits fed from single 

phase ac supply, is presented. 
 
 
 
 
 
 



Problems 

 

12.1 What is the speed in rpm of an ac generator with 4 poles, to produce a voltage 

with a frequency of 50 Hz 

 

(a) 3000 (b) 1500 (c) 1000 (d) 750 

 

12.2 Determine the No. of poles required in an ac generator running at 1,000 rpm, to 

produce a voltage with a frequency of 50 Hz. 
 

(a) 2 (b) 4 (c) 6 (d) 8 

 

12.3 Calculate the speed in rpm of an ac generator with 24 poles, to produce a voltage 

with a frequency of 50 Hz. 
 

(a) 300 (b) 250 (c) 200 (d) 150 

 

12.4 Determine the average and root mean square (rms) values of the following 

waveforms. 
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23.1  Goals of the lesson 

 

In this lesson, we shall study two winding ideal transformer, its properties and working 

principle under no load condition as well as under load condition. Induced voltages in 

primary and secondary are obtained, clearly identifying the factors on which they depend 

upon. The ratio between the primary and secondary voltages are shown to depend on 

ratio of turns of the two windings. At the end, how to draw phasor diagram under no load 

and load conditions, are explained. Importance of studying such a transformer will be 

highlighted. At the end, several objective type and numerical problems have been given 

for solving.  
Key Words: Magnetising current, HV & LV windings, no load phasor diagram, reflected 

current, equivalent circuit. 
 

After going through this section students will be able to understand the following. 

 

1. necessity of transformers in power system. 
 

2. properties of an ideal transformer. 
 

3. meaning of load and no load operation. 
 

4. basic working principle of operation under no load condition. 
 

5. no load operation and phasor diagram under no load. 
 

6. the factors on which the primary and secondary induced voltages depend. 
 

7. fundamental relations between primary and secondary voltages. 
 

8. the factors on which peak flux in the core depend. 
 

9. the factors which decides the magnitude of the magnetizing current. 
 

10. What does loading of a transformer means? 
 

11. What is reflected current and when does it flow in the primary? 
 

12. Why does VA (or kVA) remain same on both the sides?  

13. What impedance does the supply see when a given impedance Z2 is connected 

across the secondary? 
 

14. Equivalent circuit of ideal transformer referred to different sides. 
 

 

23.2  Introduction 

 

Transformers are one of the most important components of any power system. It basically 

changes the level of voltages from one value to the other at constant frequency. Being a 

static machine the efficiency of a transformer could be as high as 99%.  



Big generating stations are located at hundreds or more km away from the load 

center (where the power will be actually consumed). Long transmission lines carry the 

power to the load centre from the generating stations. Generator is a rotating machines 

and the level of voltage at which it generates power is limited to several kilo volts only –



 

 

a typical value is 11 kV. To transmit large amount of power (several thousands of mega 
watts) at this voltage level means large amount of current has to flow through the 
transmission lines. The cross sectional area of the conductor of the lines accordingly 
should be large. Hence cost involved in transmitting a given amount of power rises many 
folds. Not only that, the transmission lines has their own resistances. This huge amount of 

current will cause tremendous amount of power loss or I
2
r loss in the lines. This loss will 

simply heat the lines and becomes a wasteful energy. In other words, efficiency of 
transmission becomes poor and cost involved is high.  

The above problems may addressed if we could transmit power at a very high 

voltage say, at 200 kV or 400 kV or even higher at 800 kV. But as pointed out earlier, a 

generator is incapable of generating voltage at these level due to its own practical 

limitation. The solution to this problem is to use an appropriate step-up transformer at the 

generating station to bring the transmission voltage level at the desired value as depicted 

in figure 23.1 where for simplicity single phase system is shown to understand the basic 

idea. Obviously when power reaches the load centre, one has to step down the voltage to 

suitable and safe values by using transformers. Thus transformers are an integral part in 

any modern power system. Transformers are located in places called substations. In cities 

or towns you must have noticed transformers are installed on poles – these are called pole 

mounted distribution transformers. These type of transformers change voltage level 

typically from 3-phase, 6 kV to 3-phase 440 V line to line. 
 

  Long Transmission line 
 

G 

11 

400 kV 

To 
 

kV loads 
 

 Step up Step down 
 

 transformer transformer 
  

Figure 23.1: A simple single phase power system. 
 

In this and the following lessons we shall study the basic principle of operation 

and performance evaluation based on equivalent circuit. 

 

23.2.1 Principle of operation 
 

A transformer in its simplest form will consist of a rectangular laminated magnetic 

structure on which two coils of different number of turns are wound as shown in Figure 

23.2. 
 

The winding to which a.c voltage is impressed is called the primary of the 

transformer and the winding across which the load is connected is called the secondary of 

the transformer. 
 

23.3 Ideal Transformer 

 

To understand the working of a transformer it is always instructive, to begin with the 

concept of an ideal transformer with the following properties. 
 
 
 



1.  Primary and secondary windings has no resistance.  
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Figure 23.2: A typical transformer. 
 

2. All the flux produced by the primary links the secondary winding i,e., there is no 

leakage flux. 
 

3. Permeability μr of the core is infinitely large. In other words, to establish flux in 

the core vanishingly small (or zero) current is required. 
 

4. Core loss comprising of eddy current and hysteresis losses are neglected. 
 

23.3.1 Core flux gets fixed by voltage & frequency 
 

The flux level BmaxB in the core of a given magnetic circuit gets fixed by the magnitude of 

the supply voltage and frequency. This important point has been discussed in the previous 

lecture 20. It was shown that: 

B
max  


 

V 

 

1 V 
 

2π fAN 4.44 AN  f  

   
  

 

where, V is the applied voltage at frequency f , N is the number of turns of the coil 

and A is the cross sectional area of the core. For a given magnetic circuit A and N are 
constants, so Bmax developed in core is decided by the ratio 

V
  . The peak value of the coil  

B f  

current Imax, drawn from the supply now gets decided by the B-H characteristics of the 

core material. 
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Figure 23.3: Estimating current drawn for different core materials. 
 

To elaborate this, let us consider a magnetic circuit with N number of turns and 

core section area A with mean length l. Let material-3 be used to construct the core whose 

B-H characteristic shown in figure 23.3. Now the question is: if we apply a voltage V at 

frequency f, how much current will be drawn by the coil? We follow the following steps 

to arrive at the answer. 
 

1.  First calculate maximum flux density using B    1  V .  Note that value  

   

max 4.44 AN  f  

  
 

of BmaxB    is independent of the core material property. 
 

2. Corresponding to this BmaxB, obtain the value of Hmax3 from the B-H characteristic 

of the material-3 (figure 23.3). 
 

3. Now calculate the required value of the current using the relation Imax 3  
H

 
max 3l

 . 

N  
 

4.  The rms value of the exciting current with material-3 as the core, will be  

I 3  Imax 3 / 2 .  
 

By following the above steps, one could also estimate the exciting currents (I2 or I3) 

drawn by the coil if the core material were replaced by material-2 or by material-3 with 

other things remaining same. Obviously current needed, to establish a flux of BmaxB is 

lowest for material-3. Finally note that if the core material is such that μr → ∞ , the B-H  
characteristic of this ideal core material will be the B axis itself as shown by the thick line 
in figure 23.3 which means that for such an ideal core material current needed is 

practically zero to establish any BmaxB in the core. 

 

23.3.2 Analysis of ideal transformer 
 

Let us assume a sinusoidally varying voltage is impressed across the primary with 

secondary winding open circuited. Although the current drawn Im will be practically zero, 

but its position will be 90 lagging with respect to the supply voltage. The flux produced 

will obviously be in phase with Im. In other words the supply voltage will lead the flux 

phasor by 90. Since flux is common for both the primary and secondary coils, it is 
customary to take flux phasor as the reference. 

 

Let, φ(t) = φmax sin ωt 
π 

 
 

then, v1 
    

 

= 
V

max 
sin

 ωt + 
 

 
(23.1)  

2 

 

      
 

 

The time varying flux φ(t) will link both the primary and secondary turns 

inducing in voltages e1 and e2 respectively 

Instantaneous induced voltage in primary = -N  dφ = ωN φ sin  ωt - π 
 

1   

 

 

 

 

dt 
1  max   

2 

 

       
 

 



 

        π   
 

  

= 2π f N
1
φ

max 
sin

 ωt -    
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 dφ     π       
 

Instantaneous induced voltage in secondary = -N2  = ωN2φmax sin ωt -  

 

     
 

dt 2 

     
 

           
 

         π   
 

  

= 2π f N
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φ

max 
sin

 ωt -    

 
(23.3)    
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Magnitudes of the rms induced voltages will therefore be 

 

E = 2π f N φ 
max 

= 4.44 f N φ 
max 

(23.4) 
 

1  1  1  
 

E = 2π f N φ 
max 

= 4.44 f N φ 
max 

(23.5) 
 

2  2 2  
   

The time phase relationship between the applied voltage v1 and e1 and e2 will be same. 

The 180 phase relationship obtained in the mathematical expressions of the two merely 
indicates that the induced voltage opposes the applied voltage as per Lenz’s law. In other 

words if e1 were allowed to act alone it would have delivered power in a direction 

opposite to that of v1. By applying Kirchoff’s law in the primary one can easily say that 

V1 = E1 as there is no other drop existing in this ideal transformer. Thus udder no load 
condition, 

V
2 = 

E
2 = 

N
2  

V1 E1 N1 
 

Where, V1, V2  are the terminal voltages and E1, E2  are the rms induced voltages. In 
 

convention 1, phasors E
1
 and E

2
 are drawn 180 out of phase with respect to V 

1
 in order 

to convey the respective power flow directions of these two are opposite. The second 

convention results from the fact that the quantities v1(t), e1(t) and e2(t ) vary in unison, 

then why not show them as co-phasal and keep remember the power flow business in 

one’s mind.  

 

23.3.3 No load phasor diagram 
 

A transformer is said to be under no load condition when no load is connected across the 

secondary i.e., the switch S in figure 23.2 is kept opened and no current is carried by the 

secondary windings. The phasor diagram under no load condition can be drawn starting  

with φ as the reference phasor as shown in figure 23.4.  
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Figure 23.4: No load Phasor Diagram following two conventions. 

 

In convention 1, phsors E1  and E2  are drawn 180 out of phase with respect to   

V1  in order to convey that the respective power flow directions of these two are opposite.   

The second convention results from the fact that the quantities v1 (t), e1(t) and e2(t ) vary 

in unison then why not show them as co-phasal and keep remember the power flow 
business in one’s mind. Also remember vanishingly small magnetizing current is drawn 
from the supply creating the flux and in time phase with the flux. 

 

23.4  Transformer under loaded condition 

 

In this lesson we shall study the behavior of the transformer when loaded. A transformer 

gets loaded when we try to draw power from the secondary. In practice loading can be 

imposed on a transformer by connecting impedance across its secondary coil. It will be 

explained how the primary reacts when the secondary is loaded. It will be shown that any 

attempt to draw current/power from the secondary, is immediately responded by the 

primary winding by drawing extra current/power from the source. We shall also see that 

mmf balance will be maintained whenever both the windings carry currents. Together 

with the mmf balance equation and voltage ratio equation, invariance of Volt-Ampere 

(VA or KVA) irrespective of the sides will be established. 
 

We have seen in the preceding section that the secondary winding becomes a seat 

of emf and ready to deliver power to a load if connected across it when primary is 

energized. Under no load condition power drawn is zero as current drawn is zero for ideal 

transformer. However when loaded, the secondary will deliver power to the load and 

same amount of power must be sucked in by the primary from the source in order to 

maintain power balance. We expect the primary current to flow now. Here we shall 

examine in somewhat detail the mechanism of drawing extra current by the primary when 



the secondary is loaded. For a fruitful discussion on it let us quickly review the dot 

convention in mutually coupled coils. 
 
 
 
 
 
 

 

23.4.1 Dot convention 
 

The primary of the transformer shown in figure 23.2 is energized from a.c source and 

potential of terminal 1 with respect to terminal 2 is v12 = Vmaxsinωt. Naturally polarity of 

1 is sometimes +ve and some other time it is –ve. The dot convention helps us to 

determine the polarity of the induced voltage in the secondary coil marked with terminals 

3 and 4. Suppose at some time t we find that terminal 1 is +ve and it is increasing with 

respect to terminal 2. At that time what should be the status of the induced voltage 

polarity in the secondary – whether terminal 3 is +ve or –ve? If possible let us assume 

terminal 3 is –ve and terminal 4 is positive. If that be current the secondary will try to 

deliver current to a load such that current comes out from terminal 4 and enters terminal  
3. Secondary winding therefore, produces flux in the core in the same direction as that of 

the flux produced by the primary. So core flux gets strengthened in inducing more 

voltage. This is contrary to the dictate of Lenz’s law which says that the polarity of the 

induced voltage in a coil should be such that it will try to oppose the cause for which it is 

due. Hence terminal 3 can not be –ve. 
 

If terminal 3 is +ve then we find that secondary will drive current through the load 

leaving from terminal 3 and entering through terminal 4. Therefore flux produced by the 

secondary clearly opposes the primary flux fulfilling the condition set by Lenz’s law. 

Thus when terminal 1 is +ve terminal 3 of the secondary too has to be positive. In 

mutually coupled coils dots are put at the appropriate terminals of the primary and 

secondary merely to indicative the status of polarities of the voltages. Dot terminals will 

have at any point of time identical polarities. In the transformer of figure 23.2 it is 

appropriate to put dot markings on terminal 1 of primary and terminal 3 of secondary. It 

is to be noted that if the sense of the windings are known (as in figure 23.2), then one can 

ascertain with confidence where to place the dot markings without doing any testing 

whatsoever. In practice however, only a pair of primary terminals and a pair of secondary 

terminals are available to the user and the sense of the winding can not be ascertained at 

all. In such cases the dots can be found out by doing some simple tests such as polarity 

test or d.c kick test. 
 

If the transformer is loaded by closing the switch S, current will be delivered to 
the load from terminal 3 and back to 4. Since the secondary winding carries current it 

produces flux in the anti clock wise direction in the core and tries to reduce the original 
flux. However, KVL in the primary demands that core flux should remain constant no 

matter whether the transformer is loaded or not. Such a requirement can only be met if 

the primary draws a definite amount of extra current in order to nullify the effect of the 
mmf produced by the secondary. Let it be clearly understood that net mmf acting in the 

core is given by: mmf due to vanishingly small magnetizing current + mmf due to 
secondary current + mmf due to additional primary current. But the last two terms must 

add to zero in order to keep the flux constant and net mmf eventually be once again be 

due to vanishingly small magnetizing current. If I2 is the magnitude of the secondary  



current and I2
'
 is the additional current drawn by the primary then following relation must 

hold good: 



 
 
 

 

N1I 
'
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or I 
'
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where, a 

 

= N2I2 
N 

=
 N

2
 

I
2  

1  

= 
I
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a  

= 
N1 

= turns ratio (23.6)  

N2 
 

   
 

 

 

To draw the phasor diagram under load condition, let us assume the power factor  

angle of the load to be θ2, lagging. Therefore the load current phasor I2 , can be drawn 
 

lagging the secondary terminal voltage E2  by θ2 as shown in the figure 23.5. 
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Figure 23.5: Phasor Diagram when transformer is loaded. 
 

The reflected current magnitude can be calculated from the relation I2
'
 = 

I
a2   and is   

shown directed 180 out of phase with respect to I2  in convention 1 or in phase with I2   
as per the convention 2. At this stage let it be suggested to follow one convention only 

and we select convention 2 for that purpose. Now, 
 

Volt-Ampere delivered to the load = V2I2 

= E2I2 
I 

= aE1 a
1
 

 

= E1I1=V1I1=Volt-Ampere drawn from the supply. 
 

Thus we note that for an ideal transformer the output VA is same as the input VA 

and also the power is drawn at the same power factor as that of the load. 

 

23.4.2 Equivalent circuit of an ideal transformer 
 

The equivalent circuit of a transformer can be drawn (i) showing both the sides along 

with parameters, (ii) referred to the primary side and (iii) referred to the secondary side. 
 
 
 



In which ever way the equivalent circuit is drawn, it must represent the operation of the 

transformer correctly both under no load and load condition. Figure 23.6 shows the 

equivalent circuits of the transformer. 
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Figure 23.6: Equivalent circuits of an ideal transformer. 
 

Think in terms of the supply. It supplies some current at some power factor when 
a load is connected in the secondary. If instead of the transformer, an impedance of value 

a
2
Z2 is connected across the supply, supply will behave identically. This corresponds to 

the equivalent circuit referred to the primary. Similarly from the load point of view, 
forgetting about the transformer, we may be interested to know what voltage source 

should be impressed across Z2 such that same current is supplied to the load when the 

transformer was present. This corresponds to the equivalent circuit referred to the 
secondary of the transformer. When both the windings are shown in the equivalent 
circuit, they are shown with chain lines instead of continuous line. Why? This is because, 
when primary is energized and secondary is opened no current is drawn, however current 
is drawn when a load is present on the secondary side. Although supply two terminals are 
physically joined by the primary winding, the current drawn depends upon the load on 
the secondary side. 

 

23.5 Tick the correct answer 

 

1. An ideal transformer has two secondary coils with number of turns 100 and 150 

respectively. The primary coil has 125 turns and supplied from 400 V, 50 Hz, 

single phase source. If the two secondary coils are connected in series, the 

possible voltages across the series combination will be: 



 
 

 

(A) 833.5 V or 166.5 V (B) 833.5 V or 320 V  
(C) 320 V or 800 V (D) 800 V or 166.5 V 

 

2. A single phase, ideal transformer of voltage rating 200 V / 400 V, 50 Hz produces 

a flux density of 1.3 T when its LV side is energized from a 200 V, 50 Hz source. 

If the LV side is energized from a 180 V, 40 Hz source, the flux density in the 

core will become: 
 

(A) 0.68 T (B) 1.44 T (C) 1.62 T (D) 1.46 T 

 

3. In the coil arrangement shown in Figure 23.7, A dot (฀) marking is shown in the 

first coil. Where would be the corresponding dot (฀) markings be placed on coils 

2 and 3?  
(A) At terminal P of coil 2 and at terminal R of coil 3 

 
(B) At terminal P of coil 2 and at terminal S of coil 3 

 
(C) At terminal Q of coil 2 and at terminal R of coil 3 

 
(D) At terminal Q of coil 2 and at terminal S of coil 3 
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Figure 23.7: 

 

4. A single phase ideal transformer is having a voltage rating 200 V / 100 V, 50 Hz. 

The HV and LV sides of the transformer are connected in two different ways with 

the help of voltmeters as depicted in figure 23.8 (a) and (b). If the HV side is 

energized with 200 V, 50 Hz source in both the cases, the readings of voltmeters  
V1 and V2 respectively will be: 

 

(A) 100 V and 300 V (B) 300 V and 100 V 

(C) 100 V or 0 V (D) 0 V or 300 V 

V1 V2 

200 V 200 V 

50Hz 50Hz  
 
 

 

Connection (a) Connection (b) 
 

Figure 23.8: 
 

 



 

5. Across the HV side of a single phase 200 V / 400 V, 50 Hz transformer, an 

impedance of 32 + j24Ω is connected, with LV side supplied with rated voltage & 
frequency. The supply current and the impedance seen by the supply are 

respectively:  
(A) 20 A & 128 + j96Ω (B) 20 A & 8 + j6Ω 

(C) 5 A & 8 + j6Ω (D) 20 A & 16 + j12Ω 

 

6. The rating of the primary winding a transformer, having 60 number of turns, is 

250 V, 50 Hz. If the core cross section area is 144 cm
2
 then the flux density in the 

core is:  

(A) 1 T (B) 1.6 T (C) 1.4 T (D) 1.5 T 

 

23.6 Solve the following 

 

1. In Figure 23.9, the ideal transformer has turns ratio 2:1. Draw the equivalent 

circuits referred to primary and referred to secondary. Calculate primary and 

secondary currents and the input power factor and the load power factor. 

 4Ω  -j 2Ω 
 

200 V
+

 
ZL= 2 + j2Ω 

 

50Hz  

 
  

 

2 : 1 
 

Figure 23.9: Basic scheme of protection. 
 

2. In the Figure 23.10, a 4-winding transformer is shown along with number of turns 

of the windings. The first winding is energized with 200 V, 50 Hz supply. Across 

the 2
nd

 winding a pure inductive reactance XL = 20 Ω is connected. Across the 3
rd

 

winding a pure resistance R = 15 Ω and across the 4
th

 winding a capacitive 

reactance of XC = 10 Ω are connected. Calculate the input current and the power 

factor at which it is drawn. 
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Figure 23.10:  

 
 



 

3. In the circuit shown in Figure 23.11, T1, T2 and T3 are ideal transformers. 

 

a) Neglecting the impedance of the transmission lines, calculate the currents in 

primary and secondary windings of all the transformers. Reduce the circuit 

refer to the primary side of T1.  
b) For this part, assume the transmission line impedance in the section AB to be  

Z AB = 1 + j3Ω . In this case calculate, what should be V s  for maintaining 450   

V across the load Z L = 60 + j80Ω . Also calculate the net impedance seen by 

V s . 
 

T1 T2 
A

 
B

  T3 

V S =   

200 V  ZL 

50Hz   

2 : 3 2 : 1 1 : 3 

 Figure 23.11:   
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25.1 Goals of the lesson 

 

In the previous lesson we have seen how to draw equivalent circuit showing magnetizing 

reactance (Xm), resistance (Rcl), representing core loss, equivalent winding resistance (re) and 

equivalent leakage reactance (xe). The equivalent circuit will be of little help to us unless we 

know the parameter values. In this lesson we first describe two basic simple laboratory tests 
namely (i) open circuit test and (ii) short circuit test from which the values of the equivalent 
circuit parameters can be computed. Once the equivalent circuit is completely known, we can 
predict the performance of the transformer at various loadings. Efficiency and regulation are two 
important quantities which are next defined and expressions for them derived and importance 
highlighted. A number of objective type questions and problems are given at the end of the lesson 
which when solved will make the understanding of the lesson clearer.  

Key Words: O.C. test, S.C test, efficiency, regulation. 
 

After going through this section students will be able to answer the following questions. 

 

฀ Which parameters are obtained from O.C test?


฀ Which parameters are obtained from S.C test?


฀ What percentage of rated voltage is needed to be applied to carry out O.C test?


฀ What percentage of rated voltage is needed to be applied to carry out S.C test?


฀ From which side of a large transformer, would you like to carry out O.C test?


฀ From which side of a large transformer, would you like to carry out S.C test?


฀ How to calculate efficiency of the transformer at a given load and power factor?


฀ Under what condition does the transformer operate at maximum efficiency?


฀ What is regulation and its importance?


฀ How to estimate regulation at a given load and power factor?


฀ What is the difference between efficiency and all day efficiency?
 

25.2 Determination of equivalent circuit parameters 

 

After developing the equivalent circuit representation, it is natural to ask, how to know equivalent 

circuit the parameter values. Theoretically from the detailed design data it is possible to estimate 

various parameters shown in the equivalent circuit. In practice, two basic tests namely the open 

circuit test and the short circuit test are performed to determine the equivalent circuit parameters. 
 

 

 

 

25.2.1 Qualifying parameters with suffixes LV & HV 



 

For a given transformer of rating say, 10 kVA, 200 V / 100 V, 50 Hz, one should not be under the 

impression that 200 V (HV) side will always be the primary (as because this value appears 

first in order in the voltage specification) and 100 V (LV) side will always be secondary. Thus, 
for a given transformer either of the HV and LV sides may be used as primary or secondary as 
decided by the user to suit his/her goals in practice. Usually suffixes 1 and 2 are used for 
expressing quantities in terms of primary and secondary respectively – there is nothing wrong in 
it so long one keeps track clearly which side is being used as primary. However, there are 
situation, such as carrying out O.C & S.C tests (discussed in the next section), where naming 
parameters with suffixes HV and LV become imperative to avoid mix up or confusion. Thus, it 

will be useful to qualify the parameter values using the suffixes HV and LV (such as re HV, re LV 

etc. instead of re1, re2). Therefore, it is recommended to use suffixes as LV, HV instead of 1 and 

2 while describing quantities (like voltage VHV, VLV and currents IHV, ILV) or parameters 

(resistances rHV, rLV and reactances xHV, xLV) in such cases. 
 

25.2.2 Open Circuit Test 

 

To carry out open circuit test it is the LV side of the transformer where rated voltage at rated 
frequency is applied and HV side is left opened as shown in the circuit diagram 25.1. The 

voltmeter, ammeter and the wattmeter readings are taken and suppose they are V0, I0 and W0 

respectively. During this test, rated flux is produced in the core and the current drawn is the no-
load current which is quite small about 2 to 5% of the rated current. Therefore low range 
ammeter and wattmeter current coil should be selected. Strictly speaking the wattmeter will 
record the core loss as well as the LV winding copper loss. But the winding copper loss is very 
small compared to the core loss as the flux in the core is rated. In fact this approximation is built-
in in the approximate equivalent circuit of the transformer referred to primary side which is LV 

side in this case.  
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Figure 25.1: Circuit diagram for O.C test 
 

 

The approximate equivalent circuit and the corresponding phasor diagrams are shown in 

figures 25.2 (a) and (b) under no load condition. 
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(a) Equivalent circuit under O.C test (b) Corresponding phasor diagram 

Below we shall show how from the readings of the meters the parallel branch impedance 

namely Rcl(LV) and Xm(LV) can be calculated. 

 

Calculate no load power factor cos θ0 
 

Hence θ0 is known, calculate sin θ0 
 

Calculate magnetizing current Im 
 

Calculate core loss component of current Icl 

 

Magnetising branch reactance Xm(LV) 

 

Resistance representing core loss Rcl(LV) 

 W
  = 0  

 
 

 

= I0 sin θ0 
 

= I0 cos θ0 
V

 
= 0  

 

= 
V

0 
I

cl   

We can also calculate Xm(HV) and Rcl(HV) as follows: 

Xm(HV) = 

X
 m  LV   

 

a
2
 

 

  
 

Rcl(HV) = 

R
cl  LV   

 

a2 
 

  
 

Where, a = 

N
LV the turns ratio  

 
 

  
N

HV 
 

If we want to draw the equivalent circuit referred to LV side then Rcl(LV) and Xm(LV) are 
to be used. On the other hand if we are interested for the equivalent circuit referred to HV side, 

Rcl(HV) and Xm(HV) are to be used. 
 

25.2.3 Short circuit test 

 

Short circuit test is generally carried out by energizing the HV side with LV side shorted. Voltage 

applied is such that the rated current flows in the windings. The circuit diagram is shown in the 

figure 25.3. Here also voltmeter, ammeter and the wattmeter readings are noted corresponding to 

the rated current of the windings.  
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Short Circuit Test 
 

Figure 25.3: Circuit diagram during S.C test 
 



Suppose the readings are Vsc, Isc and Wsc. It should be noted that voltage required to be 

applied for rated short circuit current is quite small (typically about 5%). Therefore flux level in 

 

the core of the transformer will be also very small. Hence core loss is negligibly small compared to 

the winding copper losses as rated current now flows in the windings. Magnetizing current too, will 

be pretty small. In other words, under the condition of the experiment, the parallel branch impedance 

comprising of Rcl(HV) and Xm(LV) can be considered to be absent. The equivalent circuit and the 

corresponding phasor diagram during circuit test are shown in figures 25.4 (a) and  
(b). 
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(a) Equivalent circuit under S.C test (b) Corresponding phasor diagram 

 

Figure 25.4: Equivalent circuit & phasor diagram during S.C test 

 

Therefore from the test data series equivalent impedance namely re(HV) and xe(HV) can 

easily be computed as follows: 

 

Equivalent resistance ref. to HV side re(HV) 

 

Equivalent impedance ref. to HV side ze(HV) 

 

Equivalent leakage reactance ref. to HV side xe(HV) 

We can also calculate re(LV) and xe(LV) as follows: 
 

re(LV) 
 

xe(LV) 

 

where, a 

 

= 
W

sc  
Isc

2
  

= 
V

sc 

I
sc  

= z e
2
 HV  - re

2
 HV  

 

= a
2
re(HV) 

 

= a
2
xe(HV)  

= 
N

LV
   the turns ratio 

N
HV 

  
Once again, remember if you are drawing equivalent circuit referred to LV side, use 

parameter values with suffixes LV, while for equivalent circuit referred to HV side parameter 

values with suffixes HV must be used. 
 

25.3 Efficiency of transformer 

 

In a practical transformer we have seen mainly two types of major losses namely core and copper 

losses occur. These losses are wasted as heat and temperature of the transformer rises. Therefore 

output power of the transformer will be always less than the input power drawn by the primary 

from the source and efficiency is defined as 



 
 

 

η = 

Output power in KW   
 

Output power in Kw + Losses  
 

= 

Output power in KW 

 25.1 
 

Output power in Kw + Core loss + Copper loss 
 

 

We have seen that from no load to the full load condition the core loss, Pcore remains 

practically constant since the level of flux remains practically same. On the other hand we know  
that the winding currents depend upon the degree of loading and copper loss directly depends 

upon the square of the current and not a constant from no load to full load condition. We shall 

write a general expression for efficiency for the transformer operating at x per unit loading and 

delivering power to a known power factor load. Let, 
 

KVA rating of the transformer be = S  

Per unit degree of loading be = x  

Transformer is delivering = x S KVA  

Power factor of the load be = cos θ  

Output power in KW = xS cos θ  

Let copper loss at full load (i.e., x = 1) = Pcu  

Therefore copper loss at x per unit loading = x
2
 Pcu  

Constant core loss = Pcore (25.2) 

   (25.3) 

 

Therefore efficiency of the transformer for general loading will become: 
 

xS cos θ 
η

 
=

 xS cos θ + Pcore + x
2
 Pcu 

 
 

If the power factor of the load (i.e., cos θ) is kept constant and degree of loading of the 

transformer is varied we get the efficiency Vs degree of loading curve as shown in the figure 

25.5. For a given load power factor, transformer can operate at maximum efficiency at some 

unique value of loading i.e., x. To find out the condition for maximum efficiency, the above 

equation for η can be differentiated with respect to x and the result is set to 0. Alternatively, the 

right hand side of the above equation can be simplified to, by dividing the numerator and the 

denominator by x. the expression for η then becomes: 
 

S cos θ  η =
 S cos θ + Pcorex + x Pcu

 
 
 

For efficiency to be maximum, dx
d
 (Denominator) is set to zero and we get,   

or d S cos θ + 

P
core 

+ x P  =  0  
   

 

   

x 

cu  
 

 dx    
 

 



   or − 

P
core + P = 0    

   

    x
2
 cu     

 

    or x
2
 Pcu = Pcore 

 

The loading for maximum efficiency, x = 
 

P
core  

 

 

P
cu 

 

         
 

Thus we see that for a given power factor, transformer will operate at maximum 
 

  P      
 

efficiency when it is loaded to  core S KVA. For transformers intended to be used continuously   P 
 

  cu      
  

at its rated KVA, should be designed such that maximum efficiency occurs at x = 1. Power 

transformers fall under this category. However for transformers whose load widely varies over 

time, it is not desirable to have maximum efficiency at x = 1. Distribution transformers fall under 

this category and the typical value of x for maximum efficiency for such transformers may 

between 0.75 to 0.8. Figure 25.5 show a family of efficiency Vs. degree of loading curves with 

power factor as parameter. It can be seen that for any given power factor, maximum efficiency  
occurs at a loading of x = 

P
core  . Efficiencies ηmax1, ηmax2 and ηmax3 are respectively the maximum 
P

cu  
efficiencies corresponding to power factors of unity, 0.8 and 0.7 respectively. It can easily be 

shown that for a given load (i.e., fixed x), if power factor is allowed to vary then maximum 

efficiency occurs at unity power factor. Combining the above observations we can say that the  

efficiency is obtained when the loading of the transformer is x = 
P

core and load power factor is  

  

 
P

cu 
 

unity. Transformer being a static device its efficiency is very high of the order of 98% to even 

99%. 
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Figure 25.5: Efficiency VS degree of loading curves. 
 

25.3.1 All day efficiency 

 

In the earlier section we have seen that the efficiency of the transformer is dependent upon the 

degree of loading and the load power factor. The knowledge of this efficiency is useful provided 

the load and its power factor remains constant throughout.  
For example take the case of a distribution transformer. The transformers which are used 

to supply LT consumers (residential, office complex etc.) are called distribution transformers. For 

obvious reasons, the load on such transformers vary widely over a day or 24 hours. Some times 

the transformer may be practically under no load condition (say at mid night) or may be over 

loaded during peak evening hours. Therefore it is not fare to judge efficiency of the 

 



transformer calculated at a particular load with a fixed power factor. All day efficiency, 

alternatively called energy efficiency is calculated for such transformers to judge how efficient 

are they. To estimate the efficiency the whole day (24 hours) is broken up into several time 

blocks over which the load remains constant. The idea is to calculate total amount of energy 

output in KWH and total amount of energy input in KWH over a complete day and then take the 

ratio of these two to get the energy efficiency or all day efficiency of the transformer. Energy or 

All day efficiency of a transformer is defined as: 
 

ηall day = 
Energy output in KWH in 24 hours  

 

Energy input in KWH in 24 hours 
 

  
 

 
= 

Energy output in KWH in 24 hours  
 

 

Output in KWH in 24 hours + Energy loss in 24 hours 
 

  
 

 
= 

Output in KWH in 24 hours  
 

 

Output in KWH in 24 hours + Loss in core in 24 hours + Loss in the 
 

  
 

  Winding in 24 hours 
 

 
= 

Energy output in KWH in 24 hours 
 

 

Energy output in KWH in 24 hours + 24 Pcore + Energy loss (cu) in the 
 

  
 

  winding in 24 hours 
 

 

With primary energized all the time, constant Pcore loss will always be present no matter what is 

the degree of loading. However copper loss will have different values for different time blocks as  
it depends upon the degree of loadings. As pointed out earlier, if Pcu is the full load copper loss 

corresponding to x = 1, copper loss at any arbitrary loading x will be x
2
 Pcu. It is better to make 

the following table and then calculate ηall day. 
 

Time blocks KVA   Degree of   P.F of load  KWH output KWH cu 
 

 Loading   loading x           loss 
 

T1 hours S1   x1 = S1/S   cos θ1    S1 cos θ1T1 x
2
 Pcu T1 

 

                   1 
 

T2 hours S2   x2 = S2/S   cos θ2    S2 cos θ2T2 x2
2
 Pcu T2 

 

… …   …       …     … … 
 

Tn hours Sn   xn = Sn/S   cos θn    Sn cos θnTn xn
2
 Pcu Tn 

 

 n                   
 

Note that ∑Ti = 24                
 

 i=1                   
 

    n                
 

Energy output in 24 hours = ∑ 

S
i cos θi Ti          

 

    i=1                
 

Total energy loss = 24 P 
 

+ 
n 

x
2
 P  T 

       
 

         
 

    core   ∑ i cu i        
 

        i=1            
 

 η
allday = 

       ∑i=
n

1 Si cos θi Ti     
 

  n S 

i 

cos θ T + n x
2
 P T +24 P  

 

    ∑ i=1     i i ∑i=1 i  cu i core  
 

 



 

 

25.4 Regulation 

 

The output voltage in a transformer will not be maintained constant from no load to the full load 
condition, for a fixed input voltage in the primary. This is because there will be internal voltage 
drop in the series leakage impedance of the transformer the magnitude of which will depend upon 
the degree of loading as well as on the power factor of the load. The knowledge of regulation 
gives us idea about change in the magnitude of the secondary voltage from no load to full load 
condition at a given power factor. This can be determined experimentally by direct loading of the 
transformer. To do this, primary is energized with rated voltage and the secondary terminal 
voltage is recorded in absence of any load and also in presence of full load. Suppose the readings 

of the voltmeters are respectively V20 and V2. Therefore change in the magnitudes of the 

secondary voltage is V20 – V2. This change is expressed as a percentage of the no load secondary 

voltage to express regulation. Lower value of regulation will ensure lesser fluctuation of the 
voltage across the loads. If the transformer were ideal regulation would have been zero. 

Percentage Regulation, % R = 

V
20 

-V
2 


  100 

 
V

20 
 

For a well designed transformer at full load and 0.8 power factor load percentage 

regulation may lie in the range of 2 to 5%. However, it is often not possible to fully load a large 

transformer in the laboratory in order to know the value of regulation. Theoretically one can 

estimate approximately, regulation from the equivalent circuit. For this purpose let us draw the 

equivalent circuit of the transformer referred to the secondary side and neglect the effect of no 

load current as shown in the figure 25.6. The corresponding phasor diagram referred to the 

secondary side is shown in figure 25.7. 
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Approximate Equivalent Circuit referred to secondary  I2    
  

 

Figure 25.6: Equivalent circuit ref. to 

secondary. 

  

Figure 25.7: Phasor diagram ref. to 

secondary. 
 

It may be noted that when the transformer is under no load condition (i.e., S is opened), 

the terminal voltage V2 is same as V20. However, this two will be different when the switch is 

closed due to drops in I2 re2 and I 2 xe2. For a loaded transformer the phasor diagram is drawn 

taking terminal voltage V2 on reference. In the usual fashion I2 is drawn lagging V2, by the power 

factor angle of the load θ2 and the drops in the equivalent resistance and leakage reactances are 

added to get the phasor V20. Generally, the resistive drop I2 re2 is much smaller than the reactive 

drop I2 x e2. It is because of this the angle between OC and OA (δ) is quite small. Therefore as 
per the definition we can say regulation is 
 
 
 
 
 



R = 
V

20 

-V
2  = OC - OA 

 

V20 OC 

 

An approximate expression for regulation can now be easily derived geometrically from 

the phasor diagram shown in figure 25.7. 
 

OC = OD since, δ is small   
 

Therefore, OC – OA = OD – OA      
 

 = AD         
 

 = AE + ED      
 

 =  I2 re2 cos θ2 + I2 xe2 sin θ2 
 

So per unit regulation, R = 
 OC - OA       

 

  

OC 
     

 

         
 

 =  I r cos θ + I  x sin θ  
 

   2  e 2 2  2 e2  2  
       

      
V

20      
 

or, R = 
 I 2 

r
e 2 cos θ2 + 

I
2 

x
e2 

 sin θ2  

 

V
20 

  
 

      
V

20   
 

It is interesting to note that the above regulation formula was obtained in terms of 

quantities of secondary side. It is also possible to express regulation in terms of primary 

quantities as shown below: 
 

We know, R = 
I

2
 
r

e
 
2
 cos θ2 + 

I
2
 
x

e2
 sin θ2 

 

V
20 

V
20 

 

Now multiplying the numerator and denominator of the RHS by a the turns ratio, and further 

manipulating a bit with a in numerator we get: 
 

R = 

(I
2 

/a)a
2

 

r
e 2 cos θ2 + 

(I
2 

/a)a
2

 

x
e2 sin θ2 

aV20aV20  
 

Now remembering, that 
′ 
, a 

2 
r

e 2  re 1 , a 
2 
x

e 2  xe1 and 
′  V1 ; we get  

(I2 / a )  I 2   aV20  V20 
 

regulation formula in terms of primary quantity as:  

R = 
I ′ 

r
e1 

cos θ2 + 

 
I 
′ xe1 

sin θ2 
 

2  2 
 

  ′    ′  

          
 

  
V

20     
V

20  
 

Or, R = 
I ′ 

r
e1 

cos θ2 + 

 
I 
′ x

e1 
sin θ2 

 

2  2 
 

 

V1 
  

V1 
 

        
 

Neglecting no load current: R ≈ 
I 

1 
r   I  x  

 

 e1 cos θ2 + 1 e1 sin θ2  

     
 

   V1     V1  
 

 

Thus regulation can be calculated using either primary side quantities or secondary side 

quantities, since: 



 

R = 
I r  I 

2 
x  I r  I x 

 

 2  e 2 cos θ2 + 
 e 2 sin θ2  

1 e1 cos θ2 + 
1 e1 sin θ2 

 

         
 

 
V

20   
V

20  V1  V1 
 

Now the quantity  
I

2 
r

e 2  , represents what fraction of the secondary no load voltage is  V
20  

dropped in the equivalent winding resistance of the transformer. Similarly the quantity 
I

2 

x
e 2 represents what fraction of the secondary no load voltage is dropped in the equivalent  V

20 

leakage reactance of the transformer. If I2 is rated curerent, then these quantities are called the per 

unit resistance and per unit leakage reactance of the transformer and denoted by r and x 

respectively. The terms    
I

2 rated 

r
e 2 and    

I
2 rated 

x
e 2 are called the per unit resistance and per unit 

 

V V  

r x  
 

 20  20  
 

leakage reactance respectively. Similarly, per unit leakage impedance z,can be defined.  
It can be easily shown that the per unit values can also be calculated in terms of primary 

quantities as well and the relations are summarised below. 

 

I
2 rated 

r
e 2  

I
1rated 

r
e1 

 

r V
20 

 
V1 

 

  
 

 

I
2 rated 

x
e 2   

I
1rated 

x
e1 

x
 V20V1

 

 

 

I
2 rated 

z
e 2  

I
1rated 

z
e1 

 

z V
20 

 

V1 
 

  
  

where, z 
e 2 
  r

2
  x

2
 and z 

e 1 
 r 

2
  x

2
  . 

 

 e 2 e 2   e 1 e1 
 

 

It may be noted that the per unit values of resistance and leakage reactance come out to be 

same irrespective of the sides from which they are calculated. So regulation can now be 

expressed in a simple form in terms of per unit resistance and leakage reactance as follows.  

per unit regulation, R = r cos θ2 +  x sin θ2 

and % regulation R =  r cos θ2 +  x sin θ2   100 
 

For leading power factor load, regulation may be negative indicating that secondary 

terminal voltage is more than the no load voltage. A typical plot of regulation versus power 

factor for rated current is shown in figure 25.8. 
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Figure 25.8: Regulation VS power Figure 25.9: LV and HV windings in both 

factor curve. the limbs.  



To keep the regulation to a prescribed limit of low value, good material (such as copper) should 

be used to reduce resistance and the primary and secondary windings should be distributed in the 

limbs in order to reduce leakage flux, hence leakage reactance. The hole LV winding is divided 

into two equal parts and placed in the two limbs. Similar is the case with the HV windings as 

shown in figure 25.9. 
 

25.5 Tick the correct answer 

 

1. While carrying out OC test for a 10 kVA, 110 / 220 V, 50 Hz, single phase transformer 

from LV side at rated voltage, the watt meter reading is found to be 100 W. If the same 

test is carried out from the HV side at rated voltage, the watt meter reading will be 
 

(A) 100 W (B) 50 W (C) 200 W (D) 25 W 

 

2. A 20 kVA, 220 V / 110 V, 50 Hz single phase transformer has full load copper loss = 200 

W and core loss = 112.5 W. At what kVA and load power factor the transformer should 

be operated for maximum efficiency? 
 

(A) 20 kVA & 0.8 power factor 

 
 

(B) 15 kVA & unity power factor 
 

(C) 20 kVA & unity power factor 
 
(D) 15 kVA & 0.8 power factor. 
 



 

3. A transformer has negligible resistance and has an equivalent per unit reactance 0.1. Its 

voltage regulation on full load at 30 leading load power factor angle is: 
 

(A) +5 % (B) -5 % (C) + 10 % (D) -10 % 

 

4. A transformer operates most efficiently at 34 th full load. The ratio of its iron loss and full 

load copper loss is given by: 
 
 

(A) 16:9 (B) 4:3 (C) 3:4 (D) 9:16 

 

5. Two identical 100 kVA transformer have 150 W iron loss and 150 W of copper loss at 

rated output. Transformer-1 supplies a constant load of 80 kW at 0.8 power factor lagging 

throughout 24 hours; while transformer-2 supplies 80 kW at unity power factor for 12 

hours and 120 kW at unity power factor for the remaining 12 hours of the day. The all day 

efficiency: 
 

(A) of transformer-1 will be higher. (B) of transformer-2 will be higher. 
 

(B) will be same for both transformers. (D) none of the choices.  

6. The current drawn on no load by a single phase transformer is i0 = 3 sin (314t - 60) A, 

when a voltage v1 = 300 sin(314t)V is applied across the primary. The values of 

magnetizing current and the core loss component current are respectively: 
 

(A) 1.2 A & 1.8 A (B) 2.6 A & 1.5 A (C) 1.8 A & 1.2 A (D) 1.5 A & 2.6 A 
 

 

7. A 4 kVA, 400 / 200 V single phase transformer has 2 % equivalent resistance. The 

equivalent resistance referred to the HV side in ohms will be: 
 

(A) 0.2 (B) 0.8 (C) 1.0 (D) 0.25 

 

8. The % resistance and the % leakage reactance of a 5 kVA, 220 V / 440 V, 50 Hz, single 

phase transformer are respectively 3 % and 4 %. The voltage to be applied to the HV side, 

to carry out S.C test at rated current is: 
 

(A) 11 V (B) 15.4 V (C) 22 V (D) 30.8 V 

 

25.6 Solve the Problems 

 

1. A 30KVA, 6000/230V, 50Hz single phase transformer has HV and LV winding 

resistances of 10.2Ω and 0.0016Ω respectively. The equivalent leakage reactance as 

referred to HV side is 34Ω. Find the voltage to be applied to the HV side in order to 

circulate the full load current with LV side short circuited. Also estimate the full load % 

regulation of the transformer at 0.8 lagging power factor. 
 

2.  A single phase transformer on open circuit condition gave the following test results:  

Applied voltage Frequency Power drawn 

192 V 40 Hz 39.2 W 

288 V 60 Hz 73.2 W 

 



Assuming Steinmetz exponent n = 1.6, find out the hysteresis and eddy current loss 

separately if the transformer is supplied with 240 V, 50 Hz. 
 

3. Following are the test results on a 4KVA, 200V/400V, 50Hz single phase transformer. 

While no load test is carried out from the LV side, the short circuit test is carried out from  

the HV side.     
 

 

No load test: 

 

200 V 0.7 A 60 W 

 

  
 

      
 

 Short Circuit Test:  9 V 6 A 21.6 W 
 

 

Draw the equivalent circuits (i) referred to LV side and then (ii) referred to HV side and 

insert all the parameter values. 
 

4.  The following data were obtained from testing a 48 kVA, 4800/240V, 50 Hz transformer. 

 

O.C test (from LV side): 240 V 2 A 120 W 

S.C test (from HV side): 150 V 10 A 600 W 

 

(i) Draw the equivalent circuit referred to the HV side and insert all the parameter 

values. 

(ii) At what kVA the transformer should be operated for maximum efficiency? Also 

calculate the value of maximum efficiency for 0.8 lagging factor load. 
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28.1 Introduction 

 

In this lesson some typical problems on transformer are solved with emphasis on logical steps 

involved. For a practical two winding transformer, the knowledge of approximate equivalent 

circuit is of utmost importance in order to predict its performance. Equivalent circuit parameters 

are either supplied directly or indirectly in terms of O.C and S.C test data. The first problem 

enumerates in detail how to get the equivalent circuit parameters from test data. The importance 

of the side (LV or HV) in which calculations are carried out is highlighted. The second problem, 

in fact, is an extension of the first problem. Calculation of regulation, efficiency and maximum 

efficiency are dealt with in these problems.  
Next few problems highlight the basic calculation steps involved in ideal 3-phase 

transformer and ideal auto transformer since the equivalent circuit of these transformers are 

outside the scope of first year electrical technology course. 
 

28.2 Problems on 2 winding single phase transformers 

 

1. The O.C and S.C test data are given below for a single phase, 5 kVA, 200V/400V, 50Hz 

transformer. 
 

 

O.C test from LV side : 
 

200V 1.25A 150W 
 

  
 

     
 

 S.C test from HV side :  20VV 12.5A 175W 
 

      
 

 

Draw the equivalent circuit of the transformer (i) referred to LV side and (ii) referred to HV side 

inserting all the parameter values. 
 

Solution 
 

Let us represent LV side parameters with suffix 1 and HV side parameters with suffix 2. 

 

Computation with O.C test data 

 

Let us show the test data in the approximate equivalent circuit (Figure 28.1) of the transformer as 

given below. 
 

Due to the fact that the HV side is open circuited, there will be no current in the branch re1 + jxe1 . 
 

So entire power of 150W is practically dissipated in Rcl1. The no load current I01 = 1.25 A is 

divided into: magnetizing component Im1 and core loss component Icl1 as depicted in the phasor 
diagram figure 28.1.  

No load (or O.C) power factor cos θo = 
 150 

 

2001.25 
 

  
 

 = 0.6 
 

θo = cos
-1

 0.6 
 

 = 53.13º 
 



Hence, sin θo = 0.8 
  

After knowing the value of cos θo and sin θo and referring to the no load phasor diagram, Im1 and 

Icl1 can be easily calculated as follows. 
 

Magnetizing component Im1  = I01 sin θo 
 

= 1.25  0.8  

Im1  =  1A 
 

core loss component, Icl1  = I01 cos θo 
 

= 1.25  0.6  

Icl1  =  0.75A 
 

Thus the parallel branch parameters Xm1 and Rcl1 can be calculated. 

 

Magnetizing reactance Xm1 = 
  V1  

 

 I
m1 

 

   
 

 
= 

 200    
 

 

1 
    

 

      
 

Xm1 = 200Ω 
 

Resistance representing core loss Rcl1 = 
  V 1  

 

  I
 c l 1 

 

    
 

 
= 

 200   
 

 

0.75 
  

 

    
 

, Rcl1 = 266.67Ω 
  

It may be noted that from the O.C test data we can get the parallel branch impedances namely the 

magnetizing reactance and the resistance representing the core loss referred to the side where 

measurements have been taken. 
 

Computation with S.C test data 

 

Since the test has been carried out from the HV side with LV side shorted, we draw the 

equivalent circuit referred to the HV side as shown in figure 28.2. Parameter values are denoted 

by using suffix 2. Important point to note here is the absence of the parallel branch. The reason 

 

being, the voltage applied during S.C test is quite low causing a low flux level. Hence 

magnetizing and core loss component of currents will be pretty small compared to the rated 

current flowing through re2 + jxe2 . In this case, power drawn from the supply gets practically 

dissipated in winding resistances i.e., re2. 
 
 
 
 
 
 
 
 



re2 

xe2
  12.5 A VSC  

  
  

 

 

20 V  

θSC ISC 
 
 
 
 

Figure 28.2: O.C equivalent circuit and phasor diagram. 

 

Calculation of series parameters is rather simple and as follows. 

 

Power drawn Wsc =  I 
2
 r 

2 
 

 

   sc  e  
 

or, re2 = 

W
sc   

 

 

Isc
2
 
    

 

       
 

 
= 

 175   
 

 

12.5
2
 
 

 

   
 

re2 = 1.12Ω 
 

Now S.C impedance zsc = 

V
sc     

 

 I
sc 

    
 

       
  

 

zsc 

 

Thus, xe2 

 
 

 

xe2 

 
= 20/12.5  
 

= 1.6Ω=  r
2
 + x 2 

 e2 e2    

= zsc
2
 - re22 

 

= 1.6
2
 −1.12

2
 

 
= 1.14Ω   

Although calculation of parameters from the test results are over, it is very important to note that 

parallel branch parameters have been obtained referred to LV side and series branch parameters 

have been obtained referred to HV side. However to draw a meaningful equivalent circuit 

referred to a particular side, all the parameters are to be represented/calculated referred to that 

side. 



 
 
 
 
 
 
 

Equivalent circuit referred LV side 
 

The parallel branch parameters Rcl1 = 266.67Ω and Xm1 = 200Ω have already been calculated wrt 

LV side. Naturally no further transformations are necessary. However, series parameters re2 and 

xe2 have been calculated above from test data. So we need to calculate re1 and xe1 in order to 

correctly represent the equivalent circuit referred to primary side. 

 

Turns ratio, a = 200/400 = 0.5 

but we know, re1 = a2 re2  

and xe1 = a
2
 xe2  

Thus re1 = 0.5
2
  1.12 = 0.28Ω 

and xe1 = 0.5
2
  1.14 = 0.285Ω 

 

So the equivalent circuit referred to LV side can now be drawn showing all the parameter values 

as shown below in figure 28.3. 

 

 

Figure 28.3: Equivalent circuit referred to LV side. 
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Equivalent circuit referred HV side 
 

Here we note that series parameters referred to HV side are already known to be re2 = 1.12Ω and 

xe2 = 1.14Ω. However, the parallel branch parameters are to be transformed as follows. 
 

Turns ratio, a = 0.5 

but we know, Rcl2 = Rcl1/a
2
 

and Xm2 = Xm1/a
2
 

Thus, Rcl2 = 266.67/0.5
2
 = 1066.68Ω 

and Xm2 = 200/0.5
2
 = 800Ω 

 

We are now in a position to draw the equivalent circuit of the same transformer referred to the 

HV side as shown in figure 28.4. 
 

After getting the equivalent circuit, regulation, efficiency of the transformer can be predicted 

under various loading conditions. Solution of the next problem shows how equivalent circuit can 

be used to predict the performance, 

2. For the same transformer (single phase, 5 kVA, 200V/400V, 50 Hz) of problem 1, the 

equivalent circuit of which is known, calculate the following: 
 

i.  the efficiency of the transformer at 75% loading with load power factor = 0.7 
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Figure 28.4: Equivalent circuit referred to HV side. 

 

ii. At what load or kVA the transformer is to be operated for maximum efficiency? Also 

calculate the value of maximum efficiency. 

iii. The regulation of the transformer at full load 0.8 power factor lag. 

iv. What should be the applied voltage to the LV side when the transformer delivers rated 

current at 0.7 power factor lagging, at a terminal voltage of 400 V? 
 

Solution 

 

i. From the test data of the previous problem, we have: 
 

Full load kVA rating, S = 5kVA   
 

Core loss at rated voltage & frequency, Pcore = 150W   
 

Full load copper loss, Pcu = 175W   
 



We know, efficiency, η = 
 x S cos θ   

 

 x S cos θ + P  + x2
 P  

   
 

   core cu 
 

75% loading means, x = 0.75   
 

load power factor, cos θ = 0.7   
 

η = 
 0.75×5000×0.7 

 

0.75×5000×0.7 +150 + 0.75
2
 ×175 

 

  
 

 = 2625/2873.44   
  

% efficiency, η  = 91.35% 

ii. We know maximum efficiency occurs when x
2
Pcu = Pcore, where Pcu is the full load copper 

loss and Pcore is the iron loss. Now Pcu = 175 W and Pcore = 120 W. 

 

Per unit value of loading for ηmax is x  = Pcore Pcu  
 
 

 



= 120 175 
 

x  =  0.83   

Thus the load for ηmax   = x S 
 

= 0.83  5kVA  

the required load for ηmax   =  4.15kVA 
 

iii. To calculate the regulation of the transformer at load current I2 and load power factor cos θ, 

we use the following formula in terms of HV side parameters. 

 

Per unit regulation, R = 

 I 
2 
r cos θ + I 

2 
x sin θ 

 

  e 2  e2   
 

    V
20 

    
 

          
 

Putting the values, R = 
12.5×1.12×0.7 +12.5×1.14×0.71 

 

      

400 
  

 

          
  

% regulation, R  =  4.9% 

 

iv. It is interesting to note that the difference between the reflected primary supply voltage 

magnitude V1
'
 and the secondary load terminal voltage magnitude V2 is the numerator of the 

regulation formula used above. 

 

V1
'
 −V2 

 

or, V1
'
 

 
 
 

 

so, V1
'
 

 

 

= I2 re 2 cos θ + I2 xe2 sin θ 
 

= V2 + I2 re 2 cos θ + I2 xe2 sin θ 
 

= 12.5  1.12  0.7 + 12.5  1.14  0.71 
 
= 400 + 19.92V 
 
= 419.92V 
 

 

Remember V1
'
 represents the applied voltage to LV calculated in terms of HV side. So the 

magnitude of the actual voltage to be applied across the primary is: 
 

V1 = a V1
'
 

 

= 0.5  419.92  
V1  =  210 V 

 
 
 
 
 
 
 
 
 
 
 

 



28.3 Problems on 3-phase ideal transformer 

 

It may be recalled that one can make a 3-phase transformer by using a bank of three numbers of 

identical single phase transformers or a single unit of a 3-phase transformers. 
 

1. Three single phase ideal transformers, each of rating 5kVA, 200V/400V, 50 Hz are 

available. 
 

a) The LV sides are connected in star and HV sides are connected in delta. What line to 

line 3-phase voltage should be applied and what will be the corresponding HV side 

line to line voltage will be? Also calculate and show the line and phase current 

magnitudes in both LV & HV sides corresponding to rated condition. 
 

b) The LV sides are connected in delta and HV sides are connected in delta. What line to 

line 3-phase voltage should be applied and what will be the corresponding HV side 

line to line voltage will be? Also calculate and show the line and phase current 

magnitudes in both LV & HV sides corresponding to rated condition. 
 

Solution 

 

Here the idea is not to exceed the voltage and current rating of HV and LV coils of each single 

phase transformer. Now for each transformer having rating 5 kVA, 200V/100V, 50 Hz we have: 

 

Rated voltage of each HV coil is = 200V 

Rated voltage of each LV coil is = 100V 

Phase turns ratio is aph = 200/100 = 2 

Rated current of each HV coil is = 5000/200 = 25A 

Rated current of each LV coil is = 5000/100 = 50A 
 

Solution of (a) 
 

In this case HV sides are connected in star and LV sides are connected in delta as shown in figure 

28.5. Thus line to line voltage to be applied to HV side must not exceed 200 3 = 346.4V . This 

will ensure that rated voltage is applied across each of the HV coil and rated voltage of 100 V is 

induced in each of the LV coil. Obviously the available line to line voltage on the LV side will be 

100 V since the coils on this side are connected in delta. 
  

25 A  
86.6 A 

 

  
 

346.4 V 

200 V 

50 A
  100 V 

 

 
 

200 V 200 V 86.6 A 
 

346.4 V  100 V 
 

25 A  
86.6 A  

25 A 
 

 

  
   

Figure 28.5: Connection of transformers for part (a). 



Now the question is how much line current should be allowed to be supplied by the LV side 

when balanced 3-phase load is connected across it? The constrain is that we should not allow 

overloading of any of the coils in terms of current as well. Since rated current of each LV side 

coil is 50 A and the coils are connected in delta, so the corresponding allowed line current in the  
LV side will be is 50  3 = 86.6 A (Note: line current = 3 phase current in delta connection).  

 

But we know for any individual ideal transformer if LV coil carries a 50 A current, the 

corresponding HV coil must carry a current of 50/aph = 25 A as shown in fig 28.5. Thus HV side 

line current drawn from the supply must be also 25 A as these coils are connected in star (Note: 
line current = phase current in star connection). 
 

Now we are in a position to calculate the total kVA handled by the bank of 3-phase transformer. 

Referring to the LV side the transformers supplies 86.6 A line current at a line to line voltage of  

100 V. Therefore, total kVA supplied is equal to 3 VLL IL = 3 ×100×86.6 VA = 15 kVA .   

Similarly total kVA drawn from the supply is calculated as 3 ×346.4× 25 mbox VA = 15 kVA . 

Thus we see the total kVA becomes 3 times the individual kVA rating of the transformers. Since 

the transformers are assumed to be ideal Total kVA input = Total kVA output. 
  

Solution of (b) 
 

In this case HV sides are connected in delta and LV sides are connected in star as shown in figure 

28.6. Thus line to line voltage to be applied to HV side must not exceed 200V. This will ensure 

that rated voltage is applied across each of the HV coil and rated voltage of 100 V is  
induced in each of the LV coils. The available line to line voltage on the LV side will be 100 3 = 

173.2 V since coils on this side are connected in star. 
 
 

Since LV coils are connected in star allowed line current to be delivered is 50 A. So total kVA 

output is 3 ×173.2×50 VA = 15 kVA . In each HV coil current has to be 25 A and the 
 

corresponding supply line current is 3  25  43.3A . Total input kVA is   

3 × 200× 43.3 VA  15 kVA . Distribution of phase and line currents in LV and HV sides are 

shown in figure 28.6. 
 
 

2. Three identical single phase transformers each of rating 5 kVA, 200V/100V, 50Hz are 

connected in delta-delta. Calculate what line to line voltage to be applied to the HV side? 

Also find out corresponding LV side line to line voltage. Find out the kVA rating of the 

bank such that none of the transformers get over loaded. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
 

   50 A 
 

43.3 A 

200 V 

  
 

200 V 
100 V   

  
 

   
 

200 V 

 100 V 

50 A 

 

A 100 V  

  
 

   
 

43.3 A   
50 A  

   
   

Figure 28.6: Connection of transformers for part (b). 
 

The connection diagram of the delta-delta arrangement is shown in figure 28.7 
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Figure 28.7: Connection of transformers for delta-delta. 
 

As explained in the first two problems, line to line voltage to be applied to the HV side is 200 V 

because of delta connection. Induced voltage in each coil has to be 100 V in the LV side. Since 

the LV coils are also connected in delta the line to line voltage on the LV side is 100 V.  
Since coil current has to be rated values, line currents on HV and LV sides are obtained as 43.3 

A and 86.6 A. Total kVA that can be handled by the bank  
is 3 × 200× 43.3 VA = 3 ×100×86.6 VA = 15 kVA .  

 

3. Two identical transformers each of rating 5 kVA, 200V/100V, 50 Hz transformers are 

connected in open delta. Calculate the kVA rating of the open delta bank when HV side is 

used as primary. 
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Figure 28.8: Connection of transformers for open delta. 

 

In open delta connection each coil is connected across the lines; therefore, the line to line voltage 

to be applied to the HV side is 200 V. Induced voltage in the LV coils will be 100 V. Hence line 

to line voltage in the LV side is 100 V. 
 

A careful look at the circuit in fig 28.8 shows that both HV and LV coils are in series with the 

lines. Thus if we want the transformers not to be over loaded, line currents on the LV side must 

be 50 A which automatically fixes the HV side line current to be 25 A.  

Let us use 3 VLL IL to calculate the kVA handled by the bank of two single phase transformers i.e; 
  
Total kVA = 3 ×100×50 = 3 × 200× 25 VA = 8.66 kVA  
 

It is interesting to note that in other types of 3-phase connection of transformers such as star-star, 
star-delta, delta-delta, total kVA handled without overloading any of the transformers is 3 times 
the individual rating of the transformers. This we learned while solving previous problems where  

we got the total kVA as 15 kVA = 3×5 kVA . But in open delta connection where two single 

phase identical transformers each of rating 5 kVA has been employed we note the total kVA 

handled is not 10 kVA  = 2×5kVA but 8.66 kVA only. Thus total kVA available as open delta 

is only 810.66 ×100 = 86.6% of the installed capacity. 
 
 

4. A 3-phase, 500 kVA, 6000V/400V, 50Hz, delta-star connected transformer is delivering 

300 kW, at 0.8 pf lagging to a balanced 3-phase load connected to the LV side with HV 

side supplied from 6000 V, 3- phase supply. Calculate the line and winding currents in 

both the sides. Assume the transformer to be ideal. 
 

Solution 
 

First note that it is not a bank of single phase transformers. In fact it is a single unit of 3-phase 

transformer with the name plate rating as 500 kVA, 6000 V/400 V, 50Hz, delta-star connected 3-

phase transformer. 500 kVA represents the total kVA and voltages specified are always line to 

line. Similarly unless otherwise specified, kW rating of a 3-phase load is the total kW absorbed 

by the load. The connection diagram is shown in figure 28.9. 
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Figure 28.9: Connection diagram with 3-phase load. 

 

Noting the relation kVA, S = P / cos θ and I = S /  3 VLL let us start out calculation. 
 

Load kVA = 300/0.8 = 375 kVA = input kVA 
 

Line current drawn by the load, I2L = 375000/  3  400 
 

I2L = 541.3 A 
 

Because of star connection, LV coil current = 541.3 A 
 

since input kVA = 375 kVA 
 

HV side line current, I1L = 
 375000  

 

3  6000 
 

 

   
 

I1L = 36.1 A 
  

 

Actual phase winding currents can also be calculated as: 

 

LV side phase coil current 

or, I2ph  
I2ph 

 

HV side phase coil current 

or, I1ph 
 

I1ph 

 
 

= LV side line current  
= I2L 
= 541.3 A due to star connection.  

= LV side line current / 3   
= I1L/  3 
 
= 36.1/ 3 = 20.8 A due to delta 

connection. 
 
 



28.4 Problems on ideal auto transformers 

 

Recall that an auto transformer essentially is essentially a single winding transformer with a 

portion of the winding common to both supply and the load side. In contrast to a two winding 

transformer it can not provide isolation between HV and LV side. Here VA is transferred from 

one side to the other not only by magnetic coupling but also by electrical conduction. 

Autotransformer becomes cheaper than a similarly rated two winding transformer when the 

voltage transformation ratio is close to unity. A single phase two winding transformer can be 

suitably connected to perform like an auto transformer. 

 

1. A 5kVA, 200 V/ 100 V, 50 Hz, single phase ideal two winding transformer is to used to 

step up a voltage of 200 V to 300 V by connecting it like an auto transformer. Show the 

connection diagram to achieve this. Calculate the maximum kVA that can be handled by 

the autotransformer (without over loading any of the HV and LV coil). How much of this 

kVA is transferred magnetically and how much is transferred by electrical conduction. 
 

Solution 
 

Two connect a two winding transformer as an auto transformer, it is essential to know the dot 

markings on the two coils. The coils are to be now series connected appropriately so as to 

identify clearly between which two terminals to give supply and between which two to connect 

the load. Since the input voltage here is 200 V, supply must be connected across the HV 

terminals. The induced voltage in the LV side in turn gets fixed to 100 V. But we require 300 V 

as output, so LV coil is to be connected in additive series with the HV coil. This is what has been 

shown in figure 28.10. 
 
 
 
 
 
 
 

75 A 
 

 

200 V 

supply 

 
 
 
 

 

1
0

0
 V

 

 
 

P 
 

25 A 

 
 
50 A 

V300 

 
 
 
 
 
 
 
 

 

Load 

 

Figure 28.10: Two winding transformer as an autotransformer. 
 

Here the idea is not to exceed the voltage and current rating of HV and LV coils of the two 

winding transformer. Now for the transformer having rating 5 kVA, 200 V/ 100 V, 50 Hz we 

have: 

 

Rated voltage of HV coil is = 200 V 

Rated voltage of LV coil is = 100 V 

Phase turns ratio is a = 200/100 = 2 

Rated current of each HV coil is = 5000/200 = 25 A 

Rated current of each LV coil is = 5000/100 = 50 A 

 



Since the load is in series with LV coil, so load current is same as the current flowing through the 

LV coil. Thus a maximum of 50 A can be drawn by the load otherwise overloading of the coils 

take place. 
 

Output kVA  = 300  50 VA = 15 kVA 
 

input kVA  = Output kVA = 15 kVA 
 

∵ transformer is ideal 



 

 

Current drawn form the supply  = 15000/200 = 75 A 

 

Now the question is now much current is flowing in the HV coil and in which direction? 

However, this is quite easy since supply and load currents are already known along with their 

directions as shown in figure 28.10. Applying KCl at the junction P, we get: 
 

Current through HV coil IHV = 75 – 50 = 25 A 

 

The direction of IHV is obviously from top to bottom. No matter whether a two winding 

transformer is used as a two winding transformer or as an autotransformer, mmf must be 

balanced in the coils. If current comes out through the dot terminal in the LV coil, current must 

flow in through the dot of the HV coil. 
 

It is important to note that as a two winding transformer, kVA handling capacity is 5 kVA, the 

rating of the transformer. However, the same transformer when connected as auto transformer, 

kVA handling capacity becomes 15 kVA without overloading any of the coils. 

 

kVA transferred magnetically  = kVA of either HV or LV coil 
 

= 200  25 VA = 100  50 VA = 5 kVA 
 

kVA transferred magnetically  =  5kVA 
 

kVA transferred electrically = total kVA transferred – kVA 

transferred magnetically 
 

= 15 – 5 = 10 kVA 

 

2. An autotransformer has a coil with total number of turns NCD = 200 between terminals C 

and D. It has got one tapping at A such that NAC = 100 and another tapping at B such that 

NBA = 50.  
Calculate currents in various parts of the circuit and show their directions when 400 V 

supply is connected across AC and two resistive loads of 60Ω & 40Ω are connected 

across BC and DC respectively. 
 

Solution 
 

Let us first draw the circuit diagram (shown in figure 28.11) as per data given in the problem. 

First let us calculate the voltages applied across the loads remembering the fact that voltage per 

turn in a transformer remains constant. 
 

Supply voltage across AC, VAC = 400V 

Number of turns between A & C NAC = 100 

Voltage per turn = 400/100 = 4V 

Voltage across the 40Ω load = NDC  Voltage per turn 

 =  200  4 = 800V 

So, current through 40Ω  = 800/40 = 20A 

Voltage across the 60Ω load = NBC  Voltage per turn 
 



= 150  4 = 600 V 
 

So, current through 60Ω  = 600/60 = 10A  
(28.1) 
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Figure 28.11: Circuit arrangement. 
 

 

Total output kVA will be the simple addition of the kVAs supplied to the loads i,e., 

 

(600  10 + 800  20) VA = 22000 VA = 22 kVA 

 

Assuming the autotransformer to be ideal, input kVA must also be 22 kVA. We are therefore in a 

position to calculate the current drawn from the supply. 
 

Current drawn from the supply = 22000/400 = 55 A 

 

Now we know all the load currents and the current drawn from the supply. Current calculations in 

different parts of the transformer winding becomes pretty simple-one has to apply KCL at the tap 

points B and A. 
 

Current in DB part of the winding IBD = 20 A 

Applying KCL at B, current in AB part IAB = 20 + 10 = 30 A 

Applying KCL at A, current in AC part IAC = 55 – 30 = 25 A 
 

It is suggested to repeat the problem if 40Ω resistor is replaced by an impedance (30 + j40) Ω 

other things remaining unchanged. 
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Chapter 22 

 

Eddy Current & Hysteresis Losses (Lesson 22) 

 

22.1 Lesson goals 

 

In this lesson we shall show that (i) a time varying field will cause eddy currents to be 

induced in the core causing power loss and (ii) hysteresis effect of the material also 

causes additional power loss called hysteresis loss. The effect of both the losses will 

make the core hotter. We must see that these two losses, (together called core loss) are 

kept to a minimum in order to increase efficiency of the apparatus such as transformers & 

rotating machines, where the core of the magnetic circuit is subjected to time varying 

field. If we want to minimize something we must know the origin and factors on which 

that something depends. In the following sections we first discuss eddy current 

phenomenon and then the phenomenon of hysteresis.  
Finally expressions for (i) inductance, (ii) stored energy density in a magnetic field and 

(iii) force between parallel faces across the air gap of a magnetic circuit are derived. 

Key Words: Hysteresis loss; hysteresis loop; eddy current loss; Faraday’s laws; 
 

After going through this section students will be able to answer the following questions. 

After going through this lesson, students are expected to have clear ideas of the 

following: 
 

1. Reasons for core losses. 
 

2. That core loss is sum of hysteresis and eddy current losses. 
 

3. Factors on which hysteresis loss depends. 
 

4. Factors on which eddy current loss depends. 
 



5. Effects of these losses on the performance of magnetic circuit. 
 

6. How to reduce these losses? 
 

7. Energy storing capability in a magnetic circuit. 
 

8. Force acting between the parallel faces of iron separated by air gap. 
 

9. Iron cored inductance and the factors on which its value depends. 
 
 

22.2 Introduction 

 

While discussing magnetic circuit in the previous lesson (no. 21) we assumed the exciting 

current to be constant d.c. We also came to know how to calculate flux (φ) or flux density (B) 

in the core for a constant exciting current. When the exciting current is a function of time, it 

is expected that flux (φ) or flux density (B) will be functions of time too, since φ produced 

depends on i. In addition if the current is also alternating in nature then both the 
 

 



magnitude of the flux and its direction will change in time. The magnetic material is now 

therefore subjected to a time varying field instead of steady constant field with d.c 

excitation. Let: 
 

The exciting current i(t) = Imax sin 
ω 

 

     t 
 

Assuming linearity, flux density B(t) = μ0 μr H(t) 
 

  = μ0 μr Ni   

   
 

  

= 

   l    
 

  
μ0 μr 

 N Imaxsin ωt 
 

 

B(t) 

= 

   l  

       
 

∴ 
B     ω 

 

  Bmax sin  t 
 

22.2.1 Voltage induced in a stationary coil placed in a time varying field 

 

If normal to the area of a coil, a time varying field φ(t) exists as in figure 22.1, then an 

emf is induced in the coil. This emf will appear across the free ends 1 & 2 of the coil. 

Whenever we talk about some voltage or emf, two things are important, namely the 

magnitude of the voltage and its polarity. Faraday’s law tells us about the both. 

Mathematically it is written as e(t) = -N 
d

dt
φ  

  φ(t) 

e(t) = - 

dφ   
 

   dt  
d φ  

 

       e(t) = -  

   

+ 

   

dt 

 

   -    
 

1 2 1 2  1  +   - 2 
 

        

 S          
   

Figure 22.1: 

 

Let us try to understand the implication of this equation a bit deeply. φ(t) is to be 

taken normal to the surface of the coil. But a surface has two normals; one in the upward 

direction and the other in downward direction for the coil shown in the figure. Which one 

to take? The choice is entirely ours. In this case we have chosen the normal along the 

upward direction. This direction is obtained if you start your journey from the terminal-2 

and reach the terminal-1 in the anticlockwise direction along the contour of the coil. Once 

the direction of the normal is chosen what we have to do is to express φ(t) along the same 

direction. Then calculate N 
d

dt
φ and put a – ve sign before it. The result obtained will give  

you e12 i.e., potential of terminal -1 wrt terminal-2. In other words, the whole coil can be 
considered to be a source of emf wrt terminals 1 & 2 with polarity as indicated. If at any 

time flux is increasing with time in the upward direction, 
d

dt
φ is + ve and e12 will come out to 

be – ve as well at that time. On the other hand, at any time flux is decreasing with time   
in the upward direction, 

 

Mathematically let: 

 
d

dt
φ  is – ve and e12 will come out to be + ve as well at that time.  
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Flux density B(t) =  
B ω 

 

Area of the coil = 

Bmax sin t 
 

A  
 

Flux crossing the area φ(t) = B(t) A  
 

 =  
B ω 

 

 

= 

Bmax A sin  t 
 

 φmax sin ωt 
 

Induced voltage in the coil e12 = -N 
dφ    

 

dt  
 

      
 

 
= -1× 

dφ  
∵ N = 1 here 

 

 
dt  

 

= 

    
 

 φmaxω cos ωt 
 

∴ e12 = Emax cos ωt 
 

RMS value of e12 E   = 
φ

max

ω
  

 

  

2 
      

 

         
  

∴ E =   2π f φmax putting ω = 2π f  
 

If the switch S is closed, this voltage will drive a circulating current ic in the coil the 
direction of which will be such so as to oppose the cause for which it is due. Correct 
instantaneous polarity of the induced voltage and the direction of the current in the coil are 
shown in figure 22.2, for different time intervals with the switch S closed. In the interval 0 

< ωt < π , 
dφ 

 
2 dt  

 

φ 

increasing φ  

e(t) = - 
d
dt = - ve 

 

+ -  
 

 

1 2  
(i) 0<ωt<π/2 

 

φ 

decreasing dφ  

e(t) = - dt = + ve 
 

+ -  
 

 

1 2  
(ii) π/2<ωt<π 

 
 

φ 

 increasing 
 

 

  - 

   
 

  +  
 

    i 
 

    

direction of i is 
 

1 2  
 

 such that it  

0<ωt<π/2 
 

opposes increase 
 

  φ of φ 
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opposes decrease 
 

    of φ 
   

Figure 22.2: Direction of induced current. 
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22.2.2 Eddy current 

 

Look at the Figure 22.3 where a rectangular core of magnetic material is shown along with 

the exciting coil wrapped around it. Without any loss of generality, one may consider this to 

be a part of a magnetic circuit. If the coil is excited from a sinusoidal source, exciting current 

flowing will be sinusoidal too. Now put your attention to any of the cross section of the core 

and imagine any arbitrary rectangular closed path abcd. An emf will be induced in the path 

abcd following Faraday’s law. Here of course we don’t require a switch S to close the path 

because the path is closed by itself by the conducting magnetic material (say iron). Therefore 

a circulating current ieddy will result. The direction  

of ieddy is shown at the instant when B(t ) is increasing with time. It is important to note 
here that to calculate induced voltage in the path, the value of flux to be taken is the flux  

enclosed by the path i.e., φmax = Bmax × area of the loop abcd. The magnitude of the eddy  

current will be limited by the path resistance , Rpath neglecting reactance effect. Eddy 

current will therefore cause power loss in Rpath and heating of the core. To calculate the 
total eddy current loss in the material we have to add all the power losses of different 
eddy paths covering the whole cross section. 

 

22.2.3 Use of thin plates or laminations for core 

 

We must see that the power loss due to eddy current is minimized so that heating of the 

core is reduced and efficiency of the machine or the apparatus is increased. It is obvious 

if the cross sectional area of the eddy path is reduced then eddy voltage induced too will  

be reduced (Eeddy ∞ area), hence eddy loss will be less. This can be achieved by using 

several thin electrically insulated plates (called laminations) stacked together to form the  
core instead a solid block of iron. The idea is depicted in the Figure 22.4 where the plates 

have been shown for clarity, rather separated from each other. While assembling the core 

the laminations are kept closely pact. Conclusion is that solid block of iron should not be 
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Figure 22.3: Eddy current paths 

 

used to construct the core when exciting current will be ac. However, if exciting current 

is dc, the core need not be laminated. 
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Figure 22.4: Laminated core to reduce eddy loss. 
 

22.2.4 Derivation of an expression for eddy current loss in a thin plate 

 

From physical consideration we have seen that thin plates each of thickness τ, are to be 

used to reduce eddy loss. With this in mind we shall try to derive an approximate 

expression for eddy loss in the following section for a thin plate and try to identify the 

factors on which it will depend. Section of a thin plate τ << L and h is shown in the plane 

of the screen in Figure 22.5.  
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Figure 22.5: Elemental eddy current 

path. 

 
 

Figure 22.6: Section of the elemental 

eddy current path. 
 

Eddy current loss is essentially I
2
R loss occurring inside the core. The current is 

caused by the induced voltage in any conceivable closed path due to the time varying 
field as shown in the diagram 22.5.  

Let us consider a thin magnetic plate of length L, height h and thickness τ such 
that τ is very small compared to both L and h. Also let us assume a sinusoidally time 

varying field b = BBmaxsinωt exists perpendicular to the rectangular area formed by τ and 
h as shown in figure 22.5.  

Let us consider a small elemental rectangular closed path ABCDA of thickness dx 

and at a distance x from the origin. The loop may be considered to be a single coil 

through which time varying flux is crossing. So there will be induced voltage in it, in 
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similar manner as voltage is induced in a coil of single turn shown in the previous 

section. Now, 
 

Area of the loop ABCD = 2hx  
 

Flux crossing the loop =  
B ω 

 

  Bmax 2hx sin t 
 

RMS voltage induced in the loop, E =  2π f Bmax 2hx 
 

Resistance of the path through which eddy current flows, Rpath = 
 ρ 2h + 4x  

 

     

 

L dx 
 

 

    
  

 

To derive an expression for the eddy current loss in the plate, we shall first 

calculator the power loss in the elemental strip and then integrate suitably to for total loss. 

Power loss in the loop dP is given by: 

 

dP = 
 E

2
         

 

 R
path 

       
 

          
 

 
= 

 E 
2
 L dx        

 

  

ρ  2h+4x 
     

 

        
 

 
= 

 E
2
 L dx  since τ << h  

  ρ2h 
 

          
 

   4π2
 B

2
 f 

2
 hL  τ  

 

   

∫x=0
2
 x

2
 dx 

 

Total eddy current loss, Peddy = 
  max     

 

  ρ     
 

           
 

   π2 f 2 B2 τ2  

 hLτ  
 

 

= 
  max   

 

 

  6ρ   
 

          
 

Volume of the thin plate = hLτ        
 

Eddy loss per unit volume, boldmath Peddy =  π2
 f 

2
 Bmax

2
 τ 2      

 

or, Peddy 

  6ρ        
 

= k e f 
2
 Bmax

2
 τ 2      

 

 

Thus we find eddy current loss per unit volume of the material directly depends 

upon the square of the frequency, flux density and thickness of the plate. Also it is 

inversely proportional to the resistivity of the material. The core of the material is 

constructed using thin plates called laminations. Each plate is given a varnish coating for 

providing necessary insulation between the plates. Cold Rolled Grain Oriented, in short 

CRGO sheets are used to make transformer core. 
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22.3 Hysteresis Loss 

 

22.3.1 Unidirectional time varying exciting current 
 

Consider a magnetic circuit with constant (d.c) excitation current I0. Flux established will 

have fixed value with a fixed direction. Suppose this final current I0 has been attained 

from zero current slowly by energizing the coil from a potential divider arrangement as 
depicted in Figure 22.7. Let us also assume that initially the core was not magnetized. 
The exciting current therefore becomes a function of time till it reached the desired 
current I and we stopped further increasing it. The flux too naturally will be function of 

time and cause induced voltage e12 in the coil with a polarity to oppose the increase of 

inflow of current as shown. The coil becomes a source of emf with terminal-1, +ve and 
terminal-2, -ve. Recall that a source in which current enters through its +ve terminal 
absorbs power or energy while it delivers power or energy when current comes out of the 
+ve terminal. Therefore during the interval when i(t) is increasing the coil absorbs 
energy. Is it possible to know how much energy does the coil absorb when current is 

increased from 0 to I0? This is possible if we have the B-H curve of the material with us. 
 

 

1 i(t) 

l B 
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P 
 

 
B0 
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e(t) 
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- 

   
 

฀2  O H H0   H 
   

Figure 22.7: Figure 22.8: 
 

 
 

 

22.3.2 Energy stored, energy returned & energy density 

 

Let:  
i =  current at time t 

H = field intensity corresponding to i at time t 

B = flux density corresponding to i at time t 

(22.1) 

 

Let an infinitely small time dt elapses so that new values become: 

 

i + di =  Current at time t + dt 
 

H + dH =  Field intensity corresponding to i + di at time t + dt 
 

B + dB =  Flux density corresponding to i + di at time t + dt 
 

Voltage induced in the coil e12 = N 
dφ  

 

dt 
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= NA 
dB 

 

dt  

  
 

Power absorbed at t  = e12i 
  

 
 
 
 
 

 

Energy absorbed in time dt, dW 
 

 

total energy absorbed per unit 

volume, W 

 

= NA 
dB

dt i  

= A l H 
dB

dt noting, H = 
Ni

l 
 

= A l H 
dB

dt i  dt 
 
= A l H dB  

= ∫0
B0 H dB 

 
 

Graphically therefore, the closed area OKPB0BO is a measure of the energy stored by the 

field in the core when current is increased from 0 to I0. What happens if now current is 

gradually reduced back to 0 from I0? The operating point on B- H curve does not trace 

back the same path when current was increasing from 0 to I0. In fact, B- H curve (PHT) 

remains above during decreasing current with respect the B-H curve (OGP) during 
increasing current as shown in figure 22.9. This lack of retracing the same path of the 
curve is called hysteresis. The portion OGP should be used for increasing current while 
the portion (PHT) should be used for decreasing current. When the current is brought 
back to zero external applied field H becomes zero and the material is left magnetized 
with a residual field OT. Now the question is when the exciting current is decreasing, 

does the coil absorb or return the energy back to supply. In this case 
dB

dt being –ve, the  
induced voltage reverses its polarity although direction of i remains same. In other words, 
current leaves from the +ve terminal of the induced voltage thereby returning power back 
to the supply. Proceeding in the same fashion as adopted for increasing current, it can be 
shown that the area PMTRP represents amount of energy returned per unit volume. 

Obviously energy absorbed during rising current from 0 to I0 is more than the energy 

returned during lowering of current from I0 to 0. The balance of the energy then must 

have been lost as heat in the core. 
 

B  
in T 

 

M R 
P 

 

  
 

T G OT = Residual field 
 

O  H(A/m) or I(A) 
 

 Figure 22.9: 
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22.4 Hysteresis loop with alternating exciting current 

 

In the light of the above discussion, let us see how the operating point is traced out if the 

exciting current is i = Imax sin ωt. The nature of the current variation in a complete cycle 

can be enumerated as follows:  

In the interval 0 ≤ ωt ≤ 
 π  

: i is +ve and 
 di 

 is +ve.  

2 
   

dt  

           
 

In the interval  π  ≤ ωt ≤ π : i is +ve and 
 di  is –ve.  

2 
  

dt 
 

 

           
 

In the interval π ≤ ωt ≤ 
3π 

: i is –ve and 
di  

is –ve.  

2 
  

dt 
 

 

          
 

In the interval 
3π ≤ ωt ≤ 2π : i is –ve and 

di  
is +ve.  

2 
 

dt 
 

 

          
 

 

Let the core had no residual field when the coil is excited by i = Imax sin ωt. In the 

interval 0 < ωt < π2 , B will rise along the path OGP. Operating point at P corresponds to 
 

+Imax or +Hmax. For the interval 
π

2 < ωt < π  operating moves along the path PRT. At 
 

point T, current is zero. However, due to sinusoidal current, i starts increasing in the –ve 

direction as shown in the Figure 22.10 and operating point moves along TSEQ. It may be 

noted that a –ve H of value OS is necessary to bring the residual field to zero at S. OS is 

called the coercivity of the material. At the end of the interval π < ωt < 32π , current reaches –
Imax or field –Hmax. In the next internal, 

3
2

π
 < ωt < 2π , current changes from –Imax 

 
to zero and operating point moves from M to N along the path MN. After this a new 

cycle of current variation begins and the operating point now never enters into the path 

OGP. The movement of the operating point can be described by two paths namely: (i) 

QFMNKP for increasing current from –Imax to +Imax and (ii) from +Imax to –Imax along 
PRTSEQ.  

 B R P 
 

 T 
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i = Imax sinωt 
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2π 
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Figure 22.10: B-H loop with sinusoidal current. 
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22.4.1 Hysteresis loss & loop area 

 

In other words the operating point trace the perimeter of the closed area QFMNKPRTSEQ. 

This area is called the B-H loop of the material. We will now show that the area enclosed by 

the loop is the hysteresis loss per unit volume per cycle variation of the current. In the 

interval 0 ≤ ωt ≤ 
π

2 , i is +ve and dt
di

 is also +ve, moving the  
operating point from M to P along the path MNKP. Energy absorbed during this interval 
is given by the shaded area MNKPLTM shown in Figure 22.11 (i).  

In the interval 
π

2 ≤ ωt ≤ π, i is +ve but dt
di

 is –ve, moving the operating point from P to T   
along the path PRT. Energy returned during this interval is given by the shaded area 

PLTRP shown in Figure 22.11 (ii). Thus during the +ve half cycle of current variation net 

amount of energy absorbed is given by the shaded area MNKPRTM which is nothing but 

half the area of the loop.  

In the interval π ≤ ωt ≤ 
3
2

π
 ,i is –ve and dt

di
 is also –ve, moving the operating point from T   

to Q along the path TSEQ. Energy absorbed during this interval is given by the shaded 

area QJMTSEQ shown in Figure 22.11 (iii). 
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Figure 22.11: B-H loop with sinusoidal current. 

 

In the interval 
3

2
π
 ≤ ωt ≤ 2π, i is –ve but dt

di
 is + ve, moving the operating point from Q to   

M along the path QEM. Energy returned during this interval is given by the shaded area 

QJMFQ shown in Figure 22.11 (iv). 

Thus during the –ve half cycle of current variation net amount of energy absorbed is 

given by the shaded area QFMTSEQ which is nothing but the other half the loop area. 
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Therefore total area enclosed by the B-H loop is the measure of the hysteresis loss per 

unit volume per unit cycle. To reduce hysteresis loss one has to use a core material for 

which area enclosed will be as small as possible. 
 

Steinmetz’s empirical formula for hysteresis loss 

 

Based on results obtained by experiments with different ferromagnetic materials with 

sinusoidal currents, Charles Steimetz proposed the empirical formula for calculating 

hysteresis loss analytically. 
 

Hysteresis loss per unit volume, Ph  k h  f Bmax
n
 

 

Where, the coefficient kh depends on the material and n, known as Steinmetz 

exponent, may vary from 1.5 to 2.5. For iron it may be taken as 1.6. 
 

22.5 Seperation of core loss 

 

The sum of hyteresis and eddy current losses is called core loss as both the losses occur 

within the core (magnetic material). For a given magnetic circuit with a core of 

ferromagnetic material, volume and thickness of the plates are constant and the total core 

loss can be expressed as follows. 
 

Core loss = Hysteresis loss + Eddy current loss  

Pcore = K h  f Bmax
n
  K e  f 

2
  Bmax

2
 

 

It is rather easier to measure the core loss with the help of a wattmeter (W) by 

energizing the N turn coil from a sinusoidal voltage of known frequency as shown in 

figure 22.12. 
 

 

W A 
 

Sinusoidal  
a.c supply, 

variable 

voltage and  
frequency 

 
 

 

Figure 22.12: Core loss measurement. 

 

Let A be the cross sectional area of the core and let winding resistance of the coil 

be negligibly small (which is usually the case), then equating the applied rms voltage to 

the induced rms voltage of the coil we get: 
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  V ≈   2π f φmax N 
 

  Or, V =   2π f Bmax AN 
 

  
So, BBmax  = 

   V  
 

    

2π f AN 
 

     
 

  ∴ BBmax ∝  
V  

 

  

f 
 

     
 

The above result i.e., BBmax ∝ 
V 

is important because it tells us that to keep BBmax constant  

f 
 

       
  

at rated value at lower frequency of operation, applied voltage should be proportionately 

decreased. In fact, from the knowledge of N (number of turns of the coil) and A (cross 

sectional area of the core), V (supply voltage) and f (supply frequency) one can estimate 

the maximum value of the flux density from the relation BBmax = 

V  

. This point 

 

2π f AN 
  

has been further discussed in the future lesson on transformers.  
Now coming back to the problem of separation of core loss into its components: 

we note that there are three unknowns, namely Kh, Ke and n (Steinmetz’s exponent) to be  

determined in the equation Pcore  K h fBmax
n
  K e f 

2
 Bmax

2
 . LHS of this equation is nothing 

but the wattmeter reading of the experimental set up shown in Figure 22.12. Therefore, by 

noting down the wattmeter readings corresponding to three different applied voltages and 

frequencies, we can have three independent algebraic equations to solve for Kh, Ke and n. 

However, to simplify the steps in solving of the equations two readings may be  

taken at same flux density (keeping 
V

f ratio constant) and the third one at different flux 

density. To understand this, solve the following problem and verify the answers given. 
 

For a magnetic circuit, following results are obtained. 

 

Frequency BBmax Core loss 

50 Hz 1.2 T 115 W 

30 Hz 1.2 T 60.36 W 

30 Hz 1.4 T 87.24 W 
 

Estimate the constants, Kh, Ke and n and separate the core loss into hysteresis and eddy 

losses at the above frequencies and flux densities.  
The answer of the problem is: 

 

Frequency BBmax Core loss Hyst loss Eddy loss 

50 Hz 1.2 T 115 W 79 W 36 W 

30 Hz 1.2 T 60.36 W 47.4 W 12.96 W 

30 Hz 1.4 T 87.24 W 69.6 W 17.64 W 

 
 
 
 

 

Version 2 EE IIT, Kharagpur 



22.6 Inductor 

 

One can make an inductor L, by having several turns N, wound over a core as shown in 

figure 22.13. In an ideal inductor, as we all know, no power loss takes place. Therefore, 

we must use a very good magnetic material having negligible B-H loop area. Also we 

must see that the operating point lies in the linear zone of the B-H characteristic in order 

to get a constant value of the inductance. This means μr may be assumed to be constant. 

To make eddy current loss vanishingly small, let us assume the lamination thickness is 

extremely small and the core material has a very high resistivity ρ. Under these 

assumptions let us derive an expression for the inductance L, in order to have a feeling on 

the factors it will depend upon. Let us recall that inductance of a coil is defined as the 

flux linkage with the coil when 1 A flows through it. 
 

 

i(t) 

 
 

l  

 

+  
 

e(t)  

N 
 

- φ 

 

2 
 
 

Figure 22.13: An inductor. 
 

Let φ be the flux produced when i A flows through the coil. Then by definition: 
 

Total flux linkage = Nφ               
 

∴inductance is L = 
  Nφ 

by definition. 
  

 

  i     
 

                  
 

 =   N B A  ∵φ = B× A   
 

         

     i             
 

 
= 

  N μ0  μr H A 
∵B = μ0 μr H 

 

        i  

            
 

 
= 

  
μ0 μr 

 N H A     
 

       i    
 

              
 

    

μ0 μr 

 N Ni A 

putting H = 
Ni 

 

       

 

= 
      l  

 

       i l 
 

              
 

Finally, L = 
  

μ0 μr 
 N 

2
 A     

 

    
l 

   
 

             
 

 

The above equation relates inductance with the dimensions of the magnetic 

circuit, number of turns and permeability of the core in the similar way as we relate 
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resistance of a wire, with the dimensions of the wire and the resistivity (recall, R = ρ Al ).   
It is important to note that L is directly proportional to the square of the number of turns, 

directly proportional to the sectional area of the core, directly proportional to the 

permeability of the core and inversely proportional to the mean length of the flux path. In 

absence of any core loss and linearity of B-H characteristic, Energy stored during 

increasing current from 0 to I is exactly equal to the energy returned during decreasing 

current from I to 0. From our earlier studies we know for increasing current: 
 

Voltage induced in the coil  e 
= 

    dB     
 

N A
 dt 

   
 

Energy absorbed in time dt is dW 

   
 

= e i dt NA  dB   

    
 

      
dB  

dt 
 

 = 
       

 

  

N A dt i dt 
 

   
 

 =  N i A d B 
 

 =  A l H d B 
 

Energy absorbed to reach I or B =  A l∫0
B
 H dB 

 

 
=  A l∫0

B
 

B 

dB 
 

 μ0 μr 
 

 
= 

 
A l 

  B
2
    

 

  2 μ μ 
r 

 

  0    
 

Energy stored per unit volume = 

 B
2
    

 

 2 μ0 μr     
 

 

By expressing B in terms of current, I in the above equation one can get a more 

familiar expression for energy stored in an inductor as follows: 

 

Energy absorbed to reach I or B  = A l 
B

2
 

 

2μ μ  

  
 

  0   r 
  

= A l 
 μ0 μr H 2

     
 

2μ μ     
 

         
 

       0 r     
 

= A l 
μ μ H 

2
     

 

0  r       
 

  

2 
      

 

             
 

= A lμ μ   N I 2
 

 

         

  

2l
2
 

    
 

     0  r     
 

 1 
 μ0 μr  A N 2   

=  

   I 
2
  

2 

     
 

     l    
 

∴Energy stored in the inductor  = 
1 

L I 
2
 
        

 

2         
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22.7 Force between two opposite faces of the core across an air gap 

 

In a magnetic circuit involving air gap, magnetic force will exist between the parallel 
faces across the air gap of length x. The situation is shown for a magnetic circuit in figure 
22.14 (i) . Direction of the lines of forces will be in the clockwise direction and the left 
face will become a north pole and the right face will become a south pole. Naturally there 

will be force of attraction Fa between the faces. Except for the fact that this force will 

develop stress in the core, no physical movement is possible as the structure is rigid. 
 

Let the flux density in the air gap be = B     
 

energy stored per unit volume in the gap = 
 B

2
     

 

 
2μ0 

 

        
 

     gap volume = A x     
 

     Total energy stored =  B
2
  ×gap volume  

             
 

        2μ0 
 

      = 
 B

2 
  A x  

       2 μ 
 

       0       
 

              (22.2) 
 

 Air gap    Air gap 
 

 

 

x 
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N 

 

 

   

 S 
 

         
 

         
 

  F             
 

 (i)     (ii) 
  

 
 
 
 
 
 

 

dx 

Fa Fe 

 

x  
 

(iii) 
 

Figure 22.14: Force between parallel faces. 
 

Easiest way to derive expression for Fa is to apply law of conservation of energy 
by using the concept of virtual work. To do this, let us imagine that right face belongs to 
a freely moving structure with initial gap x as in figure 22.14 (ii). At this gap x, we have 

find Fa. Obviously if we want to displace the moving structure by an elemental distance 

dx to the right, we have apply a force Fe toward right. As dx is very small tending to 0, 

we can assume B to remain unchanged. The magnitude of this external force Fe has to be 
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same as the prevailing force of attraction Fa between the faces. Where does the energy 

expended by the external agency go? It will go to increase the energy stored in the gap as 

its volume increase by A dx. Figure 22.14 (iii) shows an expanded view of the gap portion 

for clarity. Let us put it in mathematical steps as follows: 
 
 

energy stored per unit volume in the gap 

initial gap volume 

 

Total energy stored, Wx 

 

Wx 

 

let the external force applied be 

let the force of attraction be as 

explained above, Fe work done 

by external agency 
 

increase in the volume of the gap 

 

increase in stored energy 

 

but work done by external agency 
 

Fa dx 
 

or, desired force of attraction Fa 

 

 

22.8 Tick the correct answer 

 
 
 

= 
 B

2
  

 

 

2μ0 
 

 

   
 

= A x  
 

= 
 B

2
 
×gap volume 

 

 2μ  

   
 

 0  
 

B 
2
 

= 2μ0  A x  
= Fe 

= Fa 

= Fa 

= Fe dx = Fa dx  
= A (x + dx) – Ax = A dx  

B 
2
 

= 2μ0  A dx  
= increase in stored energy  

B 
2
 

= 2μ0  A dx  
= 2

B
μ

2
0  A

 
 

 

 

1. If the number of turns of a coil wound over a core is halved, the inductance of the 

coil will become: 
 

(A) doubled. (B) halved. (C) quadrapuled. (D) ¼ th 

 

2. The expression for eddy current loss per unit volume in a thin ferromagnetic plate 

of thickness τ is: 

(A)  1 π 
2
 f 

2
 B

2
 τ 2 (B)  ρ π 2 f 2 B2 τ 2 

 

6ρ 6  

  

max 
  

max 
  

 

         
 

(C) 1 π 
2
 f 

2
 B τ 2 (D)  1 π 

2
 f B

2
  τ 2  

6ρ 6ρ   

 

max 
   

max 
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3. As suggested by Steinmetz, hyteresis loss in a ferromagnetic material is 

proportional to: 

(A) f
n
Bmax (B)  f B

n
 

B max  

(C) f 
2
 Bmax

2
 (D) f Bmax

n
 

 

where, n may very between 1.5 to 2.5 depending upon material. 
 

4. The eddy current loss in a magnetic circuit is found to be 100 W when the 

exciting coil is energized by 200 V, 50 Hz source. If the coil is supplied with 180 

V, 54 Hz instead, the eddy current loss will become 
 

(A) 90 W (B) 81 W (C) 108 W (D) 50 W 

 

5. A magnetic circuit draws a certain amount of alternating sinusoidal exciting 

current producing a certain amount of alternating flux in the core. If an air gap is 

introduced in the core path, the exciting current will: 
 

(A) increase. (B) remain same. (C) decrease. (D) vanish 

 

22.9 Solve the following 

 

1. The area of the hysteresis loop of a 1200 cm
3
 ferromagnetic material is 0.9 cm

2
 

with Bmax = 1.5 T. The scale factors are 1cm ≡ 10A/m along x-axis and 1 cm = 

0.8T along y-axis. Find the power loss in watts due to hysteresis if this material is 

subjected to an 50 Hz alternating flux density with a peak value 1.5 T. 
 

2. Calculate the core loss per kg in a specimen of alloy steel for a maximum density 

of 1.1 T and a frequency of 50 Hz, using 0.4 mm plates. Resistivity ρ is 24 μ Ω-

cm; density is 7.75 g/cm
3
; hysteresis loss 355 J/m

3
 per cycle. 

 
3. (a) A linear magnetic circuit has a mean flux length of 100 cm and uniform cross 

sectional area of 25 cm
2
. A coil of 100 turns is wound over it and carries a 

current of 0.5 A. If relative permeability of the core is 1000, calculate the 
inductance of the coil and energy stored in the coil. 

 
(b) In the magnetic circuit of part (a), if an air gap of 2 mm length is introduced 

calculate (i) the energy stored in the air gap (ii) energy stored in core and (iii) 

force acting between the faces of the core across the gap for the same coil 

current. 
 

4. An iron ring with a mean diameter of 35 cm and a cross section of 17.5 cm
2
 has 

110 turns of wire of negligible resistance. (a) What voltage must be applied to the 

coil at 50 Hz to obtain a maximum flux density of 1.2 T; the excitation required 
corresponding to this density 450 AT/m? Find also the inductance. (b) What is the 

effect of introducing a 2 mm air gap? 
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5. A coil wound over a core, is designed for 200 V (rms), 50 Hz such that the 

operating point is on the knee of the B-H characteristic of the core. At this rated 

voltage and frequency the value of the exciting current is found to be 1 A. Give 

your comments on the existing current if the coil is energized from: 
 

(a) 100 V, 25 Hz supply.  
(b) 200 V, 25 Hz supply. 
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26.1 Goals of the lesson 

 

Three phase system has been adopted in modern power system to generate, transmit and 

distribute power all over the world. In this lesson, we shall first discuss how three number of 

single phase transformers can be connected for 3-phase system requiring change of voltage level. 

Then we shall take up the construction of a 3-phase transformer as a single unit. Name plate 

rating of a three phase transformer is explained. Some basic connections of a 3-phase transformer 

along with the idea of vector grouping is introduced.  
Key Words: bank of three phase transformer, vector group. 

 

After going through this section students will be able to answer the following questions. 

 

฀ Point out one important advantage of connecting a bank of 3-phase transformer.


฀ Point out one disadvantage of connecting a bank of 3-phase transformer.


฀ Is it possible to transform a 3-phase voltage, to another level of 3-phase voltage by 

using two identical single phase transformers? If yes, comment on the total kVA 

rating obtainable.
฀ From the name plate rating of a 3-phase transformer, how can you get individual coil 

rating of both HV and LV side?
฀ How to connect successfully 3 coils in delta in a transformer?

 

26.2 Three phase transformer 

 

It is the three phase system which has been adopted world over to generate, transmit and 

distribute electrical power. Therefore to change the level of voltages in the system three phase 

transformers should be used. 
 

Three number of identical single phase transformers can be suitably connected for use in a 

three phase system and such a three phase transformer is called a bank of three phase 

transformer. Alternatively, a three phase transformer can be constructed as a single unit. 
 

26.3 Introducing basic ideas 

 

In a single phase transformer, we have only two coils namely primary and secondary. Primary is 

energized with single phase supply and load is connected across the secondary. However, in a 3-

phase transformer there will be 3 numbers of primary coils and 3 numbers of secondary coils. So 

these 3 primary coils and the three secondary coils are to be properly connected so that the 

voltage level of a balanced 3-phase supply may be changed to another 3-phase balanced system 

of different voltage level. 
 

Suppose you take three identical transformers each of rating 10 kVA, 200 V / 100 V, 50 Hz 
and to distinguish them call them as A, B and C. For transformer-A, primary terminals are 

marked as A1 A2 and the secondary terminals are marked as a1 a2. The markings are done in such 

a way that A1 and a1 represent the dot (•) terminals. Similarly terminals for B and C transformers 
are marked and shown in figure 26.1. 
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Figure 26.1: Terminal markings along with dots 

 

It may be noted that individually each transformer will work following the rules of single phase 

transformer i.e, induced voltage in a1a2 will be in phase with applied voltage across A1A2 and the 

ratio of magnitude of voltages and currents will be as usual decided by a where a = N1/N2  
= 2/1, the turns ratio. This will be true for transformer-B and transformer-C as well i.e., induced 

voltage in b1b2 will be in phase with applied voltage across B1BB2B and induced voltage in c1c2 

will be in phase with applied voltage across C1C2. 
 

Now let us join the terminals A2, B2B and C2 of the 3 primary coils of the transformers and 

no inter connections are made between the secondary coils of the transformers. Now to the free 

terminals A1, B1B and C1 a balanced 3-phase supply with phase sequence A-B-C is connected as 

shown in figure 26.2. Primary is said to be connected in star. 
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Figure 26.2: Star connected primar y with secondary coils left alone.   
 

If the line voltage of the supply is VLL   200 3 V , the magnitude of the voltage impressed 
 

across each of the primary coils will be 
   

, 
 

3 times less i.e., 200 V. However, the phasors VA A 
 

    1 2 
  

 
 



VB1 B2 and VC1C2 will be have a mutual phase difference of 120º as shown in figure 26.2. Then from 

the fundamental principle of single phase transformer we know, secondary coil voltage Va1 a2 will be 

parallel to VA1 A2 ; Vb1b2 will be parallel to VB1 B2 and Vc1c2 will be parallel to VC1C2 . Thus the 
 
secondary induced voltage phasors will have same magnitude i.e., 100 V but are displaced by 120º 

mutually. The secondary coil voltage phasors Va1 a2 , Vb1b2 and Vc1c2 are shown in figure 26.2. 
 
Since the secondary coils are not interconnected, the secondary voltage phasors too have been 

shown independent without any interconnections between them. In contrast, the terminals A2 , B2B 

and C2 are physically joined forcing them to be equipotential which has been reflected in the 

primary coil voltage phasors as well where phasor points A2, B2B and C2 are also shown joined. 

Coming back to secondary, if a voltmeter is connected across any coil i.e., between a1 and a2 or 

between b1 and b2 or between c1 and c2 it will read 100 V. However, voltmeter will not read 

anything if connected between a1 and b1 or between b1 and c 1 or between c1 and a1 as open 
circuit exist in the paths due to no physical connections between the coils. 
 

Imagine now the secondary coil terminals a2, b2 and c2 are joined together physically as shown 

in figure 26.3. So the secondary coil phasors should not be shown isolated as a2, b2 and c2 become 

equipotential due to shorting of these terminals. Thus, the secondary coil voltage phasors should not 

only be parallel to the respective primary coil voltages but also a2, b2 and c2 should be equipotential. 

Therefore, shift and place the phasors Va1 a2 , Vb1b2 and Vc1c2 in such a way  

that they remain parallel to the respective primary coil voltages and the points a2, b2 and c2 are 
superposed. 
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Figure 26.3: Both primary & secondary are star connected. 
 

Here obviously, if a voltmeter is connected between a1 and b1 or between b1 and c1 or 

between c1 and a1 it will read corresponding phasor lengths a1b1 or b1 c 1 or c1a1 which are all 
  
           

equal to 200  3 V. Thus, Va b , Vb c 
2 

and Vc a  are of same magnitude and displaced mutually by 
 

1 1 1 2 1 
  

120º to form a balanced 3-phase voltage system. Primary 3-phase line to line voltage of 200  3 V   
is therefore stepped down to 3-phase, 100 3 V line to line voltage at the secondary. The junction 

of A2, B2B and C2 can be used as primary neutral and may be denoted by N. Similarly the junction 

of a2, b2 and c2 may be denoted by n for secondary neutral.  
 



26.3.1 A wrong star-star connection 

 

In continuation with the discussion of the last section, we show here a deliberate wrong 
connection to highlight the importance of proper terminal markings of the coils with dots (•). Let 
us start from the figure 26.2 where the secondary coils are yet to be connected. To implement star 

connection on the secondary side, let us assume that someone joins the terminals a2, b1 and c2 

together as shown in figure 26.4. 
 

The question is: is it a valid star connection? If not why? To answer this we have to 

interconnect the secondary voltage phasors in accordance with the physical connections of the coils. 

In other words, shift and place the secondary voltage phasors so that a2 , b1 and c2 overlap each other 

to make them equipotential. The lengths of phasors Va1 a2 , Vb1b2 and Vc1c2 are no doubt,  
same and equal to 100 V but they do not maintain 120º mutual phase displacement between them 

as clear from figure 26.4. The magnitude of the line to line voltages too will not be equal. From 

simple geometry, it can easily be shown that 
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Figure 26.4: Both primary & secondary are star connected. 
 

 

Thus both the phase as well as line voltages are not balanced 3-phase voltage. Hence the 

above connection is useless so far as transforming a balanced 3-phase voltage into another level 

of balanced 3-phase voltage is concerned. 
 

Appropriate polarity markings with letters along with dots (•) are essential in order to make 
various successful 3-phase transformer connections in practice or laboratory. 
 

26.3.2 Bank of three phase transformer 

 

In the background of the points discussed in previous section, we are now in a position to study 

different connections of 3-phase transformer. Let the discussion be continued with the same three 

single phase identical transformers, each of rating 10kVA, 200V / 100V, 50Hz,. These 

 



transformers now should be connected in such a way, that it will change the level of a balanced 

three phase voltage to another balanced three phase voltage level. The three primary and the three 

secondary windings can be connected in various standard ways such as star / star or star / delta 

or delta / delta or in delta / star fashion. Apart from these, open delta connection is also used in 

practice. 
 

Star-star connection 

 

We have discussed in length in the last section, the implementation of star-star connection of a 3-

phase transformer. The connection diagram along with the phasor diagram are shown in figure 

26.5 and 26.6.  

As discussed earlier, we need to apply to the primary terminals (A1B1BC1) a line to line 

voltage of 200 3 V so that rated voltage (200 V) is impressed across each of the primary coils of 

the individual transformer. This ensures 100 V to be induced across each of the secondary coil 

and the line to line voltage in the secondary will be 100 3 V. Thus a 3-phase line to line 
  
voltage of 200 3 V is stepped down to a 3-phase line to line voltage of 100 3 V. Now we have to 
calculate how much load current or kVA can be supplied by this bank of three phase transformers 
without over loading any of the single phase transformers. From the individual rating of each 

transformer, we know maximum allowable currents of HV and LV windings are respectively IHV 

= 10000/200 = 50A and ILV = 10000/100 = 100A. Since secondary side is connected in star, line 

current and the winding currents are same. Therefore total kVA that can  

be supplied to a balanced 3-phase load is 3VLL IL  3  3100 100  30 kVA.  While solving 
  
problems, it is not necessary to show all the terminal markings in detail and a simple and popular 

way of showing the same star-star connection is given in figure 26.7. 
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Figure 26.5: Star/star Connection.  Figure 26.6: Phasor diagram. 
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Figure 26.7: Simplified way of showing star-star connection  
   



Star-delta connection 

 

To connect windings in delta, one should be careful enough to avoid dead short circuit. Suppose 
we want to carry out star / delta connection with the help of the above single phase transformers. 

HV windings are connected by shorting A2, B2B and C2 together as shown in the figure 26.8. As 
we know, in delta connection, coils are basically connected in series and from the junction points, 
connection is made to supply load. Suppose we connect quite arbitrarily (without paying much 

attention to terminal markings and polarity), a1 with b2 and b1 with c 1. Should we now join a2 

with c2 by closing the switch S, to complete the delta connection? As a rule, we should not join 
(i.e., put short circuit) between any two terminals if potential difference exists between the two. It 
is equivalent to put a short circuit across a voltage source resulting into very large circulating 

current. Therefore before closing S, we must calculate the voltage difference between a2 with c2. 

To do this, move the secondary voltage phasors such that a1 and b2 superpose as well as b1 with 

c1 superpose – this is because a1 and b2 are physically joined to make them equipotential; 

similarly b1 and c1 are physically joined so as to make them equipotential. The phasor diagram is 
shown in figure 26.9. If a voltmeter is connected across S (i.e., between a2 and c2), it is going to 

read the length of the phasor Va2 c2 . By referring to phasor  
diagram of figure 26.9, it can be easily shown that the voltage across the switch S, under this 

condition isVa2 c2 = 100 + 2cos60
o
100 = 200V . So this connection is not proper and the switch S 

 
should not be closed.  
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Figure 26.8: Incomplete Connection. 
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Figure 26.9: Phasor diagram. 
 

 

Another alternative way to attempt delta connection in the secondary could be: join a1 

with b2 and b1 with c2. Before joining a2 with c1 to complete delta connection, examine the open 

circuit voltage Va2 c1 . Following the methods described before it can easily be shown that Va2 c1 =  

0, which allows to join a2 with c1 without any circulating current. So this, indeed is a correct 

delta connection and is shown in figure 26.10 where a1 is joined with b2, b1 is joined with c2 and 

c1 is joined with a2. The net voltage acting in the closed delta in this case is zero. Although 

voltage exists in each winding, the resultant sum becomes zero as they are 120 mutually apart. 
The output terminals are taken from the junctions as a, b and c for supplying 3-phase load. The 
corresponding phasor diagram is shown in figure 26.11. 
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Figure 26.10: Star/delta Connection.  Figure 26.11: Phasor diagram. 
  

 
 

Here also we can calculate the maximum kVA this star / delta transformer can handle without 

over loading any of the constituents transformers. In this case the secondary line to line voltage is 

same as the winding voltage i.e., 100V, but the line current which can be supplied to the load  
is100 3 . Because it is at this line current, winding current becomes the rated 100A. Therefore 

total load that can be supplied is 3VLL I L = 3 100 3 100 VA = 30kVA . Here also total kVA 
  
is 3 times the kVA of each transformer. The star-delta connection is usually drawn in a simplified 

manner for problem solving and easy understanding as shown in figure 26.12. 
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Figure 26.12: Simplified way of showing star-star connection 
 

 

Another valid delta connection on the LV side is also possible by joining a2 with b1, b2 

with c1 and c2 with a1. It is suggested that the reader tries other 3-phase connections and verify 

that the total KVA is 3-times the individual KVA of each transformer. However, we shall discuss 
about delta / delta and open delta connection. 
 

Delta / delta and open delta connection 

 

Here we mention about the delta/delta connection because, another important and useful 

connection namely open delta connection can be understood well. Valid delta connection can be 

implemented in the usual way as shown in the figure 26.13. The output line to line voltage will be 

100V for an input line voltage of 200V. From the secondary one can draw a line current of  

100 3 A which means a total of 30 kVA can be supplied without overloading any of the Version  

 



individual transformers. A simplified representation of the delta-delta connection is shown in 

figure 26.15 along with the magnitude of the currents in the lines and in the coils of HV and LV 

side.  
Let us now imagine that the third transformer C be removed from the circuit as shown in 

the second part of the figure 26.13. In effect now two transformers are present. If the HV sides is 
energized with three phase 200V supply, in the secondary we get 3-phase balanced 100V supply 
which is clear from the phasor diagram shown in figure 26.14. Although no transformer winding 

exist now between A2 & B1B on the primary side and between a2 & b1 on the secondary side, the 

voltage between A2 & B1B on the primary side and between a2 & b1 on the secondary side exist. 

Their phasor representation are shown by the dotted line confirming balanced 3-phase supply. 
But what happens to kVA handling capacity of the open delta connection? Is it 20 kVA, because 
two transformers are involved? Let us see. The line current that we can allow to flow in the 

secondary is 100A (and not 100 3 as in delta / delta connection). Therefore total maximum  

kVA handled is given by 3VLL I L =  3 100 100 VA = 17.32 kVA , which is about 57.7% of the 
  

delta connected system. This is one of the usefulness of using bank of 3-phase transformers and 

connecting them in delta-delta. In case one of them develops a fault, it can be removed from the 

circuit and power can be partially restored. 
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Figure 26.13: Delta/delta and open delta connection. 
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Figure 26.15: Simplified way of showing delta-delta connection 
 

 

26.3.3 3-phase transformer- a single unit 
 

Instead of using three number of single phase transformers, a three phase transformer can be 

constructed as a single unit. The advantage of a single unit of 3-phase transformer is that the cost 

is much less compared to a bank of single phase transformers. In fact all large capacity 

transformers are a single unit of three phase transformer.  
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Figure 26.16: A conceptual three 

phase transformer. 

 
 

Figure 26.17: A practical core type 

three phase transformer. 
  

To understand, how it is constructed let us refer to figure 26.16. Here three, single phase transformers 

are so placed that they share a common central limb. The primary and the secondary windings of each 

phase are placed on the three outer limbs and appropriately marked. If the primary windings are 

connected to a balanced 3-phase supply (after connecting the windings in say star), the fluxes φA(t), 

φB(Bt) and φC(t) will be produced in the cores differing in time phase mutually by 120. The return 

path of these fluxes are through the central limb of the core structure. In other words the central limb 

carries sum of these three fluxes. Since instantaneous sum of the fluxes, φA(t)+ φB(Bt)+ φC(t) = 0, no 

flux lines will exist in the central limb at any time. As such the central common core material can be 

totally removed without affecting the working of the transformer. Immediately we see that 

considerable saving of the core material takes place if a 3-phase transformer is constructed as a single 

unit. The structure however requires more floor area as the three outer limbs protrudes outwardly in 

three different directions. 
 



A further simplification of the structure can be obtained by bringing the limbs in the same plane 

as shown in the figure 26.17. But what do we sacrifice when we go for this simplified structure? 

In core structure of figure 26.16, we note that the reluctance seen by the three fluxes are same, 

Hence magnetizing current will be equal in all the three phases. In the simplified core structure of 

figure 26.17, reluctance encountered by the flux φBB is different from the reluctance encountered 

by fluxes φA and φC, Hence the magnetizing currents or the no load currents drawn will remain 

slightly unbalanced. This degree of unbalanced for no load current has practically no influence on 

the performance of the loaded transformer. Transformer having this type of core structure is 

called the core type transformer. 

 

26.4 Vector Group of 3-phase transformer 

 

The secondary voltages of a 3-phase transformer may undergo a phase shift of either +30 
leading or -30 lagging or 0 i.e, no phase shift or 180 reversal with respective line or phase to 

neutral voltages. On the name plate of a three phase transformer, the vector group is mentioned. 

Typical representation of the vector group could be Yd1 or Dy11 etc. The first capital latter Y 

indicates that the primary is connected in star and the second lower case latter d indicates delta 

connection of the secondary side. The third numerical figure conveys the angle of phase shift 

based on clock convention. The minute hand is used to represent the primary phase to neutral 

voltage and always shown to occupy the position 12. The hour hand represents the secondary 

phase to neutral voltage and may, depending upon phase shift, occupy position other than 12 as 

shown in the figure 26.18. 
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Figure 26.18: Clock convention representing vector groups. 
 

The angle between two consecutive numbers on the clock is 30. The star-delta 

connection and the phasor diagram shown in the figures 26.10 and 26.11 correspond to Yd1. It 
can be easily seen that the secondary a phase voltage to neutral n (artificial in case of delta 
connection) leads the A phase voltage to neutral N by 30. However the star delta connection 

shown in the figure 26.19 correspond to Yd11. 
 

 



 

B
a

la
n

ce
d

 3
-p

h
a

se
 s

u
p

p
ly

 

  

A A1 A2 a2   a   

c2 a1 

 

     a1 A1   
 

B B1 B2 b2 b1 b 

c1 

n 

 
 

b2 

30º a2 
 

      N A2 B2 C2  
 

C 
C1 

C c2 c 
 

c 
  b1 

 

1 
   

 

 2   
C1 B1 

  
 

        
   

Figure 26.19: Connection and phasor diagram for Y d11. 

 
 

 

26.5 Tick the correct answer 

 

1. The secondary line to line voltage of a star-delta connected transformer is measured to be 

400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line 

to line voltage in the primary is: 
 

(A) 462 V (B) 346 V (C) 1386 V (D) 800 V 

 

2. The secondary line to line voltage of a delta-delta connected transformer is measured to 

be 400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied 

line to line voltage in the primary is: 
 

(A) 462 V (B) 346 V (C) 1386 V (D) 800 V 

 

3. The secondary line to line voltage of a delta-star connected transformer is measured to be 

400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line 

to line voltage in the primary is: 
 

(A) 800 V (B) 500 V (C) 1386 V (D) 462 V 

 

4. The secondary line current of a star-delta connected transformer is measured to be 100 A. 

If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the 

primary is: 
 

(A) 50 A (B) 28.9 A (C) 57.7 A (D) 60 A 

 

5. The secondary line current of a delta-star connected transformer is measured to be 100 A. 

If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the 

primary is: 
 

(A) 86.6 A   (B) 50 A (C) 60 A (D) 57.7 A 
 
 
 
 

 



6. The primary line current of an open delta connected transformer is measured to be 100 A. 

If the turns ratio between the primary and secondary coils 2 : 1, the line current in the 

primary is: 
 

(A) 173.2 A (B) 200 A (C) 150 A (D) 50 A 

 

7. Two single-phase transformers, each of rating 15 kVA, 200 V / 400 V, 50 Hz are 

connected in open delta fashion. The arrangement can supply safely, a balanced 3-phase 

load of: 
 

(A) 45 kVA (B) 25.9 kVA (C) 30 kVA (D) 7.5 kVA 

 

8. In figure 26.20 showing an incomplete 3-phase transformer connection, the reading of the 

voltmeter will be: 
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(A) 0 V  (B) 173.2 V   (C) 346.4 V (D) 300 V   
 

A A1 
N1 = 100 

A2 a2    N2 = 75 a1 
 

 

  
 

B B1  B2   
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C C1  C2 c2 c1  
  

 

Figure 26.20: 
  

26.6 Problems 

 

1. Three number of single phase ideal transformers, each of rating. 10kVA, 200V / 100V, 

50Hz is connected in star/delta fashion to supply a balanced three phase 20 kW, 0.8 power 

factor load at 100V(line to line). Draw a circuit diagram for this. Calculate (i) what line to 

line voltage should be applied to the primary side? (ii) Calculate the line and phase 

currents on the secondary and primary sides and indicate them on the diagram. 
 

2. How two identical single phase transformers each of rating 5kVA, 200V/100V, 50Hz be 

used to step down a balanced 3-phase, 200V supply to a balanced 3-phase, 100V supply? 

Explain with circuit and phasor diagrams. Calculate also the maximum kVA that can be 

supplied from this connection. 
 

3. A balanced 3-phase load of 20kW, 0.8 power factor lagging is to be supplied at a line to 

line voltage of 110V. However, a balanced 3-phase voltage of 381V (line to line) is 

available. Using three numbers of identical single phase ideal transformers each of rating 

10kVA, 220V/110V, 50Hz make an arrangement such that the above load can be 

supplied. Draw the circuit diagram and show the magnitude of currents in the lines and in 

the windings of the transformers on both LV and HV side. 
 
 
 

 



4. Refer to the following figure 26.21 which shows the windings of a 3-phase transformer. 
Primary turns per phase is 250. Each phase has got two identical secondary windings each 

having 100 turns. The primary windings are connected in star by shorting A2, B2B and C2 
and supplied from a balanced 3-phase 1000 V (line to line), 50 Hz source. 

 

a) If the secondary coils are connected by joining a2 with b3 and b4 with c1 then 

calculateVa1 c1 .  
b) All the 6 coils are connected in series in the following way: 

 

a2 joined with b2 b1 joined with c2 

c1 joined with c4 c3 joined with b4 

b3 joined with a3  
 

Draw the phasor diagram and calculate the voltage Va1 a4 
 
 

 

A1 A2 a1 a2 a3 a4 

B1 B2 b1 b2  b3 b4 

C1 C2 c1 c2 c3 c4  

 

Figure 26.21: 3-phase transformer with two secondary coils per phase 
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27.1 Goals of the lesson 

 

In this lesson we shall learn about the working principle of another type of transformer called 

autotransformer and its uses. The differences between a 2-winding and an autotransformer will 

be brought out with their relative advantages and disadvantages. At the end of the lesson some 

objective type questions and problems for solving are given. Key Words: tapping’s, conducted 

VA, transformed VA.  
After going through this section students will be able to understand the following. 
 

1. Constructional differences between a 2-winding transformer and an autotransformer. 
 

2. Economic advantages/disadvantages between the two types. 
 

3. Relative advantages/disadvantages of the two, based on technical considerations. 
 

4. Points to be considered in order to decide whether to select a 2-winding transformer or an 

autotransformer. 
 

5. The difference between an autotransformer and variac (or dimmerstat). 
 

6. The use of a 2-winding transformer as an autotransformer. 
 

7. The connection of three identical single phase transformers to be used in 3-phase system. 

 

27.2 Introduction 

 

So far we have considered a 2-winding transformer as a means for changing the level of a given 
voltage to a desired voltage level. It may be recalled that a 2- winding transformer has two 
separate magnetically coupled coils with no electrical connection between them. In this lesson we 
shall show that change of level of voltage can also be done quite effectively by using a single coil 
only. The idea is rather simple to understand. Suppose you have a single coil of 200 turns (= 

NBC) wound over a iron core as shown in figure 27.1. If we apply an a.c voltage of 400 V, 50 Hz 

to the coil (between points B and C), voltage per turn will be 400/200 = 2 V. If we take out a wire 
from one end of the coil say C and take out another wire tapped from any arbitrary point E, we 
would expect some voltage available between points E and C. The magnitude of the voltage will 

obviously be 2  NEC where NEC is the number of turns between points E and C. If tapping has 

been taken in such a way that NEC = 100, voltage between E and C would be 200 V. Thus we 

have been able to change 400 V input voltage to a 200 V output voltage by using a single coil 
only. Such transformers having a single coil with suitable tapings are called autotransformers.  

It is possible to connect a conventional 2-winding transformer as an autotransformer or 

one can develop an autotransformer as a single unit. 
 

B   

  B  
 

400 V 
Tapping 

400 V E 
 

E 
 

50 Hz output 50 Hz  
 

 C   
 

 
C 

C C 
 

   
  

Figure 27.1: Transformer with a single coil. 



27.3 2-winding transformer as Autotransformer 

 

Suppose we have a single phase 200V/100V, 50Hz, 10kVA two winding transformer with 

polarity markings. Then the coils can be connected in various ways to have voltage ratios other 

than 2 also, as shown in figure 27.2. 
 

50A  100A   50A 100A 
 

200V HV 100V LV HV 200V 
LV 

100V 
 

 
 

150A 
300V 

150A 
300V 300V 

150A 
300V 

150A 
 

    
 

100V LV 200V HV LV 100V HV 200V 
 

100A  50A   100A  50A 
 

(a)  (b)   (c)  (d) 
   

Figure 27.2: A two winding transformer connected as an autotransformer in 

various ways. 
 

Let us explain the one of the connections in figure 27.2(a) in detail. Here the LV and the HV 

sides are connected in additive series. For rated applied voltage (100V) across the LV winding, 

200V must be induced across the HV winding. So across the whole combination we shall get a 

voltage of 300V. Thus the input voltage is stepped up by a factor of 3 (300 V/100 V). Now how 

much current can be supplied to a load at 300 V? From the given rating of the transformer we  

know, IHV rated = 50 A and ILV rated = 100 A. Therefore for safe operation of the transformer, these 
rated currents should not be exceeded in HV and LV coils. Since the load is in series with the  
HV coil, 50A current can be safely supplied. But a current of 50A in the HV demands that the LV 

winding current must be 100A and in a direction as shown, in order to keep the flux in the core 

constant. Therefore by applying KCL at the junction, the current drawn from the supply will be 

150A. Obviously the kVA handled by the transformer is 30 kVA and without overloading either 

of the windings. It may look a bit surprising because as a two winding transformer its rating is 

only 10 kVA. The explanation is not far to seek. Unlike a two winding transformer, the coils here 

are connected electrically. So the kVA transferred from supply to the load side takes place both 

inductively as well as conductively – 10kVA being transferred inductively and remaining 20kVA 

transferred conductively. The other connections shown in (b), (c) and (d) of figure 27.2 can 

similarly explained and left to the reader to verify. 
 

27.4 Autotransformer as a single unit 
 

Look at the figure 27.3 where the constructional features of an auto transformer is shown. The 
core is constructed by taking a rectangular long strip of magnetic material (say CRGO) and rolled 
to give the radial thickness. Over the core, a continuous single coil is wound the free terminals of 
which are marked as C and A. A carbon brush attached to a manually rotating handle makes 
contact with different number of turns and brought out as a terminal, marked E. The number of 

turns between E & C, denoted by NEC can be varied from zero to a maximum of total number of 

turns between A & C i.e, NAC. The output voltage can be varied smoothly from zero to the value 

of the input voltage simply by rotating the handle in the clockwise direction. 

 



 

Core   
 

E A  
 

Moving handle Fixed input E 
 

Carbon brush  
Variable output 

 

  
 

 C  
 

C   A   
 

Figure 27.3: Autotransformer or Figure 27.4: Schematic representation 
 

Variac. of autotransformer.  
  

 

This type of autotransformers are commercially known as varic or dimmerstat and is an 

important piece of equipment in any laboratory. 

Now we find that to change a given voltage V1 to another level of voltage V2 and to 

transfer a given KVA from one side to the other, we have two choices namely by using a Two 
Winding Transformer or by using an Autotransformer. There are some advantages and 
disadvantages associated with either of them. To understand this aspect let us compare the two 
types of transformers in equal terms. Let, 
 

Input voltage = V1 

Output voltage required across the load = V2 

Rated current to be supplied to the load = I2 

Current drawn from the supply at rated condition = I1 

KVA to be handled by both types of transformers = V1I1 = V2I2 

 

The above situation is pictorially shown in figures 27.5(a) and (b). Let for the two winding 

transformer, 
 

For the two winding transformer:   

Primary number of turns = N1 

Secondary number of turns = N2 

For the autotransformer:   

Number of turns between A & C = N1 

Number of turns between E & C = N2 

Therefore, number of turns between A & E = N1 – N2 

 
 
 
 

 



I1 I2 
A 

I1  
 

    
 

V1 V2 V1 

 I2 
 

 E 
 

  I2 – I1 
V2  

    
 

    C 
 

 (a)   (b) 
   

Figure 27.5: A two winding transformer and an autotransformer 

of same rating. 

 

Let us now right down the mmf balance equation of the transformers. 
 
 

For the two winding transformer:   

MMF balance equation is N1I1 = N2I2 

For the autotransformer:   

MMF balance equation is (N1 – N2)I1 = N2(I2 – I1) 

or, N1I1 = N2I2 
 

It may be noted that in case of an autotransformer, the portion EC is common between the 

primary and the secondary. At loaded condition current flowing through NEC is (I2 – I1). 

Therefore, compared to a two winding transformer lesser cross sectional area of the conductor in 
the portion EC can be chosen, thereby saving copper. We can in fact find out the ratio of amount 
of copper required in two types of transformers noting that the volume of copper required will be 
proportional to the product of current and the number of turns of a particular coil. This is because, 
length of copper wire is proportional to the number of turns and crossectional area of wire is 
proportional to the current value i.e., 
 

Volume of copper length of the wire × cross sectional area of copper wire  
N × I 

 

Hence,       
 

Amount of copper required in an autotransformer 
= 

 N1 - N 2  I1 + N 2 I 2 - I1  
 

Amount of copper required in a two winding transformer N I + N I 
2 

 

 
 

  1 1 2  
 

Noting that N1I1 = N2 I2 = 
2N1 I1 - 2N2 I1    

 

2N1 I1 
    

 

      
 N - N 

= 1 2  
 
 

 



=  1- 
1

a where, a is the turns ratio. 
 
 

Here we have assumed that N1 is greater than N2 i.e., a is greater than 1. The savings will 

of course be appreciable if the value of a is close to unity. For example if a = 1.2, copper required 

for autotransformer will be only 17% compared to a two winding transformer, i.e, saving will be 

about 83%. On the other hand, if a = 2, savings will be only 50%. Therefore, it is always 

economical to employ autotransformer where the voltage ratio change is close to unity. In fact 

autotransformers could be used with advantage, to connect two power systems of voltages say 11 

kV and 15 kV.  
Three similar single units of autotransformers could connected as shown in the figure 27.6 

to get variable balanced three phase output voltage from a fixed three phase voltage. Such 

connections are often used in the laboratory to start 3-phase induction motor at reduced voltage. 
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Figure 27.6: 3 – phase autotransformer connection 

 

Apart from being economical, autotransformer has less leakage flux hence improved 

regulation. Copper loss in the common portion of the winding will be less, so efficiency will be 

slightly more. However its one major disadvantage is that it can not provide isolation between 

HV and LV side. In fact, due to an open circuit in the common portion between E & C, the 

voltage on the load side may soot up to dangerously high voltage causing damage to equipment. 

This unexpected rise in the voltage on the LV side is potentially dangerous to the personnel 

working on the LV side. 
 

 

27.5 Tick the correct answers 

 

1. Savings of copper, in an autotransformer will be significant over a two winding 

transformer of same rating when the ratio of the voltages is 

 

(A) ≈ 1 (B) >> 1 (C) = 1 (D) << 1 

 

2. 110 V, 50 Hz single phase supply is needed from a 220 V, 50 Hz source. The ratio of 

weights of copper needed for a two winding and an autotransformer employed for the 

purpose is: 

 



(A) 2 (B) 0.5 (C) 4 (D) 0.25 

 

3. The two winding transformer and the autotransformer of the circuit shown in Figure 27.7 

are ideal. The current in the section BC of the autotransformer is 
 

(A) 28 A from B to C (B) 12 A from C to B 

(C) 28 A from C to B (D) 12 A from B to C 

 A 

N1=200 NBC=20 

N2=100 NBA=30 

10A B 

200 V   

50 Hz 
C 

 

 
 

 N1 : N2 
 

 Figure 27.7: 
 

 

4. A 22 kVA, 110 V/ 220 V, 50 Hz transformer is connected in such away that it steps up 

110 V supply to 330 V. The maximum kVA that can be handled by the transformer is 
 

(A) 22 kVA (B) 33 kVA (C) 11 kVA (D) 5.5 kVA 

 

27.6 Problems 

 

1. The following figure 27.8 shows an ideal autotransformer with number of turns of various 

sections as NAB = 100, NCB = 60 and NDB = 80. Calculate the current drawn from the 

supply and the input power factor when the supply voltage is 400V, 50Hz. 
 
 
 
 
 
 
 
 
 

 

 60 Ω 
 

D C  20 Ω 
 

A 
B  

 
  

 

400 V  

50 Hz 
 

Figure 27.8: 
 



 

2. An ideal autotransformer steps down a 400 V, single phase voltage to 200 V, single phase 

voltage. Across the secondary an impedance of (6 + j8)Ω is connected. Calculate the 
currents in all parts of the circuit. 

 
3. Calculate the values of currents and show their directions in the various branches of a 3-

phase, star connected autotransformer of ratio of 400 / 500 V and loaded with 600 kW at 

0.85 lagging. Autotransformer may be considered to be ideal. It may be noted that, unless 

otherwise specified, voltage value of a 3-phase system corresponds to line to line voltage. 
 

 

4. A delta-star connected 3-phase transformer is supplied with a balanced 3-phase, 400 V 

supply as shown in figure 27.9. A 3-phase auto transformer is fed from the output of the 

3-phase transformer. Finally the at the secondary of the autotransformer a balanced 3-

phase load is connected. The per phase primary and secondary turns of both the 

transformers are given in figure 27.9. 
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 Figure 27.9: 
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Calculate line to line voltage at which the load receives power. If the load draws 10 A current, 

calculate currents (a) in the section XZ & ZY of the autotransformer and (b) line currents and 

coil currents of both the sides of the 3-phase, delta-star connected transformer. 
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Three-phase Induction Motor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rotating Magnetic Field 

in Three-phase 

Induction Motor 

 

 

In the previous module, containing six lessons (23-28), mainly, the study of the single-

phase two-winding Transformers – a static machine, fed from ac supply, has been 

presented. In this module, containing six lessons (29-34), mainly, the study of Induction 

motors, fed from balanced three-phase supply, will be described. 
 

In this (first) lesson of this module, the formation of rotating magnetic field in the air 

gap of an induction motor, is described, when the three-phase balanced winding of the 

stator is supplied with three-phase balanced voltage. The balanced winding is of the same 

type, as given in lesson no. 18, for a three-phase ac generator. 
 

Keywords: Induction motor, rotating magnetic field, three-phase balanced winding, and 

balanced voltage. 
 

After going through this lesson, the students will be able to answer the following 

questions: 
 

1. How a rotating magnetic field is formed in the air gap of a three-phase Induction 

motor, when the balanced winding of the stator is fed from a balanced supply? 
 

2. Why does the magnitude of the magnetic field remain constant, and also what is the 

speed of rotation of the magnetic field, so formed? Also what is meant by the term 

‘synchronous speed’? 

 

 

 

 
 



Three-phase Induction Motor 
 

A three-phase balanced winding in the stator of the Induction motor (IM) is shown in 

Fig. 29.1 (schematic form). In a three-phase balanced winding, the number of turns in 

three windings, is equal, with the angle between the adjacent phases, say R & Y, is 120 
(electrical). Same angle of 120 (elec.) is also between the phases, Y & B.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A three-phase balanced voltage, with the phase sequence as R-Y-B, is applied to the 

above winding. In a balanced voltage, the magnitude of the voltage in each phase, 

assumed to be in star in this case, is equal, with the phase angle of the voltage between the 

adjacent phases, say R & Y, being120 . 



 
 
 

Rotating Magnetic Field 
 

The three phases of the stator winding (balanced) carry balanced alternating 

(sinusoidal) currents as shown in Fig. 29.2. 
 
 

Axis of phase B  
 

 R 
θ 

 

Y′ 
 

 

 B′ 
 

 120  
 

 120 

Axis of phase R 
 

B 120 
 

 
 

Y 

 

R′ 
 

 

Axis of phase Y 
 

Fig. 29.2: The relative location of the magnetic axis of three phases. 
 

iR   I m cos ω t 
 

iY   I m cos (ω t −120) 
 

iB   I m cos (ω t  120)  I m cos (ω t − 240) 
 

Please note that the phase sequence is R-Y-B. I m is the maximum value of the phase 

currents, and, as the phase currents are balanced, the rms values are equal ( I R  IY  I B ). 
 

Three pulsating mmf waves are now set up in the air- gap, which have a time phase 

difference of 120 from each other. These mmf’s are oriented in space along the magnetic 

axes of the phases, R, Y & B, as illustrated by the concentrated coils in Fig. 29.2. Please 

note that 2-pole stator is shown, with the angle between the adjacent phases, R & Y as 

120 , in both mechanical and electrical terms. Since the magnetic axes are located 120 
apart in space from each other, the three mmf’s are expresses mathematically as 

 

FR   Fm cos ω t cos θ  

FY   Fm cos (ω t −120) cos (θ −120) 
 

FB   Fm cos (ω t  120) cos (θ  120) 
 

wherein it has been considered that the three mmf waves differ progressively in time 

phase by 120 , i.e. 2π / 3 rad (elect.), and are separated in space phase by 120 , i.e.  

2π / 3 rad (elect.). The resultant mmf wave, which is the sum of three pulsating mmf 

waves, is 



 
 

 

F  FR  FY   FB 
 

Substituting the values, 

F (θ , t)  

 Fm [cos ω t cos θ  cos (ω t −120) cos (θ −120)  cos (ω t  120) cos (θ  

120)] The first term of this expression is
cos ω t cos θ  0.5 [cos (θ − ω t)  cos (θ  ω t)] 

The second term is 

cos (ω t − 120) cos (θ − 120)  0.5 [cos (θ − ω t)  cos (θ  ω t − 240)]  
Similarly, the third term can be rewritten in the form shown.  
The expression is 

F (θ , t)  1.5 Fm cos (θ − ω t)  

 0.5 Fm cos (θ  ω t)  cos (θ  ω t − 240)  cos (θ  ω t  

240) Note that
cos (θ  ω t − 240)  cos (θ  ω t  120) , and 

cos (θ  ω t  240)  cos (θ  ω t − 120) . 
If these two terms are added, then 

cos (θ  ω t  120)  cos (θ  ω t − 120)  − cos (θ  ω t)  
So, in the earlier expression, the second part of RHS within the capital bracket is zero. In 

other words, this part represents three unit phasors with a progressive phase difference of 

120 , and therefore add up to zero. Hence, the resultant mmf is  

F (θ ,t)  1.5 Fm cos (θ − ω t)  

So, the resultant mmf is distributed in both space and time. It can be termed as a rotating 

magnetic field with sinusoidal space distribution, whose space phase angle changes 

linearly with time as ω t . It therefore rotates at a constant angular speed of ω rad 

(elect.)/s. This angular speed is called synchronous angular speed (ωs ).  

The peak value of the resultant mmf is Fpeak  1.5 Fm . The value of Fm depends on No. of 

turns/phase, winding current, No. of poles, and winding factor. At ω t  0 , i.e. when the 

current in R phase has maximum positive value, F (θ , 0)  1.5 Fm cos θ , i.e. the  

mmf wave has its peak value (at θ  0 ) lying on the axis of R phase, when it carries 

maximum positive current. At ω t  2π / 3 (120) , the phase Y (assumed lagging) has its  

positive current maximum, so that the peak of the rotating magnetic field (mmf) lying on 

the axis of Y phase. By the same argument, the peak of the mmf coincides with the axis of 

phase B at ω t  4π / 3 (240) . It is, therefore, seen that the resultant mmf moves from  
the axis of the leading phase to that of the lagging phase, i.e. from phase R towards phase 

Y, and then phase B, when the phase sequence of the currents is R-Y-B (R leads Y, and Y 

leads B). As described in brief later, the direction of rotation of the resultant mmf is 

reversed by simply changing the phase sequence of currents.  
From the above discussion, the following may be concluded: Whenever a balanced 

three-phase winding with phases distributed in space so that the relative space angle 
between them is 2π / 3 rad (elect.) 120, is fed with balanced three-phase currents with  

relative phase difference of 2π / 3 rad (elect.) 120, the resultant mmf rotates in the air-

gap at an angular speed of ωs  2π ( f / p) , where f is the frequency (Hz) of currents 

 

 



and p is No. of pairs of poles for which the winding is designed. The synchronous speed 

in rpm (r/min) is N s  ωs (60 / 2π )  60 ( f / p) . The direction of rotation of the mmf is  
from the leading phase axis to lagging phase axis. This is also valid for q-phase balanced 

winding, one value of which may be q  2 (two). For a 2-phase balanced winding, the  

time and phase angles are (π / 2) rad or 90 (elect.). 
 

Alternatively, this production of rotating magnetic field can be shown by the 

procedure described. As stated earlier, the input voltage to three-phase balanced winding 

of the stator is a balanced one with the phase sequence (R-Y-B). This is shown in the 

sinusoidal voltage waveforms of the three phases, R, Y & B (Fig. 29.3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A two-pole, three-phase balanced winding in the stator of IM is shown in Fig. 29.4(i)-

(a-d), where the winding of each phase, say for example, ( R − R′ ) is assumed to be 

concentrated in one slot each, both for forward and return conductors, with required no. as 

needed. Same is the case for other two phases. Please note that the angle of 120 is same 

in both mechanical (as shown) and also electrical terms, as no. of poles is two only. The 

two (forward and return) parts of the winding in each phase, say R are referred as R and R′ 
respectively. So, also for two other phases, Y & B as shown.  

Let us first consider, what happens at the time instant t1 , of the voltage waveforms as 

given in Fig. 29.3. At this instant, the voltage in the R-phase is positive maximum (θ1  

90 ), while the two other voltages in the phases, Y & B are half of the maximum 

value, and also negative. The three waveforms are represented by the following equations:  

eRN   Em sinθ ; eYN   Em sin (θ −120) ; eBN   Em sin (θ  120)  
where,  

θ  ω t (rad)  
f = Supply frequency (Hz or c/s) 



 
 

 

ω  2π f  = Angular frequency (rad/s) 

Em = Maximum value of the voltage, or induced emf in each phase 
 

The currents in three windings are shown in Fig. 29.4(a)-(i). For (θ1  90 ), the current in 
 

R-phase in positive maximum, while the currents in both Y and B phases are negative, 

with magnitude as half of maximum value (0.5). The fluxes due to the currents in the 

windings are shown in Fig. 29.4(a)-(ii). It may be noted that ΦR is taken as reference,  

while ΦY   leads ΦR  by 60 and ΦB  lags ΦR  by 60 , as can be observed from the 
 

direction of currents in all three phases as given earlier. If the fluxes are added to find the 

resultant in phasor form, the magnitude is found as (1.5 ⋅ Φ ). It may be noted that this 

magnitude is same as that found mathematically earlier. Its direction is also shown in 

same figure. The resultant flux is given by,  

Φ R ∠0 ΦY ∠60 Φ B ∠ − 60 (Φ  2 ⋅ (0.5 ⋅ Φ) ⋅ cos60) ⋅1∠0 (1.5 ⋅ Φ) ∠0 
 

Now, let us shift to the instant, t2  (θ2   120 ) as shown in Fig. 29.3. The voltages in   

the two phases, R & B are (  3 / 2  0.866 ) times the maximum value, with R-phase as 

positive and B-phase as negative. The voltage in phase Y is zero. This is shown in Fig. 

29.4(b)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(b)-(ii). 

As given earlier, ΦR is taken as reference here, while ΦB lags ΦR by 60 . Please note  

the direction of the currents in both R and B phases. If the fluxes are added to find the 

resultant in phasor form, the magnitude is found as (1.5 ⋅ Φ ). The direction is shown in 

the same figure. The resultant flux is given by,  

Φ R ∠0 Φ B ∠ − 60 (Φ R ∠30 Φ B ∠ − 30) ⋅1.0 ∠ − 30  

 (2 ⋅ (0.866 ⋅ Φ) ⋅ cos 30)⋅1∠ − 30  (1.5 ⋅ Φ) ∠ − 30 .  

It may be noted that the magnitude of the resultant flux remains constant, with its 

direction shifting by 30 120 − 90 in the clockwise direction from the previous 

instant. 

Similarly, if we now shift to the instant, t3  (θ3   150 ) as shown in Fig. 29.3. The  

voltage in the B- phase is negative maximum, while the two other voltages in the phases, 

R & Y, are half of the maximum value (0.5), and also positive. This is shown in Fig. 

29.4(c)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(c)-(ii). 

The reference of flux direction ( ΦR ) is given earlier, and is not repeated here. If the  

fluxes are added to find the resultant in phasor form, the magnitude is found as (1.5 ⋅ Φ ). 

The direction is shown in the same figure. The resultant flux is given by,  

Φ R ∠0 ΦY ∠ −120 Φ B ∠ − 60 (Φ B ∠0 Φ R ∠60 ΦY ∠ − 60) ⋅1.0 ∠ − 60  

 (Φ  2 ⋅ (0.5 ⋅ Φ) ⋅ cos 60) ⋅1∠ − 60  (1.5 ⋅ Φ) ∠ − 60 .  
It may be noted that the magnitude of the resultant flux remains constant, with the 

direction shifting by another 30 in the clockwise direction from the previous instant.  

If we now consider the instant, t4  (θ4   180 ) as shown in Fig. 29.3. The voltages in   

the two phases, Y & B are (  3 / 2 = 0.866) times the maximum value, with Y-phase as 

positive and B-phase as negative. The voltage in phase R is zero. This is shown in Fig. 

29.4(d)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(d)-(ii). 
 
 
 

 



If the fluxes are added to find the resultant in phasor form, the magnitude is found as (1.5 

⋅ Φ ). The direction is shown in the same figure. The resultant flux is given by, 

ΦY ∠ −120 Φ B ∠ − 60 (ΦY ∠ − 30 Φ B ∠30) ⋅1∠ − 90  

 (2 ⋅ (0.866 ⋅ Φ) ⋅ cos 30) ⋅1∠ − 90  (1.5 ⋅ Φ) ∠ − 90 .  
It may be noted that the magnitude of the resultant flux remains constant, with its 

direction shifting by another 30 in the clockwise direction from the previous instant. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A study of the above shows that, as we move from t1 (θ1  90 ) to t4 (θ4  180 ) 
along the voltage waveforms (Fig. 29.3), the magnitude of the resultant flux remains  

constant at the value (1.5 ⋅ Φ ) as shown in Fig. 29.4(ii)-(a-d). If another point, say t5 (θ5 

 210 ) is taken, it can be easily shown that the magnitude of the resultant flux at  

that instant remains same at (1.5 ⋅ Φ ), which value is obtained mathematically earlier. If 

any other arbitrary point, t (θ ) on the waveform is taken, the magnitude of the resultant  

flux at that instant remains same at (1.5 ⋅ Φ ). Also, it is seen that the axis of the resultant 

flux moves through 90 , as the angle, θ changes from 90 to 180 , i.e. by the same angle 

of 90 . So, if we move through one cycle of the waveform, by 360 (electrical), the axis 

of the resultant flux also moves through 360 (2-pole stator), i.e. one complete revolution. 

The rotating magnetic field moves in the clockwise direction as shown, from phase R to 

phase Y. Please note that, for 2-pole configuration as in this case, the mechanical and 

electrical angles are same. So, the speed of the rotating magnetic field for this case is 50 

rev/sec (rps), or 3,000 rev/min (rpm), as the supply frequency is 50 Hz or c/s, with its 

magnitude, i.e. resultant, remaining same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Four-Pole Stator 
 

A 4-pole stator with balanced three-phase winding (Fig. 29.5) is taken as an example. 

The winding of each phase (one part only), say for example, ( R1 − R1′ ) is assumed to be  
concentrated in one slot each, both for forward and return conductors, with required no. as 

needed. Same is the case for other two phases. The connection of two parts of the winding 
in R-phase, is also shown in the same figure. The windings for each of three phases are in 

two parts, with the mechanical angle between the start of adjacent windings being 60 
only, whereas the electrical angle remaining same at 120 . As two pairs of poles are 

there, electrically two cycles, i.e. 720 are there for one complete revolution, with each N-

S pair for one cycle of 360 , but the mechanical angle is only 360 . If we move through 

one cycle of the waveform, by 360 (electrical), the axis of the resultant flux in this case 

moves through a mechanical angle of 180 , i.e. one pole pair ( 360 - elec.), or half 

revolution only. As stated earlier, for the resultant flux axis to make one complete 

revolution ( 360 - mech.), two cycles of the waveform ( 720 - elec.), are required, as No. 

of poles ( p ) is four (4). So, for the supply frequency of f  50 Hz (c/s),  
the speed of the rotating magnetic field is given by, 

 

ns   (2 ⋅ f ) / p  f /( p / 2)  50 /(4 / 2)  25 rev/sec (rps), or N s   1,500 rev/min (rpm).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The relation between the synchronous speed, i.e. the speed of the rotating magnetic field, 

in rpm and the supply frequency in Hz, is given by  

N s   (60  2 ⋅ f ) / p  (120 ⋅ f ) / p  
To take another example of a 6 -pole stator, in which, for 50 Hz supply, the synchronous 

speed is 1,000 rpm, obtained by using the above formula. 



 
 

 

The Reversal of Direction of Rotating Magnetic Field  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The direction of the rotating magnetic field is reversed by changing the phase 

sequence to R-B-Y, i.e. changing only the connection of any two of the three phases, and 

keeping the third one same. The schematic of the balanced three-phase winding for a 2-

pole stator, with the winding of each phase assumed to be concentrated in one slot, is 

redrawn in Fig. 29.6, which is same as shown in Fig. 29.4(i) (a -d) . The space phase 

between the adjacent windings of any two phases (say R & Y, or R & B) is 120 , i.e. 2π / 

3 rad (elect.), as a 2-pole stator is assumed. Also, it may be noted that, while the  
connection to phase R remains same, but the phases, Y and B of the winding are now 

connected to the phases, B and Y of the supply respectively. The waveforms for the above 

phase sequence (R-B-Y) are shown in Fig. 29.7. Please note that, the voltage in phase R 

leads the voltage in phase B, and the voltage in phase B leads the voltage in phase Y. As 

compared to the three waveforms shown in Fig. 29.3, the two waveforms of the phases Y 

& B change, while the reference phase R remains same, with the phase sequence reversed 

as given earlier. The currents in three phases of the stator winding are  

iR   I m cosω t  

iY   I m cos (ω t  120) 
 

iB   I m cos (ω t −120)  I m cos (ω t  240) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Without going into the details of the derivation, which has been presented in detail earlier, 

the resultant mmf wave is obtained as 

F (θ , t)  FR  FY   FB 

 Fm cos ω t cos θ  cos (ω t  120) cos (θ −120)  cos (ω t −120) cos (θ  

120) As shown earlier, the first term of this expression is
cos ω t cos θ  0.5 [cos (θ  ω t)  cos (θ − ω t)] 

The second term is 

cos (ω t  120) cos (θ − 120)  0.5 [cos (θ  ω t)  cos (θ − ω t − 240)]  
Similarly, the third term can be rewritten in the form shown.  
The expression is 

F (θ , t)  1.5 Fm cos (θ  ω t)  

 0.5 Fm cos (θ − ω t)  cos (θ − ω t − 240)  cos (θ − ω t  240) 
As shown or derived earlier, the expression, after simplification, is 

F (θ , t)  1.5 Fm cos (θ  ω t)  
Note that the second part of the expression within square bracket is zero.  

It can be shown that the rotating magnetic field now moves in the reverse (i.e., 

anticlockwise) direction (Fig. 29.6), from phase R to phase B (lagging phase R by 120) ,  
which is the reverse of earlier (clockwise) direction as shown in Fig. 29.4(i), as the phase 

sequence is reversed. This is also shown in the final expression of the resultant mmf 

wave, as compared to the one derived earlier. Alternatively, the reversal of direction of 

the rotating magnetic field can be derived by the procedure followed in the second 

method as given earlier. 
 

In this lesson – the first one of this module, it has been shown that, if balanced three-

phase voltage is supplied to balanced three-phase windings in the stator of an Induction 

motor, the resultant flux remains constant in magnitude, but rotates at the synchronous 

speed, which is related to the supply frequency and No. of poles, for which the winding 

(stator) has been designed. This is termed as rotating magnetic field formed in the air gap 

of the motor. The construction of three-phase induction motor (mainly two types of rotor 

used) will be described, in brief, in the next lesson, followed by the principle of operation. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               UNIT-4 

 

Three-phase Induction Motor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Construction and 

Principle of Operation of 

IM 

 

In the previous, i.e. first, lesson of this module, the formation of rotating magnetic 

field in the air gap of an induction motor (IM), has been described, when the three-phase 

balanced winding of the stator is supplied with three-phase balanced voltage. The 

construction of the stator and two types of rotor − squirrel cage and wound (slip-ring) one, 

used for three-phase Induction motor will be presented. Also described is the principle of 

operation, i.e. how the torque is produced. 
 

Keywords: Three-phase induction motor, cage and wound (slip-ring) rotor, synchronous 

and rotor speed, slip, induced voltages in stator winding and rotor 

bar/winding. 
 

After going through this lesson, the students will be able to answer the following 

questions: 
 

1. How would you identify the two types (cage and wound, or slip-ring) of rotors in 

three-phase induction motor? 
 

2. What are the merits and demerits of the two types (cage and wound, or slip-ring) of 

rotors in IM? 
 

3. How is the torque produced in the rotor of the three-phase induction motor? 
 

4. How does the rotor speed differ from synchronous speed? Also what is meant by the 

term ‘slip’? 
 

Construction of Three-phase Induction Motor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



This is a rotating machine, unlike the transformer, described in the previous module, 

which is a static machine. Both the machines operate on ac supply. This machine mainly 

works as a motor, but it can also be run as a generator, which is not much used. Like all 

rotating machines, it consists of two parts − stator and rotor. In the stator (Fig. 30.1), the 

winding used is a balanced three-phase one, which means that the number of turns in each 

phase, connected in star/delta, is equal. The windings of the three phases are placed 120 
(electrical) apart, the mechanical angle between the adjacent phases being [ (2 120) / p ], 

where p is no. of poles. For a 4-pole (p = 4) stator, the mechanical angle 



 
 

 

between the winding of the adjacent phases, is [(2 120) / 4]  120 / 2  60 , as shown  

in Fig. 29.4. The conductors, mostly multi-turn, are placed in the slots, which may be 

closed, or semi-closed, to keep the leakage inductance low. The start and return parts of 

the winding are placed nearly 180 , or (180 − β ) apart. The angle of short chording ( β )  

is nearly equal to 30 , or close to that value. The short chording results in reducing the 

amount of copper used for the winding, as the length of the conductor needed for 

overhang part is reduced. There are also other advantages. The section of the stampings 

used for both stator and rotor, is shown in Fig. 30.2. The core is needed below the teeth to 

reduce the reluctance of the magnetic path, which carries the flux in the motor (machine). 

The stator is kept normally inside a support.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are two types of rotor used in IM, viz. squirrel cage and wound (slip-ring) one. 

The cage rotor (Fig. 30.3a) is mainly used, as it is cheap, rugged and needs little or no 

maintainance. It consists of copper bars placed in the slots of the rotor, short circuited at 

the two ends by end rings, brazed with the bars. This type of rotor is equivalent to a 

wound (slip-ring) one, with the advantage that this may be used for the stator with 

different no. of poles. The currents in the bars of a cage rotor, inserted inside the stator, 

follow the pattern of currents in the stator winding, when the motor (IM) develops torque, 

such that no. of poles in the rotor is same as that in the stator. If the stator winding of IM 

is changed, with no. of poles for the new one being different from the earlier one, the cage 

rotor used need not be changed, thus, can be same, as the current pattern in the rotor bars 

changes. But the no. of poles in the rotor due to the above currents in the bars is same as 

no. of poles in the new stator winding. The only problem here is that the equivalent 

resistance of the rotor is constant. So, at the design stage, the value is so chosen, so as to 

obtain a certain value of the starting torque, and also the slip at full load torque is kept 

within limits as needed.  
The other type of rotor, i.e., a wound rotor (slip ring) used has a balanced three-phase 

winding (Fig. 30.3b), being same as the stator winding, but no. of turns used depends on 

the voltage in the rotor. The three ends of the winding are brought at the three slip-rings, 

at which points external resistance can be inserted to increase the starting torque 

requirement. Other three ends are shorted inside. The motor with additional starting 



 
 

 

resistance is costlier, as this type of rotor is itself costlier than the cage rotor of same 

power rating, and additional cost of the starting resistance is incurred to increase the 

starting torque as required. But the slip at full load torque is lower than that of a cage rotor 

with identical rating, when no additional resistance is used, with direct short-circuiting at 

the three slip-ring terminals. In both types of rotor, below the teeth, in which bars of a 

cage rotor, or the conductors of the rotor winding, are placed, lies the iron core, which 

carries the flux as is the case of the core in the stator. The shaft of the rotor passes below 

the rotor core. For large diameter of the rotor, a spider is used between the rotor core and 

the shaft. For a wound (slip-ring) rotor, the rotor winding must be designed for same no. 

of poles as used for the stator winding. If the no. of poles in the rotor winding is different 

from no. of poles in the stator winding, no torque will be developed in the motor. It may 

be noted that this was not the case with cage rotor, as explained earlier.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The wound rotor (slip ring) shown in Fig. 30.3 (b) is shown as star-connected, 

whereas the rotor windings can also be connected in delta, which can be converted into its 

equivalent star configuration. This shows that the rotor need not always be connected in 

star as shown. The No. of rotor turns changes, as the delta-connected rotor is converted 

into star-connected equivalent. This point may be kept in mind, while deriving the 

equivalent circuit as shown in the next lesson (#31), if the additional resistance (being in 

star) is connected through the slip rings, in series with the rotor winding 



 
 
 
 
 
 

Principle of Operation 
 

The balanced three-phase winding of the stator is supplied with a balanced three-

phase voltage. As shown in the previous lesson (#29), the current in the stator winding 

produces a rotating magnetic field, the magnitude of which remains constant. The axis of 

the magnetic field rotates at a synchronous speed ( ns  (2 ⋅ f ) / p ), a function of the  
supply frequency (f), and number of poles (p) in the stator winding. The magnetic flux 

lines in the air gap cut both stator and rotor (being stationary, as the motor speed is zero) 

conductors at the same speed. The emfs in both stator and rotor conductors are induced at 

the same frequency, i.e. line or supply frequency, with No. of poles for both stator and 

rotor windings (assuming wound one) being same. The stator conductors are always 

stationary, with the frequency in the stator winding being same as line frequency. As the 

rotor winding is short-circuited at the slip-rings, current flows in the rotor windings. The 

electromagnetic torque in the motor is in the same direction as that of the rotating 

magnetic field, due to the interaction between the rotating flux produced in the air gap by 

the current in the stator winding, and the current in the rotor winding. This is as per 

Lenz’s law, as the developed torque is in such direction that it will oppose the cause, 

which results in the current flowing in the rotor winding. This is irrespective of the rotor 

type used − cage or wound one, with the cage rotor, with the bars short-circuited by two 

end-rings, is considered equivalent to a wound one The current in the rotor bars interacts 

with the air-gap flux to develop the torque, irrespective of the no. of poles for which the 

winding in the stator is designed. Thus, the cage rotor may be termed as universal one. 

The induced emf and the current in the rotor are due to the relative velocity between the 

rotor conductors and the rotating flux in the air-gap, which is maximum, when the rotor is 

stationary ( nr  0.0 ). As the rotor starts rotating in the same direction, as that of the  
rotating magnetic field due to production of the torque as stated earlier, the relative 

velocity decreases, along with lower values of induced emf and current in the rotor. If the 

rotor speed is equal that of the rotating magnetic field, which is termed as synchronous 

speed, and also in the same direction, the relative velocity is zero, which causes both the 

induced emf and current in the rotor to be reduced to zero. Under this condition, torque 

will not be produced. So, for production of positive (motoring) torque, the rotor speed 

must always be lower than the synchronous speed. The rotor speed is never equal to the 

synchronous speed in an IM. The rotor speed is determined by the mechanical load on the 

shaft and the total rotor losses, mainly comprising of copper loss. 
 

The difference between the synchronous speed and rotor speed, expressed as a ratio of 

the synchronous speed, is termed as ‘slip’ in an IM. So, slip (s) in pu is 

s  
ns  − nr  1 − 

nr  
or,  nr   (1 − s) ⋅ ns 

 

ns ns 
 

   
 

where, ns  and nr  are synchronous and rotor speeds in rev/s. 
 

In terms of N s  60  ns and Nr   60  nr , both in rev/min (rpm), slip is 
 

s  (N s − N r ) / Ns  

If the slip is expressed in %, then s  [(N s  − N r ) / N s ]100 
 

Normally, for torques varying from no-load (≈ zero) to full load value, the slip is pro-

portional to torque. The slip at full load is 4-5% (0.04-0.05). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An alternative explanation for the production of torque in a three-phase induction 

motor is given here, using two rules (right hand and left hand) of Fleming. The stator and 

rotor, along with air-gap, is shown in Fig. 30.4a. Both stator and rotor is shown there as 

surfaces, but without the slots as given in Fig, 30.2. Also shown is the path of the flux in 

the air gap. This is for a section, which is under North pole, as the flux lines move from 

stator to rotor. The rotor conductor shown in the figure is at rest, i.e., zero speed (stand-

still). The rotating magnetic field moves past the conductor at synchronous speed in the 

clockwise direction. Thus, there is relative movement between the flux and the rotor 

conductor. Now, if the magnetic field, which is rotating, is assumed to be at standstill as 

shown in Fig. 30.4b, the conductor will move in the direction shown. So, an emf is 

induced in the rotor conductor as per Faraday’s law, due to change in flux linkage. The 

direction of the induced emf as shown in the figure can be determined using Fleming’s 

right hand rule. 
 

As described earlier, the rotor bars in the cage rotor are short circuited via end rings. 

Similarly, in the wound rotor, the rotor windings are normally short-circuited externally 



via the slip rings. In both cases, as emf is induced in the rotor conductor (bar), current 

flows there, as it is short circuited. The flux in the air gap, due to the current in the rotor 

conductor is shown in Fig. 30.4c. The flux pattern in the air gap, due to the magnetic 

fields produced by the stator windings and the current carrying rotor conductor, is shown 

in Fig. 304d. The flux lines bend as shown there. The property of the flux lines is to travel 

via shortest path as shown in Fig. 30.4a. If the flux lines try to move to form straight line, 

then the rotor conductor has to move in the direction of the rotating magnetic field, but 

not at the same speed, as explained earlier. The current carrying rotor conductor and the 

direction of flux are shown in Fig. 30.4e. It is known that force is produced on the 

conductor carrying current, when it is placed in a magnetic field. The direction of the 

force on the rotor conductor is obtained by using Fleming’s left hand rule, being same as 

that of the rotating magnetic field. Thus, the rotor experiences a motoring torque in the 

same direction as that of the rotating magnetic field. This briefly describes how torque is 

produced in a three-phase induction motor. 
 

The frequency of the induced emf and current in the rotor 
 

As given earlier, both the induced emf and the current in the rotor are due to the 

relative velocity between the rotor conductors and the rotating flux in the air-gap, the 

speed of which is the synchronous speed ( N s  (120  f ) / p ). The rotor speed is 

N r   (1 − s) ⋅ N s  

The frequency of the induced emf and current in the rotor is 

f r  p ⋅ (ns − nr )  s ⋅ ( p ⋅ ns )  s ⋅ f  
For normal values of slip, the above frequency is small. Taking an example, with full load slip 

as 4% (0.04), and supply (line) frequency as 50 Hz, the frequency (Hz) of the rotor induced 

emf and current, is f r  0.04  50.0  2.0 , which is very small, whereas the frequency (f) of 

the stator induced emf and current is 50 Hz, i.e. line frequency. At standstill, i.e. rotor 

stationary ( nr  0.0 ), the rotor frequency is same as line frequency, as 
 

shown earlier, with slip [s = 1.0 (100%)]. The reader is requested to read the next lesson 

(#31), where some additional points are included in this matter. Also to note that the 

problems are given there (#31). 
 

In this lesson – the second one of this module, the construction of a three-phase 

Induction Motor has been presented in brief. Two types of rotor – squirrel cage and 

wound (slip-ring) ones, along with the stator part, are described. Then, the production of 

torque in IM, when the balanced stator winding is fed from balanced three-phase voltage, 

with the balanced rotor winding in a wound one being short -circuited, is taken up. In the 

next lesson, the equivalent circuit per phase of IM will be derived first. Then, the 

complete power flow diagram is presented. 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 UNIT4 
 

 

 

Three-phase Induction Motor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Torque-Slip (speed) 

Characteristics of 

Induction Motor (IM) 

 

 

Instructional Objectives 
 

฀ Derivation of the expression for the gross torque developed as a function of slip 

(speed) of Induction motor
฀ Sketch the above characteristics of torque-slip (speed), explaining the various features


฀ Derive the expression of maximum torque and the slip (speed) at which it occurs


฀ Draw the above characteristics with the variation in input (stator) voltage and rotor 

resistance
 

Introduction 

 

In the previous, i.e. third, lesson of this module, starting with the formulas for the 

induced emfs per phase in both stator and rotor windings, the equivalent circuit per phase 

of the three-phase induction motor (IM), has been derived. The relation between the rotor 

input, rotor copper loss and rotor output (gross) are derived next. Finally, the various 

losses − copper losses (stator/rotor), iron loss (stator) and mechanical loss, including the 
determination of efficiency, and also power flow diagram, are presented. In this lesson, 

firstly, the torque-slip (speed) characteristics of IM, i.e., the expression of the gross torque 

developed as a function of slip, will be derived. This is followed by the sketch of the 

different characteristics, with the variations in input (stator) voltage and rotor resistance, 

along with the features. Lastly, the expression of maximum torque developed and the slip 

(speed) at which it occurs, are derived. 
 

Keywords: The equivalent circuit per phase of IM, gross torque developed, torque-slip 

(speed) characteristics, maximum torque, slip at maximum torque, variation 

of the characteristics with changes in input (stator) voltage and rotor 

resistance. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

Gross Torque Developed 
 

The current per phase in the rotor winding (the equivalent circuit of the rotor, per 

phase is shown in Fig. 31.1) is (as given in earlier lesson (#31)) 
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Please note that the symbols used are same as given in the earlier lesson. 
In a similar way, the output power (gross) developed (W) is the loss in the fictitious 

resistance in the equivalent circuit as shown earlier, which is 
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The motor speed in rps is nr  (1 − s) ns      
 

The motor speed (angular) in rad/s is ωr  (1 − s) ω s     
 

The gross torque developed in N  m is       
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The synchronous speed (angular) is ω s  2π  ns    
 

The input power to the rotor (or the power transferred from the stator via air gap) is the 

loss in the total resistance ( r2 / s ), which is 

Pi   3  I 2  2 r2 / s  3 s E 2
 r / s  3 E 2

 r  s  
 

  r 2  r 2  
 

    ( r2 )
2
  (s  x2 )

2
   ( r2 )

2
  (s  x2 )

2
  

  

The relationship between the input power and the gross torque developed is Pi  ω s T0 

So, the input power is also called as torque in synchronous watts, or the torque is  

T0   Pi /ω s 
 

Torque-slip (speed) Characteristics 
 

The torque-slip or torque-speed characteristic, as per the equation derived earlier, is 

shown in Fig. 32.1. The slip is s  (ω s − ωr ) /ω s  (ns − nr ) / ns  1 − (nr / ns ) . The range 

of speed, nr is between 0.0 (standstill) and ns (synchronous speed). The range of slip is  

between 0.0 ( nr   ns ) and 1.0 ( nr   0.0 ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For low values of slip, r2   (s  x2 ) . So, torque is 
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r 
2

   r s 

 

3  E 
r 2 

 

s 
 

   2       
 

ω 
s 
 (r )

2
   ω 

s 
 r 

 

   2       2 
 

This shows that T0 s , the characteristic being linear. The following points may be 

noted. The output torque developed is zero (0.0), at s  0.0 , or if the motor is rotated at 

synchronous speed ( nr  ns ). This has been described in lesson No. 30, when the 



 
 

 

principle of operation was presented. Also, the slip at full load (output torque  (T0 ) fl ) is 
 

normally  4-5% ( s fl   0.04 − 0.05 ), the  full  load  speed  of  IM  being  95-96%  of 
 

synchronous speed ( (nr ) fl  (1 − s fl ) ns  (0.05 − 0.96) ns ). 
 

For large values of slip, r2   (s  x2 ) . So, torque is 
 

T0   3  E 2
 r  s  3  E 2

  r 
 

r 2  r  2  
 

       

 ω s   (s  x2 )
2
   ω s  s (x2 )

2
  

 

This shows that, T0 (1/ s) , the characteristic being hyperbolic. The starting torque ( s 

 1.0 , or nr  0.0 ) developed, along with starting current, is discussed later.  

So, starting from low value of slip ( s  0.0 ), at which torque is proportional to slip, 

whereas for large values of slip ( s  1.0 ), torque is inverse proportional to slip, both 

being derived earlier. In the characteristic shown, it may be observed that torque reaches a 

maximum value, which can be obtained in the following way. The relation between 

torque and slip is 

T0  

   K  r2   s   

where, K  3 Er  
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/ω s 
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2
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To determine the maximum value of torque (T0 ) in terms of slip, the minimum value 

of its inverse (1/ T0 ) need be determined from the relation, 

 d 1    1    r2    (x2 )
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or, s  r2 / x2  . 
 

  

(x2 ) 
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Please note that, for motoring condition as shown earlier, slip, s is positive (+ve), as nr  

ns . At this slip, s  sm , r2  sm x2 . This may be termed as slip at maximum torque.  

The motor speed is [ (nr )m   (1 − sm ) ns ]. This value of slip is small, for normal wound 
 

rotor (or slip ring) IM, without any additional resistance inserted in the rotor circuit. This 

value is higher in the case of squirrel cage IM. Substituting the value of s, the maximum 

value of torque is 

T0m   
 K 

 
3 (Er )

2
 
 

 1 
 

2 x2 ω s 2 x2 
 

   
 

which shows that it is independent of r2 . The maximum torque is also termed as pull-out  
torque. If the load torque on the motor exceeds this value, the motor will stall, i,e. will 

come to standstill condition.  
The values of maximum torque and the slip at that torque, can be obtained by using  

ds
d

 (T0 )  0.0 
  

which is not shown here. 



 
 

 

It may be observed from the torque-slip characteristic (Fig. 32.1), or described earlier, 

that the output torque developed increases, if the slip increases from 0.0 to sm , or the 
 

motor speed decreases from ns to (nr )m . This ensures stable operation of IM in this 

region ( 0.0  s  sm ), for constant load torque. But the output torque developed 

decreases, if the slip increases from sm to 1.0, or the motor speed decreases from (nr )m .to 

zero (0.0). This results in unstable operation of IM in this region ( sm  s  1.0 ), for 

constant load torque. However, for fan type loads with the torque as (TL (nr )
2
 ), stable 

operation of IM is achieved in this region ( sm  s  1.0 ). 
 

Starting Current and Torque 
 

The starting current (rotor) is  

(I 2 )st  
Er    

 

(r )
2
  (x 

 

)
2
 

 

  
2 

 

  2   
 

as slip at starting ( nr  0.0 ) is 1.0, which is the same at standstill (or stalling condition). 
  

The magnitude of the induced voltage per phase in the stator winding is nearly same as 

input voltage per phase fed to the stator, if the voltage drop in the stator impedance, being 

small, is neglected, i.e. Vs ≈ Es . As shown in the earlier lesson (#31), the ratio of the 

induced emfs per phase in the stator and rotor winding can be taken as the ratio of the 

effective turns  in  two  windings,  i.e.  E 
s 

/E 
r 
 T ′ / T ′ , where  T 

′
  k 

ws 
T 

s 
and 

 

T 
′
 
     s  r        s       

 

 k 
wr 

T . The winding factor for the stator winding is k 
ws 
 k 

ds 
k 

ps 
. Same formula is 

 

r  r                    
 

used for the above factor in the rotor winding, assuming it to be wound rotor one.    
 

 The starting current in the stator winding can be shown as (I 
s 
) 

st 
 (I 

r 
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st 
(T 

′
 / T 

′
 ) , 

 

                    r  s 
 

neglecting the no load current. This current is normally large, much greater than full load 
current. This current is reduced by using starters in both types (cage and wound rotor) of 
IM, which will be taken up in the next lesson.  

The starting torque in N  m is 
3 (E )
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This expression is obtained substituting s  1.0 in the expression of T0 derived earlier. If 

the starter is used, the starting torque is also reduced, as is the case with starting current. 
 

Torque-slip (speed) Characteristics,  
with variation in input (stator) voltage and rotor circuit resistance 

 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The set of torque-slip characteristics with variation in input (stator) voltage is shown 

in Fig. 32.2a. The point to note that the torque at a given slip decreases with the decrease  

in input (stator) voltage, as T0 V 
2
 . The characteristics shown are for decreasing stator 

voltages (V1  V2  V3 ). The speed decreases or the slip increases with constant load 

torque, as the input (stator) voltage decreases. The region for stable operation with 

constant load torque remains same ( 0.0  s  sm ), as given earlier. But again, stable  

operation can be obtained in the region ( sm  s  1.0 ), with fan type loads with the torque 

as (TL (nr )
2
 ). Another problem is that the maximum or pull-out torque decreases as (T0 

)m V 
2
 , where V is input (stator) voltage, which is a drawback with constant load torque 

operation.. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The set of torque-slip characteristics with variation in rotor circuit resistance is shown 

in Fig. 32.2b. The characteristics shown are for increasing rotor circuit resistances ( r2  

R2  R3  R4 ). The point to note that, the maximum torque remains same for all the  
characteristics. This has been shown earlier that the maximum torque depends on rotor 

reactance only, but not on rotor circuit resistance. Only the slip at maximum torque 

increases with the increase in rotor circuit resistance. So, for constant load torque 

operation, the slip increases or the speed decreases with the increase in rotor circuit 

resistance. The motor efficiency decreases, as the rotor copper loss increases with the 

increase in slip. The load torque remains same, but the output power decreases, as the 

speed decreases. Also, it may be observed that the starting torque increases with the 

increase in rotor circuit resistance, with the total rotor circuit resistance lower than rotor 

reactance. The starting torque is equal to the maximum torque, when the total rotor circuit 

resistance is equal to rotor reactance. If the rotor circuit resistance is more than rotor 

reactance, the starting torque decreases. 
 

In this lesson − the fourth one of this module, the expression of gross torque 
developed, as a function of slip (speed), in IM has been derived first. The sketches of the 

different torque-slip (speed) characteristics, with the variations in input (stator) voltage 

and rotor resistance, are presented, along with the explanation of their features. Lastly, the 

expression of maximum torque developed and also the slip, where it occurs, have been 

derived. In the next lesson, the various types of starters used in IM will be presented, 

along with the need of the starters, followed by the comparison of the starting current and 

torque developed using the starters. 
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Three-phase Induction Motor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Different Types of 

Starters for Induction 

Motor (IM) 

 

Instructional Objectives 
 

฀ Need of using starters for Induction motor


฀ Two (Star-Delta and Auto-transformer) types of starters used for Squirrel cage 

Induction motor
฀ Starter using additional resistance in rotor circuit, for Wound rotor (Slip-ring) 

Induction motor
 

Introduction 

 

In the previous, i.e. fourth, lesson of this module, the expression of gross torque 

developed, as a function of slip (speed), in IM has been derived first. The sketches of the 

different torque-slip (speed) characteristics, with the variations in input (stator) voltage 

and rotor resistance, are presented, along with the explanation of their features. Lastly, the 

expression of maximum torque developed and also the slip, where it occurs, have been 

derived. In this lesson, starting with the need for using starters in IM to reduce the starting 

current, first two (Star- Delta and Auto-transformer) types of starters used for Squirrel 

cage IM and then, the starter using additional resistance in rotor circuit, for Wound rotor 

(Slip-ring) IM, are presented along with the starting current drawn from the input (supply) 

voltage, and also the starting torque developed using the above starters. 
 

Keywords: Direct-on-Line (DOL) starter, Star- delta starter, auto-transformer starter, 

rotor resistance starter, starting current, starting torque, starters for squirrel cage and 

wound rotor induction motor, need for starters. 
 

Direct-on-Line (DOL) Starters 
 

Induction motors can be started Direct-on-Line (DOL), which means that the rated 

voltage is supplied to the stator, with the rotor terminals short-circuited in a wound rotor 

(slip-ring) motor. For the cage rotor, the rotor bars are short circuited via two end rings. 

Neglecting stator impedance, the starting current in the stator windings is (see lesson 32) 

is 

(I1 )st   
Er 

′
  

 ′
 )2  (x ′ )2 

 

(r 
 

2  2 
  

where, 

(I1 )st   (I 2
′
 )st   (I 2 )st / a  Starting current in the motor (stator) 



a  Ts
′
 / Tr 

′
  Effective turns ratio between stator and rotor windings 

Es   Er 
′
  a Er   Input voltage per phase to the motor (stator) 

Er   Induced emf per phase in the rotor winding 

r 2
′
  a

2
 r2   Rotor resistance in terms of stator winding  

x2
′
  a 

2
 x2   Rotor reactance at standstill in terms of stator winding 



 
 

 

The input voltage per phase to the stator is equal to the induced emf per phase in the 

stator winding, as the stator impedance is neglected (also shown in the last lesson (#32)).  
In the formula for starting current, no load current is neglected. It may be noted that 

the starting current is quite high, about 4-6 times the current at full load, may be higher, 
depending on the rating of IM, as compared to no load current.  

The starting torque is ( (T0 )st (I1)st2), which shows that, as the starting current 
 

increases, the starting torque also increases. This results in higher accelerating torque 

(minus the load torque and the torque component of the losses), with the motor reaching 

rated or near rated speed quickly. 
 

Need for Starters in IM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main problem in starting induction motors having large or medium size lies 

mainly in the requirement of high starting current, when started direct-on-line (DOL). 

Assume that the distribution line is starting from a substation (Fig. 33.1), where the 

supply voltage is constant. The line feeds a no. of consumers, of which one consumer has 

an induction motor with a DOL starter, drawing a high current from the line, which is 

higher than the current for which this line is designed. This will cause a drop (dip) in the 

voltage, all along the line, both for the consumers between the substation and this 

consumer, and those, who are in the line after this consumer. This drop in the voltage is 

more than the drop permitted, i.e. higher than the limit as per ISS, because the current 

drawn is more than the current for which the line is designed. Only for the current lower 

the current for which the line is designed, the drop in voltage is lower the limit. So, the 

supply authorities set a limit on the rating or size of IM, which can be started DOL. Any 

motor exceeding the specified rating, is not permitted to be started DOL, for which a 

starter is to be used to reduce the current drawn at starting. 
 

Starters for Cage IM 
 

The starting current in IM is proportional to the input voltage per phase (Vs ) to the 

motor (stator), i.e.  I 1 st Es , where, Vs ≈ Es , as the voltage drop in the stator impe-

dance is small compared to the input voltage, or Vs  Es , if the stator impedance is 

neglected. This has been shown earlier. So, in a (squirrel) cage induction motor, the 
 
 
 
 

 



starter is used only to decrease the input voltage to the motor so as to decrease the starting 

current. As described later, this also results in decrease of starting torque. 
 

Star-Delta Starter  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This type is used for the induction motor, the stator winding of which is nominally 

delta-connected (Fig. 33.2a). If the above winding is reconnected as star (Fig. 33.2b), the 
 

voltage per phase supplied to each winding is reduced by 1/  3 (0.577) . This is a simple 

starter, which can be easily reconfigured as shown in Fig. 33.2c. As the voltage per phase 

in delta connection is Vs , the phase current in each stator winding is (Vs / Z s ), where Z s  
is the impedance of the motor per phase at standstill or start (stator impedance and rotor 
impedance referred to the stator, at standstill). The line current or the input current to the  

motor is [  I 1 st  (  3 Vs ) / Z s ], which is the current, if the motor is started direct-on-line 

(DOL). Now, if the stator winding is connected as star, the phase or line current drawn 
 

from supply at start (standstill) is [ (Vs / Z s ) /  3 ], which is (1/ 3  (1/  3)
2
 ) of the 

starting current, if DOL starter is used. The voltage per phase in each stator winding is 

now (.Vs /  3 ). So, the starting current using star-delta starter is reduced by 33.3%. As 
 

for starting torque, being proportional to the square of the current in each of the stator 

windings in two different connections as shown earlier, is also reduced by 
 

(1/ 3  (1/  3)
2
 ), as the ratio of the two currents is (1/  3 ), same as that (ratio) of the 

 
voltages applied to each winding as shown earlier. So, the starting torque is reduced by 

33.3%, which is a disadvantage of the use of this starter. The load torque and the loss 

torque, must be lower than the starting torque, if the motor is to be started using this 

starter. The advantage is that, no extra component, except that shown in Fig. 33.2c, need 

be used, thus making it simple. As shown later, this is an auto-transformer starter with the 

voltage ratio as 57.7%. Alternatively, the starting current in the second case with the 

stator winding reconnected as star, can be found by using star-delta conversion as given in 

lesson #18, with the impedance per phase after converting to delta, found as ( 3 Zs ), 
 
 
 
 



and the starting current now being reduced to ( 1/ 3 ) of the starting current obtained using 

DOL starter, with the stator winding connected in delta. 
 

Auto-transformer Starter  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

An auto-transformer, whose output is fed to the stator and input is from the supply 

(Fig. 33.3), is used to start the induction motor. The input voltage of IM is x Vs , which is 

the output voltage of the auto-transformer, the input voltage being  Vs . The output 
voltage/input  voltage  ratio  is  x ,  the  value  of  which  lies between  0.0  and  1.0 

( 0.0  x  1.0 ). Let  I 1 st be the starting current, when the motor is started using DOL 

starter, i.e applying rated input voltage. The input current of IM, which is the output 

current of auto-transformer, is x I1 st , when this starter is used with input voltage as  

x Vs . The input current of auto-transformer, which is the starting current drawn from the 

supply, is x
2
  I 1 st , obtained by equating input and output volt-amperes, neglecting 

 
losses and assuming nearly same power factor on both sides. As discussed earlier, the 

starting torque, being proportional to the square of the input current to IM in two cases,  

with and without auto-transformer (i.e. direct), is also reduced by x 
2
 , as the ratio of the 

two currents is x , same as that (ratio) of the voltages applied to the motor as shown 

earlier. So, the starting torque is reduced by the same ratio as that of the starting current. 

If the ratio is x  0.8 (80%) , both starting current and torque are  

x
2
   (0.8)

2
   0.64 (64%)  times the values of starting current and torque with DOL 

 

starting, which is nearly 2 times the values obtained using star-delta starter. So, the 

disadvantage is that starting current is increased, with the result that lower rated motor can 

now be started, as the current drawn from the supply is to be kept within limits, while the 

advantage is that the starting torque is now doubled, such that the motor can start against 

higher load torque. The star-delta starter can be considered equivalent to an auto-

transformer starter with the ratio, x  0.577 (57.7%) . If x  0.7 (70%) , both starting  

current and torque are x
2
   (0.7)

2
   0.49 ≈ 0.5 (50%) times the values of starting current 

 

and torque with DOL starting, which is nearly 1.5 times the values obtained using star-

delta starter. By varying the value of the voltage ratio x of the auto-transformer, the 

 

 

values of the starting current and torque can be changed. But additional cost of auto-

transformer with intermittent rating is to be incurred for this purpose. 
 



Rotor Resistance Starters for Slip-ring (wound rotor) IM 
 

In a slip-ring (wound rotor) induction motor, resistance can be inserted in the rotor 

circuit via slip rings (Fig. 33.4), so as to increase the starting torque. The starting current 

in the rotor winding is 

(I 2 )st  

E
r    

 

 

)
2
  (x 

 

)
2
 
 

 (r  R 
ext 2 

 

 2    
  

where Rext = Additional resistance per phase in the rotor circuit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The input (stator) current is proportional to the rotor current as shown earlier. The starting 
current (input) reduces, as resistance is inserted in the rotor circuit. But the  

starting torque, [ (T0 )st  3 ( I 2 )st 2
 (r2  Rext ) ] increases, as the total resistance in the rotor 

circuit is increased. Though the starting current decreases, the total resistance increases, thus 

resulting in increase of starting torque as shown in Fig. 32.2b, and also obtained by using the 

expression given earlier, for increasing values of the resistance in the rotor circuit. If the 

additional resistance is used only for starting, being rated for intermittent duty, the resistance 

is to be decreased in steps, as the motor speed increases. Finally, the external resistance is to 

be completely cut out, i.e. to be made equal to zero (0.0), thus leaving the slip-rings short-

circuited. Here, also the additional cost of the external resistance with intermittent rating is to 

be incurred, which results in decrease of starting current, along with increase of starting 

torque, both being advantageous. Also it may be noted that the cost of a slip-ring induction is 

higher than that of IM with cage rotor, having same power rating. So, in both cases, additional 

cost is to be incurred to obtain the above advantages. This is only used in case higher starting 

torque is needed to start IM with high load torque. It may be observed from Fig. 32.2b that the 

starting torque increases till it reaches maximum value, i.e. ( (T0 )st  (T0 )m ), as the external 

resistance in  

the rotor circuit is increased, the range of total resistance being [ r2   (r2  Rext )  x2 ]. 
 

 

The range of external resistance is between zero (0.0) and ( x2 − r2 ). The starting torque is 

equal to the maximum value, i.e. ( (T0 )st  (T0 )m ), if the external resistance inserted is 

equal to ( x2 − r2 ). But, if the external resistance in the rotor circuit is increased further,  



i.e. [ Rext  (x2 − r2 ) ], the starting torque decreases ( (T0 )st  (T0 )m ). This is, because the 

starting current decreases at a faster rate, even if the total resistance in the rotor circuit is 

increased. 
 

In this lesson − the fifth one of this module, the direct-on-line (DOL) starter used for 

IM, along with the need for other types of starters, has been described first. Then, two 

types of starters − star-delta and auto-transformer, for cage type IM, are presented. Lastly, 

the rotor resistance starter for slip-ring (wound rotor) IM is briefly described. In the next 

(sixth and last) lesson of this module, the various types of single phase induction motors, 

along with the starting methods, will be presented. 
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Three-phase Induction Motor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Starting Methods for 

Single-phase Induction 

Motor 

 

 

Instructional Objectives 
 

฀ Why there is no starting torque in a single-phase induction motor with one (main) 

winding in the stator?
฀ Various starting methods used in the single-phase induction motors, with the intro-

duction of additional features, like the addition of another winding in the stator, and/or 

capacitor in series with it.
 

Introduction 

 

In the previous, i.e. fifth, lesson of this module, the direct-on-line (DOL) starter used 

in three -phase IM, along with the need for starters, has been described first. Two types of 

starters − star-delta, for motors with nominally delta-connected stator winding, and auto-

transformer, used for cage rotor IM, are then presented, where both decrease in starting 

current and torque occur. Lastly, the rotor resistance starter for slip-ring (wound rotor) IM 

has been discussed, where starting current decreases along with increase in starting 

torque. In all such cases, additional cost is to be incurred. In the last (sixth) lesson of this 

module, firstly it is shown that there is no starting torque in a single-phase induction 

motor with only one (main) winding in the stator. Then, the various starting methods used 

for such motors, like, say, the addition of another (auxiliary) winding in the stator, and/or 

capacitor in series with it. 

 

Keywords: Single-phase induction motor, starting torque, main and auxiliary windings, 

starting methods, split-phase, capacitor type, motor with capacitor start/run. 

 

Single-phase Induction Motor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



The winding used normally in the stator (Fig. 34.1) of the single-phase induction 

motor (IM) is a distributed one. The rotor is of squirrel cage type, which is a cheap one, as 

the rating of this type of motor is low, unlike that for a three-phase IM. As the stator 

winding is fed from a single-phase supply, the flux in the air gap is alternating only, not a 

synchronously rotating one produced by a poly-phase (may be two- or three-) winding in 

the stator of IM. This type of alternating field cannot produce a torque ( (T0 )st  0.0 ), if 

 
 

 

the rotor is stationery (ω r  0.0 ). So, a single-phase IM is not self-starting, unlike a three-

phase one. However, as shown later, if the rotor is initially given some torque in either 

direction (ω r ≠ 0.0 ), then immediately a torque is produced in the motor. The  
motor then accelerates to its final speed, which is lower than its synchronous speed. This 

is now explained using double field revolving theory. 
 

Double field revolving theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When the stator winding (distributed one as stated earlier) carries a sinusoidal current 

(being fed from a single-phase supply), a sinusoidal space distributed mmf, whose peak or 

maximum value pulsates (alternates) with time, is produced in the air gap. This 

sinusoidally varying flux (φ ) is the sum of two rotating fluxes or fields, the magnitude of  

which is equal to half the value of the alternating flux (φ / 2 ), and both the fluxes rotating 

synchronously at the speed, ( ns  (2 ⋅ f ) / P ) in opposite directions. This is shown in Fig.  

34.2a. The first set of figures (Fig. 34.1a (i-iv)) show the resultant sum of the two rotating 

fluxes or fields, as the time axis (angle) is changing from θ  0 to π (180) . Fig. 34.2b  



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The flux or field rotating at synchronous speed, say, in the anticlockwise direction, i.e. 

the same direction, as that of the motor (rotor) taken as positive induces emf (voltage) in 

the rotor conductors. The rotor is a squirrel cage one, with bars short circuited via end 

rings. The current flows in the rotor conductors, and the electromagnetic torque is 

produced in the same direction as given above, which is termed as positive (+ve). The 

other part of flux or field rotates at the same speed in the opposite (clockwise) direction, 

taken as negative. So, the torque produced by this field is negative (-ve), as it is in the 

clockwise direction, same as that of the direction of rotation of this field. Two torques are 

in the opposite direction, and the resultant (total) torque is the difference of the two 

torques produced (Fig. 34.3). If the rotor is stationary (ω r  0.0 ), the slip due to forward  

(anticlockwise) rotating field is s f  1.0 . Similarly, the slip due to backward rotating field 

is also sb  1.0 . The two torques are equal and opposite, and the resultant torque is 0.0 

(zero). So, there is no starting torque in a single-phase IM. 
 

But, if the motor (rotor) is started or rotated somehow, say in the anticlockwise 

(forward) direction, the forward torque is more than the backward torque, with the 

resultant torque now being positive. The motor accelerates in the forward direction, with 

the forward torque being more than the backward torque. The resultant torque is thus 

positive as the motor rotates in the forward direction. The motor speed is decided by the 

load torque supplied, including the losses (specially mechanical loss). 
 

Mathematically, the mmf, which is distributed sinusoidally in space, with its peak 

value pulsating with time, is described as F  Fpeak cosθ , θ (space angle) measured  

from the winding axis. Now, Fpeak  Fmax cosω t . So, the mmf is distributed both in 

space and time, i.e. F  Fmax cosθ ⋅cosω t . This can be expressed as,  

F  (Fmax / 2)⋅cos(θ −ω t)  (Fmax / 2)⋅cos(θ ω t) , 
 

which shows that a pulsating field can be considered as the sum of two synchronously 

rotating fields (ωs  2π ns ). The forward rotating field is, Ff  (Fmax / 2)⋅cos(θ −ω t) , 

and the backward rotating field is, Fb  (Fmax / 2)⋅cos(θ ω t) . Both the fields have the 

 



same amplitude equal to (Fmax / 2) , where Fmax is the maximum value of the pulsating mmf 

along the axis of the winding. 
 

When the motor rotates in the forward (anticlockwise) direction with angular speed (ω 

r  2π nr ), the slip due to the forward rotating field is, 

s f   (ωs − ωr ) /ωs   1− (ωr /ωs ) , or ωr   (1− s f )ωs .  

Similarly, the slip due to the backward rotating field, the speed of which is (−ωs ), is, 
 

sb   (ωs  ωr ) /ωs   1 (ωr /ωs )  2 − sb ,. 
 

The torques produced by the two fields are in opposite direction. The resultant torque is,  

T  Tf  − Tb  

It was earlier shown that, when the rotor is stationary, Tf  Tb , with both s f  sb  1.0 , as 

ω r  0.0 or nr  0.0 . Therefore, the resultant torque at start is 0.0 (zero). 
 

Starting Methods 
 

The single-phase IM has no starting torque, but has resultant torque, when it rotates at 

any other speed, except synchronous speed. It is also known that, in a balanced two-phase 

IM having two windings, each having equal number of turns and placed at a space angle 

of 90 (electrical), and are fed from a balanced two-phase supply, with two voltages equal 

in magnitude, at an angle of 90 , the rotating magnetic fields are produced, as in a three-

phase IM. The torque- speed characteristic is same as that of a three-phase one, having 

both starting and also running torque as shown earlier. So, in a single-phase IM, if an 

auxiliary winding is introduced in the stator, in addition to the main winding, but placed at 

a space angle of 90 (electrical), starting torque is produced. The currents in the two 

(main and auxiliary) stator windings also must be at an angle of 90 , to produce 

maximum starting torque, as shown in a balanced two-phase stator. Thus, rotating 

magnetic field is produced in such motor, giving rise to starting torque. The various 

starting methods used in a single-phase IM are described here. 



 

 

Resistance Split-phase Motor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The schematic (circuit) diagram of this motor is given in Fig. 34.4a. As detailed 

earlier, another (auxiliary) winding with a high resistance in series is to be added along 

with the main winding in the stator. This winding has higher resistance to reactance ( Ra / 

X a ) ratio as compared to that in the main winding, and is placed at a space angle of  

90 from the main winding as given earlier. The phasor diagram of the currents in two 

windings and the input voltage is shown in Fig. 34.4b. The current ( I a ) in the auxiliary  

winding lags the voltage (V ) by an angle, φa , which is small, whereas the current ( Im ) in 

the main winding lags the voltage (V ) by an angle, φm , which is nearly 90 . The phase 

angle between the two currents is ( 90 − φa ), which should be at least 30 . This  
results in a small amount of starting torque. The switch, S (centrifugal switch) is in series 

with the auxiliary winding. It automatically cuts out the auxiliary or starting winding, 

when the motor attains a speed close to full load speed. The motor has a starting torque of 

100−200% of full load torque, with the starting current as 5-7 times the full load current. 

The torque-speed characteristics of the motor with/without auxiliary winding are shown in 

Fig. 34.4c. The change over occurs, when the auxiliary winding is switched off as given 

earlier. The direction of rotation is reversed by reversing the terminals of any one of two 

windings, but not both, before connecting the motor to the supply terminals. This motor is 

used in applications, such as fan, saw, small lathe, centrifugal pump, blower, office 

equipment, washing machine, etc. 

 

 

 

 

 

 

 

 
 

  



Capacitor-start Motor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The schematic (circuit) diagram of this motor is given in Fig. 34.5a. It may be 

observed that a capacitor along with a centrifugal switch is connected in series with the 

auxiliary winding, which is being used here as a starting winding. The capacitor may be 

rated only for intermittent duty, the cost of which decreases, as it is used only at the time 

of starting. The function of the centrifugal switch has been described earlier. The phasor 

diagram of two currents as described earlier, and the torque-speed characteristics of the 

motor with/without auxiliary winding, are shown in Fig. 34.5b and Fig. 34.5c 

respectively. This motor is used in applications, such as compressor, conveyor, machine 

tool drive, refrigeration and air-conditioning equipment, etc. 



 
 
 
 
 
 
 
 
 
 
 
 

Capacitor-start and Capacitor-run Motor  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this motor (Fig. 34.6a), two capacitors − Cs  for starting, and Cr  for running, are 
 

used. The first capacitor is rated for intermittent duty, as described earlier, being used 

only for starting. A centrifugal switch is also needed here. The second one is to be rated 

for continuous duty, as it is used for running. The phasor diagram of two currents in both 

cases, and the torque-speed characteristics with two windings having different values of 

capacitors, are shown in Fig. 34.6b and Fig. 34.6c respectively. The phase difference 

between the two currents is (φm  φa  90 ) in the first case (starting), while it is 90 for  
second case (running). In the second case, the motor is a balanced two phase one, the two 

windings having same number of turns and other conditions as given earlier, are also 

satisfied. So, only the forward rotating field is present, and the no backward rotating field 

exists. The efficiency of the motor under this condition is higher. Hence, using two 

capacitors, the performance of the motor improves both at the time of starting and then 

running. This motor is used in applications, such as compressor, refrigerator, etc.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Beside the above two types of motors, a Permanent Capacitor Motor (Fig. 34.7) with 

the same capacitor being utilised for both starting and running, is also used. The power 

factor of this motor, when it is operating (running), is high. The operation is also quiet 
 
 

 

and smooth. This motor is used in applications, such as ceiling fans, air circulator, blower, 

etc. 
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37.1 Goals of the lesson 

 

After going through the lesson, the student will be able to understand: 

 

1. the factors on which induced voltage in the armature depend. 
 

2. the factors on which the electromagnetic torque developed depend. 
 

3. the derivation of the emf and torque equations. 
 

4. that emf and torque equations are applicable to both generator and motor operations. 
 

5. why the generated emf in motor called the back emf. 
 

6. armature reaction, its ill effects and remedial measures. 
 

7. the purpose of compensating winding – its location and connection. 
 

8. the purpose of interpole – its location and connection. 
 

9. the difference between the GNP (geometric neutral plane) and MNP (magnetic neutral 

plane). 
 

37.2 Introduction 

 

Be it motor or generator operations, the analysis of D.C machine performance center around two 

fundamental equations namely the emf equation and the torque equations. In fact both motoring 

and generating actions go together in d.c machines. For example in a d.c motor there will be 

induced voltage across the brushes in the same way as in a generator. The induced voltage in d.c 

motor is however called by a different name back emf. Thus the factors on which induced emf in 

generator depend will be no different from motor action. In fact the same emf equation can be 

employed to calculate induced emf for both generator and motor operation. In the same way same 

torque equation can be used to calculate electromagnetic torque developed in both motoring and 

generating actions.  
In this lesson these two fundamental equations have been derived. 

Field patterns along the air gap of the machine for both motor and generator modes are 

explained. The ill effects of armature mmf (for a loaded machine) is discussed and possible 

remedial measures are presented. Calculation of cross magnetizing and demagnetizing AT 

(ampere turns) of d.c machines with shifted brush are presented. Depending on your course 

requirement the derivation for these ATs with sifted brush may be avoided. Finally, the 

phenomenon of armature reaction and a brief account of commutation are presented. 
 

37.3 EMF & Torque Equations 

 

In this section we shall derive two most fundamental and important formulas (namely emf and 

torque equations) for d.c machine in general. These will be extensively used to analyse the 

performance and to solve problems on d.c machines. 

 

 
  



37.3.1 EMF Equation 

 

Consider a D.C generator whose field coil is excited to produce a flux density distribution along 

the air gap and the armature is driven by a prime mover at constant speed as shown in figure. 
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Figure 37.1: Pole pitch & area on armature surface per pole. 

 
Let us assume a p polar d.c generator is driven (by a prime mover) at n rps. The excitation of 

the stator field is such that it produces a φ Wb flux per pole. Also let z be the total number of 
armature conductors and a be the number of parallel paths in the armature circuit. In general, as 
discussed in the earlier section the magnitude of the voltage from one conductor to another is 
likely to very since flux density distribution is trapezoidal in nature. Therefore, total average 
voltage across the brushes is calculated on the basis of average flux density Bav. If D and L are  

  
B π  

 

 

Average flux density BavB 

 
 
 

 

Induced voltage in a single conductor 
 

Number of conductors present in each parallel path 
 

If v is the tangential velocity then, v 
 

Therefore, total voltage appearing across the brushes 
 
 
 
 

Thus voltage induced across the armature, EA 
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Hence average flux density in the gap is given by 

the rotor diameter and the length of the machine in meters then area under each pole is 



We thus see that across the armature a voltage will be generated so long there exists some flux 

per pole and the machine runs with some speed. Therefore irrespective of the fact that the 

machine is operating as generator or as motor, armature has an induced voltage in it governed 

essentially by the above derived equation. This emf is called back emf for motor operation. 
 
37.3.2 Torque equation 

 

Whenever armature carries current in presence of flux, conductor experiences force which gives 
rise to the electromagnetic torque. In this section we shall derive an expression for the 

electromagnetic torque Te developed in a d.c machine. Obviously Te will be developed both in 

motor and generator mode of operation. It may be noted that the direction of conductor currents 
reverses as we move from one pole to the other. This ensures unidirectional torque to be 
produced. The derivation of the torque expression is shown below. 
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Putting the value of BavB, we get Te 
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Thus we see that the above equation is once again applicable both for motor and generator 

mode of operation. The direction of the electromagnetic torque, Te will be along the direction of 
rotation in case of motor operation and opposite to the direction of rotation in case of generator  

operation. When the machine runs steadily at a constant rpm then Te = Tload and Te = Tpm, 
respectively for motor and generator mode.  

The emf and torque equations are extremely useful and should be remembered by heart. 
 

37.4 GNP and MNP 

 

In a unloaded d.c machine field is produced only by the field coil as armature does not carry any  
current. For a unloaded generator, net field is equal to M f  produced by field coil alone and as 

G 

shown in figure 37.2 (a). Then for a plane which is at right angles to M f , no field can exist  

along the plane, since Mf cos90
0
 = 0. The plane along which there will be no field is called 

Magnetic Neutral Plane or MNP in short. The Geometrical Neutral Plane (GNP) is defined as a 
plane which is perpendicular to stator field axis. Thus for an unloaded generator GNP and MNP 

coincide. In a loaded generator, apart from M f , there will exist field produced by armature M a 
G 

as well making the resultant field M r  shifted as shown in figure 37.2 (b). Thus MNP in this case 
G 

will be perpendicular to M r . Therefore it may be concluded that MNP for generator mode gets 

shifted along the direction of rotation of the armature. 
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Figure 37.2: MNP & GNP : Generator mode. 
 

The shift of MNP for a loaded motor will be in a direction opposite to the rotation as depicted 

in figure 37.3 (b). The explanation of this is left to the reader as an exercise. 
 

37.5 Armature reaction 

 

In a unloaded d.c machine armature current is vanishingly small and the flux per pole is decided 

by the field current alone. The uniform distribution of the lines of force get upset when armature 

too carries current due to loading. In one half of the pole, flux lines are concentrated and in the 

other half they are rarefied. Qualitatively one can argue that during loading condition flux per 

pole will remain same as in no load operation because the increase of flux in one half will be 

balanced by the decrease in the flux in the other half. Since it is the flux per pole which decides 

the emf generated and the torque produced by the machine, seemingly there will be no effect felt 

so far as the performance of the machine is concerned due to armature reaction. This in fact is 

almost true when the machine is lightly or moderately loaded. 
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Figure 37.3: MNP & GNP : Motor mode. 
 
 



However at rated armature current the increase of flux in one half of the pole is rather less than 

the decrease in the other half due to presence of saturation. In other words there will be a net 

decrease in flux per pole during sufficient loading of the machine. This will have a direct bearing 

on the emf as well as torque developed affecting the performance of the machine.  
Apart from this, due to distortion in the flux distribution, there will be some amount of flux 

present along the q-axis (brush axis) of the machine. This causes commutation difficult. In the 

following sections we try to explain armature reaction in somewhat detail considering motor and 

generator mode separately. 
 

Direction of rotation  
Leading pole tip  

 

 

N 
Unloaded 

S S Generator N 
 

D.C. 
 

 Machine     
 

 

 

Trailing pole tip 

 

Figure 37.4: Flux lines during 

no load condition. 

 
 

Figure 37.5: Flux lines for a 

loaded generator. 
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Figure 37.6: Flux lines for a loaded motor. 

 

37.5.1 No Load operation 

 

When a d.c machine operates absolutely under no load condition, armature current is zero. Under 

such a condition Te developed is zero and runs at constant no load speed. In absence of any Ia, 

the flux per pole φ, inside the machine is solely decided by the field current and lines of force are 

uniformly distributed under a pole as shown in figure 37.4. 
 

37.5.2 Loaded operation 

 

A generator gets loaded when a resistance across the armature is connected and power is 

delivered to the resistance. The direction of the current in the conductor (either cross or dot) is 

decided by the fact that direction of Te will be opposite to the direction of rotation. It is therefore 

obvious to see that flux per pole φ, developed in the generator should be decided not only by the 

mmf of the field winding alone but the armature mmf as well as the armature is carrying current 

now. By superposing the no load field lines and the armature field lines one can get the resultant



field lines pattern as shown in Figures 37.5 and 37.7. The tip of the pole which is seen by a 

moving conductor first during the course of rotation is called the leading pole tip and the tip of 

the pole which is seen later is called the trailing pole tip. In case of generator mode we see that 

the lines of forces are concentrated near the trailing edge thereby producing torque in the opposite 

direction of rotation. How the trapezoidal no load field gets distorted along the air gap of the 

generator is shown in the Figure 37.7. 
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Figure 37.7: Effect of Armature Reaction 
 

In this figure note that the armature mmf distribution is triangular in nature and the flux density 

distribution due to armature current is obtained by dividing armature mmf with the reluctance of 

the air gap. The reluctance is constant and small at any point under the pole. This means that the 

armature flux density will simply follow the armature mmf pattern. However, the reluctance in 

the q-axis region is quite large giving rise to small resultant flux of polarity same as the main pole 

behind in the q-axis.  
In the same way one can explain the effect of loading a d.c motor by referring to Figures 37.6 

and 37.7. Point to be noted here is that the lines of forces gets concentrated near the leading pole 

tip and rarefied near the trailing pole thereby producing torque along the direction of rotation. 

Also note the presence of some flux in the q-axis with a polarity same as main pole ahead. 
 

37.6 Cross magnetising & Demagnetising AT 
 

G 

Usually the brushes in a d.c machine are along the GNP. The armature mmf M a which acts 

always along the direction of the brush axis also acts along GNP. It may also be noted that M a 
 

is at right angles to the field mmf M f 
G 

has cross 
 

when brushes are not shifted.  Thus M a  

G G  
 

magnetising effect on M f . Apparently M a does not have any component opposing M f directly. 
 

 

 



The presence of cross magnetising armature mmf M a  distorts the no load field pattern caused by 
G 

M f .  
The cross magnetising armature AT can be calculated as shown below. 

 

Let, P = Number of poles 
 

z = Total number of armature conductors 
 

a = Number of parallel paths 
 

Armature current = Ia     
 

Current through armature conductor = Ia / a 
 

Total Ampere conductors = 
 Ia 

 z  

 

a 
 

      
 

Total AT = 

 Ia  z 
 

 a  2   
 

∴Armature AT/pole = 

 Ia z 
 

 2aP  
 

 

Demagnetising by armature mmf can occur when a deliberate brush shift is introduced. 

Small brush shift is sometimes given to improve commutation. For generator brush shift is given 

in the forward direction (in the direction of rotation) while for motor mode the brush shift is 

given in the backward direction (opposite to the direction of rotation) as shown in figures 37.8 

and 37.9.  
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Let the brush shift be β° (mechanical) for all the brushes. Then as depicted in the figure 37.8 

the conductors present within the angle 2 β° (i.e., ∠AOB and ∠COD) will be responsible for 

demagnetization and conductors present within the angle (180° - 2 β°) (i.e., ∠AOD and ∠BOC) 

will be responsible for crossmagnetisation for a 2 polar machine.  
Ampere turns for demagnetization can be calculated as follows: 

 

Number of conductors spread over 360° = z  
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 z 
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Since brushes are placed in the inter polar regions and there are P number of brush positions, 

 

∴Total number of conductors responsible for demagnetization = 
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To find expression for the cross magnetising, replace 2 β° by (180° - 2 β°) in the above 

expression to get: 
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It may easily be verified that the sum of demagnetizing AT/pole and cross magnetising  
AT/pole is equal to total AT/pole as shown below:  
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37.6.1 Commutation & Armature reaction 

 

If we concentrate our attention to a single conductor, we immediately recognize that the direction 

of current reverses as it moves from the influence of one pole to the influence of the next 

opposite pole. This reversal of current in the conductor is called commutation. During no load 

operation when the conductor reaches the magnetic neutral axis or the q-axis, the induced voltage 

in it is zero as there is no flux is present in the q-axis. Also any coil present in this position and 

under going commutation, will get short circuited by the commutator segments and brushes. In 

other words we see that every coil will be short circuited whenever it undergoes commutation and 

fortunately at that time induced emf in the coil being zero, no circulating current will be present 

at least during no load condition. But as discussed earlier, flux in the quadrature axis will never 

be zero when the machine is loaded. Hence coil undergoing commutation will have circulating 

current causing problem so far as smooth commutation is concerned. 
 
 



For small machines (up to few kilo watts) no special care is taken to avoid the armature 

reaction effects. However for large machines, to get rid of the ill effects of armature reaction one 

can use compensating winding, inter poles or both.  
The basic idea of nullifying armature mmf is based on a very simple fact. We know that a 

magnetic field is produced in the vicinity when a conductor carries current. Naturally another 

conductor carrying same current but in the opposite direction if placed in close proximity of the 

first conductor, the resultant field in the vicinity will be close to zero. Additional winding called 

compensating winding is placed on the pole faces of the machine and connected in series with the 

armature circuit in such a way that the direction of current in compensating winding is opposite 

to that in the armature conductor as shown in Figure 37.10. It may be noted that compensating 

winding can not nullify the quadrature axis armature flux completely. Additional small poles 

called inter poles are provided in between the main poles in large machines to get rid of the 

commutation problem arising out of armature reaction. 

Sectional view of a machine provided with both compensating and inter poles is shown in 

Figure 37.11 and the schematic representation of such a machine is shown in Figure 37.12. 

Careful inspection of the figures mentioned reveal that the polarity of the inter pole should be 

same as that of the main pole ahead in case of generator and should be same as that of main pole 

behind in case of motor.  
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Figure 37.10: Position of compensating winding. 
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 Figure 37.11: Inter pole coil. 
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Figure 37.12: Interpole & compensating coil connection. 
 
 
 
 



 

 

37.7 Tick the correct answer 

 

1. A d.c generator is found to develop an armature voltage of 200 V. If the flux is reduced 

by 25% and speed is increased by 40%, the armature generated voltage will become: 
 

(A) 20 V (B) 107 V (C) 210 V (D) 373 V 

 

2. A d.c motor runs steadily drawing an armature current of 15 A. To develop the same 

amount of torque at 20 A armature current, flux should be: 
 

(A) reduced by 25%  
(C) reduced by 33% 

 
 

(B) increased by 25%  
(D) increased by 33% 
  

3. A d.c generator develops 200 V across its armature terminals with a certain polarity. To 

reverse the polarity of the armature voltage: 
 

(A) direction of field current should be reversed  
(B) direction of rotation should be reversed. 

(C) either of (A) and (B) 

(D) direction of both field current and speed should be reversed. 
 

4. In a d.c shunt machine, the inter pole winding should be connected in 

 
(A) series with the armature.  
(B) series with the field winding. 

(C) parallel with the armature. 

(D) parallel with the field winding. 
 

5. In a d.c shunt machine, compensating winding should be connected in 

 
(A) series with the armature.  
(B) series with the field winding. 

(C) parallel with the armature. 

(D) parallel with the field winding. 
 

6. In a d.c generator, interpole coil should be connected in such a fashion that the polarity of 

the interpole is 
 

(A) same as that of main pole ahead.  
(B) same as that main pole behind. 

(C) either of (A) and (B). 

(D) dependent on armature current. 
 

7. In a d.c motor, interpole coil should be connected in such a fashion that the polarity of the 

interpole is 

 

 



(A) same as that of main pole ahead.  
(B) same as that of main pole behind. 

(C) either of (A) and (B). 

(D) dependent on feild current. 
 

37.8 Answer the following 

 

1. Write down the expression for electromagnetic torque in a d.c motor. Now comment how 

the direction of rotation can be reversed. 
 

2. Write down the expression for the generated voltage in a d.c generator. Now comment 

how can you reverse the polarity of the generated voltage. 
 

3. Comment on the direction of electromagnetic torque in a d.c motor if both armature 

current and field current are reversed. 
 

4. A 4-pole, lap wound, d.c machine has total number of 800 armature conductors and 

produces 0.03 Wb flux per pole when field is excited. If the machine is driven by a prime 

mover at 1000 rpm, calculate the generated emf across the armature. If the generator is 

loaded to deliver an armature current of 50 A, Calculate the prime mover and 

electromagnetic torques developed at this load current. Neglect frictional torque. 
 

5. A 4-pole, lap wound, d.c machine has a total number of 800 armature conductors and an 

armature resistance of 0.4 Ω. If the machine is found to run steadily as motor at 1000 rpm 
and drawing an armature current of 10 A from a 220 V D.C supply, calculate the back 

emf, electromagnetic torque and the load torque. 
 

6. Clearly mention the purpose of providing interpoles in large d.c machines. 

 
7. Comment on the polarity of the interpole for motor and generator modes. 

 
8. Why and what for, is the compensating winding provided in large d.c machines? 

 
9. How are interpole coil and compensating windings connected in d.c machine? 
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37.1 Goals of the lesson 

 

After going through the lesson, the student will be able to understand: 

 

1. the factors on which induced voltage in the armature depend. 
 

2. the factors on which the electromagnetic torque developed depend. 
 

3. the derivation of the emf and torque equations. 
 

4. that emf and torque equations are applicable to both generator and motor operations. 
 

5. why the generated emf in motor called the back emf. 
 

6. armature reaction, its ill effects and remedial measures. 
 

7. the purpose of compensating winding – its location and connection. 
 

8. the purpose of interpole – its location and connection. 
 

9. the difference between the GNP (geometric neutral plane) and MNP (magnetic neutral 

plane). 
 

37.2 Introduction 

 

Be it motor or generator operations, the analysis of D.C machine performance center around two 

fundamental equations namely the emf equation and the torque equations. In fact both motoring 

and generating actions go together in d.c machines. For example in a d.c motor there will be 

induced voltage across the brushes in the same way as in a generator. The induced voltage in d.c 

motor is however called by a different name back emf. Thus the factors on which induced emf in 

generator depend will be no different from motor action. In fact the same emf equation can be 

employed to calculate induced emf for both generator and motor operation. In the same way same 

torque equation can be used to calculate electromagnetic torque developed in both motoring and 

generating actions.  
In this lesson these two fundamental equations have been derived. 

Field patterns along the air gap of the machine for both motor and generator modes are 

explained. The ill effects of armature mmf (for a loaded machine) is discussed and possible 

remedial measures are presented. Calculation of cross magnetizing and demagnetizing AT 

(ampere turns) of d.c machines with shifted brush are presented. Depending on your course 

requirement the derivation for these ATs with sifted brush may be avoided. Finally, the 

phenomenon of armature reaction and a brief account of commutation are presented. 
 

37.3 EMF & Torque Equations 

 

In this section we shall derive two most fundamental and important formulas (namely emf and 

torque equations) for d.c machine in general. These will be extensively used to analyse the 

performance and to solve problems on d.c machines.  
37.3.1 EMF Equation 

 

Consider a D.C generator whose field coil is excited to produce a flux density distribution along 

the air gap and the armature is driven by a prime mover at constant speed as shown in figure 37.1. 
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Figure 37.1: Pole pitch & area on armature surface per pole. 

 
Let us assume a p polar d.c generator is driven (by a prime mover) at n rps. The excitation of 

the stator field is such that it produces a φ Wb flux per pole. Also let z be the total number of 
armature conductors and a be the number of parallel paths in the armature circuit. In general, as 
discussed in the earlier section the magnitude of the voltage from one conductor to another is 
likely to very since flux density distribution is trapezoidal in nature. Therefore, total average 
voltage across the brushes is calculated on the basis of average flux density Bav. If D and L are  

  
B π  

 

 

Average flux density BavB 

 
 
 

 

Induced voltage in a single conductor 
 

Number of conductors present in each parallel path 
 

If v is the tangential velocity then, v 
 

Therefore, total voltage appearing across the brushes 
 
 
 
 

Thus voltage induced across the armature, EA 

 
 
 
 
 

= 

   φ 
 

 

      

 πD L 
 

  p 
 

= 
 φ p  

 

π DL 
 

 
 

= BavBLv 
 

= 
 z  

 

 

a 
 

  
 

= πDn  

= z  B Lv   

a 
  

  av  
 

= 
z   φ p  Lπ Dn  

a π DL 
 

  
 

= pz φ n (37.1)  
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We thus see that across the armature a voltage will be generated so long there exists some flux 

per pole and the machine runs with some speed. Therefore irrespective of the fact that the 

machine is operating as generator or as motor, armature has an induced voltage in it governed 

essentially by the above derived equation. This emf is called back emf for motor operation. 

Hence average flux density in the gap is given by 

the rotor diameter and the length of the machine in meters then area under each pole is 



37.3.2 Torque equation 

 

Whenever armature carries current in presence of flux, conductor experiences force which gives 
rise to the electromagnetic torque. In this section we shall derive an expression for the 

electromagnetic torque Te developed in a d.c machine. Obviously Te will be developed both in 

motor and generator mode of operation. It may be noted that the direction of conductor currents 
reverses as we move from one pole to the other. This ensures unidirectional torque to be 
produced. The derivation of the torque expression is shown below. 
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Total electromagnetic torque developed, Te 

 

Putting the value of BavB, we get Te 
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Thus we see that the above equation is once again applicable both for motor and generator 

mode of operation. The direction of the electromagnetic torque, Te will be along the direction of 
rotation in case of motor operation and opposite to the direction of rotation in case of generator  

operation. When the machine runs steadily at a constant rpm then Te = Tload and Te = Tpm, 
respectively for motor and generator mode.  

The emf and torque equations are extremely useful and should be remembered by heart. 
 

37.4 GNP and MNP 

 

In a unloaded d.c machine field is produced only by the field coil as armature does not carry any  
current. For a unloaded generator, net field is equal to M f  produced by field coil alone and as 

G 

shown in figure 37.2 (a). Then for a plane which is at right angles to M f , no field can exist  

along the plane, since Mf cos90
0
 = 0. The plane along which there will be no field is called 

Magnetic Neutral Plane or MNP in short. The Geometrical Neutral Plane (GNP) is defined as a 
plane which is perpendicular to stator field axis. Thus for an unloaded generator GNP and MNP 

coincide. In a loaded generator, apart from M f , there will exist field produced by armature M a 
G 

as well making the resultant field M r  shifted as shown in figure 37.2 (b). Thus MNP in this case 
G 

will be perpendicular to M r . Therefore it may be concluded that MNP for generator mode gets 

shifted along the direction of rotation of the armature 
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Figure 37.2: MNP & GNP : Generator mode. 
 

The shift of MNP for a loaded motor will be in a direction opposite to the rotation as depicted 

in figure 37.3 (b). The explanation of this is left to the reader as an exercise. 
 

37.5 Armature reaction 

 

In a unloaded d.c machine armature current is vanishingly small and the flux per pole is decided 

by the field current alone. The uniform distribution of the lines of force get upset when armature 

too carries current due to loading. In one half of the pole, flux lines are concentrated and in the 

other half they are rarefied. Qualitatively one can argue that during loading condition flux per 

pole will remain same as in no load operation because the increase of flux in one half will be 

balanced by the decrease in the flux in the other half. Since it is the flux per pole which decides 

the emf generated and the torque produced by the machine, seemingly there will be no effect felt 

so far as the performance of the machine is concerned due to armature reaction. This in fact is 

almost true when the machine is lightly or moderately loaded. 
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Figure 37.3: MNP & GNP : Motor mode. 



However at rated armature current the increase of flux in one half of the pole is rather less than 

the decrease in the other half due to presence of saturation. In other words there will be a net 

decrease in flux per pole during sufficient loading of the machine. This will have a direct bearing 

on the emf as well as torque developed affecting the performance of the machine.  
Apart from this, due to distortion in the flux distribution, there will be some amount of flux 

present along the q-axis (brush axis) of the machine. This causes commutation difficult. In the 

following sections we try to explain armature reaction in somewhat detail considering motor and 

generator mode separately. 
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Figure 37.4: Flux lines during 

no load condition. 

 
 

Figure 37.5: Flux lines for a 

loaded generator. 
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Figure 37.6: Flux lines for a loaded motor. 

 

37.5.1 No Load operation 

 

When a d.c machine operates absolutely under no load condition, armature current is zero. Under 

such a condition Te developed is zero and runs at constant no load speed. In absence of any Ia, 

the flux per pole φ, inside the machine is solely decided by the field current and lines of force are 

uniformly distributed under a pole as shown in figure 37.4. 
 

37.5.2 Loaded operation 

 

A generator gets loaded when a resistance across the armature is connected and power is 

delivered to the resistance. The direction of the current in the conductor (either cross or dot) is 

decided by the fact that direction of Te will be opposite to the direction of rotation. It is therefore 

obvious to see that flux per pole φ, developed in the generator should be decided not only by the 

mmf of the field winding alone but the armature mmf as well as the armature is carrying current 

now. By superposing the no load field lines and the armature field lines one can get the resultant 

 

 



field lines pattern as shown in Figures 37.5 and 37.7. The tip of the pole which is seen by a 

moving conductor first during the course of rotation is called the leading pole tip and the tip of 

the pole which is seen later is called the trailing pole tip. In case of generator mode we see that 

the lines of forces are concentrated near the trailing edge thereby producing torque in the opposite 

direction of rotation. How the trapezoidal no load field gets distorted along the air gap of the 

generator is shown in the Figure 37.7. 
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Figure 37.7: Effect of Armature Reaction 
 

In this figure note that the armature mmf distribution is triangular in nature and the flux density 

distribution due to armature current is obtained by dividing armature mmf with the reluctance of 

the air gap. The reluctance is constant and small at any point under the pole. This means that the 

armature flux density will simply follow the armature mmf pattern. However, the reluctance in 

the q-axis region is quite large giving rise to small resultant flux of polarity same as the main pole 

behind in the q-axis.  
In the same way one can explain the effect of loading a d.c motor by referring to Figures 37.6 

and 37.7. Point to be noted here is that the lines of forces gets concentrated near the leading pole 

tip and rarefied near the trailing pole thereby producing torque along the direction of rotation. 

Also note the presence of some flux in the q-axis with a polarity same as main pole ahead. 
 

37.6 Cross magnetising & Demagnetising AT 
 

G 

Usually the brushes in a d.c machine are along the GNP. The armature mmf M a which acts 

always along the direction of the brush axis also acts along GNP. It may also be noted that M a 
 

is at right angles to the field mmf M f 
G 

has cross 
 

when brushes are not shifted.  Thus M a  

G G  
 

magnetising effect on M f . Apparently M a does not have any component opposing M f directly. 
 

 



The presence of cross magnetising armature mmf M a  distorts the no load field pattern caused by 
G 

M f .  
The cross magnetising armature AT can be calculated as shown below. 

 

Let, P = Number of poles 
 

z = Total number of armature conductors 
 

a = Number of parallel paths 
 

Armature current = Ia     
 

Current through armature conductor = Ia / a 
 

Total Ampere conductors = 
 Ia 

 z  

 

a 
 

      
 

Total AT = 

 Ia  z 
 

 a  2   
 

∴Armature AT/pole = 

 Ia z 
 

 2aP  
 

 

Demagnetising by armature mmf can occur when a deliberate brush shift is introduced. 

Small brush shift is sometimes given to improve commutation. For generator brush shift is given 

in the forward direction (in the direction of rotation) while for motor mode the brush shift is 

given in the backward direction (opposite to the direction of rotation) as shown in figures 37.8 

and 37.9.  
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Let the brush shift be β° (mechanical) for all the brushes. Then as depicted in the figure 37.8 

the conductors present within the angle 2 β° (i.e., ∠AOB and ∠COD) will be responsible for 

demagnetization and conductors present within the angle (180° - 2 β°) (i.e., ∠AOD and ∠BOC) 

will be responsible for crossmagnetisation for a 2 polar machine.  
Ampere turns for demagnetization can be calculated as follows: 

 

Number of conductors spread over 360° = z  
 

Number of conductors spread over 2 β° = 
 z 

2β 
D
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Since brushes are placed in the inter polar regions and there are P number of brush positions, 

 

∴Total number of conductors responsible for demagnetization = 
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To find expression for the cross magnetising, replace 2 β° by (180° - 2 β°) in the above 

expression to get: 
 

Number of conductors responsible for cross magnetization = 
z (360
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It may easily be verified that the sum of demagnetizing AT/pole and cross magnetising  
AT/pole is equal to total AT/pole as shown below:  
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37.6.1 Commutation & Armature reaction 

 

If we concentrate our attention to a single conductor, we immediately recognize that the direction 

of current reverses as it moves from the influence of one pole to the influence of the next 

opposite pole. This reversal of current in the conductor is called commutation. During no load 

operation when the conductor reaches the magnetic neutral axis or the q-axis, the induced voltage 

in it is zero as there is no flux is present in the q-axis. Also any coil present in this position and 

under going commutation, will get short circuited by the commutator segments and brushes. In 

other words we see that every coil will be short circuited whenever it undergoes commutation and 

fortunately at that time induced emf in the coil being zero, no circulating current will be present 

at least during no load condition. But as discussed earlier, flux in the quadrature axis will never 

be zero when the machine is loaded. Hence coil undergoing commutation will have circulating 

current causing problem so far as smooth commutation is concerned. 
 
 
 

 

 



For small machines (up to few kilo watts) no special care is taken to avoid the armature 

reaction effects. However for large machines, to get rid of the ill effects of armature reaction one 

can use compensating winding, inter poles or both.  
The basic idea of nullifying armature mmf is based on a very simple fact. We know that a 

magnetic field is produced in the vicinity when a conductor carries current. Naturally another 

conductor carrying same current but in the opposite direction if placed in close proximity of the 

first conductor, the resultant field in the vicinity will be close to zero. Additional winding called 

compensating winding is placed on the pole faces of the machine and connected in series with the 

armature circuit in such a way that the direction of current in compensating winding is opposite 

to that in the armature conductor as shown in Figure 37.10. It may be noted that compensating 

winding can not nullify the quadrature axis armature flux completely. Additional small poles 

called inter poles are provided in between the main poles in large machines to get rid of the 

commutation problem arising out of armature reaction. 

Sectional view of a machine provided with both compensating and inter poles is shown in 

Figure 37.11 and the schematic representation of such a machine is shown in Figure 37.12. 

Careful inspection of the figures mentioned reveal that the polarity of the inter pole should be 

same as that of the main pole ahead in case of generator and should be same as that of main pole 

behind in case of motor.  
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Figure 37.10: Position of compensating winding. 
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 Figure 37.11: Inter pole coil. 
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Figure 37.12: Interpole & compensating coil connection. 
 
 
 



 

 

37.7 Tick the correct answer 

 

1. A d.c generator is found to develop an armature voltage of 200 V. If the flux is reduced 

by 25% and speed is increased by 40%, the armature generated voltage will become: 
 

(A) 20 V (B) 107 V (C) 210 V (D) 373 V 

 

2. A d.c motor runs steadily drawing an armature current of 15 A. To develop the same 

amount of torque at 20 A armature current, flux should be: 
 

(A) reduced by 25%  
(C) reduced by 33% 

 
 

(B) increased by 25%  
(D) increased by 33% 
  

3. A d.c generator develops 200 V across its armature terminals with a certain polarity. To 

reverse the polarity of the armature voltage: 
 

(A) direction of field current should be reversed  
(B) direction of rotation should be reversed. 

(C) either of (A) and (B) 

(D) direction of both field current and speed should be reversed. 
 

4. In a d.c shunt machine, the inter pole winding should be connected in 

 
(A) series with the armature.  
(B) series with the field winding. 

(C) parallel with the armature. 

(D) parallel with the field winding. 
 

5. In a d.c shunt machine, compensating winding should be connected in 

 
(A) series with the armature.  
(B) series with the field winding. 

(C) parallel with the armature. 

(D) parallel with the field winding. 
 

6. In a d.c generator, interpole coil should be connected in such a fashion that the polarity of 

the interpole is 
 

(A) same as that of main pole ahead.  
(B) same as that main pole behind. 

(C) either of (A) and (B). 

(D) dependent on armature current. 
 

7. In a d.c motor, interpole coil should be connected in such a fashion that the polarity of the 

interpole ir 



(A) same as that of main pole ahead.  
(B) same as that of main pole behind. 

(C) either of (A) and (B). 

(D) dependent on feild current. 
 

37.8 Answer the following 

 

1. Write down the expression for electromagnetic torque in a d.c motor. Now comment how 

the direction of rotation can be reversed. 
 

2. Write down the expression for the generated voltage in a d.c generator. Now comment 

how can you reverse the polarity of the generated voltage. 
 

3. Comment on the direction of electromagnetic torque in a d.c motor if both armature 

current and field current are reversed. 
 

4. A 4-pole, lap wound, d.c machine has total number of 800 armature conductors and 

produces 0.03 Wb flux per pole when field is excited. If the machine is driven by a prime 

mover at 1000 rpm, calculate the generated emf across the armature. If the generator is 

loaded to deliver an armature current of 50 A, Calculate the prime mover and 

electromagnetic torques developed at this load current. Neglect frictional torque. 
 

5. A 4-pole, lap wound, d.c machine has a total number of 800 armature conductors and an 

armature resistance of 0.4 Ω. If the machine is found to run steadily as motor at 1000 rpm 
and drawing an armature current of 10 A from a 220 V D.C supply, calculate the back 

emf, electromagnetic torque and the load torque. 
 

6. Clearly mention the purpose of providing interpoles in large d.c machines. 

 
7. Comment on the polarity of the interpole for motor and generator modes. 

 
8. Why and what for, is the compensating winding provided in large d.c machines? 

 
9. How are interpole coil and compensating windings connected in d.c machine? 
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39.1 Goals of the lesson 

 

In this lesson aspects of starting and speed control of d.c motors are discussed and explained. At 

the end principles of electric braking of d.c. shunt motor is discussed. After going through the 

lesson, the reader is expected to have clear ideas of the following. 
 

1. The problems of starting d.c motors with full rated voltage. 
 

2. Use and selection of variable resistance as a simple starter in the armature circuit of a d.c 

motor. 
 

3. Superiority of commercial starter (3-point starter) over resistance starter. Various 

protective features incorporated in a commercial starter. 
 

4. Various strategies (namely-armature resistance control, armature voltage control and field 

current control) adopted for controlling speed of d.c motors. 
 

5. Importance of characteristics such as (i) speed vs. armature current and (ii) speed vs. 

torque which are relevant for clear understanding of speed control technique. 
 

6. Principle of electric braking – qualitative explanation. 
 
 

39.2 Introduction 

 

Although in this section we shall mainly discuss shunt motor, however, a brief descriptions of (i)  
D.C shunt, (ii) separately excited and (iii) series motor widely used are given at the beginning. 

The armature and field coils are connected in parallel in a d.c shunt motor as shown in figure 

39.1 and the parallel combination is supplied with voltage V. IL, Ia and If are respectively the 
current drawn from supply, the armature current and the field current respectively. The following 
equations can be written by applying KCL, and KVL in the field circuit and KVL in the armature 
circuit. 
 

IL = Ia + I f applying KCL 
 

I f =  V from KVLin field circuit  

  
 

   Rf   
 

Ia =  
V - Eb  

from KVL in the armature circuit 
 

ra 
 

 

     
 

= V - kφn  
ra  

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

39.3 Important Ideas 

 

We have learnt in the previous lecture (37), that for motor operation: 

 

1. Electromagnetic torque Te = kφ Ia developed by the motor acts along the direction of 

rotation. 
 

2. The load torque TL acts in the opposite direction of rotation or in opposition to Te. 

 

3. If Te = TL , motor operates with constant speed. . 

 

4. If at any time Te > TL , the motor will accelerate. 

 

5. If at any time Te < TL , the motor will decelerate. 

 

Although our main focus of study will be the operation of motor under steady state condition, 

a knowledge of “how motor moves from one steady state operating point to another steady 

operating point” is important to note. To begin with let us study, how a motor from rest condition 

settles to the final operating point. Let us assume the motor is absolutely under no-load condition 

which essentially means TL = 0 and there is friction present. Thus when supply is switched on, 

both Ia = V ra and φ will be established developing Te. As TL = 0, motor should pick up speed  
due to acceleration. As motor speed increases, armature current decreases since back emf Eb 
rises. The value of Te also progressively decreases. But so long Te is present, acceleration will 
continue, increasing speed and back emf. A time will come when supply voltage and Eb will be 
same making armature current Ia zero. Now Te becomes zero and acceleration stops and motor  

continues to run steadily at constant speed given by n = V kφand drawing no 

armaturecurrent. Note that input power to the armature is zero and mechanical output power is 

zero as well. 

Let us bring a little reality to the previous discussion. Let us not neglect frictional torque 

during acceleration period from rest. Let us also assume frictional torque to be constant and 

equal to Tfric. How the final operating point will be decided in this case? When supply will be 

switched on Te will be developed and machine will accelerate if Te > Tfric. With time Te will 

decrease as Ia decreases. Eventually, a time will come when Te becomes equal to TL and motor 

will continue to run at constant steady no load speed n0. The motor in the final steady state



however will continue to draw a definite amount of armature current which will produce Te just 

enough to balance Tfric. 

Suppose, the motor is running steadily at no load speed n0, drawing no load armature Ia0 and 

producing torque Te0 (= Tfric). Now imagine, a constant load torque is suddenly imposed on the shaft 

of the motor at t = 0. Since speed can not change instantaneously, at t = 0
+
, Ia(t = 0

+
) = Ia0 

and Te(t = 0
+
) = Te0. Thus, at t = 0

+
, opposing torque is (TL + Tfric) < Te0 . Therefore, the motor 

should start decelerating drawing more armature current and developing more Te. Final steady  
operating point will be reached when, Te = Tfric + TL and motor will run at a new speed lower 

than no load speed n0 but drawing Ia greater than the no load current Ia 0.  
In this section, we have learnt the mechanism of how a D.C motor gets loaded. To find out 

steady state operating point, one should only deal with steady state equations involving torque 

and current. For a shunt motor, operating point may change due to (i) change in field current or  

φ , (ii) change in load torque or (iii) change in both. Let us assume the initial operating point to 

be: 
 

Armature current = 

I
a1    

Field current = 
I

 f 1    

Flux per pole = φ1    

Speed in rps = n 1    

Load torque = 
T

L1    
T

 e1 = 
kφ

1

I
a1 = 

T
L1 (39.1) 

E
 b1 = kφ 2n2 = V - Ia1ra (39.2)  

Now suppose, we have changed field 

respectively. Our problem is to find out the 

 

current and load torque to new values If2 and TL2 
new steady state armature current and speed. Let, 
 

New armature current = 

I
a 2 

New field current = 
I

 f 2 

New flux per pole = φ 2 

Speed in rps = n 2 

New load torque = 
T

L2 
T

 e2 =   kφ 2 Ia 2   =  TL 2 

E
 b2 =   kφ 2n2    =  V - Ia 2ra 

Now from equations 39.1 and 39.3 we get: 

T
e 2   

T
L 2   

kφ
 2 

I
a 2 

 
T

e1 
T

L1     
kφ 1

I
a1 

 
 
 
 
 
 
 
 
 

 

(39.3) 
 

(39.4) 
 
 
 
 

 

(39.5) 

 

From equation 39.5, one can calculate the new armature current Ia2, the other things being 
known. Similarly using equations 39.2 and 39.4 we get: 
 
 
 

 



E
b1  kφ 2n2  V - I a1ra (39.6)  

E kφ n 
  

 V - I 
a 2 

r  
 

b 2 1  1   a  
  

Now we can calculate new steady state speed n2 from equation 39.6. 

 

39.4 Starting of D.C shunt motor 

 

39.4.1 Problems of starting with full voltage 

 

We know armature current in a d.c motor is given by 
 

Ia   

V - E
b 

V - kφn
 

 

ra ra 
At the instant of starting, rotor speed n = 0, hence starting armature current is Iast = 

V
  . Since,  

ra  
armature resistance is quite small, starting current may be quite high (many times larger than the 

rated current) . A large machine, characterized by large rotor inertia (J), will pick up speed rather 

slowly. Thus the level of high starting current may be maintained for quite some time so as to 

cause serious damage to the brush/commutator and to the armature winding. Also the source 

should be capable of supplying this burst of large current. The other loads already connected to 

the same source, would experience a dip in the terminal voltage, every time a D.C motor is 

attempted to start with full voltage. This dip in supply voltage is caused due to sudden rise in 

voltage drop in the source's internal resistance. The duration for which this drop in voltage will 

persist once again depends on inertia (size) of the motor. 
 

Hence, for small D.C motors extra precaution may not be necessary during starting as large 

starting current will very quickly die down because of fast rise in the back emf. However, for 

large motor, a starter is to be used during starting. 
 

39.4.2 A simple starter 
 

To limit the starting current, a suitable external resistance Rext is connected in series (Figure 

39.2(a)) with the armature so that I ast = R 
V

+r . At the time of starting, to have sufficient starting  
ext a  

torque, field current is maximized by keeping the external field resistance Rf, to zero value. As 

the motor picks up speed, the value of Rext is gradually decreased to zero so that during running 
no external resistance remains in the armature circuit. But each time one has to restart the motor, 
the external armature resistance must be set to maximum value by moving the jockey manually. 

Imagine, the motor to be running with Rext = 0 (Figure 39.2(b)). 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now if the supply goes off (due to some problem in the supply side or due to load shedding), 

motor will come to a stop. All on a sudden, let us imagine, supply is restored. This is then nothing 

but full voltage starting. In other words, one should be constantly alert to set the resistance to 

maximum value whenever the motor comes to a stop. This is one major limitation of a simple 

rheostatic starter. 
 

39.4.3 3-point starter 

 

A “3-point starter” is extensively used to start a D.C shunt motor. It not only overcomes the 

difficulty of a plain resistance starter, but also provides additional protective features such as over 

load protection and no volt protection. The diagram of a 3 -point starter connected to a shunt 

motor is shown in figure 39.3. Although, the circuit looks a bit clumsy at a first glance, the basic 

working principle is same as that of plain resistance starter. 
 

The starter is shown enclosed within the dotted rectangular box having three terminals 

marked as A, L and F for external connections. Terminal A is connected to one armature terminal 

Al of the motor. Terminal F is connected to one field terminal F1 of the motor and terminal L is 

connected to one supply terminal as shown. F2 terminal of field coil is connected to A2 through 

an external variable field resistance and the common point connected to supply (-ve). The 

external armatures resistances consist of several resistances connected in series and are shown in 

the form of an arc. The junctions of the resistances are brought out as terminals (called studs) and 

marked as 1,2,.. .12. Just beneath the resistances, a continuous copper strip also in the form of an 

arc is present. 
 

There is a handle which can be moved in the clockwise direction against the spring tension. 

The spring tension keeps the handle in the OFF position when no one attempts to move it. Now 

let us trace the circuit from terminal L (supply + ve) . The wire from L passes through a small 

electro magnet called OLRC, (the function of which we shall discuss a little later) and enters 

through the handle shown by dashed lines. Near the end of the handle two copper strips are 

firmly connected with the wire. The furthest strip is shown circular shaped and the other strip is 

shown to be rectangular. When the handle is moved to the right, the circular strip of the handle 

will make contacts with resistance terminals 1, 2 etc. progressively. On the other hand, the 

 



rectangular strip will make contact with the continuous arc copper strip. The other end of this 

strip is brought as terminal F after going through an electromagnet coil (called NVRC). Terminal 

F is finally connected to motor field terminal Fl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Working principle 

 

Let us explain the operation of the starter. Initially the handle is in the OFF position. Neither 

armature nor the field of the motor gets supply. Now the handle is moved to stud number 1. In 

this position armature and all the resistances in series gets connected to the supply. Field coil gets 

full supply as the rectangular strip makes contact with arc copper strip. As the machine picks up 

speed handle is moved further to stud number 2. In this position the external resistance in the 

armature circuit is less as the first resistance is left out. Field however, continues to get full 

voltage by virtue of the continuous arc strip. Continuing in this way, all resistances will be left 

out when stud number 12 (ON) is reached. In this position, the electromagnet (NVRC) will attract 

the soft iron piece attached to the handle. Even if the operator removes his hand from the handle, 

it will still remain in the ON position as spring restoring force will be balanced by the force of 

attraction between NVRC and the soft iron piece of the handle. The no volt release coil (NVRC) 

carries same current as that of the field coil. In case supply voltage goes off, field coil current will 

decrease to zero. Hence NVRC will be deenergised and will not be able to exert any force on the 

soft iron piece of the handle. Restoring force of the spring will bring the handle back in the OFF 

position.  
The starter also provides over load protection for the motor. The other electromagnet, OLRC 

overload release coil along with a soft iron piece kept under it, is used to achieve this. The 

current flowing through OLRC is the line current IL drawn by the motor. As the motor is loaded, 

Ia hence IL increases. Therefore, IL is a measure of loading of the motor. Suppose we want that 
the motor should not be over loaded beyond rated current. Now gap between the electromagnet 



and the soft iron piece is so adjusted that for IL ≤ Irated , the iron piece will not be pulled up. 

However, if IL ≤ Irated force of attraction will be sufficient to pull up iron piece. This upward 

movement of the iron piece of OLRC is utilized to de-energize NVRC. To the iron a copper strip 

( shaped in figure) is attached. During over loading condition, this copper strip will also move up 

and put a short circuit between two terminals B and C. Carefully note that B and C are nothing 

but the two ends of the NVRC. In other words, when over load occurs a short circuit path is 

created across the NVRC. Hence NVRC will not carry any current now and gets deenergised. 

The moment it gets deenergised, spring action will bring the handle in the OFF position thereby 

disconnecting the motor from the supply.  
Three point starter has one disadvantage. If we want to run the machine at higher speed 

(above rated speed) by field weakening (i.e., by reducing field current), the strength of NVRC 

magnet may become so weak that it will fail to hold the handle in the ON position and the spring 

action will bring it back in the OFF position. Thus we find that a false disconnection of the motor 

takes place even when there is neither over load nor any sudden disruption of supply. 
 

39.5 Speed control of shunt motor 

 

We know that the speed of shunt motor is given by: 
 

n = 

V
a 

- I
a 

r
a 

 

kφ 

where, Va is the voltage applied across the armature and φ is the flux per pole and is proportional 

to the field current If. As explained earlier, armature current Ia is decided by the mechanical load 

present on the shaft. Therefore, by varying Va and If we can vary n. For fixed supply voltage and 

the motor connected as shunt we can vary Va by controlling an external resistance connected in 

series with the armature. If of course can be varied by controlling external field resistance Rf 
connected with the field circuit. Thus for .shunt motor we have essentially two methods for 
controlling speed, namely by: 
 

1. varying armature resistance.  
2. varying field resistance. 

 

39.5.1 Speed control by varying armature resistance 
 

The inherent armature resistance ra being small, speed n versus armature current Ia characteristic 

will be a straight line with a small negative slope as shown in figure 39.4. In the discussion to 

follow we shall not disturb the field current from its rated value. At no load (i.e., Ia = 0) speed is 

highest and n0  
V

kφa  k
V

φ . Note that for shunt motor voltage applied to the field and armature  

circuit are same and equal to the supply voltage V. However, as the motor is loaded, Iar a drop 

increases making speed a little less than the no load speed n0 . For a well designed shunt motor 
this drop in speed is small and about 3 to 5% with respect to no load speed. This drop in speed 
from no load to full load condition expressed as a percentage of no load speed is called the 
inherent speed regulation of the motor. 

n - n
 

Inherent % speed regulation = 0 100 
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n0 = no load speed 

n = full load speed 
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Figure 39.4:  Speed vs. armature current 

characteristic. 

  

Figure 39.5: Speed vs. torque 
characteristic. 
 

 

It is for this reason, a d.c shunt motor is said to be practically a constant speed motor (with no 

external armature resistance connected) since speed drops by a small amount from no load to full 

load condition.  

Since Te = kφ Ia , for constant φ operation, Te becomes simply proportional to Ia. Therefore, 

speed vs. torque characteristic is also similar to speed vs. armature current characteristic as 

shown in figure 39.5. 

The slope of the n vs Ia or n vs Te characteristic can be modified by deliberately connecting 

external resistance rext in the armature circuit. One can get a family of speed vs. armature curves 

as shown in figures 39.6 and 39.7 for various values of rext. From these characteristic it can be 

explained how speed control is achieved. Let us assume that the load torque TL is constant and 

field current is also kept constant. Therefore, since steady state operation demands Te = TL, Te = 

kφ Ia too will remain constant; which means Ia will not change. Suppose rext = 0, then at rated  

load torque, operating point will be at C and motor speed will be n. If additional resistance rext1 is 

introduced in the armature circuit, new steady state operating speed will be n1 corresponding to 

the operating point D. In this way one can get a speed of n2 corresponding to the operating point 

E, when rext2 is introduced in the armature circuit. This same load torque is supplied at various 

speed. Variation of the speed is smooth and speed will decrease smoothly if rext is increased. 
Obviously, this method is suitable for controlling speed below the base speed and for supplying 
constant rated load torque which ensures rated armature current always. Although, this method 
provides smooth wide range speed control (from base speed down to zero speed), has a serious 

draw back since energy loss takes place in the external resistance rext reducing the efficiency of 
the motor. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

39.5.2 Speed control by varying field current 

 

In this method field circuit resistance is varied to control the speed of a d.c shunt motor. Let us 

rewrite .the basic equation to understand the method. 
 

n  

V - I
 a 

r
a kφ  

 

If we vary If, flux φ will change, hence speed will vary. To change If an external resistance is 
 

connected in series with the field windings. The field coil produces rated flux when no external 

resistance is connected and rated voltage is applied across field coil. It should be understood that 

we can only decrease flux from its rated value by adding external resistance. Thus the speed of 

the motor will rise as we decrease the field current and speed control above the base speed will 

be achieved. Speed versus armature current characteristic is shown in figure 39.8 for two flux  

values φ and φ1 . Since φ1  φ , the no load speed n
'
o for flux value φ 1 is more than the no load 

speed no corresponding to φ . However, this method will not be suitable for constant load torque. 

 

 



To make this point clear, let us assume that the load torque is constant at rated value. So from the 

initial steady condition, we have TL rated = Te1  kφ Ia rated . If load torque remains constant and 

flux is reduced to φ1 , new armature current in the steady state is obtained from kφI a1 = TL rated 

. Therefore new armature current is 

  I  φ I
a rated 

 

  a1 φ 
1  

       

But the fraction, φ 
 1; hence new armature current will be greater than the rated armature 

 

 φ  
 

current and the motor will be overloaded. This method therefore, will be suitable for a load 

whose torque demand decreases with the rise in speed keeping the output power constant as 

shown in figure 39.9. Obviously this method is based on flux weakening of the main field. 

Therefore at higher speed main flux may become so weakened, that armature reaction effect will 

be more pronounced causing problem in commutation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39.5.3 Speed control by armature voltage variation 

 

In this method of speed control, armature is supplied from a separate variable d.c voltage source, 

while the field is separately excited with fixed rated voltage as shown in figure 39.10. Here the  

armature resistance and field current are not varied. Since the no load speed n0  
V

kφa , the speed 

versus Ia characteristic will shift parallely as shown in figure 39.11 for different values of Va.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As flux remains constant, this method is suitable for constant torque loads. In a way armature 

voltage control method is similar to that of armature resistance control method except that the 

former one is much superior as no extra power loss takes place in the armature circuit. Armature 

voltage control method is adopted for controlling speed from base speed down to very small 

speed as one should not apply across the armature a voltage which is higher than the rated 

voltage. 
 

39.5.4 Ward Leonard method: combination of Va and If control 

 

In this scheme, both field and armature control are integrated as shown in figure 39.12. 

Arrangement for field control is rather simple. One has to simply connect an appropriate rheostat 

in the field circuit for this purpose. However, in the pre power electronic era, obtaining a variable 

d.c supply was not easy and a separately excited d.c generator was used to supply the motor 

armature. Obviously to run this generator, a prime mover is required. A 3-phase induction motor 

is used as the prime mover which is supplied from a 3-phase supply. By controlling t 



field current of the generator, the generated emf, hence Va can be varied. The potential divider 

connection uses two rheostats in parallel to facilitate reversal of generator field current.  
First the induction motor is started with generator field current zero (by adjusting the jockey 

positions of the rheostats). Field supply of the motor is switched on with motor field rheostat set 

to zero. The applied voltage to the motor Va, can now be gradually increased to the rated value by 

slowly increasing the generator field current. In this scheme, no starter is required for the d.c 
motor as the applied voltage to the armature is gradually increased. To control the speed of the 
d.c motor below base speed by armature voltage, excitation of the d.c generator is varied, while 
to control the speed above base speed field current of the d.c motor is varied maintaining constant 

Va. Reversal of direction of rotation of the motor can be obtained by adjusting jockeys of the 

generator field rheostats. Although, wide range smooth speed control is achieved, the cost 
involved is rather high as we require one additional d.c generator and a 3-phase induction motor 
of simialr rating as that of the d.c motor whose speed is intended to be controlled. 
 

In present day, variable d.c supply can easily be obtained from a.c supply by using controlled 

rectifiers thus avoiding the use of additional induction motor and generator set to implement 

Ward leonard method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

39.6 Series motor 

 

In this motor the field winding is connected in series with the armature and the combination is 
supplied with d.c voltage as depicted in figure 39.13. Unlike a shunt motor, here field current is 

not independent of armature current. In fact, field and armature currents are equal i.e., If = Ia. 

Now torque produced in a d.c motor is: 
 

T ∝ φ Ia 
 

∝Ι f Ia 
 

∝ Ia
2
 before saturation sets in i.e., φ ∝ Ia ∝ 

Ia after saturation sets in at large Ia



 
 
 
 
 
 
 
 
 
 
 

 

Since torque is proportional to the square of the armature current, starting torque of a series 

motor is quite high compared to a similarly rated d.c shunt motor. 

 

39.6.1 Characteristics of series motor 

 

Torque vs. armature current characteristic 
 

Since T ∝ Ia
2
 in the linear zone and T ∝ Ia in the saturation zone, the T vs. Ia characteristic is as 

shown in figure 39.14 

 

speed vs. armature current 

 

From the KVL equation of the motor, the relation between speed and armature current can be 

obtained as follows: 
 

V = Ia ra + rse + Eb 

 

 =   Ia r + kφn 
 

or, n = 
V - I a r 

 

  

kφ 
    

 

        
 

In the linear zone n = 
 V - I a r  

 

  

k'Ia 
 

    
 

 
= 

  V  − 
r  

 

   

k'I a k' 
 

     
 

In the saturation zone n = 
 V - I a r  

 

  

k'φ sat 
 

    
  

The relationship is inverse in nature making speed dangerously high as Ia → 0 . Remember that 
 

the value of Ia, is a measure of degree of loading. Therefore, a series motor should never be 

operated under no load condition. Unlike a shunt motor, a series motor has no finite no load 
speed. Speed versus armature current characteristic is shown in figure nvsia:side: b. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

speed vs. torque characteristic 

 

Since Ia ∝ T  in the linear zone, the relationship between speed and torque is   

V − r 

k''  T   k'  
k'' and k' represent appropriate constants to take into account the proportionality that exist 

between current, torque and flux in the linear zone. This relation is also inverse in nature 

indicating once again that at light load or no load T → 0 condition; series motor speed 
 
approaches a dangerously high value. The characteristic is shown in figure 39.16. For this reason, 

a series motor is never connected to mechanical load through belt drive. If belt snaps, the motor 

becomes unloaded and as a consequence speed goes up unrestricted causing mechanical damages 

to the motor. 

 



39.7 Speed control of series motor 

 

39.7.1 Speed control below base speed 

 

For constant load torque, steady armature current remains constant, hence flux also remains 

constant. Since the machine resistance ra + rse is quite small, the back emf Eb is approximately  

equal to the armature terminal voltage Va. Therefore, speed is proportional to Va. If Va is reduced, 

speed too will be reduced. This Va can be controlled either by connecting external resistance in 
series or by changing the supply voltage. 
 

Series-parallel connection of motors 

 

If for a drive two or more (even number) of identical motors are used (as in traction), the motors 

may be suitably connected to have different applied voltages across the motors for controlling 

speed. In series connection of the motors shown in figure 39.17, the applied voltage across each 

motor is V/2 while in parallel connection shown in figure 39.18, the applied voltage across each 

motor is V. The back emf in the former case will be approximately half than that in the latter case. 

For same armature current in both the cases (which means flux per pole is same), speed will be 

half in series connection compared to parallel connection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39.7.2 Speed control above base speed 

 

Flux or field current control is adopted to control speed above the base speed. In a series motor, 

independent control of field current is not so obvious as armature and field coils are in series. 

However, this can be achieved by the following methods: 
 

1. Using a diverter resistance connected across the field coil.  
In this method shown in figure 39.19, a portion of the armature current is diverted through 

the diverter resistance. So field current is now not equal to the armature current; in fact it 

is less than the armature current. Flux weakening thus caused, raises the speed of the 

motor. 
 

2. Changing number of turns of field coil provided with tapings.  
In this case shown figure 39.20, armature and field currents are same. However provision 

is kept to change the number of turns of the field coil. When number of turns changes,  

field mmf N se I f  changes, changing the flux hence speed of the motor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. Connecting field coils wound over each pole in series or in. parallel.  
Generally the field terminals of a d.c machine are brought out after connecting the field 
coils (wound over each pole) in series. Consider a 4 pole series motor where there will be 
4 individual coils placed over the poles. If the terminals of the individual coils are brought 
out, then there exist several options for connecting them. The four coils could be 
connected in series as in figure 39.21; the 4 coils could be connected in parallel or parallel 
combination of 2 in series and other 2 in series as shown in figure 39.22. n figure For 

series connection of the coils (figure 39.21) flux produced is proportional to Ia and 



for  series-parallel  connection  (figure  39.22)  flux  produced  is  proportional  to I
2a  .   

Therefore, for same armature current Ia, flux will be doubled in the second case and 

naturally speed will be approximately doubled as back emf in both the cases is close to 
supply voltage V. Thus control of speed in the ratio of 1:2 is possible for series parallel 
connection.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In a similar way, reader can work out the variation of speed possible between (i) all coils 

connected in series and (ii) all coils connected in parallel. 
 

39.8 Braking of d.c shunt motor: basic idea 

 

It is often necessary in many applications to stop a running motor rather quickly. We know that 

any moving or rotating object acquires kinetic energy. Therefore, how fast we can bring the 

object to rest will depend essentially upon how quickly we can extract its kinetic energy and 

make arrangement to dissipate that energy somewhere else. If you stop pedaling your bicycle, it 

will eventually come to a stop eventually after moving quite some distance. The initial kinetic 

energy stored, in this case dissipates as heat in the friction of the road. However, to make the 

stopping faster, brake is applied with the help of rubber brake shoes on the rim of the wheels. 

Thus stored K.E now gets two ways of getting dissipated, one at the wheel-brake shoe interface 

(where most of the energy is dissipated) and the other at the road-tier interface. This is a good 

method no doubt, but regular maintenance of brake shoes due to wear and tear is necessary.  
If a motor is simply disconnected from supply it will eventually come to stop no doubt, but 

will take longer time particularly for large motors having high rotational inertia. Because here the 

stored energy has to dissipate mainly through bearing friction and wind friction. The situation can 

be improved, by forcing the motor to operate as a generator during braking. The idea can be 

understood remembering that in motor mode electromagnetic torque acts along the



direction of rotation while in generator the electromagnetic torque acts in the opposite direction 

of rotation. Thus by forcing the machine to operate as generator during the braking period, a 

torque opposite to the direction of rotation will be imposed on the shaft, thereby helping the 

machine to come to stop quickly. During braking action, the initial K.E stored in the rotor is 

either dissipated in an external resistance or fed back to the supply or both. 
 

39.8.1 Rheostatic braking 

 

Consider a d.c shunt motor operating from a d.c supply with the switch S connected to position 1 
as shown in figure 39.23. S is a single pole double throw switch and can be connected either to 

position 1 or to position 2. One end of an external resistance Rb is connected to position 2 of the 

switch S as shown.  

Let with S in position 1, motor runs at n rpm, drawing an armature current Ia and the back 

emf is Eb = kφ n. Note the polarity of Eb which, as usual for motor mode in opposition with the 

supply voltage. Also note Te and n have same clock wise direction. 
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Figure 39.23: Machine operates as 

motor 

 

 

Figure 39.24: Machine operates as 

generator during braking 
 

Now if S is suddenly thrown to position 2 at t = 0, the armature gets disconnected from the 

supply and terminated by Rb with field coil remains energized from the supply. Since speed of 

the rotor can not change instantaneously, the back emf value Eb is still maintained with same 

polarity prevailing at t = 0-. Thus at t = 0+, armature current will be Ia = Eb/(ra + Rb) and with 

reversed direction compared to direction prevailing during motor mode at t = 0-.  
Obviously for t > 0, the machine is operating as generator dissipating power to Rb and now 

the electromagnetic torque Te must act in the opposite direction to that of n since Ia has changed 

direction but φ has not (recall Te ∝ φ Ia). As time passes after switching, n decreases reducing 

K.E and as a consequence both Eb and Ia decrease. In other words value of braking torque will be 

highest at t = 0+, and it decreases progressively and becoming zero when the machine finally 

come to a stop. 
 

39.8.2 Plugging or dynamic braking 

 

This method of braking can be understood by referring to figures 39.25 and 39.26. Here S is a 
double pole double throw switch. For usual motoring mode, S is connected to positions 1 and 1'. 

Across terminals 2 and 2', a series combination of an external resistance Rb and supply voltage 

with polarity as indicated is connected. However, during motor mode this part of the circuit 
remains inactive. 
 



 

+ 

 

su
p

p
ly

, 
V

 

 

D
.C

 

 

- 

 
 
 
 
 

If 

  

1 
S

 2  Ia   
R

b - + 
 

φ 
 

n V
 V  

 
 

 
 

  

su
p

p
ly

, 

 
 

  ra 

su
pp

ly
,  

+  Ia 
T

e 
 

-  Eb 

D
.C

 

D
.C

 

 

   
 

   
 

1' S 

 
 

2' + - 
  

 
 
 
 

 

If 

   

1 S 2  Ia   
R

b - 
 

φ  
n V

 

 

  

su
p

p
ly

, 

 

  ra  

+  Ia 
T

e 
 

-  Eb 

D
.C

 

 

   
 

1' S 2' + 
   

Figure 39.25: Machine operates as 

motor 

 
Figure 39.26: Machine operates as 

generator during braking (plugging). 
 

To initiate braking, the switch is thrown to position 2 and 2' at t = 0, thereby 

disconnecting the armature from the left hand supply. Here at t = 0+, the armature current will be 

Ia = (Eb + V)/(ra + Rb) as Eb and the right hand supply voltage have additive polarities by virtue 

of the connection. Here also Ia reverses direction producing Te in opposite direction to n. Ia 

decreases as Eb decreases with time as speed decreases. However, Ia can not become zero at any 
time due to presence of supply V. So unlike rheostatic braking, substantial magnitude of braking 
torque prevails. Hence stopping of the motor is expected to be much faster then rheostatic 
breaking. But what happens, if S continuous to be in position 1' and 2' even after zero speed has 
been attained? The answer is rather simple, the machine will start picking up speed in the reverse 
direction operating as a motor. So care should be taken to disconnect the right hand supply, the 
moment armature speed becomes zero. 
 

39.8.3 Regenerative braking 

 

A machine operating as motor may go into regenerative braking mode if its speed becomes 

sufficiently high so as to make back emf greater than the supply voltage i.e., Eb > V. Obviously 

under this condition the direction of Ia will reverse imposing torque which is opposite to the 

direction of rotation. The situation is explained in figures 39.27 and 39.28. The normal motor 

operation is shown in figure 39.27 where armature motoring current Ia is drawn from the supply 

and as usual Eb < V. Since Eb = kφ n1. The question is how speed on its own become large 

enough to make Eb < V causing regenerative braking. Such a situation may occur in practice 

when the mechanical load itself becomes active. Imagine the d.c motor is coupled to the wheel of 

locomotive which is moving along a plain track without any gradient as shown in figure 39.27. 

Machine is running as a motor at a speed of n1 rpm. However, when the track has a downward 

gradient (shown in figure 39.28), component of gravitational force along the track also appears 

which will try to accelerate the motor and may increase its speed to n2 such that Eb  

= kφ n2 > V. In such a scenario, direction of Ia reverses, feeding power back to supply. 

Regenerative braking here will not stop the motor but will help to arrest rise of dangerously high 

speed. 
 
 
 
 
 
 
 
 



 

+ 

 

D
.C

 s
u

p
p

ly
 

 

- 
 
 
 
 

 

+ 

 

D
.C

 s
u

p
p

ly
 

 
 

 Ia   
 

If φ 

ra n1  

  
 

  

Electric loco 

 

 + Ia 
T

e 
 

 - Eb n1 
   

Plain track without gradient 
 

Eb < V 
 

Figure 39.27: Machine operates as motor 
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Figure 39.28: Machine enters regenerative braking mode. 
 

 

39.9 Tick the correct answer 

 

1. A 200 V, 1000 rpm, d.c shunt motor has an armature resistance of 0.8 Ω and its rated 
armature current is 20 A. Ratio of armature starting current to rated current with full 

voltage starting will be: 
 

(A) 1 V (B) 12.5 V (C) 25 V (D) 16 V 
 

2. A 200 V, 1000 rpm, d.c shunt motor has an armature resistance of 0.8 Ω and found to run 
from a 200 V supply steadily at 950 rpm with a back emf of 190 V. The armature current 

is: 
 

(A) 237.5 A (B) 10 A (C) 250 A (D) 12.5 A 

 

3. A d.c 220 V, shunt motor has an armature resistance of 1 Ω and a field circuit resistance 
of 150 Ω. While running steadily from 220 V supply, its back emf is found to be 209 V. 
The motor is drawing a line current of: 

 

(A) 11 A (B) 12.47 A (C) 221.47 A (D) 9.53 A 
 

4. A 220 V, d.c shunt motor has ra = 0.8 Ω and draws an armature current of 20 A while 
supplying a constant load torque. If flux is suddenly reduced by 10%, then immediately 

the armature current will become: 



(A) 45.5 A and the new steady state armature current will be 22.2 A.  
(B) 20 A and the new steady state armature current will be 22.2 A. 

(C) 22.2 A and the new steady state armature current will be 45.5 A. 

(D) 20 A and the new steady state armature current will be 25 A. 
 

5. A 220 V, d.c shunt motor has ra = 0.8 Ω and draws an armature current of 20 A while 
supplying a constant load torque. If a 4.2 Ω resistance is inserted in the armature circuit 
suddenly, then immediately the armature current will become: 

 
(A) 20 A and the new steady state armature current will be 3.2 A.  
(B) 3.2 A and the new steady state armature current will be 20 A. 

(C) 47.2 A and the new steady state armature current will be 3.2 A. 

(D) 3.2 A and the new steady state armature current will be 47.2 A. 
 

6. A separately excited 220 V, d.c generator has ra = 0.6 Ω and while supplying a constant 
load torque, draws an armature current of 30 A at rated voltage. If armature supply 

voltage is reduced by 20%, the new steady state armature current will be: 
 

(A) 24 A (B) 6 A (C) 30 A (D) 36 A 

 

7. A 250 V, d.c shunt motor having negligible armature resistance runs at 1000 rpm at rated 

voltage. If the supply voltage is reduced by 25%, new steady state speed of the motor will 

be about: 
 

(A) 750 rpm (B) 250 rpm (C) 1000 rpm (D) 1250 rpm 

 

39.10  Solve the following 

 

1. A d.c motor takes an armature current of 50A at 220V. The resistance of the armature is 

0.2Ω. The motor has 6 poles and the armature is lap wound with 430 conductors. The flux 

per pole is 0.03Wb. Calculate the speed at which the motor is running and the 

electromagnetic torque developed. 
 

2. A 10KW, 250V, 1200 rpm d.c shunt motor has a full load efficiency of 80%, ra = 0.2Ω 

and Rf = 125Ω. The machine is initially operating at full load condition developing full 

load torque. 
 

i. What extra resistance should be inserted is the armature circuit if the motor speed is to 

be reduced to 960 rpm? 

ii. What additional resistance is to be inserted in the field circuit in order to raise the 

speed to 1300 rpm? 
 

Note that for both parts (i) and (ii) the initial condition is the same full load condition as stated in 

the first paragraph and load torque remains constant throughout. Effect of saturation and 

armature reaction may be neglected. 
 
 
 
 
 

 


