UNIT-1

DC Circuit



Node-voltage analysis of
resistive circuit in the
context of dc voltages

and currents



Objectives

] To provide a powerful but simple circuit analysis tool based on Kirchhoff’s
current law (KCL) only.

1 Node voltage analysis

In the previous lesson-4, it has been discussed in detail the analysis of a dc network by
writing a set of simultaneous algebraic equations (based on KVL only) in which the
variables are currents, known as mesh analysis or loop analysis. On the other hand, the
node voltage analysis (Nodal analysis) is another form of circuit or network analysis
technique, which will solve almost any linear circuit. In a way, this method completely
analogous to mesh analysis method, writes KCL equations instead of KVL equations, and
solves them simultaneously.

2.Solution of Electric Circuit Based on Node Voltage Method

In the node voltage method, we identify all the nodes on the circuit. Choosing one of them
as the reference voltage (i.e., zero potential) and subsequently assign other node voltages
(unknown) with respect to a reference voltage (usually ground voltage taken as

zero (0) potential and denoted by ( - ). If the circuit has “n” nodes there are “n-1"
node voltages are unknown (since we are always free to assign one node to zero or ground
potential). At each of these “n-1” nodes, we can apply KCL equation. The unknown node
voltages become the independent variables of the problem and the solution of node
voltages can be obtained by solving a set of simultaneous equations.

Let us consider a simple dc network as shown in Figure 5.1 to find the currents
through different branches using “Node voltage” method.
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KCL equation at “Node-1":

sl K
Ry Ry R, 5, T, Ry
I -1 =G V_G V_GYV
sl 3 o1 2 2 13 3 5.1
where G;; = sum of total conductance (self conductance) connected to Node-1.

KCL equation at “Node-2":

1 -1 -V =Vi-V3 0,57 -1 - 14 1y- 1ly- _ly=g
sl 53 3 1 2 3

v [:VZ v [:V3 -1, =0 =l =— v +_1 +—1V2 __1 v
n In In In

4 3 4 3 4 3
“ls0==GnVi+Gn V-G V3 5.2)
KCL equation at “Node-3":
153 += I;V3 +V1[(_V3 V3A =0 ) %lﬂ = 11‘ " [‘1 Ys +n1 +'Kl + 11‘ V3

3 2 1 2 3 1 2 3
I3==G3 Vi -Gy Va+ Gy3 V3 (5.3)
In general, for the i~ Node the KCL equation can be written as
I=_GV_G V_ -GV

Z ii it 1 i2 2 +G;Vi— iN N

where,



Zlﬁ = algebraic sum  of all the current sourcesconnected to ‘Node- i

b
’

i=1,2, N.(Currents entering the node from current source is assigned as +ve sign
and the current leaving the node from the current source is assigned as —ve sign).

G;; = the sum of the values of conductance (reciprocal of resistance) connected to the
node "i'.

G;; = the sum of the values of conductance connected between the nodes 'i'and 'j .

Summarize the steps to analyze a circuit by node voltage method are as follows:

Step-1: Identify all nodes in the circuit. Select one node as the reference node (assign as
ground potential or zero potential) and label the remaining nodes as unknown node
voltages with respect to the reference node.

Step-2: Assign branch currents in each branch. (The choice of direction is arbitrary).
Step-3: Express the branch currents in terms of node assigned voltages.

Step-4: Write the standard form of node equations by inspecting the circuit. (No of node
equations = No of nodes (N) — 1).

Step-5: Solve a set of simultaneous algebraic equation for node voltages and ultimately
the branch currents.

Remarks:
"] Sometimes it is convenient to select the reference node at the bottom of a circuit or
the node that has the largest number of branches connected to it.
1 One usually makes a choice between a mesh and a node equations based on the
least number of required equations.

Example-L-5.1: Find the value of the current 7 flowing through the battery using ‘Node
voltage’ method
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Solution: All nodes are indicated in fig.5.2 and ‘Node-g’ is selected as reference voltage. If a
voltage source is connected directly between the two nodes, the current flowing through the

voltage source cannot be determined directly since the source voltage Vg is independent of

current. Further to note that the source voltage V¢ fixes the voltage
between the nodes only. For the present example, the voltage of the central node is known
since it is equal to (V4 —10) volt .

KCL equation at node-a:

3=Ya=0475101+V =30 (5.4)
10 a

KCL equation at node-b:

Ve=10-Vy —64 V=0, v-7v=370 (5.5)
60 10 a b

To solve the equations (5.4)-(5.5), we need one more equation which can be obtained by
applying KCL at the central node (note central node voltage is (V, =10 ).
PRS0 (V _10)_V 4v _v %40) ¢

I=_¢ + _a b>60[=4Va=V—=40~>[= @« b (5.6)
206060

S(hlli)/stitutinﬁ (gle current expression (5.6) in equation (5.4) we get,

e s 4V =30-10V-V=220 (5.7)

6 a a b

Equations (5.5) and (5.7) can be solved to find Vj, = = 50.43V and V,=16.99V .

We can now refer to original circuit (fig.5.2) to find directly the voltage across every
element and the current through every element. The value of current flowing through the
voltage source can be computed using the equation (5.6) and it is given by 7 =1.307 A .
Note that the current / (+ve) is entering through the positive terminal of the voltage source
and this indicates that the voltage source is absorbing the power, in other words this
situation is observed when charging a battery or source.

Example-L-5.2: Find the current through 'ab-branch' ( 1, ) and voltage (V. ) across the

current source using Node-voltage method.
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Solution:
KCL at node-a: (note V,=3V)

i=Vo Vo VaVe,j= 1. 1y- ly-1ly,i=133v-v -ly (5.8)
R, R R K Ry R 3
KCL at node-b: (note V, =0V )
Vv V=V W Ve g lilyov-ly —o (5.9)
R, R R4 42 4
KCL at node-c:
2+ Ve VaVeoog Slily- ly -1y =2 (5.10)
X X ¢ “ b
3 | 4 3 3 4
Using the value of V, = 3V in equations (5.8)-(5.10) we get the following equations:
v+ lv=399-i (5.11)
b 3 c
1.75v -1v=3 (5.12)
b 4c
0583 v-1ly=3 (5.13)
c 4h

Simultaneous solution of the above three equations, one can get V. = 6.26V, V;, =2.61V

and hence I, = Va= Vb =3-261-0394 ( current flowing in the direction from ‘a’ to
Ry 1
‘D’).

Example-L-5.3 Determine the current, i shown in fig. 5.4 using node-voltage method ---
(a) applying voltage to current source conversion (b) without any source conversion.
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Solution:

Part(a):

In node voltage analysis, sometimes the solution turns out to be very simple while we
change all series branches containing voltage sources to their equivalent current sources.
On the other hand, we observed in the loop analysis method that the conversion of current
source to an equivalent voltage makes the circuit analysis very easy (see example-1.4.2)
and simple. For this example, both the practical voltage sources (one is left of ‘node-a’
and other is right of ‘node-b’) are converted into practical current sources. After
transformation, the circuit is redrawn and shown in fig. 5.5(a).

a i €= b
: 4 4
ImA ImA ImA
IO ¥Z4 1O 10 w3l Of
3mA i i
2 ground
— potential
Fig. 5.5(a)
KCL at node ‘b’:
i+i1=2+1=3 (5.14)
KCL at node ‘a’:
i+2=3+i1-i-i1=1 (5.15)

From equations (5.14)-(5.15), one can get i = 2 mA (current flows from ‘b’ to ‘a’) and
i1 =1mA .
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Part(b):

Let us assume iy is the current flowing through the 8V battery source from ‘right to left’
and i, is the current flowing through the 12V battery source from ‘bottom to top’(see
Fig.5.5(b)).

KCL at node ‘b’: It is assumed that the current flowing in 4 kQ resistor from bottom to
top terminal. This implies that the bottom terminal of 4 kQ resistor is higher potential than
the top terminal.(currents are in m A , note V, =V}, )

0-(V,-8
i=1+i1ai=1+% (5.16)
KCL at node ‘a’: (currents are inm A )
i+i+2=0-i==i=2-i== “127V4 -2 (5.17)

4
From (6.16) and (5.17), we get V, =4V and i = 2 mA (current flows from ‘b’ to ‘a’).

3 Test Your Understanding [Marks: 50]
T.5.1 Node analysis makes use of Kirchhoff’s----------- law just as loop analysis makes
use of Kirchhoff’s --------- law. [1]

T.5.2 Describe a means of telling how many node voltage equations will be required for
a given circuit. [1]

T.5.3 In nodal analysis how are voltage sources handled when (i) a voltage source in a
circuit is connected between a non-reference node and the reference node (ii) a voltage

source connected between two non-reference nodes in nodal analysis. [4]
T.5.4 A voltage in series with a resistance can be represented by an equivalent circuit
that consists of ------------ in parallel with that ------------- . [2]
T.5.5 The algebraic sum of the currents ----------- in a node must be equal to the

algebraic sum of currents --------- the node. [2]



T.5.6 Apply node voltage analysis to find iy and the power dissipated in each resistor in

the circuit of Fig.5.6. [10]
—_—> 1A
)
_/
o I = <
l s T 2A
6L2
i
=
Fi;S 6

(Ans. ig=2.73 A, Pg = 44.63W , Ps = 3.8W, P3 = 0.333W (note - V. = 5.36V , Vj, = 436V )

T.5.7 For the circuit shown in fig. 5.7, find V, using the node voltage method. Calculate
power delivered or absorbed by the sources. [10]
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(Answer: V, =72V, P(voltage source) = 72 W (absorbed ), P( current sourcey = 201.8 W( delivered ) )

T.5.8 Using nodal analysis, solve the voltage (V, ) across the  6A current source for the

circuit of fig. 5.8. Calculate power delivered or absorbed by the SOUIces [10]
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Fig. 5.8
V =60V,P =720W (delivered),
(Answer: a (12 A ideal current source)
P =288W (absorbed), P =360W (delivered)
(ideal voltage source) (6 A ideal current source)

T.8  Determine the voltage across the 10 Q resistor of fig. 5.9 using nodal analysis. [10]
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(Answer: V,;, =34.29V (a is higher potential than b )




DC Circuit



Introduction of Electric
Circuit

Objectives

1 Familiarity with and understanding of the basic elements encountered in electric

networks.

To learn the fundamental differences between linear and nonlinear circuits.

To understand the Kirchhoff’s voltage and current laws and their applications to

circuits.

Meaning of circuit ground and the voltages referenced to ground.

Understanding the basic principles of voltage dividers and current dividers.

Potentiometer and loading effects.

To understand the fundamental differences between ideal and practical voltage

and current sources and their mathematical models to represent these source

models in electric circuits.

] Distinguish between independent and dependent sources those encountered in
electric circuits.

] Meaning of delivering and absorbing power by the source.

(R

0 O R

L.3.1 Introduction

The interconnection of various electric elements in a prescribed manner
comprises as an electric circuit in order to perform a desired function. The electric
elements include controlled and uncontrolled source of energy, resistors, capacitors,
inductors, etc. Analysis of electric circuits refers to computations required to determine
the unknown quantities such as voltage, current and power associated with one or more
elements in the circuit. To contribute to the solution of engineering problems one must
acquire the basic knowledge of electric circuit analysis and laws. Many other systems,
like mechanical, hydraulic, thermal, magnetic and power system are easy to analyze and
model by a circuit. To learn how to analyze the models of these systems, first one needs to
learn the techniques of circuit analysis. We shall discuss briefly some of the basic circuit
elements and the laws that will help us to develop the background of subject.

L-3.1.1 Basic Elements & Introductory Concepts

Electrical Network: A combination of various electric elements (Resistor, Inductor,
Capacitor, Voltage source, Current source) connected in any manner what so ever is
called an electrical network. We may classify circuit elements in two categories, passive
and active elements.

Passive Element: The element which receives energy (or absorbs energy) and then
either converts it into heat (R) or stored it in an electric (C) or magnetic (L ) field is called
passive element.



Active Element: The elements that supply energy to the circuit is called active element.
Examples of active elements include voltage and current sources, generators, and
electronic devices that require power supplies. A transistor is an active circuit element,
meaning that it can amplify power of a signal. On the other hand, transformer is not an
active element because it does not amplify the power level and power remains same both



in primary and secondary sides. Transformer is an example of passive element.

Bilateral Element: Conduction of current in both directions in an element (example:
Resistance; Inductance; Capacitance) with same magnitude is termed as bilateral element.

R, R,
ro— AAA—- —AMA—
— | —

Rl-Ri

Unilateral Element: Conduction of current in one direction is termed as unilateral
(example: Diode, Transistor) element.

Forward biased Reversed biased
Rl R!

R, #R,

Meaning of Response: An application of input signal to the system will produce an
output signal, the behavior of output signal with time is known as the response of the
system.

L-3.2 Linear and Nonlinear Circuits

Linear Circuit: Roughly speaking, a linear circuit is one whose parameters do not
change with voltage or current. More specifically, a linear system is one that satisfies (i)
homogeneity property [response of au ( f) equals a times the response of u (f) , S (Qu (1))

=aS (u () forall a;andu (¢) ] (ii) additive property [that is the response of system due to
an input (ay u; (t)+ & u o (1)) equals the sum of the response of input aj u; (¢ ) and the
response of inputa u, (t), S(au (t)+bur(@®))=a1S (U (t)) +a S (uy(t)).] When an
input u; (t) or u 5 (t) is applied to a system “ S ”, the corresponding output response of

the system is observed as S (u; (t)) =y (t) or S (u  (t)) =y, (¢ ) respectively. Fig. 3.1
explains the meaning of homogeneity and additive properties of a system.
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Fig. 3.1: Input output behavior of a system

Non-Linear Circuit: Roughly speaking, a non-linear system is that whose parameters
change with voltage or current. More specifically, non-linear circuit does not obey the
homogeneity and additive properties. Volt-ampere characteristics of linear and non-linear
elements are shown in figs. 3.2 - 3.3. In fact, a circuit is linear if and only if its input and
output can be related by a straight line passing through the origin as shown in fig.3.2.
Otherwise, it is a nonlinear system.

Fy

V (Voltage)

[ {Current) ——p

Fig. 3.2: V-1 characteristics of linear element.

&

ViVoliage)

>
I (Currentl) —j
Fig. 3.3: ¥-I characteristics of non-linear element.

Potential Energy Difference: The voltage or potential energy difference between two
points in an electric circuit is the amount of energy required to move a unit charge

between the two points.






3 Kirchhoff’'s Laws

Kirchhoff’s laws are basic analytical tools in order to obtain the solutions of currents and
voltages for any electric circuit; whether it is supplied from a direct-current system or an
alternating current system. But with complex circuits the equations connecting the
currents and voltages may become so numerous that much tedious algebraic work is
involve in their solutions.

Elements that generally encounter in an electric circuit can be interconnected in
various possible ways. Before discussing the basic analytical tools that determine the
currents and voltages at different parts of the circuit, some basic definition of the

following terms are considered. R
]
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Fig. 3.4: A simple resistive network

1 Node- A node in an electric circuit is a point where two or more components are
connected together. This point is usually marked with dark circle or dot. The
circuit in fig. 3.4 has nodes a, b, c, and g. Generally, a point, or a node in an circuit
specifies a certain voltage level with respect to a reference point or node.

1 Branch- A branch is a conducting path between two nodes in a circuit containing
the electric elements. These elements could be sources, resistances, or other
elements. Fig.3.4 shows that the circuit has six branches: three resistive branches
(a-c, b-c, and b-g) and three branches containing voltage and current sources (a-,
a-, and c-g).

"] Loop- A loop is any closed path in an electric circuit i.e., a closed path or loop in a
circuit is a contiguous sequence of branches which starting and end points for
tracing the path are, in effect, the same node and touches no other node more than
once. Fig. 3.4 shows three loops or closed paths namely, a-b-g-a; b-c-g-b; and a-c-
b-a. Further, it may be noted that the outside closed paths a-c-g-a and a-b-c-g-a are
also form two loops.

] Mesh- a mesh is a special case of loop that does not have any other loops within it
or in its interior. Fig. 3.4 indicates that the first three loops (a-b-g-a; b-c-g-b; and
a-c-b-a) just identified are also ‘meshes’ but other two loops (a-c-g-a and a-b-c-g-

a) are not.



With the introduction of the Kirchhoff’s laws, a various types of electric circuits
can be analyzed.
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Fig. 3.5: Illustrates the Kirchhoffs laws






Kirchhoff’s Current Law (KCL): KCL states that at any node (junction) in a circuit the
algebraic sum of currents entering and leaving a node at any instant of time must be equal to
zero. Here currents entering(+ve sign) and currents leaving ( - ve sign) the node must be
assigned opposite algebraic signs (see fig. 3.5 (a), [y = I, +13—=14+15—1¢=0).

Kirchhoff’s Voltage Law (KVL): It states that in a closed circuit, the algebraic sum of
all source voltages must be equal to the algebraic sum of all the voltage drops. Voltage
drop is encountered when current flows in an element (resistance or load) from the
higher-potential terminal toward the lower potential terminal. Voltage rise is encountered
when current flows in an element (voltage source) from lower potential terminal (or
negative terminal of voltage source) toward the higher potential terminal (or positive
terminal of voltage source). Kirchhoff’s voltage law is explained with the help of fig.
3.5(b).

KVL equation for the circuit shown in fig. 3.5(b) is expressed as (we walk in clockwise
direction starting from the voltage source V; and return to the same point)

Vi—IR, = IRy — Vo= IRy — IRy + V3~ IRs = V; =0

Vi=Vo+V3=V4=IR| + IRy + IR3+ IR4 + IR5
Example: L-3.1 For the circuit shown in fig. 3.6, calculate the potential of points A, B, C,

and E with respect to point D . Find also the value of voltage sourceV; .

v
A el B 1002 C
...... i PN W_.
4
350 mA
4
50 volt
2000 1500 mA .
LA AR R} l ’l....
E ! t D

50 volt

Fig. 3.6: A part of de resistive circuit is presented

Solution Let us assume we move in clockwise direction around the close path D-E-A-B-
C-D and stated the following points.

"1 50 volt source is connected between the terminals D & E and this indicates that
the point E is lower potential than D. So, Vgp (i.e., it means potential of E with
respect to D ) is -50 volt and similarlyVp = 50 volt orVpe = =50 volt .

1 500 mA current is flowing through 200 Q resistor from A fo E and this implies that
point A is higher potential than E . If we move from lower potential ( E') to

higher potential (A), this shows there is a rise in potential.
Naturally,V4g = 500- 107 - 200 = 100 volt and V ap =-50+ 100 = 50volt .



Similarly, V =350 - 10 = - 100 = 35volt
CB

[1 V| voltage source is connected between A & B and this indicates that the terminal B
is lower potential than A i.e., V g4p = V| volt or Vg4 = =V volt. . One can write the
voltage of point B with respect to D is Vp =50 =V volt.

'] One can write KVL law around the closed-loop D-E-A-B-C-D as
VeEp+Vag+Va+Vep+ Vpe=0

=50+ 100 = V| +35 =50 =0= V| =35 volt.

Now we have Vgp=-50volt, Vap=—50+100=50volt , Vgp =50 -35 =
15 volt, Vep =15 + 35 =50 volt.

L-3.4 Meaning of Circuit Ground and the Voltages referenced
to Ground

In electric or electronic circuits, usually maintain a reference voltage that is named
“ground voltage” to which all voltages are referred. This reference voltage is thus at
ground potential or zero potential and each other terminal voltage is measured with
respect to ground potential, some terminals in the circuit will have voltages above it
(positive) and some terminals in the circuit will have voltages below it (negative) or in
other words, some potential above or below ground potential or zero potential.

Consider the circuit as shown in fig. 3.7 and the common point of connection of elements

V1 & Vs is selected as ground (or reference) node. When the voltages at different nodes
are referred to this ground (or reference) point, we denote them with double subscripted

voltagesVep ,V ap ,Vep , and V¢p . Since the point D is selected as ground potential or

zero potential, we can write Vgp as Vg, Vap as V4 and so on.
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Fig. 3.7: A Simple de resistive circuit

In many cases, such as in electronic circuits, the chassis is shorted to the earth itself for
safety reasons.

L-3.5 Understanding the Basic Principles of Voltage Dividers
and Current dividers

L-3.5.1 Voltage Divider

Very often, it is useful to think of a series circuit as a voltage divider. The basic idea behind
the voltage divider is to assign a portion of the total voltage to each resistor. In Figure 3.8 (a),
suppose that the source voltage is E . By the circuit configuration shown one can divide off
any voltage desired (V,,; ), less than the supply voltage E , by adjusting

R1 ,R2 andR3 .



Fig. 3.8(a): Voltage Divider
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Fig. 3.8(b): Voltage Divider With Load

From figure 3.8(a) the output of the voltage divider V,,; is computed by the relation

) R
Vout:IRn:R1+R2+ ..... +R, " (3.1
Equation (3.1) indicates that the voltage across any resistor R; ( R;i=12,..n)ina

series circuit is equal to the applied voltage ( E ) across the circuit multiplied by a
factor nRi . It should be noted that this expression is only valid if the same current

<
2
j=1

I flows through all the resistors. If a load resistor Ry is connected to the voltage divider

(see figure 3.8(b)), one can easily modify the expression (3.1) by simply combining R; &
R, in parallel to find a new R, and replacing R, by R, in equation (3.1).

Example: L-3.2 For the circuit shown in Figure 3.9,
(1) CalculateV,,, , ignoring the internal resistance R; of the source E . Use voltage
division.
(i) RecalculateV,,,, taking into account the internal resistance R; of the source.

What percent error was introduced by ignoring R; in part (1)?






R, = 100£2 R, = 60L)

R, = 152
[
| E
I E = 10dvolt
Fig. 3.9
Solution: Part (i): From equation (3.1) the output voltage V,,,,; across the resistor R, =
E R=_100 .60=37.9volt (when the internal resistance R of the source is
Ri+Ry 2 100 +60 y
considered zero.) Similarly, V,,, =37.27 volt when Rjis taken into account  for
calculation. Percentage error is computed as = % 100 =1.69%

L-3.5.2 Current divider

Another frequently encountered in electric circuit is the current divider. Figure 3.10

shows that the current divider divides the source current /; between the two resistors.

O 51l

Fig. 3.10: Current Divider

The parallel combination of two resistors is sometimes termed as current divider, because
the supply current is distributed between the two branches of the circuit. For the circuit,

assume that the voltage across the branch is V and the current expression in R resistor
can be written as



I — R;

ki = R orl=_FR .1 .- Similarly, the current flowing through
Iy 1 1 Ri+R,  Ri+R
V—+ —
R 2
the R, can be obtained as I, = _ Ri

- I, . It can be noted that the expression for [} has
R 1+ R2

R on its top line, that for /; has R; on its top line.

Example: L-3.3 Determine [;,[;,13 & Isusing only current divider formula when

Iy =4A.
— 1
40
VS o
' lg 692 l
l: l
Fig. 3.11

Solution- Using the  current division  formula  we can write
I =

S | =37 -1 =4-8-64A . Similarly,-1 =371 -1 =3.64=24A.
. 543 3 8 3 3 5 s 8 s 8
Furthermore, we canwrite/ =___ 6 [ = 6 | 1= 7879 .64=8.404 A and
. 6+ |+ 6+1.879 , | 6
1 =_1.879 .1 =2004A.
© 6+1.879 !




6 Potentiometer and its function

—
A
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) &I ‘ T -
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Fig. 3.12: A voltmeter is connected across the output
terminals of potentiometer

The potentiometer has a resistance R, and its wiper can move from top position X = Xpyax

to bottom position x = 0 . The resistance R, corresponds to the position x of the wiper such
that

R R, R,
—_— =X >Ry X x (assumed that the per unit length resistance of the
X max max

potentiometer is same through out its length). Figure 3.12 represents a potentiometer
whose output is connected to a voltmeter. In true sense, the measurement of the output

voltage V,, with a voltmeter is affected by the voltmeter resistance Ry, and the
relationship between V and x ( x = wiper distance from the bottom position) can easily be
established. We know that the voltmeter resistance is very high in M Q range and
practically negligible current is flowing through the voltmeter. Under this condition, one

can write the expression for voltage between the wiper and the bottom end terminal of the
potentiometer as

VIrR)= T(=IR) Ly _y. X _y=v.
X

out x out T
max max p

It may be noted that depending on the position of movable tap terminal the output voltage
(V,ur ) can be controlled. By adjusting the wiper toward the top terminal, we can increase
Vout - The opposite effect can be observed while the movable tap moves toward the
bottom terminal. A simple application of potentiometer in real practice is the volume
control of a radio receiver by adjusting the applied voltage to the input of audio amplifier



of a radio set. This audio amplifier boosts this voltage by a certain fixed factor and this
voltage is capable of driving the loudspeaker.

Example- L-3.4 A 500 — k Q potentiometer has 110 V applied across it. Adjust the
position of Ry, such that 47.5 V appears between the movable tap and the bottom end
terminal (refer fig.3.12).

Solution- Since the output voltage (V},, ) is not connected to any load, in turn, we can

write the following expression
v K

v
V =V. _X = 5R =_vw.R= 41.5.500000=216 - kQ.

///////////

X
max VT RT VT 1 10

L-3.7 Practical Voltage and Current Sources

L-3.7.1 Ideal and Practical Voltage Sources

'] An ideal voltage source, which is represented by a model in fig.3.13, is a device
that produces a constant voltage across its terminals (V = E ) no matter what
current is drawn from it (terminal voltage is independent of load (resistance)
connected across the terminals)

— :
A

; Load
Vi s .

A\ R,

\ 4

Fig. 3.13: Ideal de voltage source

For the circuit shown in fig.3.13, the upper terminal of load is marked plus (+) and its
lower terminal is marked minus (-). This indicates that electrical potential of upper

terminal is V7 volts higher than that of lower terminal. The current flowing through the
load Ry is given by the expression Vi =V, =1 Ry and we can represent the terminal V — I
characteristic of an ideal dc voltage as a straight line parallel to the x-axis. This means
that the terminal voltage V; remains constant and equal to the source voltage V

irrespective of load current is small or large. The V — I characteristic of ideal voltage
source is presented in Figure 3.14.



"1 However, real or practical dc voltage sources do not exhibit such characteristics
(see fig. 3.14) in practice. We observed that as the load resistance R; connected
across the source is decreased, the corresponding load current /;, increases while

the terminal voltage across the source decreases (see eq.3.1). We can realize such
voltage drop across the terminals with increase in load current provided a

resistance element ( Ry ) present inside the voltage source. Fig. 3.15 shows the
model of practical or real voltage source of valueV; .

>
0.0 |, ————p

Fig. 3.14: V-I characteristics of ideal voltage source

The terminal V — I characteristics of the practical voltage source can be described by an
equation

Vi=Vs=11 Ry 3.1
and this equation is represented graphically as shown in fig.3.16. In practice, when a load
resistance Ry more than 100 times larger than the source resistance R; , the source
can be considered approximately ideal voltage source. In other words, the internal
resistance of the source can be omitted. This statement can be verified using the relation

R; = 100R; in equation (3.1). The practical voltage source is characterized by two
parameters namely known as (1) Open circuit voltage (V) (ii) Internal resistance in the
source’s circuit model. In many practical situations, it is quite important to determine the

source parameters experimentally. We shall discuss briefly a method in order to obtain
source parameters.



Practical v,
Source

Fig. 3.15: Practical de voltage source model

Method-: Connect a variable load resistance across the source terminals (see fig. 3.15). A
voltmeter is connected across the load and an ammeter is connected in series with the load
resistance. Voltmeter and Ammeter readings for several choices of load resistances are
presented on the graph paper (see fig. 3.16). The slope of the line is =R, , while the

curve intercepts with voltage axis ( at I, =0 ) is the value of V; .

The V — I characteristic of the source is also called the source’s “regulation
curve” or “load line”. The open-circuit voltage is also called the “no-load” voltage, V. .
The maximum allowable load current (rated current) is known as full-load current /z; and

the corresponding source or load terminal voltage is known as “full-load” voltageVgy .
We know that the source terminal voltage varies as the load is varied and this

is due to internal voltage drop inside the source. The percentage change in source terminal
voltage from no- load to full-load current is termed the “voltage regulation” of the source.
It is defined as

vV _
Voltage regulation (%) = oc __ rL-100
!
FL
For ideal voltage source, there should be no change in terminal voltage from no-load to
full-load and this corresponds to “zero voltage regulation”. For best possible performance,

the voltage source should have the lowest possible regulation and this indicates a smallest
possible internal voltage drop and the smallest possible internal resistance.

Example:-L-3.5 A practical voltage source whose short-circuit current is 1.0A and open-
circuit voltage is 24 Volts. What is the voltage across, and the value of power dissipated
in the load resistance when this source is delivering current 0.25A?

Solution: From fig. 3.10, I =Ys=1.0A (short-circuit test) V' = V=24 volts (open-
sc RS oc N
circuit test). Therefore, the value of internal source resistance 1is obtained as

R=Ys =24 Q. Let us assume that the source is delivering current | = 0.25A when the

Il

s sc L



load resistance R; is connected across the source terminals. Mathematically, we can write

the following expression to obtain the load resistance R;, .

24
=025-R.=72Q.

24 + Ry
Now, the voltage across the load Ry = I} Ry = 0.25 - 72 = 18 volts. , and the power

consumed by the load is given by Py =1 2 R; =0.0625 - 72 = 4.5 watts.

Example-L-3.6 (Refer fig. 3.15) A certain voltage source has a terminal voltage of 50 V
when I= 400 mA; when I rises to its full-load current value 800 mA the output voltage is

recorded as 40 V. Calculate (i) Internal resistance of the voltage source ( Ry ). (ii) No-load
voltage (open circuit voltage V). (iii) The voltage Regulation.

Solution- From equation (3.1) (V; =V, = I 1 Ry ) one can write the following expressions
under different loading conditions.
50=V;—-04 R; & 40 = V; — 0.8 R, — solving these equations we get,V, =60V &
R, =25Q.
vV _V 60 _ 40
Voltage regulation (%) = oc £ -100 = - 100 =33.33%
Ver 60

L-3.7.2 Ideal and Practical Current Sources

"] Another two-terminal element of common use in circuit modeling is “current
source” as depicted in fig.3.17. An ideal current source, which is represented by a
model in fig. 3.17(a), is a device that delivers a constant current to any load
resistance connected across it, no matter what the terminal voltage is developed
across the load (i.e., independent of the voltage across its terminals across the
terminals).
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Fig. 3.16: V-l characteristics of practical voltage source
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Fig. 3.17(a): Ideal current source with variable load



It can be noted from model of the current source that the current flowing from the
source to the load is always constant for any load resistance (see fig. 3.19(a)) i.e.
whether R; is small (V7 is small) or R; is large (V7 is large). The vertical dashed line
in fig. 3.18 represents the V — I characteristic of ideal current source. In practice, when
a load R; is connected across a practical current source, one can observe that the
current flowing in load resistance is reduced as the voltage across the current source’s
terminal is increased, by increasing the load resistance R; . Since the

distribution of source current in two parallel paths entirely depends on the value of
external resistance that connected across the source (current source) terminals. This
fact can be realized by introducing a parallel resistance R; in parallel with the

practical current source I, as shown in fig. 3.17(b). The dark lines in fig. 3.18 show

the V — I characteristic (load-line) of practical current source. The slope of the curve

represents the internal resistance of the source. One can apply KCL at the top terminal

of the current source in fig. 3.17(b) to obtain the following expression.

I =1 =YLorv =IR-RI =V -RI (3.2)
n

L L s ss L oc s L

K

The open circuit voltage and the short-circuit current of the practical current
source are given by V,. =1 ¢ Ry and I, = I, respectively. It can be noted from the
fig.3.18 that source 1 has a larger internal resistance than source 2 and the slope the
curve indicates the internal resistance R, of the current source. Thus, source 1 is
closer to the ideal source. More specifically, if the source internal resistance Rg 2 100
R; then source acts nearly as an ideal current source.

NEERE

/'Pruc(icul current

source

34

Fig. 3.17(b): Practical current source with variable load

L-3.7.3 Conversion of a Practical Voltage Source to a Practical
Current source and vise-versa

] Voltage Source to Current Source

For the practical voltage source in fig. 3.19(a), the load current is calculated as



Vs
Rs + RL
Note that the maximum current delivered by the source when R; =0 (under short-

I = (3.3)

circuit condition) is given by I pox =I5 = Vs . From eq.(3.3) one can rewrite the
Ry
expression for load current as
I = I - Ry

= (3.4)
R+ Ry



A simple current divider circuit having two parallel branches as shown in fig.3.19 (b)
can realize by the equation (3.4).

Note: A practical voltage source with a voltage V; and an internal source resistance

vV

R: can be replaced by an equivalent practical current source with a current s = °*Rj;

and a source internal resistance R; (see fig. 3.19(b)).

Practical current
SOUrce

Ideal current source
(R, = o)

Vi
v

0.0  —— |

Fig. 3.18: V-1 characteristic of practical current source

(a) (b)
Fig. 3.19: Source Conversions

1 Current source to Voltage Source
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Fig. 3.20: Current Source to Voltage source conversion

For the circuit in fig. 3.15(a), the load voltage V; is given by
Ry R R

PR R 3.5
R, +R; KX+KL KX+KL
Equation (3.5) represents output from the voltage source across a load resistance and
this act as a voltage divider circuit. Figure 3.20(b) describes the situation that a
voltage source with a voltage value V= I ; R; and an internal source resistance R; has
an equivalent effect on the same load resistor as the current source in figure 3.20(a).

Note: A current source with a magnitude of current /; and a source internal resistance
R can be replaced by an equivalent voltage source of magnitude Vi =1 ¢ Ry and an

internal source resistance Ry (see fig. 3.20(b)).

Remarks on practical sources: ( 1 ) The open circuit voltage that appears at the
terminals A & B for two sources (voltage & current) is same (i.e., Vy ).

(11 ) When the terminals A & B are shorted by an ammeter, the shot-circuit results
same in both cases (i.e., [ ).

(111 ) If an arbitrary resistor ( Ry ) is connected across the output terminals A & B of
either source, the same power will be dissipated in it.

(iv ) The sources are equivalent only as concerns on their behavior at the external
terminals.

( v) The internal behavior of both sources is quite different (i.e., when open circuit the
voltage source does not dissipate any internal power while the current source
dissipates. Reverse situation is observed in short-circuit condition).

8 Independentand Dependent Sources that encountered in
electric circuits

"1 Independent Sources

So far the voltage and current sources (whether ideal or practical) that have been
discussed are known as independent sources and these sources play an important role



to drive the circuit in order to perform a specific job. The internal values of these
sources (either voltage source or current source) — that is, the generated voltage V; or
the generated current I (see figs. 3.15 & 3.17) are not affected by the load connected
across the source terminals or across any other element that exists elsewhere in the
circuit or external to the source.

1 Dependent Sources

Another class of electrical sources is characterized by dependent source or controlled
source. In fact the source voltage or current depends on a voltage across or a current
through some other element elsewhere in the circuit. Sources, which exhibit this
dependency, are called dependent sources. Both voltage and current types of sources
may be dependent, and either may be controlled by a voltage or a current. In general,
dependent source is represented by a diamond (<>)—shaped symbol as not to confuse
it with an independent source. One can classify dependent voltage and current sources
into four types of sources as shown in fig.3.21. These are listed below:

(i) Voltage-controlled voltage source (VCVS) (ii) Current-controlled voltage source
(ICVS) (iii) Voltage-controlled current source(VCIS) (iv) Current-controlled current
source(ICIS)

+ :
Vi <> ¥ Vi) =av, - <> vit) = p i,

) S R .

(2) VCVS i iovs
4
“T’ c -
Yy Bys =Py, iy i(t) = v 1,
i i o &
(¢) VCIS (@) ICIS

Fig. 3.21: Ideal dependent (controlled) sources

Note: When the value of the source (either voltage or current) is controlled by a
voltage ( v, ) somewhere else in the circuit, the source is said to be voltage-controlled



source. On the other hand, when the value of the source (either voltage or current) is
controlled by a current ( i, ) somewhere else in the circuit, the source is said to be
current-controlled source. KVL and KCL laws can be applied to networks containing
such dependent sources. Source conversions, from dependent voltage source models
to dependent current source models, or visa-versa, can be employed as needed to
simplify the network. One may come across with the dependent sources in many
equivalent-circuit models of electronic devices (transistor, BJT(bipolar junction
transistor), FET( field-effect transistor) etc.) and transducers.

9 Understanding Delivering and Absorbing Power by the
Source.

It is essential to differentiate between the absorption of power (or dissipating power) and
the generating (or delivering) power. The power absorbed or dissipated by any circuit
element when flows in a load element from higher potential point (i.e +ve terminal)
toward the lower terminal point (i.e., - ve terminal). This situation is observed when
charging a battery or source because the source is absorbing power. On the other hand,
when current flows in a source from the lower potential point (i.e., -ve terminal) toward
the higher potential point (i.e., +ve terminal), we call that source is generating power or
delivering power to the other elements in the electric circuit. In this case, one can note
that the battery is acting as a “source” whereas the other element is acting as a “sink™.
Fig.3.22 shows mode of current entering in a electric element and it behaves either as
source (delivering power) or as a sink (absorbing or dissipating power).



i + ¥
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(a) Power absorbed by R i) Source generates power (c) Source absorbs power
- Y
element clement
(d) Power generated by this element {e) Power absorbed by this element

Fig. 3.22: Source and sink configurations

L.3.10 Test Your Understanding [marks distribution shown
inside the bracket]

T.1 If a30 V source can force 1.5 A through a certain linear circuit, how much current
can 10 V force through the same circuit? (Ans. 500 m A. ) [1]

T.2 Find the source voltage V; in the circuit given below [1]



Voltmcter

. 0V

ilIAY
YVoltmeter

Fig. 3.33

(Ans. 40 V)
T.3 For the circuit shown in Figure T.3 [1x4]

Fig. 3.34

(a) Calculate V,,, , ignoring the internal resistance of the source R, (assuming it’s
zero). Use Voltage division method. (Ans.33.333 V)

(b) Recalculate V,,; , taking into account R, . What percentage error was introduced
by ignoring R; in part (a). (Ans. 31.29 V , 6.66%)

(c) Repeat part (a) & (b) with the same source and replacing R1 =20 Q by 20kQ &

R>=10 Q by 1k Q . Explain why the percent error is now so much less than in part
(b). (Ans. 33.333 V, 33.331 V, 0.006%)

T.4  For the circuit shown in figure T.4 [1x6]
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Fig. 3.35

(a) Find , in any order, I , I 3, and I (b) Find, in any order, Ry , R3 , and R, .

(Ans. (a) 20 mA, 30 mA and 100 mA (b) 2kQ , 3.33 kQ and 1kQ .)

T.5 Refer to the circuit shown in Figure T.5

4 , i

S0L2 100£2
a b
40V
1202 5000 R,
Pot. .:]
v
oy ® -
Fig. 3.36

[1x4]

(a) What value of R4 will balance the bridge (i.e., V,, = 0.0 ) (b) At balanced
condition, find the values of V,, & Vi . (Ans. 150€) , 24V (a is higher potential
than ‘g’, since current is flowing from ‘a’ to ‘b’), 24V ( b is higher potential than

‘ga)

(b) Does the value of V,, depend on whether or not the bridge is balanced? Explain

this. (Ans. No., since flowing through the 80 Q branch will remain same and hence

potential drop across the resistor remains same.)

(c) Repeat part (b) for Vj, . (Ans. Yes . Suppose the value of R4 is increased from its

balanced condition, this in turn decreases the value of current in that branch and

subsequently voltage drop across the 100 Q is also decreases. The indicates that

the voltage across Vj,, will increase to satisfy the KVL. )

(d) If the source voltage is changed to 50 V will the answer to part (a) change?

Explain this. (Ans. No.)



T.6 If an ideal voltage source and an ideal current source are connected in parallel, then
the combination has exactly the same properties as a voltage source alone. Justify this

statement. (1]

T.7 If an ideal voltage source and an ideal current source are connected in series, the
combination has exactly the same properties as a current source alone. Justify this

statement. [1]
T.8 When ideal arbitrary voltage sources are connected in parallel, this connection
violates KVL. Justify. [1]

T.9 When ideal arbitrary current sources are connected in series, this connection
violates KCL. Justify.

(1]

T.10 Consider the nonseries-parallel circuit shown in figure T.10. Determine R and the
equivalent resistance R,, between the terminals “a” & “b” when v; =8V.

(Appling basic two Kirchhoff’s laws) (Ans. R=4 Q & R, =4Q ) [3]

40

Fig. 3.37

T.11 A 20 V voltage source is connected in series with the two series-resistors R} =5 Q &

R, =10Q . (a) Find I, Vg; , Vg . (Ans. 1.333 A, 6.6667 V, 13.33 V)
(b) Find the power absorbed or generated by each of the three elements. (8.88 W
(absorbed), 17.76 W (absorbed), 26.66 W delivered or generated (since current is leaving

the plus terminal of that source.) 2]



T.12 Consider the circuit of figure T.12

30N

4..\TC> 4“§ —.:t' 12V ()le..\

Fig. 3.38

Find powers involved in each of the five elements and whether absorbed or
generated. (Ans. 48 W (G), 36 W (A), 60 W (G), 108 W (A) and 36 W (G). ( results

correspond to elements from left to right, CS, R, VS, R, CS). [4]
T.13 For the circuit of Figure T.13 Suppose V;, =20V .

\'“l —_—
'
Fig. 3.39
(a) Find the output voltage and output current. 2]
(b) Find the ratio of output voltage (V,,, ) to input voltage (V;, ) i.e. out = voltage
V

in

(c) Find the power delivered by each source(dependent & independent sources).[Zi‘

Fig. 3.40



(Ans. (a) 100 V, 20 A (note that 6 I; is the value of dependent voltage source with the
polarity as shown in fig. T.13 whereas 4 I, represents the value of dependent current
source) (b) 5 (voltage gain). (c) 100 W (VS), 150 W (DVS), 2000 W (DCS)).
T.14 Find the choice of the resistance R; (refer to Fig. T.13) so that the voltage gain is
30. (Ans. R, = 1Q (1]
T.15 Find equivalent resistance between the terminals ‘a’ & ‘b> and assume all resistors
values are 1Q) . [2]







DC Transient



Study of DC transients 1n
R-L-C Circuits

Objectives

"] Be able to write differential equation for a dc circuits containing two storage
elements in presence of a resistance.

1 To develop a thorough understanding how to find the complete solution of second
order differential equation that arises from a simple R — L — C circuit.

] To understand the meaning of the terms (i) overdamped (ii) criticallydamped, and
(ii1) underdamped in context with a second order dynamic system.

1 Be able to understand some terminologies that are highly linked with the
performance of a second order system.

L.11.1 Introduction

In the preceding lesson, our discussion focused extensively on dc circuits having
resistances with either inductor ( L ) or capacitor ( C ) (i.e., single storage element) but not
both. Dynamic response of such first order system has been studied and discussed in
detail. The presence of resistance, inductance, and capacitance in the dc circuit introduces
at least a second order differential equation or by two simultaneous coupled linear first
order differential equations. We shall see in next section that the complexity of analysis of
second order circuits increases significantly when compared with that encountered with
first order circuits. Initial conditions for the circuit variables and their derivatives play an
important role and this is very crucial to analyze a second order dynamic system.



L.11.2 Response of a series R-L-C circuit due to a dc
voltage source

Consider a series R — L — C circuit as shown in fig.11.1, and it is excited with a dc
voltage source V. Applying KVL around the closed path forz> 0,

LADRi(t)+v @)=V (11.1)
dt ¢ s
R L
—)‘ o— MWW\ —FTIE = = = = 3 -
A
t=0

& —ht

V| T C v
i i)

Faras W

Fig. 11.1: A Simple R-L-C circuit excited with a de¢ voltage source

The current through the capacitor can be written as



dve (1)
dt
Substituting the current i (f) ’expression in eq.(11.1) and rearranging the terms,

it)=C

LCd*v(t) +RCdv (D) +v. (1) =V, (11.2)

The above equation is a 2"%order linear differential equation and the parameters associated
with the differential equation are constant with time. The complete solution of the above
differential equation has two components; the transient response v, ,, (¢ ) and the

steady state response v, ¢ (¢ ) . Mathematically, one can write the complete solution as

Ve (1) =ven (1) +vep(1)=(A1e0" +A3e9." )+ A (11.3)

Since the system is linear, the nature of steady state response is same as that of forcing
function (input voltage) and it is given by a constant value A . Now, the first part v, ,, (¢ ) of
the total response is completely dies out with time while R > 0 and it is defined as a
transient or natural response of the system. The natural or transient response (see
Appendix in Lesson-10) of second order differential equation can be obtained from the
homogeneous equation (i.e., from force free system) that is expressed by

e iR Cdvv(t)+vc d*v(t) Rdv() 1
dt (f)di =0  di" +L di +LC v.(D=0
dv 0 dv (1) R 1
a 2 h——tc ve(t) =0(wherea=1,b=—andc=—) (11.4)
dt dt L LC

The characteristic equation of the above homogeneous differential equation (using the

2
operator a = d g2=4" andv (t) *0)1is given by

_dt dr
m+Ra+ 1 -0 aa’+ba+c=0(wherea=1,b=Randc=_1) (11.5)
L LC L LC

and solving the roots of this equation (11.5) one can find the constants a; and a» of the
exponential terms that associated with transient part of the complete solution (eq.11.3)
and they are given below

(11.6)

_— e— e — -ac



where, b = R oande= _1.
L LC
The roots of the characteristic equation (11.5) are classified in three groups depending

upon the values of the parameters R , L, and C of the circuit.



2
Case-A (overdamped response): When 5 - ! -0, this implies that the roots are
2L LC
distinct with negative real parts. Under this situation, the natural or transient part of the
complete solution is written as
v o(t)=Aed 4.0 (11.7)
1 2

cn

and each term of the above expression decays exponentially and ultimately reduces to
zero as t — and it is termed as overdamped response of input free system. A system

that is overdamped responds slowly to any change in excitation. It may be noted that the
exponential term A ¢4 . takes longer time to decay its value to zero than the term A; €% ..
One can introduce a factor ¢ that provides an information about the speed of system

response and it is defined by damping ratio

Actual damping b R/L
= critical dampi :2\/_:;/ >1 11.8
( €)= critical damping a \/E ( )
R* 1
Case-B ( critically damped response): When __ - ___ _,, this implies that the roots
2L LC

of eq.(11.5) are same with negative real parts. Under this situation, the form of  the
natural or transient part of the complete solution is written as

R
Vcn(f)Z(AM-l-Az)eat (where a== 75 ) (11.9)

where the natural or transient response is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term. The expression (11.9) that arises from
the natural solution of second order differential equation having the roots of characteristic
equation are same value can be verified following the procedure given below.

. .. . R
The roots of this characteristic equation (11.5) are same a=a = = Z when

R* 1 R 1 . .
—_— - —— -0 __- __ and the corresponding homogeneous equation (11.4)
2L LC 2L LC
can be rewritten as

dzg(z) R dv() 1

di> 122L dt +LCv.(f)=0
or TVD 0g D L a2 (=0

dt” dt ¢
d dv(t) dv. (1)
or — +av.(t) + a +  av.(t)=0
dt dt dt
or 4 dv (1)

“—+af=0 where f = +av, (1)

dt dt



The solution of the above first order differential equation is well known and it is given by
f: A eat
1

dv, (t
Using the value of f in the expression f= v;t( ) +av. (t) we can get,
D) gy (1)=Aje e dv;cg) e ave(t)=4, A(ev.(t))=4,
dt dt

Integrating the above equation in both sides yields,

Vcn(t):(Al 1+4A; ) eat
In fact, the term A ear (with a=—- R ) decays exponentially with the time and tends to

g 2L
zero as t —»o . On the other hand, the value of the term Ated' (with a=- _R )in
: 2L
. . . . _1 .
equation (11.9) first increases from its zero value to a maximum value A 2L atatime
1 R
1 2L 2L
f=—_ - and then decays with time, finally reaches to zero. One can
a R R

easily verify above statements by adopting the concept of maximization problem of a
single valued function. The second order system results the speediest response possible
without any overshoot while the roots of characteristic equation (11.5) of system having
the same negative real parts. The response of such a second order system is defined as a
critically damped system’s response. In this case damping ratio

()= Actual damping b B/L . (11.10)
critical damping Wac }/
NLC
R> 1
Case-C (underdamped response):  whep— - — < 0, this implies that the roots of
2L LC
eq.(11.5) are  complex conjugates they are  expressed as
and
R 1 R’ R 1 R’
a="3ptiNIe —, “Ftivia ==731 INIec ~—, “=B-jv.The
form of the natural or transient part of the complete solution is written as
v (t) =Ale‘7‘ I+A ezz’=A e</"l+jy)+A ,eB=iv)
=ef" (A+A,)cos (yi)+j (A -4, )sin (yr) (11.11)
=ef'Bcos(yt)+Bsin(yt) whereB=A+A ;B=j (A -A )
1 2 1 2 2 ol

For real system, the response v, (t ) must also be real. This is possible only if A| and A;
conjugates. The equation (11.11) further can be simplified in the following form:

eB' Ksin(yr+0) (11.12)



where  [=real part of the root , y=complex part of the root,
b

K=_(B 2l +B 27 and O=tan™" _' . Truly speaking the value of Kand € canbe
B

calculated using the initial conditions of the circuit. The system response exhibits

oscillation around the steady state value when the roots of characteristic equation are

complex and results an under -damped system’s response. This oscillation will die down

with time if the roots are with negative real parts. In this case the damping ratio

Actual damping b 6/[4
= critical damping =N =/M <1 11.13
( €)= critical damping ac Jic ( )

Finally, the response of a second order system when excited with a dc voltage source is
presented in fig.L..11.2 for different cases, i.e., (i) under-damped (ii) over-damped (iii)
critically damped system response.
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0 1 1 || 1 1 | 1 1 1
0 2 4 6 8 10 12 14 16 18 20

[ Sec

Fig. 11.2: System response for series R-L-C circuit:
(a) underdamped
(b) critically damped
(¢) overdamped system



Example: L.11.1  The switch S1 was closed foralong time as shown infig.11.3.
Simultaneously at r=0, the switch S1 is opened and S2 is closed Find
(a)ig(0.); () ve (O, ); (¢)ig(0.): (d)vp(0.):(e)ic(0.); (f) dv(0™)

dt

Solution: When the switch S1 is kept in position ‘1’ for a sufficiently long time, the
circuit reaches to its steady state condition. At time ¢ =0~ , the capacitor is completely
charged and it acts as a open circuit. On other hand,

S1

\‘ 1

9 &
) ¢ *iﬂu
XOM I 10092 &

6A | ——

Cu—F 7T Y1)
T 100 . 300

i (1)

Fig. 11.3

the inductor acts as a short circuit under steady state condition, the current in inductor can
be found as
i (00)=_30 .6=24

L 100 +50
Using the KCL, one can find the current through the resistor i(07)=6-2=4A and
R

subsequently the voltage across the capacitor v. (0 =) =4 - 50 = 200 volt.

Note at 7 =0" not only the current source is removed, but 100 Q resistor is shorted or

removed as well. The continuity properties of inductor and capacitor do not permit the
current through an inductor or the voltage across the capacitor to change instantaneously.

Therefore, at ¢ =0" the current in inductor, voltage across the capacitor, and the values of
other variables at 7 = 0" can be computed as

ir(0") =i (07)=2A 1.0 )=v. (0~ ) =200 volr.

Since the voltage across the capacitor at ¢ = 0" is 200 volt , the same voltage will appear across
the inductor and the 50 Q resistor. That is, vy, (0 * )=vg (0 * ) =200 volt. and hence,

the current (iR (O )) in 50 Q resistor = —5() =4 A . Applying KCL at the bottom terminal



of the capacitor we obtain i(0 * )=—(@4+2)=—6A and subsequently,

dv(0F) i(07) -6
: = == 600 volt. / sec.

dt c 001
Example: L.11.2 The switch ¢ S’ is closed sufficiently long time and then it is opened at
time ‘r=0" as shown in fig.11.4. Determine

( V)M{ when
=0" dt

=0 -

@) v O @O Gii)i "), and (iv) 4Lt
’ dt " L dt
R =R,=3Q.

Fig. 11.4

Solution: At # = 0~ (just before opening the switch), the capacitor is fully charged and current

flowing through it totally blocked i.e., capacitor acts as an open circuit). The voltage across

the capacitoris v, (0~ )=6 V=v,.(0 M )=vpq (0 M ) and terminal ‘ b’ is higher potential than

terminal ¢ d ’. On the other branch, the inductor acts as a short circuit (i.e., voltage across the

inductor is zero) and the source voltage 6V will appear across the

resistance R . Therefore, the current through inductori (07) = 6-24=i (0") . Note at
2 L 3 L

t=0",v 0" ) = 0 (since the voltage drop across the resistance R=3Q =v =-6V)
ad 1 ab

andv (07)=6V and this implies that v (0 Ty=6V= voltage across the inductor ( note,
cd ca

terminal ‘ ¢ ’ is + ve terminal and inductor acts as a source of energy ).

Now, the voltage across the terminals ‘5’ and “ ¢’ (v (0 V) =vpg (0T) = vy (07)

=0V . The following expressions are valid at ¢ = 0"

cPel _i0y=24

dt Yi—o* dt b —o*

dy . .
—=| =1 volt/ sec. (note, voltage across the capacitor will



dv,
decrease with time i.e., ;| _+=—1volt/sec). We have just calculated the voltage

across the inductor at £ =0" as

vca(0+)=LM{ =6V Mi __5 =12 A/ sec.
dt r:(]Jr dt t:0+ 05

Now, @ (0") —dv(0") ~ di(0")=1-(12-3)==35volt / sec.
dt dt dt

Example: L.11.3 Refer to the circuit in fig.11.5(a). Determine,

— (1)

)|
/|
=

Fig. 11.5(a)

o . di (0" dv(0* N
(i) i (07),i, (0" )and v(0") (ii) Ezz ) and V(dt ) Gii) (), ip(») andv(»)
(assumed v. (0)=0;i;, (0)=0)
Solution: When the switch was in ‘off” position i.e., t <0
i(0)=i, (0 )=0,v(0 )=0andvc (0 )=0

The switch ‘ S1” was closed in position ‘1’ at time t = 0 and the corresponding circuit is
shown in fig 11.5 (b).

(1) From continuity property of inductor and capacitor, we can write the following
expression for t = 0
i (0)=1 (0)=0,v(© )=v (0)=0i(0")= Lv")=0
L L c [ 6 ¢

v(0")=i. (07) - 6 =0 volt .



ha2

O T

Fig. 11.5(b)

(1) KCL at point ‘a’

=i(t)+i.(t)+ip(t)
Att=0" , the above expression is written as
8=i(0" )+i. 0 )+iL(0") . (07)=8A
We know the current through the capacitor i, (¢ ) can be expressed as
dv, (1)

. ()=C———
d
_ dv (0,)
1(0-)=C_-__
dt
dv (0 ) 1
«_=8x =2volt./sec..
dt4
Note the relations
dv, ( 0" ) ) . .
P change in voltage drop in 6 Q resistor = change in current through 6 Q
t
rs (0t
resistor-6 = 6-M M 2 amp./ sec.
dt dt 6 3

Applying KVL around the closed path ‘b-c-d-b’, we get the following expression.
ve(£)=vp (1) +v (1)

At,t=0" the following expression
v(O0 )=y O)+i(07) 12
c L L

. \ ") (")
0=v,(0)+0-12v,(0 )=0  L——=0 ——=0
. + . + +
400 _ ¢ and this implies 129207 — 12.0 =0 vrsec =V ) _
dt dt dt






Now,v(t)=Ri;(t) also atr=0"
dv(07) :RdiL(o*) _ 12diL(0+)

dt dt dt
(iii)) Attt = a, the circuit reached its steady state value, the capacitor will block the flow of
dc current and the inductor will act as a short circuit. The current through 6 Q and 12

Q resistors can be formed as

12x8 16
TS =3= 5.333A, ip (») =8-5.333=2.667 A
Ve () =32 volt.

= 0volt / sec.

i(oo):

Example: L.11.4 The switch S1 has been closed for a sufficiently long time and then it is
opened at t = 0 (see fig.11.6(a)). Find the expression for (a) v, (¢), (b) i, (¢ ), t> 0 for
inductor valuesof (i)L=05H@Gi)L=02H (ii)L=10H and plot
ve(t)—vs—t and

i (t)—vs—tforeach case.

R~1Q2 L

Fig. 11.6(a)

Solution: At =0 ~ (before the switch is opened) the capacitor acts as an open circuit or
block the current through it but the inductor acts as short circuit. Using the properties of
inductor and capacitor, one can find the current in inductor at time # = 0" as

i (07)=i(07) = 12 —924 (note inductor acts as a short circuit) and voltage across the
L L 1+5
5 Q resistor = 2 - 5 =10 volt. The capacitor is fully charged with the voltage across the

5 Q resistor and the capacitor voltage at t = 0" is given by
ve (07 ) =v, (0 ™) =10 volt. The circuit is opened at time ¢t =0 and the corresponding circuit
diagram is shown in fig. 11.6(b).

Case-1: L=05H,R=1Q and C=2F

Let us assume the current flowing through the circuit is i (¢ ) and apply KVL equation

around the closed path is



dv (1)

+ve () (note, i (t)=C )

) dt
di (t) dv(t) d v (1)
_ —_ : — (11.14)
Vi=Ri(t)+L dt +v.(t) Vg=RC dt +LC dr
d‘v}(t) Radv (1) 1
_ 2 7 o
V= dt +L dt ++LCv. (1) (11.15)

The solution of the above differential equation is given by
Vc(t):Vcn(t)+ch(t)

: 'R"'I"f' Wﬂﬂlﬂ‘ﬂf — () =i(1)

i(t)

Fig. 11.6(b)

The solution of natural or transient response v, (¢ ) is obtained from the force free

equation or homogeneous equation which is
d*v(t) Rdv(t) + 1 (11.16)

The characteristic equation of the above homogeneous  equation is written as

a:+ Ra+r 1 =0 (11.17)
L LC

The roots of the characteristic equation are given as

R R 1 R R 1
a==37+ S ——LCZ—I.O; & ==357" o T . =-1.0

and the roots are equal with negative real sign. The expression for natural response is
given by

Ven 1) =(Aj 1+ A5 )e@" (where a=a;=a=-1) (11.18)
The forced or the steady state response vr (¢ ) is the form of applied input voltage and it is
constant ° A °. Now the final expression for v, (¢ ) is

ve@)=(A11+A,) e +A=(Ajt+Ay)e~"+A (11.19)
The initial and final conditions needed to evaluate the constants are based on v,

0= ve (07 )=10volt;i; (0 Y=, (07)=2A (Continuity property).



Att:0+;

_1
v(t)l ,=Ae
c t=0 2

Y LAZA+A A+A=10 (11.20)
2 2

Forming dv;i (from eq.(11.19)as
t

De® _ g (Ar+4y)ed +A1e0" == (Ajr+4y)e"+A) e

dt
dve (1)
- =A1—A2 Al—A2=1 (1121)
dt iy
+ +
(note, CAv (0 ") =i (0+)=i, (0-)=  2dv(0 ") =1 volt/sec.)
dt dt

It may be seen that the capacitor is fully charged with the applied voltage when ¢ = « and
the capacitor blocks the current flowing through it. Using ¢ = « in equation (11.19) we get,
Ve(o)=A A=12

Using the value of A in equation (11.20) and then solving (11.20) and (11.21) we get, A| =
-1; A2 ==2.

The total solution is

ve()==(t+2)e "+12=12-(1+2)e™";

dve (1) - . (1122
it)=C" g =2-(t+2)e -e =2-(t+1)e
The circuit responses (critically damped) for L =0.5 H are shown fig.11.6 (c) and

fig.11.6(d).

Case-2: L=02H,R=1Q and C=2F

It can be noted that the initial and final conditions of the circuit are all same as in case-1
but the transient or natural response will differ. In this case the roots of characteristic
equation are computed using equation (11.17), the values of roots are

a; =—0.563; a» = —4.436

The total response becomes

v(t)=A e]“.l HA o amemsnn i e-oss +A (11.23)
e —ap ¢ +a A e%="4.4354 ¢ " -0.5634 e-os (11.24)
dt 1 1 2 2 1 . 2
Using the initial conditions( v, (0 + )=10,9V (0 ") =1 yolt / sec.) that obtained in case-1 are
dt

used in equations (11.23)-(11.24) with A =12 ( final steady state condition) and
simultaneous solution gives

A1 =0.032; A, =—2.032



The total response is
v (t)=0.032 =+ -2032 % 112

dve (1) - 0.563t - 4.4361 (11.25)
it)=C gr =21.14¢ -0.14¢

The system responses (overdamped) for L =0.2 H are presented in fig.11.6(c) and
fig.11.6 (d).

Case-3: L=8.0H,R=1Qand C=2F

Again the initial and final conditions will remain same and the natural response of the
circuit will be decided by the roots of the characteristic equation and they are obtained
from (11.17) as

a=L+jy=-0.063+;0.243; a,=LF-jy=-0.063 —j

0.242 The expression for the total response is

Ve (t)=Ven (1) + v (t)=eB" Ksin( yr+8)+A (11.26)

(note, the natural response v, (f ) =e B'  Ksin (yt +9) is written from eq.(11.12) when
roots are complex conjugates and detail derivation is given there.)

dve(®) =Keh, Bsin(yt+8)+ ycos(yt +6) (11.27)
dt
Again the initial conditions ( v, (0 +) =10 ,d" (0 ") =1 volt / sec.) that obtained in case-1 are
dt
used in equations (11.26)-(11.27) with A =12 (final steady state condition) and

simultaneous solution gives
K=4.13; 6=-128.98" (deg ree)
The total response is
v (t)=eh Ksin (yi+0)+12=e""4135in (0.2421-28.99° ) + 12

ve (1) =12+413 "% gin (0.2421-28.99") (11.28)

dve (1) ~0.063¢ 0 0

i(1)=C dr =2¢  0.999%cos (0.242 12899 )-026sin (0.242¢-2899 )

The system responses (under-damped) for L =8.0 H are presented in fig.11.6(c) and fig.
11.6(d).
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Remark: One canuse t =0 and t ==~ ineq. 11.22 or eq. 11.25 or eq. 11.28 to verify
whether it satisfies the initial and final conditions ( i.e., initial capacitor voltage

ve (0 " ) =10 volt. , and the steady state capacitor voltage v, ( «) =12 volt. ) of the circuit.

Example: L.11.5 The switch ¢ §1° in the circuit of Fig. 11.7(a) was closed in position ‘1’
sufficiently long time and then kept in position ‘2. Find (i) v. (¢) (ii) i, (¢ ) fort >0 if C

. 1 1 1
is (a) EF (b) ZF (©) EF'

19 1 SI L=2H
—WWW—e ([ o0— 17"
A
=0
l 2. +
SV R=20 C TN VD

Fig. 11.7(a)

Solution: When the switch was in position ‘1°, the steady state current in inductor is
given by

0
i, (0)=TF 2=10A,v.(0 )=1i; (0 )R =10x2 =20 volt.
Using the continuity property of inductor and capacitor we get
i (07) =i (07) =10, v, (0")=v. (0") =20 volt.

The switch “ S1° is kept in position ‘2’ and corresponding circuit diagram is shown in
Fig.11.7 (b)

—> i (1) < i(1)
to |1
L=2H R=20 c~ Y

Fig. 11.7(b)

Q}pglzl% g KCL at the top junction point we get,
+ic®)+ip (=0
R



== )+iL(t)=O
t

R d
’ , di (1)
Ldip(p .Ld 1L(t)_i_iL(t):O[note:vc(t)=L_;]
R dt dt dt
2
d ip(t) Ldig® 1 (11.29)
2
or dt +RC dt +LCi (t)=0
The roots of the characteristics equation of the above homogeneous equation can obtained
1
forC= QF
1 1 2 ] 9 : 4x9
—_—— —_— 4 L¢ —_— — —_—
RC _\ RC L
oy = — =-1.5

|
ey
o

|
W|H
@)
|
-—
A
O»—n
|
N
—
A
|
| o
|
Do | o N
1
N
ol &
|

(12: =

1
Case-1 ( £=1.06, over damped system) : C = EF , the values of roots of characteristic

equation are given as
a=-15,=-3.0

The transient or neutral solution of the homogeneous equation is given by
i =Ae” +A e (11.30)
1 2

L

To determine A; and A, , the following initial conditions are used.

Att=0+;

i (0T)=i 0 )=A+A
- - o (11.31)
10=A, + A,

diy (t
Ve (0 ) = ve () = v (07 =L

dt ioof

- 1.5t - 3.0t

20=2x A;- -1.5e -3.0-Aze (11.32)

=2[-1.5A1-3A, ] =-3A, - 6A,
Solving equations (11.31) and (11,32) we get , A , == 16.66 , A| = 26.666 .

The natural response of the circuit is
80 50
iL = 3 e -

_ 1.5t 3e 300 _ o6 660 -5 _ 16,6603



diL -1.5¢ =3.0¢
L7q =226.66 -—1.5¢ -16.66--3.0¢

vo(t)=v(t)=100e > - g0 It
Lc

dvc " 1 -3.0t 1.5t -3.0t

1 S-St -
i)=c dr =9(-3000e +120e )=(1333¢ -3333 )

Case-2 (&= 0.707,under damped ~ system): For C = % F , the roots of the characteristic

equation are
a=-10+1.0=68+jy
a»=-10-j1.0=6-jy
The natural response becomes 1
i) =keP sin(yt+8)
Where k and 0 are the constants to be evaluated from initial condition.

Att=0" , from the expression (11.33) we get,
i (0" ) =ksing

10 =k sin@
di(t) e b
L dt | o :2-kBe sin(yt+8) +e yeos(yt +0) o

Using equation (11.34) and the values of Sand y  in equation (11.35) we get,
20=2k (BsnB+ ycos@)=kcos @ (note: f=-1, y=1and ksin@d=10)

From equation ( 11.34 ) and ( 11.36 ) we obtain the values of and k as
@anf=1  6=tan" _!=26.56° andk=_10=2236

2 2 sin@
The natural or transient solution is

iL (1) =2236 ¢ "sin (t +26.56°)

L%:Vc(t):Zk'[BSin(yt-l-e)—l-yc()s(yt_|_e)]ef>t

=44.72c0s (t+26.56 O) - sin (t +26.56° )-e B
dv. (1) 1 d 0 N
ic(t)=c g =4 44724 { cos@+2656 )-sin(t+26.56 ) e

= —22.36c0s(t + 26.56) ¢~

-t

(11.33)

(11.34)

(11.35)

(11.36)



Case-3 (g" =1, critically damped system) : For =% F ; the roots of characteristic

equation are a; = — 2; a» = — 2 respectively. The natural solution is given by

i (1)=(A11+A7 )t (11.37)
where constants are computed using initial conditions.

Atr=0" ; from equation ( 11.37) one can write
i (0")=4A A=10
L 2 2
di(t)
L—
dt

at at at

=2-As Qe +QAjte +A e - .

+
t=0
at at

=2~(A1 +A20)e ‘|'aA1le l‘:0+

di(t
Lﬂ :VC(O+):ZO:2(A1_2A2)AIZSO
t 1o

The natural response is then

i (1)=(10+30t) e~
di (1)
L+ =2 (10+301) e

gty
1
L L =v.(t)=2[10-60t] e~
Zrdt
dv (1) l i Yy -2t -2
io(t)=c g =g-2 4 (10 -60t)e =-20e +30re

Case-4 ( =2, over damped system ) :For C = 3—;F

Following the procedure as given in case-1 one can obtain the expressions for (i) current
in inductor i ; ( #) (ii) voltage across the capacitor v, (¢ )

iLé[ 25 115 e -1.08¢t ~1.5¢ 1493t
l
L =v({)=448¢ " 1493: —24.8 ¢ 1.08:

dr
i (t):chC o _ 1 d 44.8 ¢ 491 Zog g o108

dt 32 drt

= 0.837 ¢~ = 20,902 ¢ 77
L.11.3 Test your understanding (Marks: 80)
T.11.1 Transient response of a second-order ------------------ dc network is the sum of two

real exponentials. [1]



T.11.2 The complete response of a second order network excited from dc sources is the
sum of -------- response and ---------------- response. [2]

T.11.3 Circuits containing two different classes of energy storage elements can be

described by a ------------------- order differential equations. [1]
T.11.4 For the circuit in fig.11.8, find the following [6]
t=0
—
R, = 4Q
—— AWW————AWW———
R, = 62
N . L=2H
v Vel) el
. “T C=4F
i (1)
Fig. 11.8

. dv(07) dv(0)y  di(07) diL(0+)

(a)ve©) (b)ve©) () g (D) ar "z D &
(Ans. (a)6volt .(b)6volt . (c)0V/sec.(d)O0V/sec.(e)0amp/sec.(f)3amp./sec.)

T.11.5 In the circuit of Fig. 11.9,

62 2H —P i (1)
—— AW ———— R — — — — ——
b C 2 |
’
48V — T 4F 1202 ‘l(“)
-v
Fig. 11.9

Fin



. (0" dv (0F
(a)vr()andv (0 )(b)% and% (c)vr(») and vy () (8]

(Assume the capacitor is initially uncharged and current through inductor is zero).
(Ans. (@)O0V,0V (b)OV,2Volt./Sec.(c)32V,0V)

T.11.6 For the circuit shown in fig.11.10, the expression for current through inductor

4
zn ¢ L P Ve “)
i(t) g
Fig. 11.10

is given by iz ()= (10+30t ) e =" for t20
Find, (a) the values of L ,C (b) initial condition v (Q ) (c) the expression for v (t )>0.

(Ans. (@) L=2H,C=2F®)v.(07)=20V (c)v.(t)=(20-120t) e V") [8]
8
T.11.7 The response of a series RLC circuit are given by
p(1)=12+0.032 e " =2 032 p-osen
i (t)=228 ¢ ~0.5631 _ () g ,~44361

where v, (¢ ) and iy, (t) are capacitor voltage and inductor current respectively. Determine

(a) the supply voltage (b) the values R, L , C of the series circuit. [4+4]

(Ans. @) 12V()R=1Q,L=02Hand C=2F)

T.11.8 For the circuit shown in Fig. 11.11, the switch * S ’was in position ‘1’ for a long
time and then at # = 0 it is kept in position ‘2.



‘-.~ Switch

4042
i "'llli
Illi .
Iy

Fig. 11.11
Find,
(a)i (07 );(b)vOT); (c)v (07); (d)i(); [8]
Ans.

(a)l(O )=10A4; (b)v(O )=400V;
(c)v (07)=400V (d)l(OO)——ZOA

T.11.9 For the circuit shown in Fig.11.12, the switch ¢ § ° has been in position ‘1’ for a
long time and at ¢ = 0 it is instantaneously moved to position ‘2’.

| S = Switch
H\f‘ 80
AWWWWy
t=0
29

TR FESITY IH

16V

Fig. 11.12

Determine i (¢ ) for t 20 and sketch its waveform. Remarks on the system’s

response. [8]
T 0 1

(Ans.i(t)==—c¢e - —_ amps.)

3 3

T.11.10 The switch S * in the circuit of Fig.11.13 is opened at ¢ = 0 having been closed
for a long t



—\pe —————
) £

40
p— I velt)

T L FJE}F

.II--
'l

16V

i.2H

_____ .

Fig. 11.13

Determine (1) v, (¢ ) for t 2 0 (i1) how long must the switch remain open for the voltage

Ve (t) to be less than 10% ot its value at 1 =0 ? [10]

(Ans. () (i) v (1) = (16 + 240t ) e =" (ii) 0.705sec. )

T.11.11 For the circuit shown in Fig.11.14, find the capacitor voltage v, (¢) and inductor

current i ; () forall ¢t (t<0andt=0). [10]

t=0 20 20

BREREE %3

= IF ve(t)

Fig. 11.14

Plot the wave forms v. (t)and i 7 (¢) fort20.
(Ans. ve (1y=10 e " sin(0.5¢ ); iy (1) = 5(cos(0.5¢ ) =sin(0.5¢ ) )e
T.11.12 For the parallel circuit RLC shown in Fig.11.15, Find the response

_0.5¢
)



40O

Lt l L= 3H

f-ﬁ 'EI

Fig. 11.15

of iy (t) and v, (t ) respectively.

(Ans.ip (t)=4-4e

-2t

(1+21¢) amps.; v.(t)=481e

-2t

volt.)

12"

————

velt)

—_——— X

[10]



UNIT-1

DC Circui



Superposition Theorem in the
context of dc voltage and
current sources acting in a

resistive network



Objectives

] Statement of superposition theorem and its application to a resistive d.c network
containing more than one source in order to find a current through a branch or to
find a voltage across the branch.

1 Introduction

If the circuit has more than one independent (voltage and/or current) sources, one
way to determine the value of variable (voltage across the resistance or current through a
resistance) is to use nodal or mesh current methods as discussed in detailed in lessons 4
and 5. Alternative method for any linear network, to determine the effect of each
independent source (whether voltage or current) to the value of variable (voltage across
the resistance or current through a resistance) and then the total effects simple added. This
approach is known as the superposition. In lesson-3, it has been discussed the properties
of a linear circuit that satisfy (i) homogeneity property [response of output due to input=a
u (t) equals to a times the response of output due to input=u (¢) , S (qu (1)) =
aS (u (1) forall a;and u (f) = input to the system] (ii) additive property [that is the
response of u; (¢ ) + u o (¢t ) equals the sum of the response of u; (¢ ) and the response of
Ur (), S ()+u,(t))=S () +S(usy(t)) ] Both additive and multiplicative properties
of a linear circuit help us to analysis a complicated network. The principle of
superposition can be stated based on these two properties of linear circuits.

1.1 Statement of superposition theorem

In any linear bilateral network containing two or more independent sources
(voltage or current sources or combination of voltage and current sources ), the resultant
current / voltage in any branch is the algebraic sum of currents / voltages caused by each
independent sources acting along, with all other independent sources being replaced
meanwhile by their respective internal resistances.

Superposition theorem can be explained through a simple resistive network as
shown in fig.7.1 and it has two independent practical voltage sources and one practical
current source.



R 1 El .R._:.

T O

“ig. 7.1

One may consider the resistances R; and Rz are the internal resistances of the voltage
sources whereas the resistance R4 is considered as internal resistance of the current

source. The problem is to determine the response / in the in the resistor R, . The current
I can be obtained from

I:I!| -|—III| -|—Irn|

due to E (alone ) due to E (alone) dueto ] (alone)

1 2 K

according to the application of the superposition theorem. It may be noted that each
independent source is considered at a time while all other sources are turned off or killed.
To kill a voltage source means the voltage source is replaced by its internal resistance (i.e.

R or R3 ; in other words E; or E; should be replaced temporarily by a short circuit)
whereas to kill a current source means to replace the current source by its internal

resistance (i.e. R4 ; in other words I should be replaced temporarily by an open circuit).

Remarks: Superposition theorem is most often used when it is necessary to determine the
individual contribution of each source to a particular response.

1.2 Procedure for using the superposition theorem

Step-1: Retain one source at a time in the circuit and replace all other sources with their
internal resistances.

Step-2: Determine the output (current or voltage) due to the single source acting alone
using the techniques discussed in lessons 3 and 4.

Step-3: Repeat steps 1 and 2 for each of the other independent sources.

Step-4: Find the total contribution by adding algebraically all the contributions due to the
independent sources.



2 Application of superposition theorem

Example- L.7.1 Consider the network shown in fig. 7.2(a). Calculate I, and V., using

superposition theorem.

R,~3Q2
R,~1Q2 =4
2 b R, =4£2
' —— A WAA—4-

q L.

2A
V, =3 volt = R =202 C)T

£

Fig. 7.2(a)

Solution: Voltage Source Only (retain one source at a time):

First consider the voltage source V,, that acts only in the circuit and the current
source is replaced by its internal resistance ( in this case internal resistance is infinite ( «
)). The corresponding circuit diagram is shown in fig.7.2(b) and calculate the current
flowing through the ‘a-b’ branch.

‘/\3/‘&/‘

10 .
 ——AAA :

E 40
ah
gl 20
—— Y
P
2

Fig. 7.2(b)



R =[(R+R)| R 1+R ,,fl”:ﬁﬁ

eq cb

8 8
3
I=73% A=1.043A; Now current through a to b, is given by
8
7 24

Lb= 8- 23=0913A (atob)

I, =1.043-0913=0.13A

Voltage across c-g terminal :

Vee=Viog+ Vep=2-1.043+4-0.13=2.61volts  (Note: we are moving opposite to the
direction of current flow and this indicates there is rise in potential). Note ¢ ¢ ’ is higher
potential than * g ’.

Current source only (retain one source at a time):

Now consider the current source /; =2 A only and the voltage source V, is replaced by its
internal resistance which is zero in the present case. The corresponding the simplified
circuit diagram is shown below (see fig.7.2(c)& fig.7.2(d)).

k1Y
——WA
b
' ——AA WAA—4 ¢
llﬂ S 402
2Q CT 2A
e 1]

g
Fig. 7.2(c)



I

% -

410

3 S D n S

(a.g)

=

Fig. 7.2(d)

Current in the following branches:

3Q) resistor = (473)-2 =1217A; 4Qresistor=2-1.217=0.783A
(14/3)+3
2
1Q resistor = —-0.783=0.522 A (b to a)
3

Voltage across 3Q resistor (¢ & g terminals) V., = 1.217 - 3 = 3.651volts

The total current flowing through 1Q resistor (due to the both sources) from a to b =
0.913 (due to voltage source only; current flowing from ‘a ’ to * b *) — 0.522 (dueto

current source only; current flowing from ‘b ’to ‘a’) =0.391 A .

Total voltage across the current source Vee =2.61volt (due to voltage source ;‘c’ is

b

higher potential than ‘ g ) + 3.651 volt (due to current source only; ‘ ¢
potential than © g ) = 6.26 volt .

is higher

Example L.7.2 For the circuit shown in fig.7.3(a), the value of V; and I are fixed.
When V5, =0, the current I =4 A . Find the value of I when V, =32V .

80 642

oJr

Fig. 7.3(a)



Solution: Let us assume that the current flowing 6 Q  resistors due to the voltage and
current sources are given by (assume circuit linearity)

I=aVy+pBV,, .. ' ! T (7.1)

sl 52) s

where the parametersa, 5, and 1 represent the positive constant numbers. The parameters
a and B are the total conductance of the circuit when each voltage source

acting alone in the circuit and the remaining sources are replaced by their internal
resistances. On the other hand, the parameter 77 represents the total resistance of the

circuit when the current source acting alone in the circuit and the remaining voltage
sources are replaced by their internal resistances. The expression (7.1) for current [ is
basically written from the concept of superposition theorem.

From the first condition of the problem statement one can write an expression as (when
the voltage source Vi and the current source /; acting jointly in the circuit and the other
voltage source V; , is not present in the circuit.)

4=I=aV;;.. ’ " ) (Note both the sources are fixed) (7.2)

.
Let us assume the current following through the 6 Q resistor when all the sources acting
in the circuit with Vg, = 32V is given by the expression (7.1). Now, one can determine the
current following through 6 Q resistor when the voltage source V; , = 32V acting

alone in the circuit and the other sources are replaced by their internal resistances. For the

circuit shown in fig.7.3 (b), the current delivered by the voltage source to the 6 Q resistor
is given by

82 642

Fig. 7.3(b)
V
1 K
«w (88)+4
The current following through the 6 Q due to the voltage source Vg, =32V onlyis 2 A

1

(flowing from left to right; i,e. in the direction as indicated in the figure 7.3(b)). Using
equation (7.1), the total current / flowing the 6 Q resistor can be obtained as



I n rnr r mnr n

l:aV +ﬂV +,71 =1 +1 +1 =1 +1 +1
sl 52 (duetoVy1) (due to Vg 2) (duetoly) (duetoVyy) (duetoly) (due to Vs 2)

' " )= 4 A (seeeq.7.2)

s

Example L.7.3: Calculate the current 1, flowing through the resistor 3Q as shown in
fig.7.4(a), using the superposition theorem.

: “;': u 30 y 29
I
| WA WA
_> ljh
2Q +
3.
% l — 2volt
__. 1 volt JA
‘.
1£2

Fig. 7.4 (a)

Solution: Assume that the current source 3 A ( left to the 1volt source) is acting alone in

the circuit and the internal resistances replace the other sources. The current flowing
through 3Q resistor can be obtained from fig.7.4(b)

. k1Y) b 20
VW———-/ W
—> 1,
3A
<> 20

Fig. 7.4 (b)

and it is given by

I =32 6

1( due to 3 A current source) 7 :7 A ( a to b) (74)



Current flowing through 3Q resistor due to 2V source (only) can be obtained from
fig.7.4(c)

2 volt I,=0
- |+ a o— b
o—i| VW—e— WA
30 20
20

Fig. 7.4 (¢)
and it is seen from no current is flowing.

1 =0A(a to b)

2( due to 2V voltage source) (7 5)

Current through 3 Q resistor due to 1V voltage source only (see fig.7.3(d)) is given by

0 20
a b
o W—— - MW—
(— I
20
ot
+
o
Fig. 7.4 (d)
I =1
3( due to 1V voltage source) 7 A ( b to a) (76)

Current through 3 Q resistor due to 3 A current source only (see fig.7.3(e)) is obtained
by



Yy S—y
—i [_F
b l 3A
142
Fig. 7.4 (e)
I =32
4( due to 3 A current source) 7 =7 A ( ato b) (77)

Current through 3 Q resistor due to 2V voltage source only (see fig.7.3(f)) is given by

20

|
%

Fig. 7.4 ()

I =)
5( due to 2V voltage source) 7 A ( b to a) (78)

Resultant current 1, flowing through 3Q resistor due to the combination of all sources is
obtained by the following expression (the algebraic sum of all currents obtained in egs.

(7.4)-(7.8) with proper direction of currents)

ab 1( due to 3 A current source ) 2( due to 2 Vvoltage source ) 3( due to 1V voltage source ) 4( due to 3 A current source)
+1
5( due to 2V voltage source)

6 1 6 2 9
=7 +0- 7+7 -7 =7 =1285(atob)



3 Limitations of superposition Theorem

] Superposition theorem doesn’t work for power calculation. Because power
calculations involve either the product of voltage and current, the square of
current or the square of the voltage, they are not linear operations. This statement
can be explained with a simple example as given below.

Example: Consider the circuit diagram as shown in fig.7.5.

1292

——A—

'l
- -

+
12V =" -~

12V

Fig. 7.5

Using superposition theorem one can find the resultant current flowing through 12 Q
resistor is zero and consequently power consumed by the resistor is also zero. For power
consumed in an any resistive element of a network can not be computed using
superposition theorem. Note that the power consumed by each individual source is given
by

P =12watts; P =12 watts

W 1( due to 12 V source ( left )) W 2( dueto 12V source ( right ))

The total power consumed by 12 Q =24 watts (applying superposition theorem). This
result is wrong conceptually. In fact, we may use the superposition theorem to find a
current in any branch or a voltage across any branch, from which power is then can be
calculated.

1 Superposition theorem can not be applied for non linear circuit ( Diodes or
Transistors ).

[J This method has weaknesses:- In order to calculate load current I; or the load
voltage V; for the several choices of load resistance R; of the resistive network ,
one needs to solve for every source voltage and current, perhaps several times.
With the simple circuit, this is fairly easy but in a large circuit this method
becomes an painful experience.

4 Test Your Understanding [Marks: 40]
T.7.1 When using the superposition theorem, to find the current
produced
independently by one voltage source, the other voltage source(s) must be ----------- and

the current source(s) must be -------------- . [2]



T.7.2 For a linear circuit with independent sources p; , p2, P3 .-v...... pn and if y; is the
response of the circuit to source p; , with all other independent sources set to zero), then
resultant response y = . [1]

T.7.3 Use superposition theorem to find the value of the voltage v, in fig.7.6. [8]

VWA |

- 10002
o = v, S 1000
0V % T 60 mA

—_—

Fig. 7.6
(Ans. 14 volts )
T.7.4 For the circuit shown in fig.7.7, calculate the value of source current /x that
yields I=0if V1 and Vc are kept fixed at 7 V and 28V . [7]

" 1202 i
602
4 -+
‘ A __—: l\ —:- ‘ L
Fig. 7.7

(Ans. I, =—-5.833A)

T.7.5 For the circuit shown below (see fig.7.8), it follows from linearly that we can
write' Vao=al.+ BV a+nVs,where a, 8, and nare constants. Find the values of
(i) (i)a (i ) Band (iii) 7. (7]



4Q 40 40 40

—_—
'
-

= 0€

Fig. 7.8
(Ans. a=-1; B=0.063; and n=-0.063)

T.7.6  Using superposition theorem, find the current ¢ through 5 Q resistor as shown in

fig.7.9. [8]

- 602
BV s
+ i

Fig. 7.9
(Ans. —0.538A4)

T.7.7 Consider the circuit of fig.7.10



4011

2042
BOLY
| T 80$2 BOE  Vou
Ii

Fig. 7.10
(a) Find the linear relationship between V,,, and input sources V and I
IV, =10VandlI =1, find V,,;

relationship found in part (a)? [7]
(AnS. (a) ‘/out = 03333V€ + 6666 Is ) (b)Vout = 9999V (C) Vnut = 03333Vv +13332[v )



UNIT-1

DC Circuit



Loop Analysis of resistive
circuit 1n the context of dc
voltages and currents.



Objectives

1 Meaning of circuit analysis; distinguish between the terms mesh and loop.

'] To provide more general and powerful circuit analysis tool based on Kirchhoff’s
voltage law (KVL) only.

1 Introduction

The Series-parallel reduction technique that we learned in lesson-3 for analyzing
DC circuits simplifies every step logically from the preceding step and leads on logically
to the next step. Unfortunately, if the circuit is complicated, this method (the simplify and
reconstruct) becomes mathematically laborious, time consuming and likely to produce
mistake in calculations. In fact, to elevate these difficulties, some methods are available
which do not require much thought at all and we need only to follow a well-defined
faithful procedure. One most popular technique will be discussed in this lesson is known
as ‘mesh or loop’ analysis method that based on the fundamental principles of circuits
laws, namely, Ohm’s law and Kirchhoff’s voltage law. Some simple circuit problems will
be analyzed by hand calculation to understand the procedure that involve in mesh or loop
current analysis.

1.1 Meaning of circuit analysis

The method by which one can determine a variable (either a voltage or a current) of a
circuit is called analysis. Basic difference between ‘mesh’ and ‘loop’ is discussed in
lesson-3 with an example. A ‘mesh’ is any closed path in a given circuit that does not
have any element (or branch) inside it. A mesh has the properties that (i) every node in
the closed path is exactly formed with two branches (ii) no other branches are enclosed
by the closed path. Meshes can be thought of a resembling window partitions. On the
other hand, ‘loop’ is also a closed path but inside the closed path there may be one or
more than one branches or elements.

2.Solution of Electric Circuit Based on Mesh (Loop) Current
Method

Let us consider a simple dc network as shown in Figure 4.1 to find the currents
through different branches using Mesh (Loop) current method



1

R,

I

loop-2

|

l-l—

-V,

Applying KVL around mesh (loop)-1:(note in mesh-1, /; is known as local current and

other mesh currents I, & I5 are known as foreign currents.)

Vo=Ve=(L=13)Ry— (I, =1,)Ry =0

Va_vc=(R2+R4)Il “R4l2-Ry3=Ri1 I} —RiohL—-Ri313

4.1)
Applying KVL around mesh (loop)-2:(similarly in mesh-2, I, is local current and

11 & I3 are known as foreign currents)
—(I2-13)Rs—=(I2-1; )R4=0

= Vo=—R4 1 +(R3+R4)12—R3I3 ==Ry1 1 +Ryy I = Ry3 I3
Applying KVL around mesh (loop)-3:

—I13R —(I3-1,)R3—(I3-1;)R,=0

Ve=—Ry I —R312+(R1 +Ry+R3 )13 =—R31 11 —R3x I, + Ry3 I3
** In general, we can write for ith

mesh (fori=1,2,....N)
ZVll_ Ry Iy =R;» 1,

i“Ri iviliv1— RinIy
ZVii — simply und the mesh.

(4.2)

(4.3)



Note: Generally, R;; = R;; ( true only for linear bilateral circuits)
I; — the unknown mesh currents for the network.

Summarize:

Step-I: Draw the circuit on a flat surface with no conductor crossovers.

Step-2: Label the mesh currents ( /; ) carefully in a clockwise direction.

Step-3: Write the mesh equations by inspecting the circuit (No. of independent mesh
(loop) equations=no. of branches (b) - no. of principle nodes (n) + 1).

Note:

To analysis, a resistive network containing voltage and current sources using
‘mesh’ equations method the following steps are essential to note:

] If possible, convert current source to voltage source.

] Otherwise, define the voltage across the current source and write the mesh
equations as if these source voltages were known. Augment the set of equations
with one equation for each current source expressing a known mesh current or
difference between two mesh currents.

1 Mesh analysis is valid only for circuits that can be drawn in a two-dimensional
plane in such a way that no element crosses over another.

Example-L-4.1: Find the current through 'ab-branch' (1, ) and voltage (V,, ) across the

current source using Mesh-current method.



+——
=V | o] R

I L loop-1
. E
® > NODE  gingy, v using
mesh current method.
Figure 4.2

Solution: Assume voltage across the current source is vy (‘c’ is higher potential than ‘g’

(ground potential and assumed as zero potential) and note I, = -2A (since assigned

current direction ( I, ) is opposite to the source current)
Loop - 1: (Appling KVL)

Vo= (h=I3)Ry=(I1 =12)R4=0 3=30 -2~ I3

31 -13=-1
Loop - 2: (Appling KVL)

4.4)

Let us assume the voltage across the current source is v; and its top end is assigned with a

positive sign.
—Vl—(12—11)R4—(12—13)R3=0—V1=—211+612—4I3

211 + 12 + 413 = v, (note: I, =—2A)

Loop - 3: (Appling KVL)
—I3R1—(I3—12)R3—(13—I] )R2=0 —11—412+813=0

Iy —815=8 (Note, I, = —2A)

48
Solving equations (4.4) and (4.6), we get I} = — -7 = —0.6956 A and

4.5)

(4.6)



13 = —2—5 =-1.0869 A s Iab = ]1 - 13 =0.394, Ibc = 12 - 13 =-0.913A and
23
Il
ke =1 -1, =1304A
- ve sign of current means that the current flows in reverse direction (in our case, the
current flows through 4Q) resistor from ‘c’ to ‘b’ point). From equation (4.5), one can get

v == 6.27 volt.

Another way: = vi + vpe +vpe =0 vy =v, =627 volt.

Example-L-4.2 For the circuit shown Figure 4.3 (a) find V, using the mesh current

method.

k19

A4S L E ot

I8V

b
Fig. 4.3(a)
®

Jo 5 =T

®h

A1)

Fig. 4.3(b)

Solution: One can easily convert the extreme right current source (6 A) into a voltage
source. Note that the current source magnitude is 6 A and its internal resistance is 6 Q .
The given circuit is redrawn and shown in Figure 4.3 (c)
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Figure 4.4
S

Loop-1: (Write KVL, note I; =12 A )
Vi=(I1—=1,)3-18=0 V,+31,=54 4.7)

Loop-2: (write KVL)
18=(L-11)-3-1,-6-36=0 91,=18 1,=2A
Using the value of I =2 A in equation (4.7), we get V, = 48volt.

Example-L.-4.3 Find vg for the circuit shown in figure 4.4 using ‘mesh current method.
Calculate the power absorbed or delivered by the sources and all the elements.

Solution: Assume the voltage across the current source is ¢ v * and the bottom end of
current source is marked as positive sign.

For loop No. 1: (KVL equation)
v=(I1=1,)-100-1;-100=0 v—-20017;+1001,=0 (4.8)
It may be noted that from the figure that the current flowing through the 100 Q resistor

(in the middle branch) is10 mA . More specifically, one can write the following
expression

-1 =1010"° (4.9)

1 2

For loop No. 2: (KVL equation)
-20-(I1,-1;)-100-v=1,-100=0 v+20071,-1001;=-20 (4.10)

Solving  equations (4.8)—(4.10), one can obtained the loop currents as
I1=-0.095 =-95mA (-ve sign indicates that the assigned loop current direction is not
correct or in other words loop current (/) direction is anticlockwise.) and



I, =-0.105 = =105 mA (note, loop current (I ) direction is anticlockwise). Now the
voltage across the 100Q resistor (extreme  right branch) is given by

vg=1,-100=-0.105 -100 = —10.5 volt. .This indicates thatthe resistor terminal (b)
adjacent to the voltage source is more positive than the other end of the resistor terminal



(a). From equation (4.8) v = —8.5 volt and this implies that the ‘top’ end of the current source
is more positive than the bottom ‘end’.

Power delivered by the voltage source = 20 -0.105 = 2.1W (note that the current is
leaving the positive terminal of the voltage source). On the other hand, the power
received or absorbed by the current source = 8.5 -:0.01 = 0.085W (since current entering
to the positive terminal (top terminal) of the current source). Power absorbed by the all
resistance is given

= (0.105) > -100 + (0.095) > 100 + (10- 107 ) > 100 = 2.015W .
Further one can note that the power delivered ( P; = 2.1W ) = power absorbed ( Py, =

0.085+2.015=2.1W) =2.1W

3 Test Your Understanding [Marks:50]
T.4.1 To write the Kirchhoff’s voltage law equation for a loop, we proceed clockwise

around the loop, considering voltage rises into the loop equation as ------- terms and

voltage drops as -------- terms. [2]

T.4.2 When writing the Kirchhoff’s voltage law equation for a loop, how do we handle
the situation when an ideal current source is present around the loop? [2]

T.4.3 When a loop current emerges with a positive value from mathematical solution of
the system of equations, what does it mean? What does it mean when a loop current

emerges with a negative value? [2]
T.4.4 In mesh current method, the current flowing through a resistor can be computed
with the knowledge of ------ loop current and ---------- loop current. [2]
T.4.5 Find the current through 6 Q resistor for the circuit Figure 4.5 using ‘mesh
current’ method and hence calculate the voltage across the current source. [10]
30 5Q
. }
TR = 8V ,
§ 60

Figure 4.5



(Answer: 3.18 4 ;13.22 V)

T.4.6 For the  circuit shown in Figure 4.6, find the  currentthrough

I s, 1 ac, I cpand Igr using ‘mesh current’ method. [12]
40
1A
<> §4n 40 gsﬂ C)
6A : .
8V T,
B D F

Figure 4.6

(Answer: I gsg=—3A; 1 psc=—3A;Icp=—2Aand Il gp=0A.)

T.4.7 Find the current flowing through the R; =1kQ resistor for the circuit shown in
Figure 4.7 using ‘mesh current’ method. What is the power delivered or absorbed by the

independent current source? [10]
R, = IkQ2 1k

* “+
o gr— 2 mA <> 3\ AgT—m

Figure 4.7

(Answer: 1 mA;10 mW)

T.4.8 Using ‘mesh current’ method, find the current flowing through 2 Q resistor for the
circuit shown in Figure 4.8 and hence compute the power consumed by the same 2 Q

resistor. [10]
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(Answer: 6 A; 72W)

Figure 4.8
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UNIT-2
Three-phase AC Circuits



Three-phaseBalanced
Supply

In the module, containing six lessons (12-17), the study of circuits, consisting of the
linear elements — resistance, inductance and capacitance, fed from single-phase ac supply,
has been presented. In this module, which may also be termed as an extension of the
previous one, containing three lessons (18-20), the solution of currents in the balanced
circuits, fed from three-phase ac supply, along with the measurement of power, will be
described.

In this (first) lesson of this module, the generation of three-phase balanced voltages is
taken up first. Then, the two types of connections (star and delta), normally used for the
above supply, followed by line and phase quantities (voltages and currents) for the
connections, in both supply and load sides (both being balanced), are described.

Keywords: Three-phase balanced voltage, star- and delta-connections, balanced load.

After going through this lesson, the students will be able to answer the following
questions:

1. How to generate three-phase balanced voltages?

2. What are the two types of connections (star and delta) normally used for three-phase
balanced supply?

3. What are meant by the terms — line and phase quantities (voltages and currents), for
the two types of connections in both supply and load sides (both being balanced)

Generation of Three-phase Balanced Voltages

In the first lesson (No. 12) of the previous module, the generation of single-phase
voltage, using a multi-turn coil placed inside a magnet, was described. It may be noted
that, the scheme shown was a schematic one, whereas in a machine, the windings are
distributed in number of slots. Same would be the case with a normal three -phase
generator. Three windings, with equal no. of turns in each one, are used, so as to obtain
equal voltage in magnitude in all three phases. Also to obtain a balanced three-phase
voltage, the windings are to be placed at an electrical angle of 120° with each other, such
that the voltages in each phase are also at an angle of 120° with each other, which will be
described in the next section. The schematic diagram with multi-turn coils, as was shown
earlier in Fig. 12.1 for a single-phase one, placed at angle of 120° with each other, in a 2-
pole configuration, is shown in Fig. 18.1a. The waveforms in each of the three windings



(R, Y & B), are also shown in Fig. 18.1b. The windings are in the stator, with the poles
shown in the rotor, which is rotating at a synchronous speed of N (r/min, or

rpm), to obtain a frequency of f'= (( p Ny) /120) (Hz), p being no. of poles [ p =2 ] (see

lesson no. 12).



Fig. 18.1 (a) Schematic diagram of three windings of stator for the
generation of three phased balanced voltage (2-pole rotor).

Three-phase Voltages for Star Connection

Vix Vix Vi

Fig. 18.1 (b)Three-phase balanced voltage waveforms with
the source star-connected (the phase sequence, R-Y-B)

The connection diagram of a star (Y)-connected three-phase system is shown in Fig.

18.2a, along with phasor representation of the voltages (Fig. 18.2b). These are in conti-
nuation of the figures 18.1a-b. Three windings for three phases are R (+) & R’(—),Y (+)
& Y’(-), and B (+) & Y’(-). Taking the winding of one phase, say phase R as an
example, then R with sign (+) is taken as start, and R’ with sign (—) is taken as finish.
Same is the case with two other phases. For making star (Y)-connection, R’, Y’ & B’ are
connected together, and the point is taken as neutral, N. Three phase voltages are:

€RN = En sin @; exww = En sin (6—-120°) ; = En sin

€8N (@ = 240°) = En sin (6+120°)
It may be noted that, if the voltage in phase R ( egy ) is taken as reference as stated
earlier, then the voltage in phase Y( eyy ) lags egy by 120° , and the voltage in phase B(

epn ) lags eyy by 120°, or leads egy by 120° . The phasors are given as:



Ery 0°=E(1.0+0.0): Eyy -120°=E (-0.5 —;0.866) ;
Epy +120°=E (-0.5 +j0.866) .

-VRN VBN Vry

(b)

Fig. 18.2 (a) Three-phase balanced voltages, with the source
star-connected (the phase sequence, R-Y-B)
(b) Phasor diagram of the line and phase voltages
The phase voltages are all equal in magnitude, but only differ in phase. This is also
shown in Fig. 18.2b. The relationship between E and E,, is E = E,, / ~ 2 . THe phase

sequence is R- Y-B. It can be observed from Fig. 18.1b that the voltage in phase Y attains
the maximum value, after &= wt = 120° from the time or angle, after the voltage in



phase R attains the maximum value, and then the voltage in phase B attains the maximum
value. The angle of lag or lead from the reference phase, R is stated earlier.

Reversal of phase sequence from R-Y-B to R-B-Y

If the phase sequence is reversed from R-Y-B to R-B-Y, the waveforms and the
corresponding phasor diagram are shown in figures 18.3 (a -b) respectively. It can be
observed from Fig. 18.3a that the voltage in phase B attains the maximum value, after
6@ = 120° from the time (or angle), after the voltage in phase R attains the maximum
value, and then the voltage in phase Y attains the maximum value. The angle of lag or
lead from the reference phase, R is stated earlier. The same sequence is observed in the
phasor diagram (Fig. 18.3b), when the phase sequence is reversed to R-B-Y.

v Vi Vi Vix

240°°3007 360°

()
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(b)

Fig. 18.3 (a) Three-phase balanced voltage waveforms with the source star-connected
(the phase sequence, R-B-Y)
(b) Phasor diagram of the line and phase voltages

Relation between the Phase and Line Voltages for Star

Connection

Three line voltages (Fig. 18.4) are obtained by the following procedure. The line
voltage, Egy is

Ery =Egy —Eyy =EQ0°—E -120°=E [(1 +j0) = (-0.5 — j0.866)]

= E (1.5 +0.866) =+/3 E 30°
The magnitude of the line voltage, Egy is ~  times the magnitude of the phase voltage
Egy , and Egy leads Egy by 30° . Same is the case with other two line voltages as shown
in brief (the steps can easily be derived by the procedure given earlier).

Evs =Ew —Es =E =120°— E+120°=x [3E=90°

Esr =Espv —Erv =E +120°- ()021\/ 3E+150°



So, the three line voltages are balanced, with their magnitudes being equal, and the
phase angle being displaced from each other in sequence by 120° . Also, the line
voltage, say Egy, leads the corresponding phase voltage, Egy by 30°

Relation between the Phase and Line Voltages for
Delta Connection

The connection diagram of a delta ( )-connected three-phase system is shown in Fig.
18.4a, along with phasor representation of the voltages (Fig. 18.4b). For making delta ( )-
connection, the start of one winding is connected to the finish of the next one in
sequence, for instance, starting from phase R, R’ is to connected to Y, and then Y’ to B,
and so on (Fig. 18.4a). The line and phase voltages are the same in this case, and are
given as

R
Y
B
[ B
(a)
EBr
120°
120° >
1200 ERY
Evs
(b)

Fig. 18.4 (a) Three-phase balanced voltages, with the source delta-connected
(the phase sequence, R-Y-B)
(b) Phasor diagram of the line and phase voltages

ERY =F 0°; EYB =F -120°; EBR =F +120°






If the phasor sum of the above three phase (or line) voltages are taken, the result is zero
(0). The phase or line voltages form a balanced one, with their magnitudes being equal,
and the phase being displaced from each other in sequence by120° .

Currents for Circuit with Balanced Load (Star-connected)

R = Irn

(a)
VBN
A Isn
)
\120o
120° o > VrN
v @ 120°
Irn
Yyn
(b)

Fig. 18.5 (a) Circuit diagram for a three-phase balanced star-connected load
(b) Phasor diagram of the phase voltages, and the line & phase currents

A three-phase star (Y)-connected balanced load (Fig. 18.5a) is fed from a balanced
three-phase supply, which may be a three-wire one. A balanced load means that, the

ZJ:JZRN’|=tYN’|:tBN1 , and their
angle is also same, as @ , = @ry' = @Pyn' = @y ' - In other words, if the impedance per

magnitude of the impedance per phase, is same, i.e.,

phase is given as, Z , ¢ , =R, +j X , , then R, = Rgy' = Ryy ' = Rpy', and also



X =X gnv'=X ynv =X pv . The magnitude and phase angle of the impedance per phase
are: Z , = @pz +X pz ,and @ , = tan -1 (X » ! Ry ) For balanced load, the magnitudes of

the phase Voltaées, V,J = VIRN'|: VIyN | = VIBN " are same, as those of the source voltages per

phase|VRN|= VYNI: ‘}’BN ,| if it is connected in star, as given earlier. So, this means that,

the point N’ , star point on the load side is same as the star point, N of the load side. The
phase currents (Fig. 18.5b) are obtained as,

14
_Vey 0° RN

IRy - @y = = ~Pp
RN’ ¢p RN'

Ve —120°

Iyy —(120°+ @,)= YNL =LYN - (120°+ @)

YN' ¢p y YN'
. Vay  +120° .

Ipy (120°-¢,)="8N = (120°-¢,)

LBN' ¢p BN'

In this case, the phase voltage, Vgy s taken as reference. This shows that the phase

currents are equal in magnitude, i.e., ( {p ‘: I|RN ' |: 4YN' |: I[ sn’| ), as the magnitudes of the

voltage and load impedance, per phase, are same, with their phase angles displaced from
each other in sequence by 120° . The magnitude of the phase currents, is expressed as

‘I p‘ = [Vp / ZPD. These phase currents are also line currents ( IIL 4 Ik =| Iy|= 173 j, dl this

case.

Total Power Consumed in the Circuit (Star-connected)

In the lesson No. 14 of the previous module, the power consumed in a circuit fed
from a single-phase supply was presented. Using the same expression for the above star-
connected balanced circuit, fed from three-phase supply (Fig. 18.4a-b), the power
consumed per phase is given by

w, =V, I, cosg, =V, I, cos(Vp,Ip)
It has been shown earlier that the magnitude of the phase voltage is given by
‘Vp ‘ = \VL\ I3 , where the magnitude of the line voltage is |VL| . The magnitudes of the

phase and line current are same, i.e., II pl :II LI . Substituting the two expressions, the total
power consumed is obtained as

w=3 (Vl/a[_S)IL cos @, =/\_3 Vi I cos @,
Please note that the phase angle, @ , is the angle between the phase voltage V), , and the

phase current , [, .

Before taking up an example, the formulas for conversion from delta-connected
circuit to its star equivalent and vice versa (conversion from star to delta connection)
using impedances, and also ideal inductances/capacitances, are presented here, starting
with circuits with resistances, as derived in lesson #6 on dc circuits.



Delta(A)-Star(Y) conversion and Star-Delta conversion

Before taking up the examples, the formula for Delta( )-Star(Y ) conversion and also
Star-Delta conversion, using impedances as needed, instead of resistance as elements,
which is given in lesson #6 in the module on DC circuit, are presented. The formulas for
delta-star conversion, using resistances (Fig. 18.6), are,

a
a
b b
¢ ¢

(b)
Fig. 18.6: Resistances connected (a) in delta, and (b) in star configurations

Ry R3 R3 Ry Ri Ry
R, =—— Ry =—/ R, =—m
Ri+Ry+R3 Ri+Ry+R3 Ri+Ry+ Rj
The formulas for dellt(a;(star conversion, using resistance, are,
R =R +R + bt ¢ _R,Ry+RyR-+R.R,
1 b c Ra Ra
K R,R,+R,R.+R.R
R2=Rc+Ra+ c o _Raltp b \e c g
Ry Ry
R =R +R +RaRp — RiRy+Ry R+ R R,
3 a b RC RC

The derivation of these formulas is given in lesson #6. If three equal resistances
(R; =R, =R3 =R) connected in delta, are converted into its equivalent star, the
resistances obtained are equal, its value being R, =R, =R, =(R/3)=R’, which is
derived using formulas given earlier. Similarly, if three equal resistances connected in
star, are converted into its equivalent delta, the resultant resistances, using formulas, are
equal (Ri=R,=R3=3R' =3(R/3)=R).

The formula for the above conversions using impedances, instead of resistances, are
same, replacing resistances by impedances, as the formula for series and parallel
combination using impedances, instead of resistances, remain same as shown in the
previous module on ac single phase circuits.



(a) (b}
Fig. 18.7: Impedances connected (a) in delta, and {b) in star configurations

The formulas for delta-star conversion, using impedances (Fig. 18.7), are,
Y
Z> 73 737, 12
W= Zy=o—tt— 7 a—————
L+ 72+ 73 W+ 2+ 73 21 +72y+ 75
The formulas for delta-star conversion, using impedance, are,
ZyZ, Z,Zpy+ZyZ.+Z72.27,

ZIZZb"'Zc"'
/s 2

2=z 47,4 _Lalt Ty 2+ 77,
Zy Zy
4 L

Za =7, + 7+ a b =ZaZb+Zch+ZcZa
Z. Z

Please note that all the impedances used in the formula given here are complex

quantities, like Zy @y , , Z, ¢, , , having both magnitude and angle as given. The
formulas can be derived by the same procedure as given in lesson #6.

An example is taken up, when three equal impedances connected in delta are to be
converted into its equivalent star. The impedances are equal, both in magnitude and
angle, such that $1 :|: le =|Z3|= 15 , alid @1 = ¢ = ¢ = @ . The impedances connected in
delta are of the form Z ¢ = R + j X . Using the formula given here, the impedances of the

star equivalent are also equal, having the magnitude as

1z =z, =1y |7 (Z)3)=% pnd angle as @, = @, = . = 9.

The angles of the equivalent impedance connected in star are equal to the angles of the
impedances connected in delta. The impedances connected in delta are also equal, both in
magnitude and angle, and are of the form Z' ¢=(Z/3) ¢=(R/3)£j(X/3).

Similarly, if three equal impedances connected in star are converted into its equivalent
delta, the magnitude and angle of the impedances using the formulas given here, are

|Zl| =|22 |= Z3 |= (3 Zf ' } = ZF {and @1 = @ = @ = @respectively. This shows that three
impedances are equal, both in magnitude and angle, with its value

beingZp=3Z") p=[3(R/3)]£j[3(X/3)]=R+tjX

which can also be obtained simply from the result given earlier.



(a) (b}
Fig. 18.8: Inductances (ideal) connected (a) in delta, and (b) in star configurations

Now, let us use the above formula for the circuits (Fig. 18.8), using inductances only.
The symbols used for the inductances are same ( Ly ,, L, , ). The impedances of the

inductances connected in delta, are computed as Z; ¢; =0.0 + jw L; = X; 90°, the angles
in three cases are 90° . The magnitudes of the impedances are proportional to the
respective inductances as lZl |=X1 L; . Converting the combination into its equivalent star,
the inductances using the formulas given here, are
Ly Ly L3 Ly I Ly Ly

= b = =

Li+Lr+1L4 Li+Lp+13 C L+t
These relations can also be derived. Further, these are of the same form, as has been
earlier obtained for resistances. It may be observed here that the formulas for series and
parallel combination using inductances, instead of resistances, remain same, as shown in
the previous module on ac single phase circuits, and also can be derived from first
principles, such as relationship of induced emf in terms of inductance, as compared with
Ohm’s law for resistance. The inductances are all ideal, i.e. lossless, having no resistive
component. The formulas for star-delta conversion using inductances (conversion of star-
connected inductances into its equivalent delta) are,

L =L +L +Lch —LoLp+ Ly L+ Lc Ly

L, L

1 b c La La
L=f, +1, +Lelo _Lalp+LpLe+Lel,
Ly Ly
L =L +L +Lalp — LaLlp+LyLc+Lc L,
3 a b Lc LC

These are of the same form as derived for circuits with resistances.
If three equal inductances ( L; = L, = L3 = L ) connected in delta, are converted into
its equivalent star, the inductances obtained are equal, its value being

L,=L,=L.=(L/3)=L", which is derived using formulas given earlier. Similarly, if
three equal inductances connected in star, are converted into its equivalent delta, the
resultant inductances, using formulas, are equal (L1 =L, =13=3L'=3(L/3)=L).



C! {TH

i
A

{a) (b)
Fig. 18.9: Capacitances connected (a) in delta, and (b) in star confligurations

The formulas for the circuits (Fig. 18.9) using capacitances are derived here. The
symbols used for the capacitances are same ( C; ,, C, , ). The impedances of the
inductances connected in delta, are computed as Z; @ = 0.0 = jX ¢ = X1 — 90° , the
angles in three cases are ( — 90° ). The magnitudes of the impedances are inversely
proportional to the respective capacitances as, Z; = X & =|X1 =(l/wO) A/ Cy).

Converting the combination into its equivalent star, the resultant capacitances using the
formulas given here, are

1/¢) A/ C3)

1/C, =
1/C1+1/C2+1/C3

or C, = Ci C2+C2C3+C3C1:C2+C3 +C2C3
.. C C
Similarly,

C =C +C +GC _CG+GG+G(C

b 3 1 C2 C2

C =C +C + 6G _CG+GG+G(

c 1 2

Cs Cs

The capacitances in this case are all ideal, without any loss, specially at power
frequency, which is true in nearly all cases, except otherwise stated. The formulas for
star-delta conversion using capacitances (conversion of star-connected capacitances into
its equivalent delta) are,

1/C,) (1 Cp)+(1/Cp,) A/ C. )+ (1/ C.) (1/ Cp )

1/C, =
1/C,
Gy C
or Cj _— ~bre
C,+Cp+C,
Similarly,
Cc Ca Ca Cb
C=——""— 3= .
C,+Cp+C, C,+Cp+C,

If three equal capacitances ( C; = C, = C3 = C ) connected in delta, are converted into

its equivalent star, the capacitances obtained are equal, its value being



C,=Cp,=C.=(3 C)=C", which is derived using formulas given earlier. Similarly, if
three equal capacitances connected in star, are converted into its equivalent delta, the
resultant capacitances, using formulas, are equal (C1=C,=C3=C"/3=3C)/3=C).

The formulas for conversion of three equal inductances/capacitances connected in
delta into its equivalent star and vice versa (star-delta conversion) can also be obtained
from the formulas using impedances as shown earlier, only by replacing inductance with
impedance, and for capacitance by replacing it reciprocal of impedance (in both cases
using magnitude of impedance only, as the angles are equal ( 90° for inductance and

— 90° for capacitance). Another point to note is left for observation by the reader. Please
have a close look at the formulas needed for delta-star conversion and vice versa (star-
delta conversion) for capacitances, including those with equal values of capacitances, and
then compare them with the formulas needed for such conversion using
resistances/inductances (may be impedances also). The rules for conversion of
capacitances in series/parallel into its equivalent one can be compared to the rules for
conversion of resistances/inductances in series/parallel into its equivalent one.

The reader is referred to the comments given after the example 18.1.

Example 18.1

The star-connected load consists of a resistance of 15 Q, in series with a coil having
resistance of 5 Q2, and inductance of 0.2 H, per phase. It is connected in parallel with the
delta-connected load having capacitance of 90 yF per phase (Fig. 18.10a). Both the
loads being balanced, and fed from a three-phase, 400 V, 50 Hz, balanced supply, with
the phase sequence as R-Y-B. Find the line current, power factor, total power & reactive
VA, and also total volt-amperes (VA).

R * Ir
I
Y —
_}IB

B

(a)



B

(b)
Fig. 18.10 (a) Circuit diagram (Example 18.1)
(b) Equivalent balanced star-connected circuit

Solution
f=50Hz w=2mf=2-m-50=314.16 rad / s
For the balanced star-connected load, R=15Q
For the inductance coil, r =5 Q X, =wL=314.16-0.2=62.83 Q

with the above values taken per phase.
The impedance per phase is,

ZI =R+ (r+jX)=15+(5+j62.83)=(20 +; 62.83) =65.94 72.34° Q
For the balanced delta-connected load, C=90 uF

Converting the above load into its equivalent star, C; =C/3=90/3 =30
MFX c1=1wC;=1/(314.16 - 30 107 )=106.1 Q

The impedance per phase is Z,' = —j106.1 = 106.1 -90°

In the equivalent circuit for the load (Fig. 18.10b), the two impedances, Z; & Z," are

in parallel. So, the total admittance per phase is,
Y, =Y+ ¥y = L 1 N 1
Zy Zy 6594 +7234° 106.1 —90°

=0.01517 =72.34°+0.009425 +90° =[(4.6 —j14.46) + 9.425]~10'3

=(4.6 -, 5.03) 10 =0.006816 - 47.56° Q"'

The total impedance per phase is,

Z, =1/Y, =1/(0.006816 — 47.56°) = 146.71 +47.56° = (99.0 +;108.27) Q
The phasor diagram is shown in Fig. 18.10c.

Taking the phase voltage, Vzy as reference,
Vin] =[Vp| = V2| /33=400/:3=231.0 v
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Vry

Iyn

Vyn Irn

Fig. 18.10 (c) Phasor diagram

The phase voltages are,
v v

wo=231.0 0°; w =231.0 —120°; Vey =231.0 +120°
So, the phase current, I gy is,
1 12

v=_& = 2310 0° =1.575 -47.56°=(1.0625 - j1.162) A

Z, 146.71 +47.56°
The two other phase currents are,
1

w =1.575 —167.56°; I gy =1.575 +72.44°
As the total circuit (Fig. 18.5b) is taken as star-connected, the line and phase currents

are same, 1.e., *L |= I‘p % 1.575A
Also, the phase angle of the total impedance is positive.

So, the power factor is cos @, = cos 47.56° = 0.675 lag
The total volt-amperesis S=3V, I, =3-231-1.575=1.0915 kVA

The total VA is also obtained as S =8 V;, I =+3{400-1.575 = 1.0915 kVA
The total poweris P=3 V, I, cos ¢ ,=3-231-1.575-0.675=73TW

The total reactive volt-amperes is,

Q=3V, I, sin@, =3-231-1.575 - sin 47.56° = 805 VAR

This example can be solved by converting the star-connected part into its equivalent
delta, as shown in Example 19.1 (next lesson). A simple example (20.1) of a balanced
star-connected load is also given in the last lesson (#20) of this module.

After starting with the generation of three- phase balanced voltage system, the phase
and line voltages, both being balanced, first for star-connection, and then for delta-
connection (both on source side), are discussed. The currents (both phase and line) for



balanced star-connected load, along with total power consumed, are also described in this
lesson. An example is given in detail. In the next lesson, the currents (both phase and line)
for balanced delta-connected load will be presented.



Problems

18.1 A balance load of (16+j12)Q per phase, connected in star, is fed from a three-

phase, 230V supply. Find the line current, power factor, total power, reactive VA
and total VA.

18.2  Find the three voltages Van, Vbn, & Ve, in the circuit shown in Fig. 18.11. The
circuit components are: R = 10 Q, j X =j17.3 Q.
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Three-phase AC Circuits



Three-phase Delta-
Connected Balanced
Load



In the previous (first) lesson of this module, the two types of connections (star and delta),
normally used for the three-phase balanced supply in source side, along with the line and
phase voltages, are described. Then, for balanced star-connected load, the phase and line
currents, along with the expression for total power, are obtained. In this lesson, the phase
and line currents for balanced delta-connected load, along with the expression for total
power, will be presented.

Keywords: line and phase currents, star- and delta-connections, balanced load.
After going through this lesson, the students will be able to answer the following
questions:

1. How to calculate the currents (line and phase), for the delta-connected balanced load
fed from a three-phase balanced system?

2. Also how to find the total power fed to the above balanced load, for the two types of
load connections — star and delta?

Currents for Circuits with Balanced Load (Delta-connected)

-> 1
L

!

R

VBRr
Isr
()
120°
> Vry
Iys 0]
PV 1200
Iry
Vys
(b)
Fig. 19.1 (a) Balanced delta-connected load fed from a three-phase balanced

supply
(b) Phasor diagram



A three-phase delta ( )-connected balanced load (Fig. 19.1a) is fed from a balanced
three-phase supply. A balanced load means that, the magnitude of the impedance per

phase, is same, i.e., |Z ,,I IILRYI = |Ly3| = |LBR| , and their angle is also same, as
@p = Pry= @yp = Ppr . In other words, if the impedance per phase is given as,
Zy29,=R,+jX,, then R, =Rgy =Ryp=Rpgr,andalso X, =Xpy =Xy, =Xpr.
The magnitude and phase angle of the impedance per phase are: Z,, = sz +X ,,2 , and

@, =tan -1 (X ! Ry ).In this case, the magnitudes of the phase voltages |V,7 | are same, as
y % 1

those of the line voltages | Ll :| RYI :| YB| = | BR| . The phase currents (Fig. 19.1b) are
obtained as,
oV
IRYA_wp:VRYAO :LRYA_¢p
Zry 2@y  wr

° 12
Iyg 2 - (120°+ @, ) =Y £7120° _ ) _ (12004 g,)

Zypg 2@, “1a
Ipg 2(120° - g,) = YR X L2070 (1200 - )
ZBR 29y BR

In this case, the phase voltage, Vgy is taken as reference. This shows that the phase

currents are equal in magnitude, i.e., ( / L, :~ I R]y = |Iy;4 = k BR), 43 the magnitudes of the

voltage and load impedance, per phase, are same, with their phase angles displaced from
each other in sequence by 120° . The magnitude of the phase currents, is expressed as

1) =[(v,rz)).
The line currents (Fig. 19.1b) are given as

IR2=0r =Ipy=Ipr=1, 29 ,)~ 1, 2(120° = @, f =31, 2-(30°+ @)
:]LA—(3OO+¢p)

Iy2=6y =Iyp=Igy =1, 2=(120°+ @, ) =1, (=@, )=~31, 2= (150° + @)
=l 2= (150°+ @,)

Ip2-6p =Ipr=1Iyp=1,20120°=@,) =1, 2= (120°+@,) 31, 290° - ¢,)
=1, 290°-@,)

The line currents are balanced, as their magnitudes are same and ~ 3 times trfl_e magnitudes

of the phase currents ([ =~3 -1 IJ ), witl(th|e éhase angles displaced from each other in
sequence by 120° . Also to note that the line current, say / g , lags the
corresponding phase current, / gy by 30°.

If the phase current, I gy is taken as reference, the phase currents are

Iry £0°=1,(1.0+;0.0): Iyg 2 =120° =1, (0.5 - j0.866) ;
I ggr 2+120°=1,(=0.5 +0.866) .
The line currents are obtained as



Ip=1gy 20°=1Ipg 2+120°=1, {(1.0+/0.0) = (-0.5 +,0.866)} =I , (1.5 — j 0.866)
=~31,2-30°=1 2= 30°

Iy=Iyp 2=120° = [ gy 20°=1 , {(=0.5 = j 0.866) = (1.0 + 0.0)} = =1 , (1.5 + 0.866)
=31, 2-150°=1, 2-150°

Ip=1pg2+120°=Iyg 2 =120°=1, {(=0.5 +j 0.866) = (=0.5 = j 0.866)}
=1,(j1.732)=A31,2+90°=1 2+90°

Total Power Consumed in the Circuit (Delta-connected)

In the last lesson (No. 18), the equation for the power consumed in a star-connected
balanced circuit fed from a three-phase supply, was presented. The power consumed per
phase, for the delta-connected balanced circuit, is given by

W, =V,-I,-cos ¢, =V,-1,-cos(V,,1,)

It has been shown earlier that the magnitudes of the phase and line voltages are same, i.e.,
‘Vp}: ‘{’L .|The magnitude of the phase current is (1/~ 35 times the magnitude of the line

current, i.e., } p L (II L|/ \/5) Substituting the two expressions, the total power consumed
is obtained as

W=3-VL-(IL//\_3)-COS @) ;E\?) Vi -1p-cos @,

It may be observed that the phase angle, @, is the angle between the phase voltage V),
, and the phase current, I , . Also that the expression for the total power in a three-phase

balanced circuit is the same, whatever be the type of connection — star or delta.

Example 19.1

The star-connected load having impedance of (12 — j16) Q per phase is connected in
parallel with the delta-connected load having impedance of (27 + j18) Q per phase (Fig.
19.2a), with both the loads being balanced, and fed from a three-phase, 230 V, balanced
supply, with the phase sequence as R-Y-B. Find the line current, power factor, total power
& reactive VA, and also total volt-amperes (VA).

R [=
— IR

7, =(27-18) Q
1

Z1=(12j16) Q

(a)
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' IYB 7
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—— 1B
(b)
TIBN(IB)
VBr

Vys

(c)

Fig. 19.2 (a) Circuit diagram (Example 19.1)
(b) Equivalent circuit (delta-connected)
(c) Phasor diagram



Solution

For the balanced star-connected load, the impedance per phase is,
Z1=(12-j16)=20.0 £ - 53.13° Q

The above load is converted into its equivalent delta. The impedance per phase is,
Z/'=3-7Zy =3-(12-j16)=36-,48)=60.0 « — 53.13° Q

For the balanced delta-connected load, the impedance per phase is,

Z =27 +j18)=32.45 2+ 33.69° Q

In the equivalent circuit for the load (Fig. 19.2b), the two impedances, Z;" & Z; are in

parallel. So, the total admittance per phase is,

Yp = Y]’ + Y2 2—1 } 1 = 1 f 1
Z/ 'z, 60.02-53.13° 32452+ 33.69°
=0.0167 2+ 53.13°+ 0.03082 »~ — 33.69°

=[(0.01 +; 0.01333) + (0.02564 - j 0.017094)] = (0.03564 - j 0.003761)

=0.035842 - 6.024° Q™'

The total impedance per phase is,

Z, =1/Y, =1/(0.03584 2 — 6.024°) = 27.902 £ + 6.024° = (27.748 + j 2.928) Q
The phasor diagram is shown in Fig. 19.2c.

Taking the line voltage, Vyy as reference, Vgy =230 20° V

The other two line voltages are,

Vyg =230 2= 120°; Vg =230 2+ 120°

For the equivalent delta-connected load, the line and phase voltages are same.

So, the phase current, I gy is,
1 17

ry = _&v = 230.0 £0° =8.243 2 - 6.024° = (8.198 — j 0.8651) A
Z, 27902 «+6.024°
The two other phase currents are,
1

vB =8.243 2« — 126.024°; I pr =8.243 2+ 113.976°
The magnitude of the line current is A5 times the magnitude of the phase current.
So, the line currentis [ 1 |=vB - [, |=vB-8.243=14.277 A
The line current, I g lags the corresponding phase current, / gy by 30°.

So, the line current, I pis [ p = 14.277 2 — 36.024° A

The other two line currents are,

Iy =14.277 2 -156.024° ; Ip =14.277 2+ 83.976°

Also, the phase angle of the total impedance is positive.

So, the power factor is cos @, = cos 6.024° = 0.9945 lag

The total volt-amperes is S =3 -V, - I, =3-230-8.243 = 5.688 kVA

The total VA is also obtained as S =~ é_-VL A=~ B-230-14.277 = 5.688 kVA

The total poweris P=3 -V, -1, cos @ ,=3-230-8.243-0.9945 =5.657 k W
The total reactive volt-amperes is,

Q0=3-V,-1,-sin @, =3-230-8.243- sin 6.024° = 597.5 VAR




An alternative method, by converting the delta-connected part into its equivalent star
is given, as shown earlier in Ex. 18.1.
For the balanced star-connected load, the impedance per phase is,
Z1=(12-416)=20.0 £ - 53.13° Q
For the balanced delta-connected load, the impedance per phase is,
Z =27 +j18)=32.45 2+ 33.69° Q
Converting the above load into its equivalent star, the impedance per phase is,
Z)=7Z,13=27+/j18)/3=09+;6)=10.817 2+33.69° Q
In the equivalent circuit for the load, the two impedances, Z; & Z," are in parallel.
So, the total admittance per phase is,
Yp=Y1+Y2’=—1 f 1,= 1 + I
A s 20.0 2-53.13° 10.817 2+ 33.69°
=0.05 2+ 53.13° + 0.09245 2 —33.69° =[(0.03 +; 0.04) + (0.0769 —j 0.05128)]

=(0.1069 - 0.01128) =0.1075 2 — 6.0235° Q-
The total impedance per phase is,

Z,=1/Y,=1/(0.10752 = 6.0235°) = 9.3023 £+ 6.0235° = (9251 +j 0.976) Q
The phasor diagram is shown in Fig. 18.5¢. The magnitude of the phase voltage is,
Vin| :|Vp|: Vi|/a3=230/3=1328V

The line voltage, Vgy is taken as reference as given earlier. The corresponding phase

voltage, Vry lags Vgy by 30° . So, the phase voltage, Vgy is Vgy = 132.82 = 30°
The phase current, I gy is,

12
gy =2 - 13282730 44996 ,-36.0235°A

“, 93023 £+ 6.0235°
As the total load is taken as star-connected, the line and phase currents are same, in
this case. The phase angle of the total impedance is positive, with is value as

@=6.0235° . The power factor is cos 6.0235° = 0.9945 lag
The total volt-amperes is § =3 -V, - I , = 3-132.8 -14.276 = 5.688 kVA

The remaining steps are not given, as they are same as shown earlier.




Example 19.2

A balanced delta-connected load with impedance per phase of (16 — j12) Q shown in
Fig. 19.3a, is fed from a three-phase, 200 V balanced supply with phase sequence as A-B-
C. Find the voltages, V., , V. & V., , and show that they (voltages) are balanced.

a R=16
B mAA A
f—
IA Ic/
X
C
/\ .

C

(b
Fig. 19.3 (a) Circuit diagram (Example 19.2)
(b) Phasor diagram



Solution
R,=16Q ; Xcp=12Q
Zup=Z,=R,—jXc,=16—-j12=20 2 - 36.87° Q
For delta-connected load, IVLl :|V,,| =200V
Taking the line or phase voltage V4p as reference, the line or phase voltages are,
Vap =200 £0°; Ve =200 2 —-120°; Vea =200 2+ 120°
The phasor diagram is shown in Fig. 19.3b. The phase current, I 45 is,
Iap =Vap!Z, =(200 20%) (20 2 - 36.87°) =10.0 2 + 36.87° = (8.0 +j 6.0) A
The other two phase currents are,
Ipc=10.0 £ —83.13°=(1.196 = j9.928) A
Ica =10.0 2+ 156.87° = (=9.196 +j 3.928) A
The voltage, V,, is,
Vab =Vap+Vey =(—jXcp) - Tap+Ry-1pc
=(12-10) £(36.87° = 90°) + (16 -10) 2 - 83.13° =120 2 - 53.13° + 160 « — 83.13°
=(72.0-796.0) + (19.14 — j158.85) = (91.14 — j 254.85) = 270.66 2 — 70.32°
V Alternatively,
Vap=(=j12) - 8.0+, 6.0) + 16 - (1.196 = j 9.928) = (91.14 — j 254.85)
=270.66 2 - 70.32°V
Similarly, the voltage, V), is,
Ve =Vec+Vee =(=jXcp) Ipc+ Ry Ica
=(12-10) 2= (83.13°+90°) + (16 -10) £156.87° =120 2 —173.13° + 160 £156.87°
= —(119.14 + j14.35) + (-147.14 + j 62.85) = (—266.28 +j 48.5)
=270.66 2+ 169.68 V
In the same way, the voltage, V., is obtained as V., =270.66 « +49.68° V

The steps are not shown here.

The three voltages, as computed, are equal in magnitude, and also at phase difference
of 120° with each other in sequence. So, the three voltages can be termed as balanced
ones.

A simple example (20.3) of a balanced delta-connected load is given in the following
lesson

The phase and line currents for a delta-connected balanced load, fed from a three-
phase supply, along with the total power consumed, are discussed in this lesson. Also
some worked out problems (examples) are presented. In the next lesson, the

measurement of power in three-phase circuits, both balanced and unbalanced, will be
described.



Problems

19.1

19.2

A balanced load of (9-j6) Q per phase, connected in delta, is fed from a three

phase, 100V supply. Find the line current, power factor, total power, reactive VA
and total VA.

Three star-connected impedances, Z1 = (8-jb) Q per phase, are connected in
parallel with three delta-connected impedances, Z; = (30+j15) Q per phase, across

a three-phase 230V supply. Find the line current, total power factor, total power,
reactive VA, and total VA.



List of Figures

Fig. 19.1 (a) Balanced delta-connected load fed from a three-phase balanced supply
(b) Phasor diagram

Fig. 19.2 (a) Circuit diagram (Example 19.1)
(b) Equivalent circuit (delta-connected)

(c) Phasor diagram

Fig. 19.3 (a) Circuit diagram (Example 19.2)
(b) Phasor diagram



UNIT-2

Single-phase AC Circuits



RESONANCE IN SERIES
CIRCUITS



In the last lesson, the following points were described:

1. How to compute the total impedance in parallel and series-parallel circuits?

2. How to solve for the current(s) in parallel and series-parallel circuits, fed from single
phase ac supply, and then draw complete phasor diagram?

3. How to find the power consumed in the circuits and also the different components,
and the power factor (lag/lead)?

In this lesson, the phenomenon of the resonance in series and parallel circuits, fed
from single phase variable frequency supply, is presented. Firstly, the conditions
necessary for resonance in the above circuits are derived. Then, the terms, such as
bandwidth and half power frequency, are described in detail. Some examples of the
resonance conditions in series and parallel circuits are presented in detail, along with the
respective phasor diagrams.

Keywords: Resonance, bandwidth, half power frequency, series and parallel circuits,
After going through this lesson, the students will be able to answer the following
questions;

1. How to derive the conditions for resonance in the series and parallel circuits, fed from
a single phase variable frequency supply?

2. How to compute the bandwidth and half power frequency, including power and
power factor under resonance condition, of the above circuits?

3. How to draw the complete phasor diagram under the resonance condition of the
above circuits, showing the currents and voltage drops in the different components?

Resonance in Series circuit

L
A I R D
—_—

V000" E
+

V b

\ T C

frequency

()
B

Fig. 17.1 (a) Circuit diagram.

The circuit, with resistance R, inductance L, and a capacitor, C in series (Fig. 17.1a) is
connected to a single phase variable frequency ( f) supply.
The total impedance of the circuit is



Zsp=R+jwL

where,

7 ) 1. @=tanWL-VWO) . y=27f

wC R

The current is o

Ic-9p= % =(VIZ)z-¢

Z s
|%
where I = T
[R+ (wL- Wwc) ],
The current in the circuit is maximum, if w L = _1 .

wC

The frequency under the above condition is

w 1

_;_277\/;’

This condition under the magnitude of the current is maximum, or the magnitude of
the impedance is minimum, is called resonance. The frequency under this condition with
the constant values of inductance L, and capacitance C, is called resonant frequency. If
the capacitance is variable, and the frequency, fis kept constant, the value of the
capacitance needed to produce this condition is

1 1
C=— =
w:], 2T frL
The magnitude of the impedance under the above condition is £ l: R , with the
reactance X = 0, as the inductive reactance X ; = w L is equal to capacitive reactance X ¢

fo

= l/w C . The phase angle is ¢ = 0°, and the power factor is unity ( cos ¢ = 1), which
means that the current is in phase with the input (supply) voltage.. So, the magnitude of
the current ( (IV/ R) )|in the circuit is only limited by resistance, R. The phasor diagram
is shown in Fig. 17.1b.

The magnitude of the voltage drop in the inductance L/capacitance C (both are equal,

as the reactance are equal)is I -w, L=1- (1/w, C) .
The magnification of the voltage drop as a ratio of the input (supply) voltage is

w,L 2mf, L i\F
0= R = R =RrR\C




1(j.X1)

1(-j Xc )

r

=
—
I
-1 Vap,Vas(IR)
Fig. 17.1 (b) Phasor Diagram

It is termed as Quality (Q) factor of the coil.

The impedance of the circuit with the constant values of inductance L, and capa-
citance C is minimum at resonant frequency ( f, ), and increases as the frequency is
changed, i.e. increased or decreased, from the above frequency. The current is maximum

at f=f,, and decreases as frequency is changed ( f> f,,or f<f, ), i.e. f*f,. The
variation of current in the circuit having a known value of capacitance with a variable

frequency supply is shown in Fig. 17.2.

=i ¥
[ g ? small R
O
=
=]
@)
large R
11 N
72T 2R |
l
f1 fo f2
—>
frequency (f) frequency
(a) (b)

Fig. 17.2 Variation of current under variable frequency supply

The maximum value of the current is (V / R ). If the magnitude of the current is
reduced to (1/ \/2_ ) of its maximum value, the power consumed in R will be half of that

with the maximum current, as power is / ’R. So, these points are termed as half power



points. If the two frequencies are taken as I andf,, where fi=fy— f/2 and

f2 =fo+ f/2,the band width being given by f =f> —f].

The magnitude of the impedance with the two frequencies is
1
2 -

1 2
2m(f +r12c
0

Z=R+ 2m(fo+ fI2)L-

As (2mfo L=1/2mfyC)and theratio( f/2fy)is small, the magnitude of the
reactance of the circuit at these frequencies is X=X o ( f/fo) . As the current is

1/ \/2_ ) of its maximum value, the magnitude of the impedance is ( +/2 ) of its minimum
value (R) at resonant frequency.
1
So,Z= N2-R=[R+(Xu(fif)] 3
From the above, it can be obtained that ( f/fy )X ;o =R
R R R
or f=f -—fi= fo Rl

A, 2mfL  2mL

The band width is givenby f=f,—f1 =R/2mL)

It can be observed that, to improve the quality factor (Q) of a coil, it must be designed
to have its resistance, R as low as possible. This also results in reduction of band width
and losses (for same value of current). But if the resistance, R cannot be decreased, then
Q will decrease, and also both band width and losses will increase.

Example 17.1

A constant voltage of frequency, 1 MHz is applied to a lossy inductor (r in series with
L), in series with a variable capacitor, C (Fig. 17.3). The current drawn is maximum,
when C = 400 pF; while current is reduced to (1/ N3 ) of the above value, when C = 450
pF. Find the values of r and L. Calculate also the quality factor of the coil, and the
bandwidth.

R L
AAA L A
+
O ’
T c
f=1MHz
Fig. 17.3 Circuit diagram
Solution
f=1MHz=10°Hz w=2mTf  C=400pF=400-10""*F

1 1
Imx =VIr as X, =X¢  X.=2mfC =2m-10°-400-10""* =398 Q




398.0
Xp=Xc¢c=2mfL=398Q L= ¢ = 63.34 UH
2mr-10
1
C, =450 pF Xcl= 27107450 -10- =353.7Q

Zep=r+j(Xp=Xc1)=r+j(398.0-353.7)=(r+;j443)Q
1
I: max = — V :K: V

Vo Vo, 2 V4 44.3)°
From above, V2 - r=r 2 + (44.3)? or 2r’=r’ +(44.3)°

orr=443Q
The quality factor of the coil is Q = X1 —398.0 —g.984

o 443
The band with is
f=f -f=_I_-= 44.3 —__ 443 _0.1113-10° =0.1113 MHz
> U oL 2m-6334-10°°  398.10°°

=111.3-10°=111.3 kHz



R L ‘é I R L
+ + ‘I’T —> I
O Ok
V=200V T"C, V=200V T & T
v
f1 = 50Hz f, = 100Hz
Fig. 17.6 (a) Circuit diagram Fig. 17.6 (b) Circuit diagram
Solution
f1 =50 Hz V=200V R=15Q L=0.75H
From the condition of resonance at 50 Hz in the series circuit,
Xp=wl=2rfiL=Xc1= L !
wC 2mfi C
So, C= 1 - 1 =13.5-10° = 13.5 uF

. @) L (em-50) <075
The maximum current drawn from the supply is, I jx= V/R=200/15=13.33 A
f>» =100 Hz W =21f, =2m-100=628.3 rad /s
A

r =2mf L=2m-100-0.75=471.24 Q

X 1 1
c2 =277f,C ,=217-100-13.5-10° =117.8.Q

Zi 29 =R+j(Xp-Xco)=15+j(471.24 -117.8) = 15 +j 353.44

=353.75287.57° Q

Ye-¢ =1 = 1 = 1 =2.827107 2 - 87.57°
! ' Ziz@r 15+j353.44  353.75.87.57°

=(0.12
=J
2.824)
107
Q'y,
A
=j (w
Cy)

As the combination is resistive in nature, the total admittance is
Y2A0°=Y+j0=Y+Y, =(0.12 —j 2.824) 1073 +jwn Cy

From the above expression, wh, C, = 628.3- C; =2.824 1073

2.824.10
or, C2 = — =45-107 =4.5 uF

628.3



The total admittance is ¥ =0.12 .10 Q'

The total impedance is Z =1/ ¥ = 1/(0.12 -10~ )=
8.33 -10° Q = 8.33 kQ The total current drawn from
the supply is

I[=V-Y=V/Z=200-0.12-10" = 0.024 A = 24 -10™ = 24 mA The
phasor diagram for the circuit (Fig. 17.6b) is shown in Fig. 17.6c.

v

I
' I
@1 = 87.6°

I

Fig. 17.6 (c) Phasor diagram

The condition for resonance in both series and parallel circuits fed from single phase
ac supply is described. It is shown that the current drawn from the supply is at unity
power factor (upf) in both cases. The value of the capacitor needed for resonant condition
with a constant frequency supply, and the resonant frequency with constant value of
capacitance, have been derived. Also taken up is the case of a lossy inductance coil in
parallel with a capacitor under variable frequency supply, where the total current will be
at upf. The quality factor of the coil and the bandwidth of the series circuit with known
value of capacitance have been determined. This is the final lesson in this module of
single phase ac circuits. In the next module, the circuits fed from three phase ac supply
will be described.



Problems

17.1

17.2

17.3
a)

b)

A coil having a resistance of 20 Q and inductance of 20 mH, in series with a
capacitor is fed from a constant voltage variable frequency supply. The maximum
current is 10 A at 100 Hz. Find the two cut-off frequencies, when the current is
0.71 A.

With the ac voltage source in the circuit shown in Fig. 17.7 operating a frequency
of f, it was found that [ =1.0 20° A. When the source frequency was doubled (2f),
the current became I =0.707 2 —45° A. Find:

a) The frequency f, and

b) The inductance L, and also the reactances, X1, and X at 2f

For the circuit shown in Fig. 17.8,

Find the resonant frequency fp, if R = 250 Q, and also calculate Qq (quality
factor), BW (band width) in Hz, and lower and upper cut-off frequencies (f; and
fr) of the circuit.

Suppose it was desired to increase the selectivity, so that BW was 65 Hz. What
value of R would accomplish this?

O 1

100 £0° V
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Single-phase AC Circuits



Solution of Current in R-L-C
Series Circuits



In the last lesson, two points were described:

1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current by a phasor?
2. How to perform elementary mathematical operations, like addition/ subtraction and
multiplication/division, of two or more phasors, represented as complex quantity?

Some examples are also described there. In this lesson, the solution of the steady state
currents in simple circuits, consisting of resistance R, inductance L and/or capacitance C
connected in series, fed from single phase ac supply, is presented. Initially, only one of
the elements R / L / C, is connected, and the current, both in magnitude and phase, is
computed. Then, the computation of total reactance and impedance, and the current, in the
circuit consisting of two components, R & L / C only in series, is discussed. The process
of drawing complete phasor diagram with current(s) and voltage drops in the different
components is described. Lastly, the computation of total power and also power
consumed in the components, along with the concept of power factor, is explained.

Keywords: Series circuits, reactance, impedance, phase angle, power, power factor.

After going through this lesson, the students will be able to answer the following
questions;

1. How to compute the total reactance and impedance of the R-L-C series circuit, fed
from single phase ac supply of known frequency?

2. How to compute the current and also voltage drops in the components, both in
magnitude and phase, of the circuit?

How to draw the complete phasor diagram, showing the current and voltage drops?
4. How to compute the total power and also power consumed in the components, along
with power factor?
Solution of Steady State Current in Circuits Fed from Single-
phase AC Supply

Elementary Circuits

1. Purely resistive circuit (R only)

The instantaneous value of the current though the circuit (Fig. 14.1a) is given by,

vV .
I=R =R sinwt=1,sinwt
where,

Iy and Vi, are the maximum values of current and voltage respectively.



R 3n/l i
V.20 () = t
— i)
(2) L b
B lh'.m =
ih)
>
—_— ¥
(e}

Fig. 14.1: Circuit with Resistance (R)
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(cy Phasor diagram

The rms value of current is given by
1="n . | .T
h A

J2 R R

In phasor notation,
V=vV0e=vVI+j0=V+;0

I=10°=1(1+j0)=1+/0
The impedance or resistance of the circuit is obtained as,

Please note that the voltage and the current are in phase (¢ = 0° ), which can be
observed from phasor diagram (Fig. 14.1b) with two (voltage and current) phasors, and
also from the two waveforms (Fig. 14.1c).

In ac circuit, the term, Impedance is defined as voltage/current, as is the resistance in
dc circuit, following Ohm’s law. The impedance, Z is a complex quantity. It consists of
real part as resistance R, and imaginary part as reactance X, which is zero, as there is no
inductance/capacitance. All the components are taken as constant, having linear V-I
characteristics. In the three cases being considered, including this one, the power

consumed and also power factor in the circuits, are not taken up now, but will be
described later in this lesson.



2. Purely inductive circuit (L only)

For the circuit (Fig. 14.2a), the current i, is obtained by the procedure described here.
di

Asv=L __=Vysinwt= {2 Vsin wt,
dt

di = ‘/_2 Vsin (wt) dt
L

Integrating,

A 4

i=——2Vcos wWt=—2¥sin (wr-90°) =1, sin (Wt - 90°)=xflsin(wt—90°)
wlL wlL

(i)

(ii)

r 700 [~ L v, i 3n/2 2z
vVZ0 /2 3

a —p O(0)
(a) 5
A R
(b)
>
9%
| r

(c)
Fig. 14.2: Circuit with Inductance (L)
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(¢) Phasor diagram

It may be mentioned here that the current i, is the steady state solution, neglecting the
constant of integration. The rms value, I is
1=V 1 -9
wL

V=V 0°=V+,0 ; I=1 -90°=0-j1



The impedance of the circuit is

z2o= L YO V- 04+jX, =X, 90°=wL 90°
;1 =900 )1

where, the inductive reactanceis X ; = wL=2m7fL.

Note that the current lags the voltage by @ =+ 90° . This can be observed both
from phasor diagram (Fig. 14.2b), and waveforms (Fig. 14.2¢). As the circuit has no
resistance, but only inductive reactance X ; = w L (positive, as per convention), the
impedance Z is only in the y-axis (imaginary).

3. Purely capacitive circuit (C only)

The current i, in the circuit (Fig. 14.3a), is,

dv
i=C dt

Substituting v=42 Vsin wt=V,sin wt,iis

d
i=Cgr (2Vsinwi)= 2 wCVecoswi= 2 wC Vsin (wi+
90°) = + V2 I'sin (wt+90°) v v

=1, sin (wt+ 90°)
The rms value, I is

- Vv

I=wCV =1/(wC) =1 90°

V=V 0°=V+j0 ; I =190°=0 +j1

The impedance of the circuit is
zo- L YO V1 ___J_ o jxc=xc -90°=—L00°
I I190° I jwC wC wC
here, th iti t is X L
where, the capacitive reactance is X ¢ =~ “2mfC

Note that the current leads the voltage by ¢ =90° (this value is negative, 1.e.
@ = —90° ), as per convention being followed here. This can be observed both from
phasor diagram (Fig. 14.3b), and waveforms (Fig. 14.3c). As the circuit has no resistance,
but only capacitive reactance, X . = 1/(w C) (negative, as per convention), the impedance
Z 1is only in the y-axis (imaginary).



. Ix? In
T
) C
() - |
- lh..||| =
(b}
I T_I ap°
o
L
()

Fig. 14.3: Circuit with Capacitance (C)
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
{¢) Phasor diagram

Series Circuits
1. Inductive circuit (R and L in series)

The voltage balance equation for the R-L series circuit (Fig. 14.4a) is,
di
v=Ri+ L]t

where, v=12 Vsin wt=V,, sin wr=v2 Vsin®, Bbeing wt .

The current, i (in steady state) can be found as

i=\2Isin(wt—@)=1,sin(wt—@)=-21sin(0- @)

The current, i() in steady state is sinusoidal in nature (neglecting transients of the
form shown in the earlier module on dc transients). This can also be observed, if one sees
the expression of the current, i = In sin (w ?) for purely resistive case (with R only), and
i =Insin (wt — 90°) for purely inductive case (with L only).

Alternatively, if the expression for i is substituted in the voltage equation, the
equation as given here is obtained.

A 1 a



2Vsinwt=R 2Isin(wt— @)+ wL2Icos(wt- @)

If, first, the trigonometric forms in the RHS side is expanded in terms of sin wt and
cos wt, and then equating the terms of sin w ¢ and cos wt from two (LHS & RHS)
sides, the two equations as given here are obtained.

V=(Rcos¢+ wLsin @), and

O0=(-Rsin @+ wLcos®)
From these equations, the magnitude and phase angle of the current, / are derived.

From the second one, tan ¢ = (w L/ R)

So, phase angle, ¢ = tan -1 (wL/R)
Two relations, cos¢p=(R/Z),and sin ¢=(wL/Z), are derived, with the term

(impedance), Z = ﬂ/R2 +(w L)2

If these two expressions are substituted in the first one, it can be shown that the
magnitude of the current is / = V' / Z , with both V and Z in magnitude only.

The steps required to find the rms value of the current I, using complex form of
impedance, are given here.
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Fig. 14.4: Circuit with Resistance (R) and Inductance (L) in series.

(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current (iii) Power

(¢) Phasor diagram



Fig. 14.5: The complex form of the impedance
The impedance (Fig. 14.5) dRtlestidgstiiec@®LL) circuit is,
Z ¢=R+jX; =R+jwL
where,

Z:\/R2 +XLZ =\/R2 +(wL)Z and (p=tan'1 ZLoogan! 2
R R

- +j0 2 V+j0

Z@¢ R+jX. R+jwL
7z VRY:x? VR +(wL)

Note that the current lags the voltage by the angle ¢, value as given above. In this
case, the voltage phasor has been taken as reference phase, with the current phasor
lagging the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,
the current phasor is taken as reference phase, with the voltage phasor leading the current
phasor by @ . This can be observed both from phasor diagram (Fig. 14.4b), and

waveforms (Fig. 14.4¢). The inductive reactance X ; is positive. In the phasor diagram,

I=

as one move from voltage phasor to current phasor, one has to go in the clockwise
direction, which means that phase angle, @ is taken as positive, though both phasors are
assumed to move in anticlockwise direction as shown in the previous lesson.

The complete phasor diagram is shown in Fig. 14.4b, with the voltage drops across the
two components and input (supply) voltage ( OA ), and also current ( OB ). The voltage
phasor is taken as reference. It may be observed that
Voc EIR)+Vea[=1(jX)1=Voa(=12),
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
next lesson.



Power consumed and Power factor

From the waveform of instantaneous power (W = v i ) also shown in Fig. 14.4c for the
above circuit, the average power is,

1”§ '
Vi |

1
”§VI [cos @ - cos (26— ¢)]

w= 49 =”j 2 Vsing j21sin (8- ¢)df=d0
m 0 7TO m 0
1 n VI m
=—VIcos ¢ 8o ——sin 26 - ¢))o
T 2
=1vicos p(m-0)-YL[sin@m- ¢)+sing] = VIcose
T 2

Note that power is only consumed in resistance, R only, but not in the inductance, L.
2
So, W=I"R.

Power factor = _average power =VI1c0s @=cosp=R = R

apparent power VI Z N R+ (w L)2

The power factor in this circuit is less than 1 (one), as 0° < ¢ < 90°, @ being positive
as given above.

For the resistive (R) circuit, the power factor is 1 (one), as ¢ =0°, and the average
poweris V1.

For the circuits with only inductance, L or capacitance, C as described earlier, the
power factor is 0 (zero), as ¢ =+ 90° . For inductance, the phase angle, or the angle of the
impedance, ¢ =+ 90° (lagging), and for capacitance, ¢ = — 90° (leading). It may be noted
that in both cases, the average power is zero (0), which means that no power is consumed
in the elements, L and C.

The complex power, Volt-Amperes (VA) and reactive power will be discussed after
the next section.

2. Capacitive circuit (R and C in series)

This part is discussed in brief. The voltage balance equation for the R-C series circuit
(Fig. 14.6a) is,
|
v=Ri+(C jidng2Vsin wt
The current is
i =+/2 Isin (wt+ @)

The reasons for the above choice of the current, i , and the steps needed for the
derivation of the above expression, have been described in detail, in the case of the earlier



example of inductive (R-L) circuit. The same set of steps has to be followed to derive the
current, i in this case.

Alternatively, the steps required to find the rms value of the current I, using complex
form of impedance, are given here.

The impedance of the capacitive (R-C) circuit is,

Z=¢=R-jXc=R-jw C



Z=R*+Xx?% = 4, 1 °

and
X cuC1 1
= -1 = C -1
p=tan e m g ——
- wWCR wWCR
T p=V0°I —V+jo0 V+j0
Z -¢ R-jXc =R-j(l/wO)
1%
I=_ =V = 1%

7z ARY+xZ R+ (LiwC)

o1 R
+ 2a-D
V00 C’D == }m‘Z*Aﬂ
A
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Fig. 14.6: Circuit with Resistance (R) and Capacitance (C) in series.
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(c) Phasor diagram



Note that the current leads the voltage by the angle ¢, value as given above. In this
case, the voltage phasor has been taken as reference phase, with the current phasor
leading the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,
the current phasor is taken as reference phase, with the voltage phasor lagging the current
phasor by ¢ . This can be observed both from phasor diagram (Fig. 14.6b), and

waveforms (Fig. 14.6¢). The capacitive reactance X ¢ is negative. In the phasor diagram,
as one move from voltage phasor to current phasor, one has to go in the anticlockwise
direction, which means that phase angle, @ is taken as negative. This is in contrast to the
case as described earlier. The complete phasor diagram is shown in Fig. 14.6b, with the
voltage drops across the two components and input (supply) voltage, and also current. The
voltage phasor is taken as reference.

The power factor in this circuit is less than 1 (one), with @ being same as given above.
The expression for the average power is P = V I cos@, which can be obtained by
the method shown above. The power is only consumed in the resistance, R, but not in the
capacitance, C. One example is included after the next section.

Complex Power, Volt-Amperes (VA) and Reactive Power

The complex power is the product of the voltage and complex conjugate of the
current, both in phasor form. For the inductive circuit, described earlier, the voltage (V 0°
) is taken as reference and the current (/ — ¢ =1cos ¢ — j I sin @) is lagging the
voltage by an angle, ¢ . The complex power is

S =VI =V 0°1 ¢=(VI) @=VIcos @+ jVIsin @=P+ 0
The Volt-Amperes (S), a scalar quantity, is the product of the magnitudes the voltage
and the current. So, S=VI=P 12f+ Q" . Itis expressed in VA.

The active power (W) is
P=Re(S)=Re (VI * )=V Icos @, as derived earlier.

The reactive power (VAr) is given by Q =Im (S) =Im (VI ’ )=VIsin @.

As the phase angle, ¢ is taken as positive in inductive circuits, the reactive power is
positive. The real part, ( / cos @) is in phase with the voltage V , whereas the imaginary
part, / sin @ 1s in quadrature ( — 90° ) with the voltage V . But in capacitive circuits, the
current ( / ¢ ) leads the voltage by an angle ¢, which is taken as negative. So, it can be
stated that the reactive power is negative here, which can easily be derived

Example 14.1

A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance,
C (Fig. 14.7a). The current drawn is 2 A, and the power loss in the resistance is 100 W.
Calculate the resistance and the capacitance.

Solution
V=120V I=2A P=100W f =50Hz



R=P/1*=100/2>=25Q

Z=\R*+X > =V/I=120/2=60Q

X, =verrod z2- R 2602 - 257 =54540
c 1

T 2mfX e 2 500 - 54.54
The power factor is, cos ¢ =R/ Z=25/60=0.417 (lead )

The phase angle is ¢ = cos™! (0.417) = 65.38°

=58.36 10" =58.36 uF

109V

(b)

Fig. 14.7: (a) Circuit diagram
(b) Phasor diagram

The phasor diagram, with the current as reference, is shown in Fig. 14.7b. The examples,
with lossy inductance coil (r in series with L), will be described in the next lesson. The
series circuit with all elements, R. L & C, along with parallel circuits, will be taken up in

the next lesson.



Problems

14.1

14.2

14.3

Calculate the power factor in the following cases for the circuit with the elements,
as given, fed from a single phase ac supply.

(i) With resistance, R only, but no L. and C

(a) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (P=-90°) (d) None of the above
(1) with only pure/lossless inductance, L, but no R and C

(a) 1.0 (P=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (P=-90°) (d) None of the above
(ii1) with only pure capacitance, C, but no R and L.

(a) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (P=-90°) (d) None of the above

Calculate the current and power factor (lagging / leading) in the following cases
for the circuits having impedances as given, fed from an ac supply of 200 V. Also

draw the phasor diagram in all cases.

i) Z=(15+20) Q
Gi) Z=(1414)Q
(i) Z=R+j(XL—Xc), where R=10Q, X1, =20Q, and Xc =10 Q.

A 200 V, 50 Hz supply is connected to a resistance (R) of 20 Q in series with an
iron cored choke coil (r in series with L). The readings of the voltmeters across the
resistance and across the coil are 120 V and 150 V respectively. Find the loss in

the coil. Also find the total power factor. Draw the phasor diagram.



14.4 A circuit, with a resistance, R and a lossless inductance in series, is connected
across an ac supply (V) of known frequency (f). A capacitance, C is now
connected in series with R-L, with V and f being constant. Justify the following
statement with reasons.

The current in the circuit normally increases with the introduction of C.

Under what condition, the current may also decrease. Explain the condition with
reasons.






UNIT-2
Single-phase AC Circuits



Representation of
Sinusoidal Signal by a
Phasor and Solution of
Current in R-L-C Series
Circuits



In the last lesson, two points were described:

How a sinusoidal voltage waveform (ac) is generated?

How the average and rms values of the periodic voltage or current waveforms, are
computed?

Some examples are also described there. In this lesson, the representation of

sinusoidal (ac) voltage/current signals by a phasor is first explained. The polar/Cartesian
(rectangular) form of phasor, as complex quantity, is described. Lastly, the algebra,
involving the phasors (voltage/current), is presented. Different mathematical operations —
addition/subtraction and multiplication/division, on two or more phasors, are discussed.

Keywords: Phasor, Sinusoidal signals, phasor algebra

After going through this lesson, the students will be able to answer the following

questions;

1.

2.
3.
4

What is meant by the term, ‘phasor’ in respect of a sinusoidal signal?
How to represent the sinusoidal voltage or current waveform by phasor?
How to write a phasor quantity (complex) in polar/Cartesian (rectangular) form?

How to perform the operations, like addition/subtraction and multiplication/division
on two or more phasors, to obtain a phasor?

This lesson forms the background of the following lessons in the complete module of

single ac circuits, starting with the next lesson on the solution of the current in the steady
state, in R-L-C series circuits.

Symbols

1ori(t) Instantaneous value of the current (sinusoidal form)
I Current (rms value)

In Maximum value of the current



1 Phasor representation of the current

@ Phase angle, say of the current phasor, with respect to the reference phasor Same

symbols are used for voltage or any other phasor.

Representation of Sinusoidal Signal by a Phasor

A sinusoidal quantity, i.e. current, i (f) =1 ,, sin wt, is taken up as an example. In Fig.
13.1a, the length, OP, along the x-axis, represents the maximum value of the current 7 ,, , on a
certain scale. It is being rotated in the anti-clockwise direction at an angular speed,

w, and takes up a position, OA after a time t (or angle, 8= wt, with the x-axis). The
vertical projection of OA is plotted in the right hand side of the above figure with respect
to the angle @. It will generate a sine wave (Fig. 13.1b), as OA is at an angle, & with the
x-axis, as stated earlier. The vertical projection of OA along y-axis is OC = AB =

i (8)=1, sin@, which is the instantaneous value of the current at any time t or angle &.
The angle @is in rad., i.e. @= wt . The angular speed, w is in rad/s, i.e.w=217f, where f
is the frequency in Hz or cycles/sec. Thus,

i=1,,sin@=1, sinwt=1,,sin 2717t
So, OP represents the phasor with respect to the above current, i.

The line, OP can be taken as the rms value, I =1,/ 2 /,_instead of maximum value,

I;n . Then the vertical projection of OA, in magnitude equal to OP, does not represent
exactly the instantaneous value of I, but represents it with the scale factor of

1/4/2' = 0.707 . The reason for this choice of phasor as given above, will be given in
another lesson later in this module.
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Fig. 13.1(a) Phasor representation of a sinusoidal current, and (b) Wavelform
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Fig. 13.1 (¢) Phasor representation of a phase shifted sinusoidal current, and (d) Wavelorm

Generalized case

The current can be of the form, i (f) =1 ,, sin (Wt — a) as shown in Fig. 13.1d. The
phasor representation of this current is the line, OQ, at an angle,a (may be taken as
negative), with the line, OP along x-axis (Fig. 13.1c). One has to move in clockwise
direction to go to OQ from OP (reference line), though the phasor, OQ is assumed to
move in anti-clockwise direction as given earlier. After a time t, OD will be at an angle 8
with OQ, which is at an angle (8- a= wt — a), with the line, OP along x-axis. The
vertical projection of OD along y-axis gives the instantaneous value of the current,

i=\2Isin(wt—a)=1,sin(wWt-a).

Phasor representation of Voltage and Current

The voltage and current waveforms are given as,

v=+/2Vsind, and i =~ 2 I sin 6+ @)

It can be seen from the waveforms (Fig. 13.2b) of the two sinusoidal quantities —
voltage and current, that the voltage, V lags the current I, which means that the positive
maximum value of the voltage is reached earlier by an angle, ¢, as compared to the



positive maximum value of the current. In phasor notation as described earlier, the voltage
and current are represented by OP and OQ (Fig. 13.2a) respectively, the length of which
are proportional to voltage, V and current, I in different scales as applicable to each one.
The voltage phasor, OP (V) lags the current phasor, OQ (I) by the angleg, as

two phasors rotate in the anticlockwise direction as stated earlier, whereas the angle@ s
also measured in the anticlockwise direction. In other words, the current phasor (I) leads
the voltage phasor (V).

(a) )

Fig. 13.2 (a) Phasor representation of a sinusoidal (i) voltage and (i) current, and (b) Waveforms

Mathematically, the two phasors can be represented in polar form, with the voltage

phasor (V) taken as reference, suchas V=V 20 (,and] =1 z¢.
In Cartesian or rectangular form, these are,

V=V 0" = V+jO,andI=12¢p=1cos ¢+jIsin @,
where, the symbol, j is given by j =+ 1.
Of the two terms in each phasor, the first one is termed as real or its component in x-axis,

while the second one is imaginary or its component in y-axis, as shown in Fig. 13.3a. The
angle,@is in degree or rad.

Phasor Algebra

Before discussing the mathematical operations, like addition/subtraction and multi-
plication/division, involving phasors and also complex quantities, let us take a look at the
two forms — polar and rectangular, by which a phasor or complex quantity is represented.
It may be observed here that phasors are also taken as complex, as given above.

E +
- A
=
o
- |
£
i %d
0O a C +

w——t X (real)
Fig. 13.3 Representation of a phasor, both in rectangular and polar forms



Representation of a phasor and Transformation

A phasor or a complex quantity in rectangular form (Fig. 13.3) is,

A=ac+ja,
where a, and a , are real and imaginary parts, of the phasor respectively.
In polar form, it is expressed as

A=Ar0, =AcosB,+jAsinb,

where A and @, are magnitude and phase angle of the phasor.

From the two equations or expressions, the procedure or rule of transformation from
polar to rectangular form is

ay =Acosf@, and a, =Asind,

From the above, the rule for transformation from rectangular to polar form is

A:\/ax2+ay2 and 4, — tan~! (ay/ax)

The examples using numerical values are given at the end of this lesson.

Addition/Subtraction of Phasors

Before describing the rules of addition/subtraction of phasors or complex quantities,
everyone should recall the rule of addition/subtraction of scalar quantities, which may be
positive or signed (decimal/fraction or fraction with integer). It may be stated that, for the
two operations, the quantities must be either phasors, or complex. The example of phasor
is voltage/current, and that of complex quantity is impedance/admittance, which will be
explained in the next lesson. But one phasor and another complex quantity should not be
used for addition/subtraction operation.

For the operations, the two phasors or complex quantities must be expressed in
rectangular form as

A:Clx+ja)’; B:bx+_]by

If they are in polar form as

A=As8,. B=p 0



In this case, two phasors are to be transformed to rectangular form by the procedure or
rule given earlier.

The rule of addition/subtraction operation is that both the real and imaginary parts
have to be separately treated as
- Say, for addition, real parts must
be added, so also for imaginary parts.

where ¢, = (ax + bx) ; Cy = (a y £ by ) Same rule follows for subtraction.

After the result is obtained in

rectangular form, it can be transformed to polar one. It may be observed that the six
values of @' s, b' s and ¢' s — parts of the two phasors and the resultant one, are all signed
scalar quantities, though in the example, a' s and b' s are taken as positive, resulting in
positive values of ¢' s . Also the phase angle €' s may lie in any of the four quadrants,
though here the angles are in the first quadrant only.

This rule for addition can be extended to three or more quantities, as will be illustrated
through example, which is given at the end of this lesson.

C=A+B=(actbh)+j(ayth, ):Cx+jcy

Figz. 13.4 Addition and subitraction of tywo phasors, both represented in polar form

The addition/subtraction operations can also be performed using the quantities as
phasors in polar form (Fig. 13.4). The two phasors are A(OA) and B (OB) . The find the
sum C (OC) , aline AC is drawn equal and parallel to OB. The line BC is equal and

parallel to OA. Thus, C=0C=0A+AC=0A+OB=A+B . Also,
OC=0B+BC=0B+0A

To obtain the difference D (OD) , a line AD is drawn equal and parallel to OB, but in
opposite direction to AC or OB. A line OE is also drawn equal to OB, but in opposite

direction to OB. Both AD and OE represent the phasor (— B ). The line, ED is equal to

OA.Thus, D=0OD=0A+AD=0A-0OB=A-B.AlsoOD=0OE+ED=-0B+OA.
The examples using numerical values are given at the end of this lesson.



Multiplication/Division of Phasors

Firstly, the procedure for multiplication is taken up. In this case no reference is being
made to the rule involving scalar quantities, as everyone is familiar with them. Assuming

that the two phasors are available in polar from as A=A4.,09., and B=B 46s.



Otherwise, they are to be transformed from rectangular to polar form. This is also valid
for the procedure of division. Please note that a phasor is to be multiplied by a complex
quantity only, to obtain the resultant phasor. A phasor is not normally multiplied by
another phasor, except in special case. Same is for division. A phasor is to be divided by a
complex quantity only, to obtain the resultant phasor. A phasor is not normally divided by
another phasor.

To find the magnitude of the product C , the two magnitudes of the phasors are to be
multiplied, whereas for phase angle, the phase angles are to added. Thus,

C=Cs0.=A-B=A260,-B0p=(A-B)2(6,+86,)
where C=A-Band 8, =8 ,+ 6,

Please note that the same symbol, C is used for the product in this case.

To divide A .by B to obtain the result D ., the magnitude is obtained by division of the

magnitudes, and the phase is difference of the two phase angles. Thus,
- Az0 A

D=D /0, =—=—== — z(@a—Bb)
B B 26,B

where D=A/Band 8, =6,-6,
If the phasors are expressed in rectangular form as
A=ay+ja, and B=by +j b,

where A = (éaxz +ay2); 8, =tan -1 (ay/ax)

The values of B are not given as they can be obtained by substituting b' s for a' s .
To find the product,

c=C26, =A-B=(a,+jay)-(by+jby)=(arbe—ayby )+j(aby+ayby)
Please note that j2 = —1 .The magnitude and phase angle of the result (phasor) are,
1

C=[(acbe-a,b, ) +(arby+a,b )] :\/(ax2+ay2xj. (b.>+b°)=A-B,and

g =tan -1 a, by +a, by
c
ab_ab
XX yy
The phase angle,
a b L (o ra )+ (b i, )
Ty ! , ! S S
8, =6,+0, =tan — +tan —— =tan
“ v ! _((ly/(lx)'(by /b,)
:lan_l a,by+a,b.
ab_ab

X x y oy

The above results are obtained by simplification.

To divide A by B to obtain D as
- /_\ a)C +i a\/‘



D:dx+jdv:f-:
B by+jby

To simplify D, i.e. to obtain real and imaginary parts, both numerator and
denominator, are to be multiplied by the complex conjugate of B , SO as to convert the
denominator into real value only. The complex conjugate of l; is
B =b.+jb, =B 2-6,

In the complex conjugate, the sign of the imaginary part is negative, and also the phase
angle is negative.

D=d +jd :(C’X"'jav)'(bx'jbv) __ wtab + jabcad
) | (bx+jby)'(bx_jby) bi+bv2 bi +b‘2,

The magnitude and phase angle of the result (phasor) are,
1
[(ax by +ay by )2 + (ay by =ay b, )2 ] ; (a x2 + ay2 ) A

D= (b +b7) (b} +b}) B and

6 :tan_l a, b, —ab,
d
av +ao
x X Yoy
The phase angle,
a b —ab
-1y -1 -1y x x__ Yy
8,=60,-0,=tan — _g — =tan T
u v av +a
X X X X y oy

The steps are shown here in brief, as detailed steps have been given earlier.

Example
+
y
!
(-2, +4) 2
\0.
¥ ‘_( 0 '

Fig. 13.5 Representation of phasor as an
example, both in rectangular
and polar forms

The phasor, A in the rectangular form (Fig. 13.5) is,
A=Az0. = Acos B.+ jASil'l O« =ax+ jay :_2+j4



where the real and imaginary parts are ¢, =-2; ar =4



To transform theyphasor, A into the polar form, the magnitude and phase angle are

A=al +a,) = (=27 +4% =4472

-1 av -1 4
6, =tan u =tan =116.565°=2.034 rad

P -2
Please note that 8, is in the second quadrant, as real part is negative and imaginary
part is positive.

Transforming the phasor, A into rectangular form, the real and imaginary parts are

a,=Acos8,=4.472 - cos116.565° =-2.0
a, =Asin8, =4.472 -sin116.565° = 4.0

Phasor Algebra

C(4.10)

B(6.6)

X'<

D(-8.-2)

E(-6,-6)

Y
Fig.13.6 Addition and subtraction of two phasors represented in polar form, as an example
Another phasor, B in rectangular form is introduced in addition to the earlier one, A

B=06+j6=_8.485.45°
Firstly, let us take the addition and subtraction of the above two phasors. The sum and

difference are given by the phasors, C and D respectively (Fig. 13.6).
C=A+B=(-2+j4) +(6+j6)=(-2+6)+j(4+6)=4+,10=10.77 £68.2°
D=A-B=(2+j4) —(6+j6)=(-2-6)+j(4-6)=-8-j2=8.246 2 - 166.0°

It may be noted that for the addition and subtraction operations involving phasors,
they should be represented in rectangular form as given above. If any one of the phasors



is in polar form, it should be transformed into rectangular form, for calculating the results
as shown.
If the two phasors are both in polar form, the phasor diagram (the diagram must be

drawn to scale), or the geometrical method can be used as shown in Fig 13.6. The result
obtained using the diagram, as shown are the same as obtained earlier.

[ C(OC)=10.77, 2COX =68.2° ; and D (OD) = 8.246, 2«DOX =166.0° ]

Now, the multiplication and division operations are performed, using the above two
phasors represented in polar form. If any one of the phasors is in rectangular form, it may
be transformed into polar form. Also note that the same symbols for the phasors are used
here, as was used earlier. Later, the method of both multiplication and division using
rectangular form of the phasor representation will be explained.

The resultant phasor C, i.e. the product of the two phasors is

472-8.485) £(116.565° +457)

=37.9452161.565° = =36 +j12
The product of the two phasors in rectangular form can be found as

C=(-2+j4)-(6+]6) =(=12=24)+j (24 — 12) = =36 + j12

The result ( D ) obtained by the division of A by B is

s A AAT2I6S65T  AAT2 16 sese 459) 20527 s

B 8.485.45° 8.485
=0.167+/0.5

The above result can be calculated by the procedure described earlier, using the
rectangular form of the two phasors as

= —2+j4 =(-2+j4)-(6-j6) = (-12+424)+j (24 +12)
~ 6+j6 (6+j6)-(6-/6) 6°+6
12% 736
- =0.167+0.5

72

The procedure for the elementary operations using two phasors only, in both forms of
representation is shown. It can be easily extended, for say, addition/multiplication, using
three or more phasors. The simplification procedure with the scalar quantities, using the
different elementary operations, which is well known, can be extended to the phasor
quantities. This will be used in the study of ac circuits to be discussed in the following
lessons.

The background required, i.e. phasor representation of sinusoidal quantities
(voltage/current), and algebra — mathematical operations, such as addition/subtraction and
multiplication/division of phasors or complex quantities, including transformation of
phasor from rectangular to polar form, and vice versa, has been discussed here. The study
of ac circuits, starting from series ones, will be described in the next few lessons.



Problems

13.1 Use plasor technique to evaluate the expression and then find the numerical value at t
=10 ms.

d
i (t) =150 cos (100t - 45° ) + 500 sin (100L) + g¢ cos (100t - 30" )

13.2 Find the result in both rectangular and polar forms, for the following, using complex

quantities:

5-j12
a) 15253.1°
b) (5-j12)+15 2-53.1°
o 2430°-42210°

5 2 450°
d 520041 2s210°
32 £-45°
List of Figures

Fig. 13.1 (a) Phasor representation of a sinusoidal voltage, and (b) Waveform

Fig. 13.2 (a) Phasor representation of voltage and current, and (b) Waveforms

Fig. 13.3 Representation of a phasor, both in rectangular and polar forms

Fig. 13.4 Addition and subtraction of two phasors, both represented in polar form Fig.
13.5 Representation of phasor as an example, both in rectangular and polar forms

Fig. 13.6 Addition and subtraction of two phasors represented in polar form, as an
example






UNIT-2

R-L & R-C Transients



Study of DC transients in R-L
and R-C circuits

Objectives

1 Definition of inductance and continuity condition for inductors.

] To understand the rise or fall of current in a simple series R — L circuit excited
with dc source.

"] Meaning of 'Time Constamt (7) ' for R — L circuit and explain its relationship to the

performance of the circuit.

Energy stored in an inductor

Definition of capacitance and Continuity condition for capacitors.

To understand the rise or fall voltage across the capacitor in a simple series R — C

circuit excited with dc source.

] Meaning of 'Time Constamt (1) ' for R — C circuit and explain its relationship to
the performance of the circuit.

"] Energy stored in a capacitor

(I

L.10.1 Introduction

So far we have considered dc resistive network in which currents and voltages
were independent of time. More specifically, Voltage (cause — input) and current (effect
- output) responses displayed simultaneously except for a constant multiplicative factor R
(V=R -1I). Two basic passive elements namely, inductor ( L) and capacitor ( C) are
introduced in the dc network. Automatically, the question will arise whether or not the
methods developed in lesson-3 to lesson-8 for resistive circuit analysis are still valid. The
voltage/current relationship for these two passive elements are defined by the derivative

(voltage across the inductor v ()= L4iL(®)  where i(t)=current flowing through the

L dt L
. L dve (1)
inductor ; current through  the capacitor ic(1)=C T , v¢ (t) = voltage across the
fIO j‘0
capacitor) or in integral form as it)=Lwy (t)di+i O)or v(t)= 1 i(t)dt+v(0)
L L L C C

rather than the algebraic equation (V = IR ) for all resistors. One can still apply the KCL,
KVL, Mesh-current method, Node-voltage method and all network theorems but they
result in differential equations rather than the algebraic equations that we have considered
in resistive networks (see Lession-3 to lesson-8).

An electric switch is turned on or off in some circuit (for example in a circuit
consisting of resistance and inductance), transient currents or voltages (quickly changing
current or voltage) will occur for a short period after these switching actions. After the
transient has ended, the current or voltage in question returns to its steady state situation



(or normal steady value). Duration of transient phenomena are over after only a few micro
or milliseconds, or few seconds or more depending on the values of circuit parameters
(like R, L , and C ).The situation relating to the sudden application of dc

voltage to circuits possessing resistance ( R ), inductance ( L ), and capacitance ( C ) will



now be investigated in this lesson. We will continue our discussion on transients
occurring in a dc circuit. It is needless to mention that transients also occur in ac circuit
but they are not included in this lesson.

L.10.2 Significance of Inductance of a coil and dc transients
in a simple R-L circuit

Fig.10.1 shows a coil of wire forming an inductance and its behavior is to resist
any change of electric current through the coil. When an inductor carries current, it
produces a certain amount of magnetic flux ( @ ) in the core or space around it. The
product of the magnetic flux ( @ ) and the number of turns of a coil (an inductor) is called
the ‘flux linkage’ of the coil.

i P
r | 4

e(t) ? Flux =« @

Inductor
Fig. 10.1
Considering the physical fact that the voltage across the coil is directly proportional to
the rate of change of current through the inductor and it is expressed by the equation
emf=e ()= 8 . _eW (10.1)
dt di(t)/dt

‘)m?re_ Lgsééeﬁﬁ?ftant of proportionality called inductance of coil and it is measured in

= henry ( H ). The direction of induced emf is opposite to that of

current ampere

increases or decreases (Lenz’s Law)

e(t)=-L40 (10.2)
N di
Let us assume that the coil of wire has turns and the core material has a relatively

high permeability (or magnetic path reluctance is very low), so that the magnetic flux ( @
) produced due to current flowing through the coil is concentrated within the core area.
The basic fundamental principle according to Faraday, the changing flux through the coil
creates an induced emf ( e ) and it is expressed as

e(t)z—Nm (10.3)
dt



In words, Faraday’s law states that the voltage induced in a coil (inductor) is proportional
to the number of turns that the coil has, and also to the rate of change of the magnetic flux
passing through its coils. From equations (10.2) and (10.3), one can write the following
relation

Nd®(t) changein fluxlinkage N ®

di B change in current T
The inductance of a coil can also be defined as flux ( ® ) linkage per unit of current
flowing through the coil and it is illustrated through numerical example.

L= (10.4)

N

Example-L.10.1: Consider two coils having the same number of turns ¢ ’. One coil is

wrapped in a nonmagnetic core (say, air) and the other is placed on a core of magnetic
material as shown in fig.10.2. Calculate the inductances of both coils for same amount of
current flowing through them.

N = 200 turns, @, = 0.5 x 10™ wb
A = area of coil -1

@/ Nonmagnetic core

= coil length

N = 200 turns, @, = 0.05 wb

A = area of coil -2
@/ Magnetic core

l<v

b

—

= coil leng

Fig. 10.2: Inductance of coil depends on the surrounding media

Case-A: Nonmagnetic material

_4
Inductance of nonmagnetic material = L = N cD. = 200-©0.5-107) =5mH

| 2

Case-B: Magnetic material

Inductance of magnetic material L =N-®; - 200-0.05) =55 (Note: L >L)
2 I 2 2 1

L.10.2.1 Inductance calculation from physical dimension of coil

A general formula for the inductance of a coil can be found by using an equivalent
Ohm ' s law for magnetic circuit and the formula for reluctance. This topic
will be discussed in detail in Lesson-21. Consider a solenoid-type electromagnet/toroid



with a length much greater than its diameter (at least the length is ten times as great as its
diameter). This will produce an uniform magnetic field inside the toroid. The length ‘/ *of
a toroid is the distance around the center axis of its core , as indicated in fig.10.3 by

dotted line. Its area * A ’ is the cross-sectional area of the toroid, also indicated in that

figure.

On the surrounding media

length *I" of Toroid =
Mean magnetic path length

@ A = cross-sectional
are (circular)

@ = Flux inside Toroiod

I = current flowing
through the coil

Fig. 10.3: A toroidal inductor

Appling ampere-circuital law for magnetic circuit (see Lesson-21) one can write the
following relation

NI=HI H= %At/m (10.5)

We know, flux is always given by the product of flux density ( B ) and area ( A ) through
which flux density ids uniform. That is,

NI
CD:B-A:,UHA:,UTA (note, U=ty - ly ) (10.6)

where Bl: M H and H is the uniform field intensity around the mean magnetic path

length ¢ °. Substituting the equation (10.6) into the defining equation for inductance,
equation (10.4) gives

N® uUN’IA uN:g
BT
Remark-1: The expression (10.7) is derived for long solenoids and toroids, computation
of inductance is valid only for those types.

L

(10.7)



L.10.2.2 Continuity condition of Inductors

The current that flows through a linear inductor must always be a continuous.
From the expression (10.1), the voltage across the inductor is not proportional to the
current flowing through it but to the rate of change of the current with respect to

di (1)

time;—y . The voltage across the inductor ( v;, ) is zero when the current flowing through

an inductor does not change with time. This observation implies that the inductor acts as a
short circuit under steady state dc current. In other words, under the steady state
condition, the inductor terminals are shorted through a conducting wire. Alternating
current (ac), on the other hand, is constantly changing; therefore, an inductor will create
an opposition voltage polarity that tends to limit the changing current. If current changes
very rapidly with time, then inductor causes a large opposition voltage across its
terminals. If current changes through the inductor from one level to another level
instantaneously i.e. in dt 0 sec., then the voltage across it would become infinite and this
would require infinite power at the terminals of the inductor. Thus, instantaneous changes
in the current through an inductor are not possible at all in practice.

Remark-2: (i) The current flowing through the inductor cannot change instantaneously

(i.e. i(0™ ) just right before the change of current = i(0" ) just right after the change of
current). However, the voltage across an inductor can change abruptly. (ii) The inductor
acts as a short circuit (i.e. inductor terminals are shorted with a conducting wire) when the
current flowing through the inductor does not change (constant). (iii) These properties of
inductor are important since they will be used to determine “boundary conditions™.

L.10.3 Study of dc transients and steady state response of a
series R-L circuit.

Ideal Inductor: Fig.10.4 shows an ideal inductor, like an ideal voltage source, has no

resistance and it is excited by a dc voltage source Vg .

t=0

X S = switch
(Ideal inductor,

it - R, = inductor
resistance = )

Fig. 10.4: An ideal inductor connected to a constant voltage source






b

The switch © S ’° is closed at time ‘ 7 = 0
through the ideal inductor i (0) just before closing the switch is equal to zero. To find the
system response (i (t) — vs — ¢ ), one can apply KVL around the closed path.

and assumed that the initial current flowing

KVL
%
Vv -Ldi=0  di) =_5 (10.8)
s dt d L
o v, v 1%
| di)y= . Vari)= __1+i(0) i(t)= __.t (notei(0)=0) (10.9)
0 L, L L

Equation (10.9) implies that the current through inductor increases with increase in time
and theoretically it approaches to infinity as # — « but in practice, this is not really the
case.

Real or Practical inductor:

Fig.10.5 shows a real or practical inductor has some resistance and it is exactly
equal to the resistance of the wire used to wind the coil.

= | R, L | b

h P SR G ST SR SR SR G G GRS G . .
R, is very small

Fig. 10.5: Representation of an practical inductor

Let us consider a practical inductor is connected in series with an external resistance R

and this circuit is excited with a dc voltage Vg as shown in fig.10.6(a).

: 7 S R, = external resistence

R, = resistance of coil
L = inductance of coil

Fig. 10.6(a): a practical inductor connected to a constant voltage source



t=1

i)

Fig. 10.6(b): Equivalent representation circuit shown in fig. L.10.6{a)

Our problem is to study the growth of current in the circuit through two stages, namely;
(1) dc transient response (i1) steady state response of the system.

D.C Transients: The behavior of the current (i ( 7)) ; charge ( ¢ (¢)) and the voltage (v (7))

in the circuit (like R = L ; R — C: R - L — C circuit) from the time ( 7 (0" ) ) switch is closed
until it reaches its final value is called dc transient response of the concerned circuit. The
response of a circuit (containing resistances, inductances, capacitors and switches) due to
sudden application of voltage or current is called transient response. The most common
instance of a transient response in a circuit occurs when a switch is turned on or off — a
rather common event in an electric circuit.

L.10.3.1 Growth or Rise of current in R-L circuit

To find the current expression (response) for the circuit shown in fig. 10.6(a), we
can write the KVL equation around the circuit

. . di(t
Vs=(Ri+Ry)i(t)=vp(t)=0 V5=Rz(t)+L% (10.10)
where Vy is the applied voltage or forcing function , Ry is the resistance of the coil, Ry is
the external resistance. One can combine the resistance of coil R; to the external
resistance R; in order to obtain a simplified form of differential equation. The circuit

configuration shown in fig. 10.6(a) is redrawn equivalently in fig.10.6(b) for our
convenience. The equation (10.10) is the standard first order differential equation and its
solution can be obtained by classical method. The solution of first or second order
differential equation is briefly discussed in Appendix (at the end of this lesson-10). The
following relation gives the solution of equation (10.10)

it)y=i(@t)+i (t):Aeat+A (10.11)
n f 1

Here, i, (¢) is the complementary solution/natural solution of differential equation (10.10).

It is also sometimes called as transient response of system (i.e. the first part of



response is due to an initial condition of the system or force free response). The second
part i 7 (¢) of eq. (10.11) is the particular integral solution/force response or steady state
response of the system due to the forcing function ( f (¢ ) =V ) or input signal to the

series R — L circuit. It may be noted the term A provide us the steady state solution of the
first order differential equation while the forcing function (or input to the system) is step
function (or constant input). More specifically, for a linear system, the steady state
solution of any order differential equation is the same nature of forcing function ( f( t)) or
input signal but different in magnitude. We have listed in tabular form the nature of
steady state solution of any order differential equation for various types of forcing
functions (see in Appendix). To get the complete solution of eq. (10.10), the values of

a,A; and A are to be computed following the steps given below:

Step-1: How to find the value of a?

d
Assigning Vg =0 and introducing an operator a= y ~ ineq.(10.10), we geta
characteristic equation that will provide us the numerical value of @. This in turn, gives

us the transient response of the system provided the constant A is known to us.

R
The Characteristic equation of (10.10)isR+ aL=0 a=- L.

Step-2: How to obtain the constants A and A ?

It may be noted that the differential eq. (10.10) must be satisfied by the particular integral
solution or steady state solution i ¢ () . The value of i 7 (¢) at steady state condition (i.e.

t — « ) can be found out using the eq.(10.11) and it is given below.

Using final condition (# - « )

i
VS=Rif(t)+L—’dt(L) (10.12)

(note: at steady state (t — )i ¢(t)=A = cons tan t from eq. (10.11))

dA |4
VS:RA+LdTA: ES (10.13)

Using initial condition (t=0)

Case-A: Assume current flowing through the inductor just before closing the switch ‘S”
(att=0" )isi(07)=0.

i(0)=i(07)=i(0")=A; +A (10.14)
0=A+A A=-A=- Y
1 1 R

Using the values of @, A and A in equation (10.11), we get the current expression as



<

~ =

it)=—_ 1—-e 1 ' (10.15)

= |

The table shows how the current i(t) builds up in a R-L circuit.

Actual time (t) in sec Growth of current in inductor
(Eq.10.15)
=0 i0)=0
|4
L i(1)=0.632- _
R R
1=21 (2 7)=0.865 - =
R
1=31 i(37)=0.950 - L
R
r=41 i(47)=0982 . -
R
1=571 i(57)=0.993- Vs
R

Note: Theoretically at time ¢ — « the current in inductor reaches its steady state value but

in practice the inductor current reaches 99.3% of its steady state value at time
t=5r(sec.).

The expression for voltage across the external resistance R; (see Fig. 10.6(a))

14 w3
=v, =i)R-— 1-e¢ L 'R

R
The expression for voltage across the inductor or coil
12

(10.16)

-R
v o)=v z)=v v
N

coil inductor Ry (t ) = VS __S(R] ) 1 -e L (1017)
R

Graphical representation of equations (10.15)-(10.17) are shown in Fig.10.7 for different
choices of circuit parameters (i.e., L & R)
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Fig. 10.7(a): Growth of current in R-L circuit (assumed initial current through

inductor is zero).
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Fig. 10.7(b): Voltage response in different elements of R-L circuit (assumed i, = o)

Case-B: Assume current flowing through the inductor just before closing the switch ‘S”
(att=07)isi (0" )=ip*0.

Using equations (10.13) and (10.14), we get the values of
A="s and A =i(0)-A=i-_s . Using these values in equation (10.11), the

R ! o R
expression for current flowing through the circuit is given by
\% Ry -R,
it)= — 1l-e L + z;‘e L (10.18)
R

The second part of the right hand side of the expression (10.18) indicates the current
flowing to the circuit due to initial current iy of inductor and the first part due to the
forcing functionVy applied to the circuit. This means that the complete response of the
circuit is the algebraic sum of two outputs due to two inputs; namely (i) due to forcing
function Vi (ii) due to initial current iy through the inductor. This implies that the
superposition theorem is also valid for such type of linear circuit. Fig.10.8 shows the



response of inductor current when the circuit is excited with a constant voltage source Vg

and the initial current through inductor is i .

0.2

0.16

0.14

0.12

0.1

0.08

— (1) in ampere

0.06

0.04

0.02

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.038 0.04

— time (seconds)

Fig. 10.8: Current through inductor due to (i) forcing function V, only,
(ii) initial condition i, only, (iii) combined effect of (i) and (ii)

Remark-3: One can also solve this differential equation by separating the variables and

integrating.

Time constant (r) for exponential growth response (7): We have seen that the current

thI‘Ol.‘l/gh inductor is represented by

— - Rt

=5 1 e
R

L

when a series R — L circuit is excited by a constant voltage source (Vs ) and an initial
current through the inductor iy is assumed to be zero. Further it may be noted that the

current through the inductor (see fig.10.7) increases as time increases. The shape of



growing current before it reaches to a steady state value -5 entirely depends on the R

parameters of R — L circuit (i.e. R & L) that associated with the exponential term

-R o : . . .
. As “ t’ grows larger and larger the transient, because of its negative exponential

factor, diminishes and disappears, leaving only the steady state.

Definition of Time Constant (7) of R—L  Circuit: It is the time required for any

variable or signal (in our case either current ( i (r) ) or voltage (le orvy ) ) to reach 63.2%

_R;
(ie the time at which the factor - L x100 1IN eq.(10.15) becomes

(1 —e 1 )x100 = 632 %) of its final value. It is possible to write an exact mathematical

expression to calculate the time constant (T) of any first-order differential equation.

Let ¢ ¢’ is the time required to reach 63.2% of steady-state value of inductor
current (see fig. 10.6(a)) and the corresponding time ¢ > expression can be obtained as
Vv &, B, A

i(r)=0.632*% 1-e L 0.632=1-¢ L 0.368 =e L =e t=

R R

L
R =T(sec.)

The behavior of all circuit responses (for fist-order differential equation) is fixed by a

single time constant 7 (for R — L circuit7= R ) and it provides information about the

speed of response or in other words, it indicates how first or slow the system response
reaches its steady state from the instant of switching the circuit. Observe the equation
(10.15) that the smaller the time constant (7 ), the more rapidly the current increases and
subsequently it reaches the steady state (or final value) quickly. On the other hand, a
circuit with a larger time constant (7 ) provides a slow response because it takes longer
time to reach steady state. These facts are illustrated in fig.10.7(a). In accordance with

convenience, the time constant of an exponential term (say p (@) =po (1— e~ ! ) )is the

reciprocal of the coefficient ¢ a  associated with the ¢’ in the power of exponential term.

Remark -4: An interesting property of exponential term is shown in fig. 10.7(a) . The
time constant 7 of a first order differential equation may be found graphically from the
response curve. It is necessary to draw a tangent to the exponential curve at time ‘t =0
and maintained the same slope until it intersects the steady state value of current curve at
P point. A perpendicular is drawn from the point P to the time axis and it intersects the
time axis at ¢ =7 (see fig. 10.7(a)). Mathematically, this can be easily verified by
considering the equation of a straight line tangent to the current curve at =0, given by

y = mt where m is the slope of the straight line, expressed as



di(t 1%
AU T (10.19)
da ' dt =0 L

Here, we designated the value of time ‘ 7’ required to reach y from ‘0’ to RS— units

assuming a constant rate (slope) of growth. Thus,

\% \% L

—RS = LS tt=R =T(sec.) (10.20)

It is often convenient way of approximating the time constant (7’) of a circuit from the

response curve (see fig.10.7(a) for curve-2).
L.10.3.2 Fall or Decay of current in a R-L circuit

Let us consider the circuit shown in fig. 10.9(a). In this circuit, the switch ‘S’ is closed
sufficiently long duration in position ‘1°. This means that the current through the inductor

V %
reaching its steady-state value (/= S
R Ri+Rp

= Iy ) and it acts, as a short circuit i.e. the

voltage across the inductor is nearly equal to zero since resistance R;, ~ R; . If the switch
‘S’ is opened at time ‘t’=0 and kept in position ‘2’ for ¢ > 0 as shown in fig. 10.9(b), this

situation is referred to as a source free circuit.

S = Switch R~ R, + R,

1
'E t=0
29

+
V, T

Fig. 10.9(a)



R =R, + R,

iit)

Fig. 10.%h): Decay of current in B - L circuit

Since the current through an inductor cannot change instantaneously, the current through

the inductor just before (i (0 7) and after ( i (O+ ) opening the switch ‘S’ must be same.
Because there is no source to sustain the current flow in inductor, the magnetic field in
inductor starts to collapse and this, in turn, will induce a voltage across the inductor. The
polarity of this induced voltage across the inductor is just in reverse direction compared to
the situation that occurred during the growth of current in inductor (i.e. when the switch
‘S’ is kept in position ‘17). This is illustrated in fig. 10.9(b), where the voltage induced in
inductor is positive at the bottom of the inductor terminal and negative at the top. This
implies that the current through inductor will still flow in the same direction, but with a
magnitude decaying toward zero. Appling KVL around the closed circuit in fig. 10.9(b),
we obtain

LM+Ri(r)=O (10.21)
dt

The solution of the homogeneous (input free), first-order differential equation with
constant coefficients subject to the initial (boundary) inductor current (initial condition,

%
i(07)=i(0= R°=1I)is given by
i(t)y=i(t)=Aed' (10.22)

n 1

where acan be found from the characteristic equation of eq.(10.21) described by

La+R=0a=- (10.23)

L
. .o .. . .o+ VS . . .
At time ¢=0, the initial condition i (0 ~)=i (0 ") = R is used in equation (10.22) to

compute the constant A; and it is given below.

i(0)=A A= =1
1

" R



Using the values of A and ain equation (10.22), we get final expression as
R

it)=15 e 7, for 120 (10.24)
R

A sketchof i (r) for ¢=0 isshown in fig.10.10. Here, transient has ended and steady
state has been reached when both current in inductor i (#) and voltage across the inductor

including its internal resistance are zero.

Time Constant (7) for exponential decay response: For the source free circuit, it is the

time 7by which the current falls to 36.8 percent of its initial value. The initial condition in
this case (see fig. 10.9(a) is considered to be the value of inductor’s current at the moment

the switch S is opened and kept in position ¢ 2 °. Mathematically, 7is computed as
R

VS VS i L

i (1) =0.368 - —= == t=7= = 10.25
i (1) T 2 ( )
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Fig. 10.10: Fall of current in R-L circuit {assumed initial current through inductor is 1),

Alternatively, the time constant for an exponential decay response of a circuit may be
computed graphically by adopting the steps (see equations (10.19) and (10.20)) as
discussed before. In fig.10.10, a tangent is drawn to the exponential decay curve at time
t =0’ and maintained the same slope until the straight line intercepts time axis at time

t =7 . Approximately, the value ofr can thus be found directly from graphical
representation of exponential decay curve.

L.10.3.3 Energy stored in an inductor

Let us turn our attention to power and energy consideration for an inductor. The
instantaneous power absorbed by the inductor is expressed by product of the current
through inductor i (¢) and the voltage across it v (¢) .

p(t)=v(t)i(t)=i(t)L% (10.26)
Since the energy is the product of power and time, the energy absorbed by an inductor
over a period is expressed as



! ' di(t) 1 ) 2
wo= ) pyar=)ion=— -
L dt=, Li (t)-i @ (10.27)

10 fo

where we select the current through inductor at time ‘ ) ==« ’isi (=« )=0. Then, we

|

have Wy, =—2 L 2 (1) and from this relation we see that the energy stored in an inductor is

always non-negative. At any consequent time at which the current is zero, no energy is
stored in the inductor. The ideal inductor ( R; =0 Q ) never dissipates energy, but only

stores. In true sense, a physical or practical inductor dissipates a very small amount of
stored energy due to its small series resistance.

Example-L.10.2 Fig.10.11 shows the plot of current i (f) through a series R — L circuit
when a constant forcing function of magnitudeVs = 50 V is applied to it. Calculate the
values of resistance R and inductance L .

im, 4
Amp.

10A =Pt e ccccccccepeccccncccnny

6I2A =Pt === mmm- i)

S

>

time (8)

=)
™

Fig. 10.11: Current -y ~time characteristic

Solution: From fig.10.11 one can easily see that the steady state current flowing through
the circuit is 10 A and the time constant of the circuit 7= 0.3 sec. The following
relationships can be written as

i =Y 10=0Rr=5Q

steady state R R

andr= £ o03=Lri-1s5H
R 5

Example-L.10.3 For the circuit shown in Fig.10.12, the switch * § ’ has been closed for a
long time and then opens at =0 .
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Fig. 10.12

Find, . .
(1) Vab(O') (ii)ix(O'),iL(O')(iii)ix 0") Gv) vab(O ) (V) ix(t=°0)(Vi) vb(t=°0)

(vil)i, (t) for t>0

Solution: When the switch §  was in closed position for a long time, the circuit reached
in steady state condition i.e. the current through inductor is constant and hence, the
voltage across the inductor terminals a and b is zero or in other words, inductor acts as
short circuit i.e., (1) v4, (0 ) =0 V. It can be seen that the no current is flowing through 6
Q resistor. The following are the currents through different branches just before the
switch “ S’ is opened i.e., at t =07 .

i (O')=2:4A and the current through 10Q  resistor, i (O')=2:2A . The
x 5 10Q 10

algebraic sum of these two currents is  flowing through the inductor i.e., (ii)
i(07)=2+4=6A.
L

When the switch ‘S ’is in open position

The current through inductor at time ¢ = 0" is same as that of current i; (0~ ) , since
inductor cannot change its current instantaneously . Therefore, the current through i, (0 )
is given by

i.(07)=i,(07)=6A.

Applying KVL around the closed loop at 1 =0" we get,

20-i,(0") R=vp (07) 20=6-5=v,(0") vy (0F)=-10V
The negative sign indicates that inductor terminal ¢ b ’ as +ve terminal and it acts as a
source of energy or mathematically, vy, (0 ") =10V .

At steady state condition ( # - « ) the current through inductor is constant and hence
inductor acts as a short circuit. This establishes the following relations:

v (t=»)=0V andi (t=x)=20=4A4 (10.28)

ba X 5



The circuit expression i , (f) for 72 0 can be obtained using the KVL around the closed
path (see fig.10.12).

KVL equation:

V-i()5-L4i:0 =0
s x dt
i (1)-5+L4:0) =y (10.29)
X dt N

The solution of first order differential equation due to forcing function and initial

condition is given by
R
-t

i(t)=Ae™ . +A (10.30)
X 1

Initial and final conditions are: () Atr=0,i,0)=i, (0" )=i.(0 V=64 (i) t - =,
current through inductor iy (f=x)=4A (see Eq. 10.28). Using initial and final
conditions equation (10.30) we get, Aj=6-Aand A=4A|=2

5

From equation (10.30), we get the final expressionas i (t)=4+2e~, fort=0.

Example: L.10.4 The switch © S’ is closed in position ‘1’ sufficiently long time and then
it is kept in position ¢ 2 > as shown in fig.10.13. Compute the value of v; and iy (i) the
instant just prior to the switch changing; (ii) the instant just after the switch changes. Find

also the rate of change of current through the inductor at time r=0 * di (1)
dt -
1 S(switch) 102
10

Fig. 10.13

Solution: We assume that the circuit has reached at steady state condition when the
switch was in position ‘1’. Note, at steady state the inductor acts as short circuit and
voltage across the inductor is zero.



At t=07, the current through and the voltage across the inductor are

i 07)= 10 .10=54 andv ((07)=0V  respectively. When the switch is kept in
10 +10
position ‘ 2 °, current through the inductor cannot change instantaneously but this is not

true for the voltage across the inductor. At t=0", one can write the following
expressions:

i (0")=5Aand v, (0" )==(10+10)-5==100V (‘b is more + ve potential than * a ’
terminal). Note that the stored energy in inductor is dissipated in the resistors. Now, the
rate of change of current through inductor at time 7= 0 " is obtained as

L@ _ ooy (0| =100 __ 25 amp./ sec.

dt 1:04r dt t:0+ 4

Example: L.10.5 Fig. 10.14(a) shows that a switch * S’ has been in position ‘1 ’ for a long
time and is moved in position 2 > at time ‘ 7= 0 . Find the expression v (r) fort 2 0 .

652 1

S(switch
(swite )6!

2

652
6£2

2H

T Yo

Fig. 10.14(a)

Solution: When the switch ¢ S’ is in position ‘1°, the current through inductor (using the
fundamental property of inductor currents) at steady state condition (see fig.10.14(b)) is

ILzm-6=3A1L(0-)=1L(0+)=3A (10.31)
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Fig. 10.14(b): Circuit diagram for the switch in position *1°

The circuit for the switch  § is in position ¢ 2 * is shown in fig.10.14 (¢). The current in
inductor can be computed using following two different methods.

6£2 . l Y,
S 3
t=0
2 0 602
L)
1 (] l ¢ \-("
e —— 13 ]
1ov.T i(t
! 2H
I
' d
' T Yo b

Fig. 10.14(¢c)

Method-1: Using Thevenin’s theorem

Convert the part of a circuit containing independent sources and resistances into an
equivalent Thevenin’s voltage source as shown in fig.10.14.(d).



]
o] V.
Fig. 10.14{d)
Using the KVL around the closed path is
9i (n+2-4iL(0) =5 (10.32)
L
dt
The solution of the above equation is given by
9
i(t)y=Ae ™3, +A=i(t)+i (1) (10.33)
L 1 n f

where, i, (+ ) = complementary/natural/transient solution of eq.(10.32)
ir(1) = particular/ steady state/final solution of eq.(10.32)
The constants A and A are computed using the initial and final conditions of the circuit
when the switch is kept in position 2 °.
Attimer=0,
i(0)=i(0")=3=A4A+A (10.34)
L L 1
At time 7 — « , the current in inductor reached its steady state condition and acts as a short
circuit in a dc source network. The current through inductor is
. 5 :
ip(t=0)= 316 =0.555amp.=if=A (10.35)

Using the above two equations in (10.33), one can obtain the final voltage expression for
voltage v (¢) across the terminals ‘a ’ and * b’ as

-9y !

vap ) =v (t)=5-ip(f)-3=5-2.445¢ , +0.555 -3 =3.339-7.335¢ ) vV

lo

Method-2: Mesh current method

Assign the loop currents in clockwise directions and redrawn the circuit as shown in Fig.
10.14(e). The voltage across the terminals ‘ @ > and b * can be obtained by solving the
following loop equations.
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Fig. 10.14(¢)

Loop-1:

1
10=-6i(t)=6(i(t)=ir(®)=0 10=12i(t)=6ir(t) i1 (t)=12 (10+6i, (1)) (10.36)
Loop-2:

diy (t diy (t
-6iz(t)—L—lfh()-6(iz(t)-i1 (1))=0 =61 (1) +12 (t)+2—li1§ ) 9 (10.37)
Using the value of iy () in equation (10.37) , we get
9i()+2- A5 (10.38)

2 dt

To solve the above first order differential equation we must know inductor’s initial and
final conditions and their values are already known (see, i, (07 ) =i (0")=3 A and

5
h(t=w)= 316 = 0.555 amp. ). The solution of differential equation (10.38) provides an

expression of current i (¢ ) and this, in turn, will give us the expression of ij (¢ ) . The
voltage across the terminals ‘ a * and ‘ b’ is given by
: o,
vo=10-6i@)=6im+22 0= 3339733573 v
dt
where, iy () ,i;(t) canbeobtained by solving equations (10.38) and (10.36). The

expressions for i (t ) and hence i (¢) arte given below:
-2t 2

b (1)=2445-¢ ; +0555 and " (1) = (10+61,()) =1.1141.2225¢
12



L.10.4 Capacitor and its behavior

Fig.10.15 shows a capacitor consists of two pieces of metal (the plates) separated
from each other by a good insulator (the dielectric), with two wires (the leads) attached to
the metal plates.

RN
—>/d i€~
[
g “k * 4
+ 4+ + +
++ 4+ + +
+
\ ++ + + +
.9 + 4+ + + +

The dielectric

Battery

C = Capacitor
A = area of each plate

Fig. 10.15: Charging of a Capacitor

A battery is connected across the capacitor to transport charge from one plate to the other
until the capacitor charge voltage buildup is equal to the battery voltage V . The voltage
across the capacitor depends on how much charge was deposited on the plates and also
how much capacitance the capacitor has. In other words, there is a relationship between
the voltage (V'), charge ( Q ) and capacitance ( C ), they are related with a mathematical
expression as

C= QO (coulumb )

V (volt)
where Q = magnitude of charge stored on each plate, V = voltage applied to the plates

and the unit of capacitance is in Farad. Although the capacitance C of a capacitor is the
ratio of charge per plate to the applied voltage but it mainly depends on the physical
dimension of the capacitor. If the area of the plates is larger, the more would be the
amount of charge stored over the surface of the plates, resulting higher value of
capacitance. On the other hand, if the spacing ° d ’ between the plates is closer,
accumulates more charge over the parallel plates and thus increases the value of the
capacitance. The quality of dielectric material has an effect on capacitance between the
plates. The good quality of dielectric material indicates that higher the permittivity,
resulting greater the capacitance. The value of capacitance can be expressed in terms

physical parameters of capacitor as
C= ﬂ :Eo & A
d

& (= 8.85-10 -12 ) 1s the permittivity of free-space, & = relative permittivity of dielectric

(10.39)

where A is the area of each plate, d is the distance between the plates,

material and C is the capacitance in Farad. It is important to note that when the applied

d = distance between two plates



voltage across the capacitor exceeds a certain value the dielectric material breaks down
and loses it insulation property.

L.10.4.1 Continuity condition of capacitors

To find the current-voltage relationship of the capacitor, one can take the
derivative of both sides of Eq.(10.39)

dve () dq(®) dve () (10.40)
C dt = dt =ii(t)=C dt

The voltage-current relation can also be represented by another form as

ve(t)=__ ff i (t)dt+ve(to) where ve (0 ) is voltage across the capacitor at time * o . It can

19
be seen that when the voltage across a capacitor is not changing with time, or, in other
words, the capacitor is fully charged and the current through the capacitor is zero (see
Eq.10.40). This means that the capacitor resembles as an open circuit and blocks the flow
of current through the capacitor. Equation (10.40) shows that an instantaneous (=0 )
change in capacitance voltage must be accompanied by an infinite current that requiring
an infinite power source. In practice, this situation will not occur in any circuits
containing energy storing elements. Thus, the voltage across the capacitor (or electric
charge ¢(f) ) cannot change instantaneously ( i.e. , =0 ), that is we cannot have any
discontinuity in voltage across the capacitor.

Remark-5
(1) The voltage across and charge on a capacitor cannot change instantaneously (i.e. v, (0

™) just right before the change of voltage = v, (0 " ) just right after the change of

voltage). However, current through a capacitor can change abruptly. (ii) The capacitor
acts as an open circuit (i.e., when the capacitor is fully charged) when voltage across the
capacitor does not change (constant). (iii) These properties of capacitor are important
since they will be used to determine “boundary conditions”.

L.10.4.2 Study of dc transients and steady state response of a series
R-C circuit.

Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and
plates (made of metals) that have zero resistance. However, an ideal capacitor does not
exist as all dielectrics have some leakage current and all capacitor plates have some
resistance. A capacitor’s leakage resistance is a measure of how much charge (current) it
will allow to leak through the dielectric medium. Ideally, a charged capacitor is not
supposed to allow leaking any current through the dielectric medium and also assumed
not to dissipate any power loss in capacitor plates resistance. Under this situation, the
model as shown in fig. 10.16(a) represents the ideal capacitor. However, all real or
practical capacitor leaks current to some extend due to leakage resistance of dielectric
medium. This leakage resistance can be visualized as a resistance connected in parallel



with the capacitor and power loss in capacitor plates can be realized with a resistance
connected in series with capacitor. The model of a real capacitor is shown in fig. 10.16(b).

¢

|

I\
a b

Fig. 10.16(a): Symbelic representation of an ideal capacitor

In present discussion, an ideal capacitor is considered to study the behavior of dc
transients in R — C circuit.

Very small= 0

a0~ M Ic{ @b
I\

R, \< inMQ

Fig. 10.16(b): Syvmbolic representation of a real capacitor

L.10.4.3 Charging of a capacitor or Growth of a capacitor voltage in
dc circuits

Let us consider a simple series R — C circuit shown in fig. 10.17(a) is connected through a
switch ‘S’ to a constant voltage source Vy .

: v S. switch

t=0 R
A + |4+ ©)
e S— vio)=v,
! - \ ¢
i(1) Initially capacitor

is charged

Fig. 10.17(a): Charging of a RC circuit



The switch © S’ is closed at time ‘ t =0’ (see fig. 10.7(a)). It is assumed that the capacitor
is initially charged with a voltage v, (0) = vg and the current flowing through the circuit at
any instant of time ‘ ¢ * after closing the switch is i () .

S. switch

WW
t=0 R
' e
Vo i
- o B
-
i(t)
Fig. 10.17(b): Discharging of a RC circuit
The KVL equation around the loop can be written as
: dve (1)
Vs=Ri(t)+v.(t) Vs=RC——— +v. (1) (10.41)

The solution of the above first-order differential equation (10.41) due to forcing function
Vi 1s given by

ve (1) =v., (1) (natural response/transient response) + v, ¢ ( 1) (steady-state response)
=Aed"+A (10.42)

1
The constants Ay, and A are computed using the initial and boundary conditions. The

value of @ is obtained from the characteristic equation given by (see in detail in
Appendix)

1
RCa+1=0 a=-pRpe—
Eq. (10.42) is then rewritten as
1
v()=Ae” e +A (10.43)
¢ 1

At steady state, the voltage across  the capacitor is v, ( ©) = v, r = A which satisfy the
original differential equation (10.41). i.e.,

V=RC 4% +y RC dA+A A=V
s dt of dt S
Using the initial condition (at # = 0 ) in equation (10.43), we get



V(o):v:Ag-R—CI'O+A A=v-A=v-V

c 0 1 1 0 0 S
The values of A; , A, and Eq. (10.43) together will give us the final expression for
capacitor voltage as
- 11t - 1 1 - 1 1t
v(it)=v =V e rc +V v(t)=V 1—e rc +ve re (10.44)
c (o s) N c S 0
Thus,
v t<0
0 1
= L __1:
CV(t) V(t):Vl — € RcC +ve RC =0
c S 0

Response of capacitor voltage with time is shown in fig. 10.18.

Special Case: Assume initial voltage across the capacitor at time ‘ =0’ is zero i.e., v,

(0) =vp =0 . The voltage expression for capacitor at any instant of time can be written

from Eq.(10.44) with v, (0) =vg=0.

I

Voltage across the capacitance v () = V1-e RC (10.45)
S,
Voltage across the resistance v (t)=V —=v(t)=V e rc (10.46)
R N c S
v 1
Charging current through the capacitor i (t) :LRR :—I; e~ RC (10.47)

Charge accumulated on either plate of capacitor at any instant of time is given by

L Ly

¢)=Cv()=CV 1 —¢ zc =01 —e 1c (10.48)

where Q is the final charge accumulated in the capacitor at steady state ( 1.e., t -« ). Once
the voltage across the capacitor v, (f) is known, the other quantities (like, vg (¢ ), i (¢ ), and
q (t) ) can easily be computed using the above expressions. Fig. 10.19(a) shows growth of
capacitor voltage v, () for different choices of circuit parameters (assumed that the
capacitor is initially not charged). A sketch for g (¢ ) and i (¢) is shown in fig. 10.19(b).
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Fig. 10.18: Voltage across the capacitor due to
(iy the forcing function ¥V, acting alone
{ii) discharge of capacitor initial voltage v,
{iil) Combine effect of {i} and (ii)
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Fig. 10.1%(b): Svstem response due to the forcing function V, (assumed capacitor
initial voltage v_ = 0)

Following the definition given in section L.10.3.1, time constant of each of the
exponential expressions described in Eqgs. 10.45 to 10.48 may be found as 7= RC (for
RC circuit).

L.10.4.4 Discharging of a capacitor or Fall of a capacitor voltage in dc
circuits

Fig. 10.17(b) shows that the switch * S ’ is closed at position ‘1 ’ for sufficiently long
time and the circuit has reached in steady-state condition. At ‘z=0 ’ the switch’ S ’ is
opened and kept in position ‘ 2 > and remains there. Our job is to find the expressions for
(i) voltage across the capacitor (vc ) (i1) voltage across the resistance (vR ) (i1i) current ( i
( 7)) through the capacitor (discharging current) (iv) discharge of charge ( g( 7)) through the
circuit.



Solution: For 7 < 0, the switch * S’ in position 1. The capacitor acts like an open circuit

to dc, but the voltage across the capacitor is same as the supply voltage Vs . Since, the

capacitor voltage cannot change instantaneously, this implies that
ve (07)=ve (07)=Vs

When the switch is closed in position ‘ 2 °, the current i (f) will flow through the circuit
until capacitor is completely discharged through the resistance R . In other words, the
discharging cycle will start at = 0 . Now applying KVL around the loop, we get

dve (1)

R CT +ve () =0 (10.49)
The solution of input free differential equation (10.49) is given by
v(t)=Aed (10.50)
c 1
where the value of a is obtained from the characteristic equation and it is equal to
1

a=- R(C - Theconstant A; is obtained using the initial condition of the circuit in

Eq.(10.50). Note, at =0 ’( when the switch is just closed in position ¢ 2 ’) the voltage

across the capacitor v, (¢ ) =V . Using this condition in Eq.(10.50), we get
1

v(0)=V=Ae ke o A=V
c S 1 1

N
Now the following expressions are written as
-1t

Voltage across the capacitance v () =V e RC (10.51)
c N
-1t
Voltage across the resistance v (t)==-v(t)==V e &c (10.52)
R c S
1
Charging current through the capacitor i (1) = YR = - Vs e -wc: (10.53)
R R

An inspection of the above exponential terms of equations from (10.51) to (10.53) reveals
that the time constant of RC circuit is given by

7= RC (sec.)
This means that at time ¢ = 7, the capacitor’s voltage v. drops to 36.8% of its initial value
(see fig. 10.20(a)). For all practical purposes, the dc transient is considered to end after a

time span of 57. At such time steady state condition is said to be reached. Plots of above
equations as a function of time are depicted in fig. 10.20(a) and fig. 10.20(b) respectively.
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Fig. 10.20(a): Discharge of capacitor voltage with time in R-C circuit
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Fig. 10.200{b}: System response due to capacitor discharge

L.10.5 Energy stored in a capacitor

The ideal capacitor does not dissipate any of the energy supplied by the source. It
stores energy in the form of an electric field between the conducting plates. Let us
consider a voltage source Vg is connected to a series R — C circuit and it is assumed that
the capacitor is initially uncharged. The capacitor voltage (v. (f)) and current (i, (7))
waveforms during the charging period are shown in fig.10.21 (see the expressions (10.45)
and (10.47)) and instantaneous power ( p. (¢ ) =v. (¢t ) -i (t) ) supplied to the capacitor is
also shown in the same figure.
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Fig. 10.21: Instantaneous power delivered to the capacitor
Let us consider the instantaneous power supplied to the capacitor is given by

pe (t)=v.(t)-i(¢) (10.54) Now, the energy supplied to the capacitor in dt
second is given by

dv(t
w=p.(t)-dt= vc(t)Cz;t()-dt:Cvc(t)dvc(t) (10.55)
Total energy supplied to the capacitor in ¢ seconds is expressed as
v(t)=v 2
w(t)=C* J 1 1q®
Ve t)dv.(t)= Cvl= (Joules) (10.56)
Ve (0) =0 2 2 C

(Note initial voltage across capacitor is zero and ¢(¢#)  is the charge accumulated on each
plate atatimes ).

When the capacitor is fully charged, its terminal voltage is equal to the source voltageVy .
The amount of energy stored in capacitor in the form of electric field is given by

2
w=1cv =1 9 (Joules) (10.57)
2 S 2 C



where Q is the final charge accumulated on each plate of the capacitor at steady state (
i.e., t »» ) i.e., when the capacitor is fully charged.

Example: L.10.6 The switch ‘ S > shown in fig.L..10.22 is kept open for a long time and
then it is closed at time * =0 . Find (i) v, (0 ~) (ii) v, (0 ) (iii) ic (0 7) (iv) ic (0 ) (V)

(vi) find the time constants of the circuit before and after the switch is closed

dv. (1)
dy t =0+
(iv) ve ()
S(switch)
a
—AA—
1022
i
40v —_— 7T C=4F 682
. 2
b
Fig. 10.22

Solution: As we know the voltage across the capacitor v. (f) cannot change
instantaneously due to the principle of conservation of charge. Therefore, the voltage
across the capacitor just before the switch is closed v, (0 ™) = voltage across the capacitor
just after the switch is closed v. (0 ") = 40 V (note the terminal “ a * is positively charged.
It may be noted that the capacitor current before the switch ¢ S’ is closedisi. (07 )=0A .
On the other hand, at r = 0 , the current through 10 Q resistor is zero but the current
through capacitor can be computed as
i(07)=20) =40-666A (note, voltage across the capacitor cannot change
instantanegusly ?u instant of switching). The rate of change of capacitor voltage at time
“t=0" is expressed as

dv (1) dv(0") :i_(o*) _6.66

C

=i 0) =1.665 volt / sec.

dl t= 0+ dl C 4

Time constant of the circuit before the switch was closed :1 6:- Ié C=10-4=40sec. Time

constant of the circuit after the switch is closed is 7= Rm C = - 4 =15sec. (replace 10 +

6
the part of the circuit than contains only independent sources and resistive elements by an



equivalent Thevenin’s voltage source. In this case, we need only to find the Thevenin
resistance Ry, ).

Note: When the switch is kept in closed position, initially the capacitor will be in
discharge state and subsequently its voltage will decrease with the increase in time.
Finally, at steady state the capacitor is charged with a voltage

v(t=w)= - 6 =15 V (theoretically, time required to reach the capacitor voltage at

¢ 10+ 6
steady valueis 5 7=5- 15 =75 sec. ).

Example: L.10.7 The circuit shown in Fig.10.23 has been established for a long time.
The switch is  closed at time t=0. Find the current (1)

+ + . + d .. .
h(0),iO ), 350 ) and ﬂl (11) at steady state the voltage across the capacitors,
o
i1 (), i3 (%) and i3 (<) .

a ﬁ il(t) b
—WW,

500

- 500

S(switch)

t=0
\1, 500
i(1)
®
¢

Fig. 10.23

Solution: (i) At = 0~ no current flowing through the circuit, so the voltage at points “ b’
and ¢ d ° are both equal to 50 volt. When the switch * S * closes the capacitor voltage
remains constant and does not change its voltage instantaneously. The current i; (0" )
through a — b branch must then equal to zero, since voltage at terminal ‘ b ’ is equal to v,
(0 ) =50 volr. , current through b — ¢ is also zero. One can immediately find



out the current through ¢ — e equaltoi (0 ") =30-14. Appling KCL at point “ ¢ ’,
2 50
i3 (0 *) =1 A which is the only current flow at ¢ = 0" around the loop “d—c—e—d.Note
the capacitor across ‘ d — e * branch acts as a voltage source, the change of capacitor
av
de 1 +

VOltage dt + :500 10—6 i3 (0 ) = 2 k VOlt / SeC.

t=0
(i1) at steady state the voltage across each capacitor is given

=150 x50=16.666 volt.
At steady state current delivered by the source to the different branches are given by

i1(=)=T50 =0.333 A; i (=) =0.333 A and i3(=) =0A

Example: 1..10.8 The circuit shown in fig. 10.24(a) is switched on at time ¢ = 0 . How
long it takes for the capacitor to attain 70 % of its final voltage? Assume the capacitor is
initially not charged. Find also the time constant (7 ) of the circuit after the switch is
closed.

S(switch)

1 a
@

. t=0 10002
1A
20052 R — 1002
1 L
C=0.01F

@
b

Fig. 10.24(a)

The circuit containing only resistive elements and independent current source (i.e., non-
transient part of the circuit) is converted to an equivalent voltage source which is shown
in fig.10.24(b).



5 1
—>e AN o
10052
”"T 0002 10012
ob

R'“l = TFI]
i
| ) t=0.91sec.
Vi = 50V ——m
O b
Fig. 10.24{b)

Fig.10.24(c) shows the capacitor C is connected across the Thevenin’s voltage terminals “ a’
and ‘ b’ in series with Thevenin’s resistance Ryy, .

Ry, = 750 z
—VWW 0
' -
V=50V = vy /TN €7 00F
i(1)
b

Fig. 10.24(c)

The parameters of Thevenin’s voltage source are computed below:

V = 200 .1-100=50V and R = 100-300 =750
m 200+ 100+100 m 100+ 300

Using KVL around the closed path, one can find the current through the capacitor and
hence, the voltage across the capacitor.

50=T75-i(t)+v.(t)=0.75dv. () + v, (?) (10.58)



dt
The solution of the differential equation is given by

- 1t

v(t)=Ae rc +A (10.59)
c 1

Using the initial and boundary conditions of the circuit, we obtain the final expression of
voltage across the capacitor v, (¢) as

ve (1) =50 (1= &133") (10.60)

Let “ ¢ is the time required to reach the capacitor voltage 70% of its final (i.e., steady
state) voltage.

50-0.7=35=50(1-¢= "

Example: L.10.9 The switch S of the circuit shown in fig.10.25(a) is closed at position
‘atr=0.

° S(switch)

t=0

10mA
4kQ l;: CotopF YO

4k (1)

NN smemmiar *

6k
Fig. 10.25(a)

Find voltage v, (¢) and current i, (f) expressions for ¢ 2 0 . Assume that the capacitor is initially
fully uncharged (i.e., . v, (0) =0).
(1) find the mathematical expressions for v, (f) and i, (¢) if the switch * S’ is

thrown into position ‘ 2 * at t =7 (sec.) of the charging phase.
(i1) plot the waveforms obtained in parts (i) to (ii) on the same time axis for the

voltage v, (f) and the current i, (f) using the identified polarity of voltage and
current directions.



Solution: (i) The current source is converted to an equivalent voltage source and it is
redrawn in fig.10.25(b) when the switch “ § ’ is in position ‘1°.

4kQ22 1

A AA A A e 2 7,

&
+ §e= 2 1
.y v.(t) 7T €= 10pF
4k )
o ‘1' i(1)

VVW\—%

6k
Fig. 10.25(b)
KVL around the closed path:
40=10-i(t)+v.(t), where i(t)isinmA.
dv. (t
40=10- cv;—t() Fve (1) (10.61)

The voltage expression across the capacitor using the initial and boundary conditions of

the circuit, one can write v, () as
t
- 1y -3 -6
1

Ve (1)=401=¢ pe =40 1= 10101010 :40(1—e-m,) (10.62)
i=20"VO _ d0e0r =10 (i pay (10.63)
c 10 10

Note that the time constant of the circuit in part (i) is 7= RC =100 msec.
(ii) The switch “ S’ is thrown into position ‘2> at r=r=0.1sec.  and the corresponding

circuit diagram is shown in fig.10.25(c).



Hkid
Fig. 10.25(c)

Note, at timet=r7=0.lsec., the capacitor 1s charged with a voltage =

ve (r=0.1)=40(] = g-1001 )=40-0.632=2528V  and at the same time ( ¢ = 7= 0.1sec.)

the current in capacitor is 4.¢-10r = 4-0.368 = 1.472 (in mA) . Considering  the

fig.10.25(c), one can write KVL around the closed path

dvc (1)
dt

where R, =4 + 6 = 10 kQ and the capacitor is now in discharging phase.
The solution of Eq.(10.64) can be found using the initial and final voltage of the capacitor
(initial voltage v, (t=7=0.1) =25.28 V,v. (t =T= ) =0 V') and it is given by

ve(t) +C “Reyg =0 (10.64)

- 1 (f—r)
v()=v(T=0.1)e ¥ =2528e¢" (- (10.65)
Discharging current expression is given by (note, current direction is just opposite to the
assigned direction and it is taken into account with a —ve sign)

V’ (1) 25.28'6—10({—7) -10(¢-1)

(== - ==-2528¢ (in mA) (10.66)

¢ R
eq 10
(Note, the above two expressions are valid only for # 2 )
The circuit responses for charging and discharging phases in (i) and (ii) are shown in
fig.10.25 (d).




Vo) — im volt

15
.
=
£ 10

30
I | | l |

il

L

i | i | |

-5

0 100 200 R 400 00

— {ime (in m sec.)

Fig. 10.25{d): Complete response of the cireuit indicating charging and
discharging phases.

Remark-6 Note that the current through the capacitor (see fig. 10.25(d)) can change
instantaneously like the voltage across the inductor.
Appendix-A

. th . . . . . . . . .
L.10.A Solution of n  order linear time invariant differential equation excited by forcing
function.
Let us consider a linear time invariant circuit having several energy source
elements is described by the following dynamic equation.

dnx+a dn-]x"'a dn—Qx dx
a n-l n=2 +iii+a ,+aox=f(t 10.A1
n dln dt”'l dﬂ'z 1 dtn 0 f() ( )
where a,a,,a3,iila,-,a, are constant coefficients associated in the differential
equation and they are dependent on circuit parameters (like, R, L , and C for electric
circuit) but independent of time, f(¢) is the forcing or driving function and x(?) is the

solution of differential equation or response of the system. We shall discussion the

a0



solution of differential equation restricted to second order differential, say n=2 in
equation (10.A1).

2
a X409 fax=f£() (10.A2)

2 dt> bar 0
The solution of this differential equation provides the response of circuit and it is given by

x(1)=x,(t)+xs(0) (10.A3)

where x,, (7) is the natural response of circuit, obtained by setting f'(t) = 0, and x¢ () is the
forced response that satisfies the original differential equation (10.A2).

By setting f(f) =0 in equation (10.A2), as given in equation (10.A4), the force free
equation is obtained.

a d_2x_|_ a & +ax=0 (Homogeneous equation) (10.A4)
At dt

The solution of such differential equation (or homogeneous equation) is known as natural

solution or complementary solution or transient solution and it is denoted by x,, (r) . To get

the natural solution x,, () of equation (10.A4) the following steps are considered.

Let us use the following operators
d d* dd 2

=q; — = =
dt dt dt dt
in equation (10.A4) and results an equation given by

(612 a'2+a1 a+a0)x=()
Since x ¥ 0, the above equation can be written as

(a202+ala+a0)=0 (10.A5)

which is known as characteristic equation for a circuit whose force free equation is
Eq.(10.A4). The natural or transient solution of Eq.(10.A4) is expressed by the
exponential terms as given below.

x(1)=Ae9 '+ A o' (10.A6)
n 1 2
where a; and a» are the roots of characteristic equation (10.AS5). The roots of second
order characteristic equation with real coefficients is either real or complex occur in
conjugate pairs. The constants A; and A, are evaluated from initial or boundary
conditions of circuit. The principles of continuity of inductance current and capacitance
voltage are used to establish the required boundary conditions.



If x,, (¢) is the natural or transient solution of unforced (or homogeneous) equation

differential, it must satisfy its own differential equation

2
o T B oLa oy 0 (10.A7)

L dt’ cdt o

Further, if x(¢)=x, (1) + x ¢(t) is the complete solution of given differential Eq.(10.A2), it
must satisfy its own equation

dz(x +xf) d(x +x

ay ——ta;— f)+ao(xn+xf)=f(t) (10.A8)
dt dt
Using the equation (10.A7) in Eq.(10.A8), we get
2
a CXrva &5 va x =f() (10.A9)
2 dt* | dt 0

The above equation implies that x¢ () is the forced solution or steady state solution of
second order differential equation (10.A2). Steady state solution of some common forcing

functions is listed in Table (assume a) > 0, a] > 0 and a() >0 ).

Table: Steady state solution X £(#) for any order differential equation excited by some

common forcing function.

Type of forcing function f (¢) (input) Steady state solution x¢(f) (output)
] f(t)= K (constant) 1 xp(t)=A (constant)
f@)=Kt  xp(t)=At+B
O f(t):Kt2 O xf(t):At2+Bt+C
O f(t)=Ke®' 0 xp(1)=Ae”
[ f(t)=sinbt 1 if(t)=Asinbt+Bcosbt
1 f(t)=cosbt 1 if(t)=Asinbt+Bcosbt
0 fG)=e“"sinbt 1 ift)=e”(Asinbt+Bcosht)
0 f@t)=e® cosbt 1 ift)=e”(Asinbt+Bcosht)

Coefficients involve in the steady state solution can be found out by using the boundary
conditions of the circuit.

Remark-7

(1) Eq. (10.A2) is the differential equation description of a linear circuit, superposition
may be used to find the complete solution of a forcing function which is sum of natural
and steady state responses. (ii) Eq.(10.A6) is the natural solution of force-free linear
differential equation. Note that the constants a; and @, are the roots of the characteristic
equation (10.A5) and they are entirely depending on the circuit parameters. The roots of
the characteristic equation may be classified as




Case-1: Real or Complex but distinct
The natural solution of homogeneous equation (10.A4) is given as
X, (1)=Aje +Azea, at!

Case-2: Roots are repeated (i.e. a; =@, = @ or multiplicity of roots of order 2)
The natural solution of homogeneous equation (10.A4) is given as

xn(t):ﬁoem +ﬁ1t

Using initial and final conditions of ~ the circuit, B and B constants are computed.
More discussions on these issues can be seen in Lesson-11.

L.10.6 Test your understanding ( Marks: 70)

T.10.1  Inductor tends to block ----------- current but pass ---------- current.

T.10.2 The basic fundamental principle that explains the action of an inductor is known
a8 =-mmemmmeeeee law.

T.10.3  Exponential waveforms start ------ and finish ---------------

T.10.4 A transient approximately always has a duration of -------- time constants.
T.10.5 After the first time constant, a transient goes through ~ ---------- % of its steady
state value.

T.10.6 through inductor cannot change --------- but -------- across the inductor
can --------- instantaneously at the switching phase.

T.10.7 A simple series R — L circuit is excited with a constant voltage source, the
speed of response depends on ---------- and ------- of the circuit.

T.10.8  The energy stored in an inductor in the form of ---------------

T.10.9 In a first order circuit if the resistor value is doubled, the time constant is halved
for an -------- circuit.

T.10.10 An inductor acts as ----------- for a ---------- current through it.

T.10.11 Once a capacitor has been charged up, it is able to act like a --------

T.10.12 If the spacing between the plates is doubled, the capacitance value is ~ ---------- .
T.10.13 After a capacitor is fully charged in a dc circuit, it ---------- dc current.

T.10.14 The time rate of change of capacitor voltage is represented by the ------- tangent
line to the v, (¢) -versus- ¢ curve.

T.10.15 Immediately after a switch has been thrown, a capacitor’s must
maintain the same value that excited just before the switching instant.

T.10.16 At the instant of switching, current through the capacitor -------------
instantaneously.



T.10.17 At steady state condition in a dc circuit, the capacitor acts as an ----- circuit.

T.10.18 A first order circuit with a single resistor, if the resistor is doubled in value, the

time constant is also ----- for an R — C circuit.

T.10.19 Time constant of a first order system is the measure of ----------- response of the
circuit.

T.10.20 The energy stored in a capacitor in the form of -------------- . [1-20]

T.10.21 For the circuit of fig.10.26, find i) i (07),i(07) (i) i (0"), i (0") (iii)
i(t=w),i(t=x){v) v (07),v (t=wx).
1 L

ab ab

a
Y
2A 20 S(switch) v

1
20

S

20 b

Fig. 10.26
(Ans. (i)0,0.666 A (ii ) 1.333 A,0.666 A (iii ) 2A,0A (iv)-1.332V,0V) [8]

T.10.22 For the circuit shown in Fig.10.12, the switch ¢ S * has been opened for a long
time and then closes at t=0.

Find,
1) v b(()‘) Gi) i (07) Gi)i (0F) Gv) v

iy(t) for t>0
(Ans. [10]

) 07 (V) i (=) (V) (1= (vii)

a

T.10.23 In the circuit shown in fig.10.27, the switch was initially open and no current was
flowing in indg,cto t( L ). The switch was closed at # = 0 and than re opened at r =27

sec. Atr=0, . was 50A /s .
dt



S(switch)

— (¢ - :

} L=
— vl L
L — 1212 L J, 2 1202
I iy (1)
(18
Fig. 10.27
Find,
(1)  The value of L
(i1) Find the current i;, (¢ ) and voltage v, (¢) expressions for r 2 0 . Assume, no

current was flowing through the inductor at r =0 (i.e., . iz, (0)=0).

(ii1) Find the mathematical expressions for i;, (t) and vy, (¢) if the switch S’ is
reopened at 7 = 27(sec.).
@iv) Plot the waveforms obtained in parts (ii) to (iii) on the same time axis (time —

in ms.) for the current iy (t) and the voltage v, (¢) considering the indicated
current directions and identified polarity of voltage across the b — ¢ terminals.

(Ans. () 03 H (i) iy (t)=125-(1=e =" ) amp., v, (1) = 15- ¢ = 4"
Gi)i (1)=1.081-e= =7 (1)=1296-¢ == fr 12027) [10]

L be

T.10.24 At steady state condition, find the valuesof I, ,1,,13,14,15 ,V; and V, for
the circuit shown in fig.10.28.

L, = 10mH 1062 ., = 10mH

10£2

Fig. 10.28



(Al’lS.Il=Iz=I5=1A,I4=I3=O,V1=40VandV2=30V)



N

T.10.25 Switch S’ shown in fig.10.29 is kept in position ‘1’for a long time.

I-f

3 |
/

Fig. 10.29

When the switch is thrown in position ¢ 2 °, find at steady state condition
(i) the voltage across the each capacitor (ii) the charge across the each capacitor (iii) the
energy stored by the each capacitor

(Ans. (1) (1) v @ii)C v (@i ) c2 ) [6]
2 2 8

T.10.26 For the circuit shown in fig.10.30, Switch * S’ is kept in position ‘1 * for a long

time and then it is thrown in position 2 * at time 7 = 0 . Find (a) the current expression

i (1) for t 2 0 (b) calculate the time constants of the circuit before and after the switching
phases.

S(switch) > i(t)

1
o——— MWW\
& 102
29 t=0
5Q 109 AT~ 2WF
4+
LTI T
Fig. 10.30

(Ans. (a)i(t)=15+0.5¢ -10s 1 (b) 12 s (before the switch is opened), (b) 10 /s (after

the switch is opened, i.e., when the switch is in position * 2 ”)) [10]



Single-phase AC Circuits



Generation of Sinusoidal
Voltage Waveform (AC) and
Some Fundamental Concepts

In this lesson, firstly, how a sinusoidal waveform (ac) is generated, is described, and then
the terms, such as average and effective (rms) values, related to periodic voltage or
current waveforms, are explained. Lastly, some examples to find average and root mean
square (rms) values of some periodic waveforms are presented.

Keywords: Sinusoidal waveforms, Generation, Average and RMS values of Waveforms.

After going through this lesson, the students will be able to answer the following
questions:

1. What is an ac voltage waveform?

2. How a sinusoidal voltage waveform is generated, with some detail?

3. For periodic voltage or current waveforms, to compute or obtain the average and rms
values, and also the time period.

4. To compare the different periodic waveforms, using above values.



Generation of Sinusoidal (AC) Voltage Waveform

Fig. 12.1 Schematic diagram for single phase ac generation

A multi-turn coil is placed inside a magnet with an air gap as shown in Fig. 12.1. The flux
lines are from North Pole to South Pole. The coil is rotated at an angular speed,

w=21n (rad/s).
_aW :
n=9— JT=speed of the coil (rev/sec, or rps)

N =60 n = speed of the coil (rev/min, or rpm)

1 = length of the coil (m)
b = width (diameter) of the coil (m)
T = No. of turns in the coil



B = flux density in the air gap (Wb / m* )
v = ITb n = tangential velocity of the coil (m/sec)
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(a)
Fig. 12.2 (a) Coil position for Fig. 12.1, and (b) Details

At a certain instant t, the coil is an angle (rad), &= w t with the horizontal (Fig. 12.2).
The emf (V) induced on one side of the coil (conductor) is B v sin 8,
@ can also be termed as angular displacement.
The emf induced in the coil (single turn) is 2 Bl v sin @=2 Bl 1Tb n sin
O The total emf induced or generated in the multi-turn coil is
e(8)=T2Blmbnsin@=2m7B1bnTsinf=E,, sin@
This emf as a function of time, can be expressed as, e(f) = E,,, sin wt . The graph of
e(t) or e(8) , which is a sinusoidal waveform, is shown in Fig. 12.4a
Area of the coil im*)=a=1b
Flux cut by the coil (Wb) =@=aB=[bB
Flux linkage (Wb) = w=T @¢=TBI[b
It may be noted these values of flux @ and flux linkage ¢/, are maximum, with the coil
being at horizontal position, & = 0 . These values change, as the coil moves from the
horizontal position (Fig. 12.2). So, also is the value of induced emf as stated earlier.
The maximum value of the induced emf is, d 9
Ep =2mnBlbT=2mn @T=2Tny=wy=y "~
dt
Determination of frequency (f) in the ac generator

In the above case, the frequency (Hz) of the emf generated is



f =w/(2m)=n,no. of poles being 2, i.e. having only one pole pair.
In the ac generator, no. of poles = p, and the speed (rps) = n, then the frequency in Hz
or cycles/sec, is
f =no. of cycles/sec = no. of cycles per rev X no. of rev per sec = no. of pairs of
poles x no. of rev persec=(p/2)n
PN P w
or, =120 = 20T
Example
For a 4-pole ac generator to obtain a voltage having a frequency of 50 Hz,
the speed is, n = 27 =% =25 rps = 25 60 = 1,500 rpm
For a 2-pole (p = 2) machine, the speed should be 3,000 rpm.
Similarly, the speed of the machine having different no. of poles, required to generate
a frequency of 50 Hz can be computed.

Sinusoidal voltage waveform having frequency, f with time period (sec), T'= 1/ f

Periodic Voltage or Current Waveform

Average value

The current waveform shown in Fig. 12.3a, is periodic in nature, with time period, T.
It is positive for first half cycle, while it is negative for second half cycle.
The average value of the waveform, i(7) is defined as

72 72
I, = Area over half cycle _ 1 i) dt = 2 it) dt
Time period of half cycle  T'2 ), T )

Please note that, in this case, only half cycle, or half of the time period, is to be used
for computing the average value, as the average value of the waveform over full cycle is

zero (0).
If the half time period (T/2) is divided into 6 equal time intervals ( T),
(i tibt+iz+ ig) T (i1+ip+iz+ ig) Area over half cycle
- 6T B 6 “Time period of half cycle
Please note that no. of time intervals is n = 6.

IHV

Root Mean Square (RMS) value

For this current in half time period subdivided into 6 time intervals as given above, in
the resistance R, the average value of energy dissipated is given by

2 2 2 2
(i1 + iy + i3 + i ) R
6
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(a)
i'(t)
] 2
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(b

Fig. 12.3 Periodic current waveform
(a) Current (i), (b) Square of current (i)

The graph of the square of the current waveform, i* () 1s shown in Fig. 12.3b. Let I
be the value of the direct current that produces the same energy dissipated in the
resistance R, as produced by the periodic waveform with half time period subdivided into
n time intervals,

[ = \/(i Fiteit ¥ in) T _ Areaofin curve over half cycle
Time period of half cycle



1 2
_1 2 Jiz
[ (a
= l dl: dt
T2 § T ,

This value is termed as Root Mean Square (RMS) or effective one. Also to be noted
that the same rms value of the current is obtained using the full cycle, or the time period.

Average and RMS Values of Sinusoidal Voltage Waveform
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(b)

Fig. 12.4 Sinusoidal voltage waveform
(a) Voltage (v), (b) Square of voltage (v°)

As shown earlier, normally the voltage generated, which is also transmitted and
then distributed to the consumer, is the sinusoidal waveform with a frequency of 50 Hz in



this country. The waveform of the voltage v(¢) , and the square of waveform, Vv (1), are
shown in figures 12.4a and12.4b respectively.

Time period, T=1/f=2m)/ w;in angle (wWT =21T)
Half time period, T/2=1/2f)=m/ w;inangle (wWT /2 =1T)

W(0)=V,,sinb for m< 0<0; v(t)=V,sinwr for(MW)<t<0

L1v@) ao=L |V, sin 846= Yo cos 4 °=2v,, =0637 v,
m (_) m _O T n n
1 1 1
- — 2 —

av

177 2 2 177- 2 m 771 2
V= —\v dé =\"» sin 6d6 Rl e (1-cos28)db
m 0 m 0 T o2

2 1 1
. 1 2 2 2 )
T = (8-—sin26)|, — 1 =—220707V,

21T 2 2n ‘FZ
or, V,, :\/5 %
If time t, is used as a variable, instead of angle&,

1 W WV 2
v =7 [v(r) di = Ffvm sin W dt =2 cos (wi)] o ==V, =0.637 Vi
“o “o 7

In the same way, the rms value, V can be determined.

If the average value of the above waveform is computed over total time period T, it
comes out as zero, as the area of first (positive) half cycle is the same as that of second
(negative) half cycle. However, the rms value remains same, if it is computed over total
time period.

The different factors are defined as:

RMS value 0.707 V,,
Average value 1 0.637 Vin
Maximum value Vin
Peak factor = Average value =0.707V,, =1.414
Note: The rms value is always greater than the average value, except for a rectangular

waveform, in which case the heating effect remains constant, so that the average
and the rms values are same.

Form factor = =1.11

Example

The examples of the two waveforms given are periodic in nature.
1. Triangular current waveform (Fig. 12.5)

Time period =T

4
ity=1,, _ forT<t<0
T



! /

0 T 2T
{ —
Fig. 12.5 Triangular current waveform
K Lyt L Lt
]M:T_‘l'(l‘)dl‘ZTjjm le:_z_Z :FTZEm:OSIm
0 | 0 1 0 l ) |
17 ; 1 7 12 ; I 2 fj 72 2 3 2 22
I= T_ ‘i‘ dt = T_ "I;Tz_dt %3 _3 =_'3 _— e
0 "0 0 T
1 3 3

= \_fm?, =0.577351,,
Two factors of the waveform are:

Form factor = _ RMS value  _0.57735 I — 11547

Average value 051,
Maximum value 1,

Peak factor = Average value =051, =20

To note that the form factor is slightly higher than that for the sinusoidal waveform,
while the peak factor is much higher.

+5 =

Vi | I l 1
0 2 6 7
5 b=

Fig. 12.6 Trapezoidal voltage waveform

2. Trapezoidal voltage waveform (Fig. 12.6)
Time period (T) = 8 ms
Half time period (7/2 ) = 8/2 =4



vity=mt=G5/1)t=5tfor 1<St<0:v()=5for3<t<1;v() =
54-1fford<t<3
Please note that time, t is in ms, and slope, m is in V/ms. Also to be noted that, as in

the case of sinusoidal waveform, only half time period is taken here for the computation
of the average and rms values.
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Two factors of the waveform are:

Form factor = _ RMS value  _4.0825 _ 1 0887

Average value 3.75
Peak factor = Maximum value — 5.0 - 13333

Average value 3.75
To note that the both the above factors are slightly lower than those for the sinusoidal
waveform.

Similarly, the average and rms or effective values of periodic voltage or current
waveforms can be computed.

In this lesson, starting with the generation of single phase ac voltage, the terms, such
as average and rms values, related to periodic voltage and current waveforms are
explained with examples. In the next lesson, the background material required — the
representation of sinusoidal voltage/current as phasors, the rectangular and polar forms of
the phasors, as complex quantity, and the mathematical operations — addition/subtraction
and multiplication/division, using phasors as complex quantity, are discussed in detail
with numerical examples. In the following lessons, the study of circuits fed from single
phase ac supply, is presented.



Problems

12.1

12.2

12.3

12.4

What is the speed in rpm of an ac generator with 4 poles, to produce a voltage
with a frequency of 50 Hz

(a) 3000 (b) 1500 (c) 1000 (d) 750

Determine the No. of poles required in an ac generator running at 1,000 rpm, to
produce a voltage with a frequency of 50 Hz.

(a) 2 (b) 4 (c)6 (d)8

Calculate the speed in rpm of an ac generator with 24 poles, to produce a voltage
with a frequency of 50 Hz.

(a) 300 (b) 250 (c) 200 (d) 150

Determine the average and root mean square (rms) values of the following
waveforms.
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23.1 Goals of the lesson

In this lesson, we shall study two winding ideal transformer, its properties and working
principle under no load condition as well as under load condition. Induced voltages in
primary and secondary are obtained, clearly identifying the factors on which they depend
upon. The ratio between the primary and secondary voltages are shown to depend on
ratio of turns of the two windings. At the end, how to draw phasor diagram under no load
and load conditions, are explained. Importance of studying such a transformer will be
highlighted. At the end, several objective type and numerical problems have been given
for solving.

Key Words: Magnetising current, HV & LV windings, no load phasor diagram, reflected
current, equivalent circuit.

After going through this section students will be able to understand the following.

necessity of transformers in power system.

properties of an ideal transformer.

meaning of load and no load operation.

basic working principle of operation under no load condition.

no load operation and phasor diagram under no load.

the factors on which the primary and secondary induced voltages depend.
fundamental relations between primary and secondary voltages.

the factors on which peak flux in the core depend.

AR S RSO S

the factors which decides the magnitude of the magnetizing current.

—_—
=

. What does loading of a transformer means?

—
—

. What is reflected current and when does it flow in the primary?
. Why does VA (or kVA) remain same on both the sides?

. What impedance does the supply see when a given impedance Z» is connected

_—
W N

across the secondary?
14. Equivalent circuit of ideal transformer referred to different sides.

23.2 Introduction

Transformers are one of the most important components of any power system. It basically
changes the level of voltages from one value to the other at constant frequency. Being a
static machine the efficiency of a transformer could be as high as 99%.



Big generating stations are located at hundreds or more km away from the load
center (where the power will be actually consumed). Long transmission lines carry the
power to the load centre from the generating stations. Generator is a rotating machines
and the level of voltage at which it generates power is limited to several kilo volts only —



a typical value is 11 kV. To transmit large amount of power (several thousands of mega
watts) at this voltage level means large amount of current has to flow through the
transmission lines. The cross sectional area of the conductor of the lines accordingly
should be large. Hence cost involved in transmitting a given amount of power rises many
folds. Not only that, the transmission lines has their own resistances. This huge amount of

current will cause tremendous amount of power loss or 12 r loss in the lines. This loss will
simply heat the lines and becomes a wasteful energy. In other words, efficiency of
transmission becomes poor and cost involved is high.

The above problems may addressed if we could transmit power at a very high
voltage say, at 200 kV or 400 kV or even higher at 800 kV. But as pointed out earlier, a
generator is incapable of generating voltage at these level due to its own practical
limitation. The solution to this problem is to use an appropriate step-up transformer at the
generating station to bring the transmission voltage level at the desired value as depicted
in figure 23.1 where for simplicity single phase system is shown to understand the basic
idea. Obviously when power reaches the load centre, one has to step down the voltage to
suitable and safe values by using transformers. Thus transformers are an integral part in
any modern power system. Transformers are located in places called substations. In cities
or towns you must have noticed transformers are installed on poles — these are called pole
mounted distribution transformers. These type of transformers change voltage level
typically from 3-phase, 6 kV to 3-phase 440 V line to line.

Long Transmission line

11 To
G kV 400 kV loads

Step up Step down
transformer transformer
Figure 23.1: A simple single phase power system.

In this and the following lessons we shall study the basic principle of operation
and performance evaluation based on equivalent circuit.

23.2.1 Principle of operation

A transformer in its simplest form will consist of a rectangular laminated magnetic
structure on which two coils of different number of turns are wound as shown in Figure
23.2.

The winding to which a.c voltage is impressed is called the primary of the
transformer and the winding across which the load is connected is called the secondary of
the transformer.

23.3 Ideal Transformer

To understand the working of a transformer it is always instructive, to begin with the
concept of an ideal transformer with the following properties.



1. Primary and secondary windings has no resistance.
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Figure 23.2: A typical transformer.

2. All the flux produced by the primary links the secondary winding i,e., there is no
leakage flux.
3. Permeability y; of the core is infinitely large. In other words, to establish flux in

the core vanishingly small (or zero) current is required.

4. Core loss comprising of eddy current and hysteresis losses are neglected.

23.3.1 Core flux gets fixed by voltage & frequency

The flux level B,y in the core of a given magnetic circuit gets fixed by the magnitude of
the supply voltage and frequency. This important point has been discussed in the previous
lecture 20. It was shown that:

B =_v 1 Vv

m o DITAN =444 AN f

where, V is the applied voltage at frequency f', N is the number of turns of the coil

and A is the cross sectional area of the core. For a given magnetic circuit A and N are
constants, so Bmax developed in core is decided by the ratio Y The peak value of the coil

!
current Iy, drawn from the supply now gets decided by the B-H characteristics of the
core material.

'B_4B-H Ch. of Material — 3
inT| core with Material — 2

AT S

Bmax —————

aterial — 1

|
I
: H
Hmaa  H (A/m)

O Hmax3 Hmax2



Figure 23.3: Estimating current drawn for different core materials.

To elaborate this, let us consider a magnetic circuit with N number of turns and
core section area A with mean length /. Let material-3 be used to construct the core whose
B-H characteristic shown in figure 23.3. Now the question is: if we apply a voltage V at
frequency f, how much current will be drawn by the coil? We follow the following steps
to arrive at the answer.

1. First calculate maximum flux density using B = 1 V. Note that value
mx 444 AN f

of B;,4x 1s independent of the core material property.

2. Corresponding to this By,,y, obtain the value of H,,,,3 from the B-H characteristic

of the material-3 (figure 23.3).
[

max 3

N

3. Now calculate the required value of the current using the relation I,x 3 =

4. The rms value of the exciting current with material-3 as the core, will be
I3 =Imax 3‘(/2_'

By following the above steps, one could also estimate the exciting currents (/2 or I3)
drawn by the coil if the core material were replaced by material-2 or by material-3 with
other things remaining same. Obviously current needed, to establish a flux of B,y is

lowest for material-3. Finally note that if the core material is such that /. - « , the B-H
characteristic of this ideal core material will be the B axis itself as shown by the thick line
in figure 23.3 which means that for such an ideal core material current needed is

practically zero to establish any B, in the core.

23.3.2 Analysis of ideal transformer

Let us assume a sinusoidally varying voltage is impressed across the primary with
secondary winding open circuited. Although the current drawn 1,, will be practically zero,
but its position will be 90° lagging with respect to the supply voltage. The flux produced
will obviously be in phase with ,,,. In other words the supply voltage will lead the flux

phasor by 90°. Since flux is common for both the primary and secondary coils, it is
customary to take flux phasor as the reference.

Let, @) Pmax Sin Wt
T

then,vi = " O = (23.1)
2
The time varying flux ¢(f) will link both the primary and secondary turns
inducing in voltages e] and e; respectively

Instantaneous induced voltage in primary = -N ]ﬂ =oN @ sin ot-_T
dt 2



T

= 277:f Nl(pmuxsm wt - (23.2)
de T
Instantaneous induced voltage in secondary = -N» e = ON> @y SiNOL - —
dt
T
=27f "™ wt-—  (23.3)
2
Magnitudes of the rms induced voltages will therefore be
E =2tfN¢ =444fNg (23.4)
1 1 max 1 max
E =/21fN¢ =444fNg (23.5)
2 2 max 2 max

The time phase relationship between the applied voltage vi and e; and e> will be same.

The 180° phase relationship obtained in the mathematical expressions of the two merely
indicates that the induced voltage opposes the applied voltage as per Lenz’s law. In other

words if e; were allowed to act alone it would have delivered power in a direction
opposite to that of vi. By applying Kirchoff’s law in the primary one can easily say that

V1 = Ej as there is no other drop existing in this ideal transformer. Thus udder no load
condition, vV E N

2= 2= 2

Vi E; Ni

Where, V1, V» are the terminal voltages and E1, E» are the rms induced voltages. In
convention 1, phasors E' and £ are drawn 180° out of phase with respect to v in order
to convey the respective power flow directions of these two are opposite. The second

convention results from the fact that the quantities v(¢), e1(¢) and ep(¢ ) vary in unison,
then why not show them as co-phasal and keep remember the power flow business in
one’s mind.

23.3.3 No load phasor diagram

A transformer is said to be under no load condition when no load is connected across the
secondary i.e., the switch S in figure 23.2 is kept opened and no current is carried by the
secondary windings. The phasor diagram under no load condition can be drawn starting
with @ as the reference phasor as shown in figure 23.4.
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— (b) Convention 2.
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Figure 23.4: No load Phasor Diagram following two conventions.

In convention 1, phsors E; and E, are drawn 180° out of phase with respect to
V; in order to convey that the respective power flow directions of these two are opposite.

The second convention results from the fact that the quantities vy (¢), e1(¢) and ex(t ) vary
in unison then why not show them as co-phasal and keep remember the power flow
business in one’s mind. Also remember vanishingly small magnetizing current is drawn
from the supply creating the flux and in time phase with the flux.

23.4 Transformer under loaded condition

In this lesson we shall study the behavior of the transformer when loaded. A transformer
gets loaded when we try to draw power from the secondary. In practice loading can be
imposed on a transformer by connecting impedance across its secondary coil. It will be
explained how the primary reacts when the secondary is loaded. It will be shown that any
attempt to draw current/power from the secondary, is immediately responded by the
primary winding by drawing extra current/power from the source. We shall also see that
mmf balance will be maintained whenever both the windings carry currents. Together
with the mmf balance equation and voltage ratio equation, invariance of Volt-Ampere
(VA or KVA) irrespective of the sides will be established.

We have seen in the preceding section that the secondary winding becomes a seat
of emf and ready to deliver power to a load if connected across it when primary is
energized. Under no load condition power drawn is zero as current drawn is zero for ideal
transformer. However when loaded, the secondary will deliver power to the load and
same amount of power must be sucked in by the primary from the source in order to
maintain power balance. We expect the primary current to flow now. Here we shall
examine in somewhat detail the mechanism of drawing extra current by the primary when



the secondary is loaded. For a fruitful discussion on it let us quickly review the dot
convention in mutually coupled coils.

23.4.1 Dot convention

The primary of the transformer shown in figure 23.2 is energized from a.c source and
potential of terminal 1 with respect to terminal 2 is vi2 = V4 sinart. Naturally polarity of
1 is sometimes +ve and some other time it is —ve. The dot convention helps us to
determine the polarity of the induced voltage in the secondary coil marked with terminals
3 and 4. Suppose at some time ¢ we find that terminal 1 is +ve and it is increasing with
respect to terminal 2. At that time what should be the status of the induced voltage
polarity in the secondary — whether terminal 3 is +ve or —ve? If possible let us assume
terminal 3 is —ve and terminal 4 is positive. If that be current the secondary will try to
deliver current to a load such that current comes out from terminal 4 and enters terminal
3. Secondary winding therefore, produces flux in the core in the same direction as that of
the flux produced by the primary. So core flux gets strengthened in inducing more
voltage. This is contrary to the dictate of Lenz’s law which says that the polarity of the
induced voltage in a coil should be such that it will try to oppose the cause for which it is
due. Hence terminal 3 can not be —ve.

If terminal 3 is +ve then we find that secondary will drive current through the load
leaving from terminal 3 and entering through terminal 4. Therefore flux produced by the
secondary clearly opposes the primary flux fulfilling the condition set by Lenz’s law.
Thus when terminal 1 is +ve terminal 3 of the secondary too has to be positive. In
mutually coupled coils dots are put at the appropriate terminals of the primary and
secondary merely to indicative the status of polarities of the voltages. Dot terminals will
have at any point of time identical polarities. In the transformer of figure 23.2 it is
appropriate to put dot markings on terminal 1 of primary and terminal 3 of secondary. It
is to be noted that if the sense of the windings are known (as in figure 23.2), then one can
ascertain with confidence where to place the dot markings without doing any testing
whatsoever. In practice however, only a pair of primary terminals and a pair of secondary
terminals are available to the user and the sense of the winding can not be ascertained at
all. In such cases the dots can be found out by doing some simple tests such as polarity
test or d.c kick test.

If the transformer is loaded by closing the switch S, current will be delivered to
the load from terminal 3 and back to 4. Since the secondary winding carries current it
produces flux in the anti clock wise direction in the core and tries to reduce the original
flux. However, KVL in the primary demands that core flux should remain constant no
matter whether the transformer is loaded or not. Such a requirement can only be met if
the primary draws a definite amount of extra current in order to nullify the effect of the
mmf produced by the secondary. Let it be clearly understood that net mmf acting in the
core is given by: mmf due to vanishingly small magnetizing current + mmf due to
secondary current + mmf due to additional primary current. But the last two terms must
add to zero in order to keep the flux constant and net mmf eventually be once again be

due to vanishingly small magnetizing current. If /5 is the magnitude of the secondary



current and 12' is the additional current drawn by the primary then following relation must
hold good:
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= 1
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NiI » I l
' = —2
orl o a
- M turns ratio (23.6)
N,
where, a

To draw the phasor diagram under load condition, let us assume the power factor
angle of the load to be 65, lagging. Therefore the load current phasor I, , can be drawn
lagging the secondary terminal voltage E, by 6> as shown in the figure 23.5.

F-9 Vl = -El
I )
¢ 3
— — (a) Convention 1. (b) Convention 2.
IZ v E2
v El

Figure 23.5: Phasor Diagram when transformer is loaded.

The reflected current magnitude can be calculated from the relation I, = Iaz and is

shown directed 180° out of phase with respect to I, in convention 1 or in phase with L

as per the convention 2. At this stage let it be suggested to follow one convention only
and we select convention 2 for that purpose. Now,

Volt-Ampere delivered to the load = V21>
= Exly
1
=akE; a—l'
= E111=V111=Volt-Ampere drawn from the supply.
Thus we note that for an ideal transformer the output VA is same as the input VA

and also the power is drawn at the same power factor as that of the load.
23.4.2 Equivalent circuit of an ideal transformer

The equivalent circuit of a transformer can be drawn (i) showing both the sides along
with parameters, (i1) referred to the primary side and (iii) referred to the secondary side.



In which ever way the equivalent circuit is drawn, it must represent the operation of the
transformer correctly both under no load and load condition. Figure 23.6 shows the
equivalent circuits of the transformer.

Ideal Transformer S
' \\ ,d_l_o\
i | A= —
2l = Vi i Ly
! | ST W
1 ] 1
I o

The transformer

Equivalent circuit showing both sides

>,

Vi “
- N
a
Equivalent circuit referred to primary Equivalent circuit referred to secondary

Figure 23.6: Equivalent circuits of an ideal transformer.

Think in terms of the supply. It supplies some current at some power factor when
a load is connected in the secondary. If instead of the transformer, an impedance of value
a222 is connected across the supply, supply will behave identically. This corresponds to
the equivalent circuit referred to the primary. Similarly from the load point of view,
forgetting about the transformer, we may be interested to know what voltage source
should be impressed across Z; such that same current is supplied to the load when the
transformer was present. This corresponds to the equivalent circuit referred to the
secondary of the transformer. When both the windings are shown in the equivalent
circuit, they are shown with chain lines instead of continuous line. Why? This is because,
when primary is energized and secondary is opened no current is drawn, however current
is drawn when a load is present on the secondary side. Although supply two terminals are
physically joined by the primary winding, the current drawn depends upon the load on
the secondary side.

23.5 Tick the correct answer

1. An ideal transformer has two secondary coils with number of turns 100 and 150
respectively. The primary coil has 125 turns and supplied from 400 V, 50 Hz,
single phase source. If the two secondary coils are connected in series, the
possible voltages across the series combination will be:



(A)833.5Vorl166.5V (B)833.5Vor320V
(C)320 Vor800V (D) 800 V or 166.5 V

2. A single phase, ideal transformer of voltage rating 200 V /400 V, 50 Hz produces
a flux density of 1.3 T when its LV side is energized from a 200 V, 50 Hz source.
If the LV side is energized from a 180 V, 40 Hz source, the flux density in the
core will become:

(A)0.68T (B)1.44T ©)1.62T (D)146T

3. In the coil arrangement shown in Figure 23.7, A dot (7)) marking is shown in the
first coil. Where would be the corresponding dot () markings be placed on coils
2 and 3?
(A)  Atterminal P of coil 2 and at terminal R of coil 3

(B) At terminal P of coil 2 and at terminal S of coil 3
© At terminal Q of coil 2 and at terminal R of coil 3
(D)  Atterminal Q of coil 2 and at terminal S of coil 3

—4 o P —R
—.::A;“ chm &—S

Figure 23.7:

4. A single phase ideal transformer is having a voltage rating 200 V / 100 V, 50 Hz.
The HV and LV sides of the transformer are connected in two different ways with
the help of voltmeters as depicted in figure 23.8 (a) and (b). If the HV side is
energized with 200 V, 50 Hz source in both the cases, the readings of voltmeters
V1 and V2 respectively will be:

(A) 100 V and 300 V (B) 300 V and 100 V
(C)100Vor0OV (D)0 Vor300V

200v *°Jle® 200V *Jlle®
50Hz 50Hz
r,
Connection (a) Connection (b)

Figure 23.8:



5. Across the HV side of a single phase 200 V / 400 V, 50 Hz transformer, an

impedance of 32 + j24Q is connected, with LV side supplied with rated voltage &
frequency. The supply current and the impedance seen by the supply are
respectively:

(A) 20 A & 128 +j96Q2 (B)20 A & 8 +j6Q2

(C)5 A &8+j62 (D)20 A & 16 +12Q

The rating of the primary winding a transformer, havmg 60 number of turns, is

250V, 50 Hz. If the core cross section area is 144 cm then the flux density in the
core is:

(AIT B)1.6T © 14T MD)15T

23.6 Solve the following

1.

In Figure 23.9, the ideal transformer has turns ratio 2:1. Draw the equivalent
circuits referred to primary and referred to secondary. Calculate primary and
secondary currents and the input power factor and the load power factor.

50Hz

Figure 23.9: Basic scheme of protection.

In the Figure 23.10, a 4-winding transformer is shown along with number of turns
of the windings. The first winding is energized with 200 V, 50 Hz supply. Across
the 2" winding a pure inductive reactance X7 = 20 Q is connected Across the 3"
winding a pure resistance R = 15 Q and across the 4t winding a capacitive
reactance of X¢ = 10 Q are connected. Calculate the input current and the power
factor at which it is drawn.

I

200 V
50Hz

EE_E?M

100

<A 24

Nl=

‘cc

A AR
A4AA

=30 h

= E

Figure 23.10:



3. In the circuit shown in Figure 23.11, T1, T2 and T3 are ideal transformers.

a) Neglecting the impedance of the transmission lines, calculate the currents in

primary and secondary windings of all the transformers. Reduce the circuit
refer to the primary side of T1.

b) For this part, assume the transmission line impedance in the section AB to be
Z s =1+ j3Q . In this case calculate, what should be Vs for maintaining 450

V across the load Z . = 60 + j80Q . Also calculate the net impedance seen by

V.
A D
. T1 T2 T3
Vs= g
200V ®
50Hz ;
o
2:3 2:1 1:3

Figure 23.11:
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25.1 Goals of the lesson

In the previous lesson we have seen how to draw equivalent circuit showing magnetizing
reactance (X)), resistance (R.j), representing core loss, equivalent winding resistance (r,) and

equivalent leakage reactance (x.). The equivalent circuit will be of little help to us unless we
know the parameter values. In this lesson we first describe two basic simple laboratory tests
namely (i) open circuit test and (ii) short circuit test from which the values of the equivalent
circuit parameters can be computed. Once the equivalent circuit is completely known, we can
predict the performance of the transformer at various loadings. Efficiency and regulation are two
important quantities which are next defined and expressions for them derived and importance
highlighted. A number of objective type questions and problems are given at the end of the lesson
which when solved will make the understanding of the lesson clearer.
Key Words: O.C. test, S.C test, efficiency, regulation.

After going through this section students will be able to answer the following questions.

Which parameters are obtained from O.C test?

Which parameters are obtained from S.C test?

What percentage of rated voltage is needed to be applied to carry out O.C test?
What percentage of rated voltage is needed to be applied to carry out S.C test?
From which side of a large transformer, would you like to carry out O.C test?
From which side of a large transformer, would you like to carry out S.C test?
How to calculate efficiency of the transformer at a given load and power factor?
Under what condition does the transformer operate at maximum efficiency?
What is regulation and its importance?

How to estimate regulation at a given load and power factor?

N e B ) A

What is the difference between efficiency and all day efficiency?

25.2 Determination of equivalent circuit parameters

After developing the equivalent circuit representation, it is natural to ask, how to know equivalent
circuit the parameter values. Theoretically from the detailed design data it is possible to estimate

various parameters shown in the equivalent circuit. In practice, two basic tests namely the open
circuit test and the short circuit test are performed to determine the equivalent circuit parameters.

25.2.1 Qualifying parameters with suffixes LV & HV



For a given transformer of rating say, 10 kVA, 200 V /100 V, 50 Hz, one should not be under the
impression that 200 V (HV) side will always be the primary (as because this value appears

first in order in the voltage specification) and 100 V (LV) side will always be secondary. Thus,
for a given transformer either of the HV and LV sides may be used as primary or secondary as
decided by the user to suit his/her goals in practice. Usually suffixes 1 and 2 are used for
expressing quantities in terms of primary and secondary respectively — there is nothing wrong in
it so long one keeps track clearly which side is being used as primary. However, there are
situation, such as carrying out O.C & S.C tests (discussed in the next section), where naming
parameters with suffixes HV and LV become imperative to avoid mix up or confusion. Thus, it
will be useful to qualify the parameter values using the suffixes HV and LV (such as r, gy, e LV
etc. instead of r,1, r.2). Therefore, it is recommended to use suffixes as LV, HV instead of 1 and
2 while describing quantities (like voltage Vgyy, Viy and currents Igy, Iry) or parameters

(resistances rgy, ry and reactances xgy, x7y) in such cases.
25.2.2 Open Circuit Test

To carry out open circuit test it is the LV side of the transformer where rated voltage at rated
frequency is applied and HV side is left opened as shown in the circuit diagram 25.1. The

voltmeter, ammeter and the wattmeter readings are taken and suppose they are Vy, Ip and Wy
respectively. During this test, rated flux is produced in the core and the current drawn is the no-
load current which is quite small about 2 to 5% of the rated current. Therefore low range
ammeter and wattmeter current coil should be selected. Strictly speaking the wattmeter will
record the core loss as well as the LV winding copper loss. But the winding copper loss is very
small compared to the core loss as the flux in the core is rated. In fact this approximation is built-
in in the approximate equivalent circuit of the transformer referred to primary side which is LV
side in this case.
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Open Circuit Test
Figure 25.1: Circuit diagram for O.C test

The approximate equivalent circuit and the corresponding phasor diagrams are shown in
figures 25.2 (a) and (b) under no load condition.
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(a) Equivalent circuit under O.C test (b) Corresponding phasor diagram
Below we shall show how from the readings of the meters the parallel branch impedance

namely R.v) and X,z v) can be calculated.

Calculate no load power factor cos 6

Hence 6 is known, calculate sin 6
Calculate magnetizing current [, =

Calculate core loss component of current I,; =

Magnetising branch reactance X,y

Resistance representing core loss Rey(zy)

We can also calculate X;,(gv) and Rejgv) as follows:

3

XmHV)

Reiuv)

Where,a =

4

Ip sin Gy

I€/cos 6o
%4
0
1—
cl

A
m(LV)

el (LV)

a2
IV

__Lv_ the turns ratio
1V

HV

If we want to draw the equivalent circuit referred to LV side then Rz y) and Xy ry) are
to be used. On the other hand if we are interested for the equivalent circuit referred to HV side,

Rcigv) and Xgy) are to be used.

25.2.3 Short circuit test

Short circuit test is generally carried out by energizing the HV side with LV side shorted. Voltage
applied is such that the rated current flows in the windings. The circuit diagram is shown in the
figure 25.3. Here also voltmeter, ammeter and the wattmeter readings are noted corresponding to

the rated current of the windings.
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Short Circuit Test

Figure 25.3: Circuit diagram during S.C test



Suppose the readings are Vi, I5c and Wy, It should be noted that voltage required to be

applied for rated short circuit current is quite small (typically about 5%). Therefore flux level in

the core of the transformer will be also very small. Hence core loss is negligibly small compared to
the winding copper losses as rated current now flows in the windings. Magnetizing current too, will
be pretty small. In other words, under the condition of the experiment, the parallel branch impedance

comprising of R.ygy) and X, y) can be considered to be absent. The equivalent circuit and the
corresponding phasor diagram during circuit test are shown in figures 25.4 (a) and

(b).
X
Isc  1Isc Feav v)
AW
S
Ey:
N O w

Vsc

Parallel
branch

0sc

neglected

(a) Equivalent circuit under S.C test (b) Corresponding phasor diagram

Figure 25.4: Equivalent circuit & phasor diagram during S.C test

Therefore from the test data series equivalent impedance namely r.(gv) and x.(gy) can
easily be computed as follows:

w
Equivalent resistance ref. to HV side roigyy = s;
ISC
Equivalent impedance ref. to HV side zegy) — L
1
Equivalent leakage reactance ref. to HV side x,gv,) | 2 )
= Ze (HV) Te (HV)
We can also calculate r,(zy) and x¢(ry) as follows: )
rewvy = 4 Te(HV)
XeLV) = azxe HY)
where,a = NLV the turns ratio
N
HV

Once again, remember if you are drawing equivalent circuit referred to LV side, use
parameter values with suffixes LV, while for equivalent circuit referred to HV side parameter
values with suffixes HV must be used.

25.3 Efficiency of transformer

In a practical transformer we have seen mainly two types of major losses namely core and copper
losses occur. These losses are wasted as heat and temperature of the transformer rises. Therefore
output power of the transformer will be always less than the input power drawn by the primary
from the source and efficiency is defined as



Output power in KW

n =Output power in Kw + Losses
Output power in KW

=Output power in Kw + Core loss + Copper loss ( 25. 1)

We have seen that from no load to the full load condition the core loss, P.,, remains
practically constant since the level of flux remains practically same. On the other hand we know
that the winding currents depend upon the degree of loading and copper loss directly depends
upon the square of the current and not a constant from no load to full load condition. We shall
write a general expression for efficiency for the transformer operating at x per unit loading and
delivering power to a known power factor load. Let,

KVA rating of the transformer be = §
Per unit degree of loading be = x

Transformer is delivering = x § KVA

Power factor of the load be = cos ¢

Output power in KW = xS cos 6
Let copper loss at full load (i.e., x=1) = Peu
. . 2
Therefore copper loss at x per unit loading = x P¢y
Constant core loss = Pcore (25.2)

(25.3)
Therefore efficiency of the transformer for general loading will become:

xS cos 6

xS cos 0+ Peyre + e P.,

If the power factor of the load (i.e., cos 6) is kept constant and degree of loading of the
transformer is varied we get the efficiency Vs degree of loading curve as shown in the figure
25.5. For a given load power factor, transformer can operate at maximum efficiency at some
unique value of loading i.e., x. To find out the condition for maximum efficiency, the above
equation for # can be differentiated with respect to x and the result is set to 0. Alternatively, the
right hand side of the above equation can be simplified to, by dividing the numerator and the
denominator by x. the expression for # then becomes:

S cos 0

n

T e —pn., P
Scos 0+ wy+xPy

For efficiency to be maximum, md (Denominator) is set to zero and we get,

P

or 4 ScosO+_" +xP =0

dx X




or-_" +P =0
x° cu
2
or x PCM = Pcore

The loading for maximum efficiency, x =

cu
Thus we see that for a given power factor, transformer will operate at maximum
P
efficiency when it is loaded to -— S KVA. For transformers intended to be used continuously

at its rated KVA, should be designed such that maximum efficiency occurs at x = 1. Power
transformers fall under this category. However for transformers whose load widely varies over
time, it is not desirable to have maximum efficiency at x = 1. Distribution transformers fall under
this category and the typical value of x for maximum efficiency for such transformers may
between 0.75 to 0.8. Figure 25.5 show a family of efficiency Vs. degree of loading curves with
power factor as parameter. It can be seen that for any given power factor, maximum efficiency

occurs at a loading of x = \/; . Efficiencies #max1, #max2 and nmax3 are respectively the maximum

efficiencies corresponding to power factors of unity, 0.8 and 0.7 respectively. It can easily be
shown that for a given load (i.e., fixed x), if power factor is allowed to vary then maximum
efficiency occurs at unity power factor. Combining the above observations we can say that the

efficiency is obtained when the loading of the transformeris x = _/_« and load power factor is

unity. Transformer being a static device its efficiency is very high of the order of 98% to even
99%.

Nimax 1 | == e Power factor = 1

TlmaxZ -

Nmax 3 === ZZ’/%\_ ower factor = 0.8
1
: Power factor = 0.7

Figure 25.5: Efficiency VS degree of loading curves.
25.3.1 All day efficiency

In the earlier section we have seen that the efficiency of the transformer is dependent upon the
degree of loading and the load power factor. The knowledge of this efficiency is useful provided
the load and its power factor remains constant throughout.

For example take the case of a distribution transformer. The transformers which are used
to supply LT consumers (residential, office complex etc.) are called distribution transformers. For
obvious reasons, the load on such transformers vary widely over a day or 24 hours. Some times
the transformer may be practically under no load condition (say at mid night) or may be over
loaded during peak evening hours. Therefore it is not fare to judge efficiency of the



transformer calculated at a particular load with a fixed power factor. All day efficiency,
alternatively called energy efficiency is calculated for such transformers to judge how efficient
are they. To estimate the efficiency the whole day (24 hours) is broken up into several time
blocks over which the load remains constant. The idea is to calculate total amount of energy
output in KWH and total amount of energy input in KWH over a complete day and then take the
ratio of these two to get the energy efficiency or all day efficiency of the transformer. Energy or
All day efficiency of a transformer is defined as:

Energy output in KWH in 24 hours

Hall day =

Energy input in KWH in 24 hours
Energy output in KWH in 24 hours
Output in KWH in 24 hours + Energy loss in 24 hours
Output in KWH in 24 hours
Output in KWH in 24 hours + Loss in core in 24 hours + Loss in the

Winding in 24 hours
Energy output in KWH in 24 hours

Energy output in KWH in 24 hours + 24 P, + Energy loss (cu) in the
winding in 24 hours

With primary energized all the time, constant P, loss will always be present no matter what is
the degree of loading. However copper loss will have different values for different time blocks as
it depends upon the degree of loadings. As pointed out earlier, if P, is the full load copper loss
corresponding to x = 1, copper loss at any arbitrary loading x will be x™ P.,. It is better to make
the following table and then calculate 741 day-

Time blocks KVA Degree of P.Fofload [KWH output KWH cu
Loading loading x loss
T1 hours S1 x1=81/8 cos 0 S1 cos 01T X P., T
T> hours A\Y) x2 = 89/S cos &h Sy cos GrTr x22 P, Tr
T,, hours S X = Sp/S cos 6, Sy cos 0,T, xn2 P, T,
Note that Z,Ti = 24
i=1
. ‘ O
Energy output in 24 hours = 2. cos 6;T;
i=1
Total energy loss = 24P + ZPT
core Zi
i=1
n zi:n]S,' cos 0; T;
allday = . S cosOT+ X PT+24P

21:1 i i i z’=] i a i core



25.4 Regulation

The output voltage in a transformer will not be maintained constant from no load to the full load
condition, for a fixed input voltage in the primary. This is because there will be internal voltage
drop in the series leakage impedance of the transformer the magnitude of which will depend upon
the degree of loading as well as on the power factor of the load. The knowledge of regulation
gives us idea about change in the magnitude of the secondary voltage from no load to full load
condition at a given power factor. This can be determined experimentally by direct loading of the
transformer. To do this, primary is energized with rated voltage and the secondary terminal
voltage is recorded in absence of any load and also in presence of full load. Suppose the readings

of the voltmeters are respectively Vg and V,. Therefore change in the magnitudes of the

secondary voltage is Vo — V». This change is expressed as a percentage of the no load secondary
voltage to express regulation. Lower value of regulation will ensure lesser fluctuation of the
voltage across the loads. If the transformer were ideal regulation would have been zero.
(v -v)
Percentage Regulation, %0 R= 20 > -100
%

20

For a well designed transformer at full load and 0.8 power factor load percentage
regulation may lie in the range of 2 to 5%. However, it is often not possible to fully load a large
transformer in the laboratory in order to know the value of regulation. Theoretically one can
estimate approximately, regulation from the equivalent circuit. For this purpose let us draw the
equivalent circuit of the transformer referred to the secondary side and neglect the effect of no
load current as shown in the figure 25.6. The corresponding phasor diagram referred to the
secondary side is shown in figure 25.7.

12 Ie2 (3 S
Pty
V20 A\ 7,
! b s
Approximate Equivalent Circuit referred to secondary I,
Figure 25.6: Equivalent circuit ref. to Figure 25.7: Phasor diagram ref. to
secondary. secondary.

It may be noted that when the transformer is under no load condition (i.e., S is opened),
the terminal voltage V7 is same as Vpg. However, this two will be different when the switch is
closed due to drops in I r.p and I 7 x.). For a loaded transformer the phasor diagram is drawn
taking terminal voltage V> on reference. In the usual fashion /; is drawn lagging V5, by the power
factor angle of the load 6, and the drops in the equivalent resistance and leakage reactances are
added to get the phasor V5(. Generally, the resistive drop I» re> is much smaller than the reactive

drop I» x ». It is because of this the angle between OC and OA (0) is quite small. Therefore as
per the definition we can say regulation is



V-V
R=(» :)=0C-04

Voo ocC

An approximate expression for regulation can now be easily derived geometrically from
the phasor diagram shown in figure 25.7.

OC = OD since, 6 is small

Therefore, OC — OA = OD -0A
= AD
= AE+ED

I rep cos O + I x,p0 sin 6

OC-0A
oC
- I r cosH;rI

2 e2

So per unit regulation, R

x sinf
e2 2

5

r 1 X

or,R = cos 0 +—2=

sin 0,

20 20
It is interesting to note that the above regulation formula was obtained in terms of
quantities of secondary side. It is also possible to express regulation in terms of primary
quantities as shown below:

12 re 2 I 'er
We know, R = cos b + sin 6>
Vv 1%
20 20

Now multiplying the numerator and denominator of the RHS by a the turns ratio, and further
manipulating a bit with a in numerator we get:

(I /a)a,r (I /a)a,x
R=_2 c2costh+ 2 esin6
aVopaVa
! r x A
Now remembering, that (hia)y=I> @ Per=r,1,a’ ¢2=x, and Vo = Vo =V ; we get
regulation formula in terms of primary quantity as:
T X
5 el I, el .
R = ™ cos 0y +—T—sin 6,
v v
20 20
1y r X
12 el I, e
Or,R = cos 0, + sin 0,
Vi 1
. I r I x
Neglecting no load current: R = _L_o 50, 4+ sint,
Vi Vi

Thus regulation can be calculated using either primary side quantities or secondary side
quantities, since:



Ir I2x I'r I x

R=—=—cos 0 +——=sin )y =—cos 0, +
V

20 20 Vi A

Now the quantity L, represents what fraction of the secondary no load voltage is

sin 6,

dropped in the equivalent winding resistance of the transformer. Similarly the quantity
Ix . . . .
»".» represents what fraction of the secondary no load voltage is dropped in the equivalent

leakage reactance of the transformer. If 15 is rated curerent, then these quantities are called the per

unit resistance and per unit leakage reactance of the transformer and denoted by , and ,
respectively. The terms = _- wioand = g ws: are called the per unit resistance and per unit

leakage reactance respectively. Similarly, per unit leakage impedance ,can be defined.
It can be easily shown that the per unit values can also be calculated in terms of primary
quantities as well and the relations are summarised below.

1 r 1 r
— 2rated e2 — lrated el
r 14
20 Vi
I x I x
— 2rated e2 — lrated el
Vaovi
1 < 1 <
— 2rated e?2 — lrated el
z vV
20 Vi
Z Z Z
where, z :\;fz +x" andz S/ro+x .
e2 e2 e2 el el el

It may be noted that the per unit values of resistance and leakage reactance come out to be
same irrespective of the sides from which they are calculated. So regulation can now be
expressed in a simple form in terms of per unit resistance and leakage reactance as follows.

per unit regulation, R = ,cos 6» + ,sin 0
and % regulation R = ( ,cos 02 + , sin 6, ) - 100

For leading power factor load, regulation may be negative indicating that secondary
terminal voltage is more than the no load voltage. A typical plot of regulation versus power
factor for rated current is shown in figure 25.8.

% Regulation

2
Leadipgprwertretdr | —-sasiappower factor }'
0.2 04 0. . 0.8 jt6 (l4 0.2 ‘
b HV LV LV HV HV LV LV HV

Figure 25.8: Regulation VS power Figure 25.9: LV and HV windings in both
factor curve. the limbs.



To keep the regulation to a prescribed limit of low value, good material (such as copper) should
be used to reduce resistance and the primary and secondary windings should be distributed in the
limbs in order to reduce leakage flux, hence leakage reactance. The hole LV winding is divided
into two equal parts and placed in the two limbs. Similar is the case with the HV windings as
shown in figure 25.9.

25.5 Tick the correct answer

1. While carrying out OC test for a 10 kVA, 110 / 220 V, 50 Hz, single phase transformer
from LV side at rated voltage, the watt meter reading is found to be 100 W. If the same
test is carried out from the HV side at rated voltage, the watt meter reading will be

(A) 100 W (B) 50 W (©) 200 W (D)25W

2. A20kVA, 220V /110 V, 50 Hz single phase transformer has full load copper loss = 200
W and core loss = 112.5 W. At what kVA and load power factor the transformer should
be operated for maximum efficiency?

(A) 20 kVA & 0.8 power factor (B) 15 kVA & unity power factor
(C) 20 kVA & unity power factor (D) 15 kVA & 0.8 power factor.



3. A transformer has negligible resistance and has an equivalent per unit reactance 0.1. Its
voltage regulation on full load at 30° leading load power factor angle is:

(A)+5 % B)-5% O©)+10% (D) -10 %

4. A transformer operates most efficiently at 4 th full load. The ratio of its iron loss and full

load copper loss is given by:
(A) 16:9 (B) 4:3 (C) 34 (D) 9:16

5. Two identical 100 kVA transformer have 150 W iron loss and 150 W of copper loss at
rated output. Transformer-1 supplies a constant load of 80 kW at 0.8 power factor lagging
throughout 24 hours; while transformer-2 supplies 80 kW at unity power factor for 12
hours and 120 kW at unity power factor for the remaining 12 hours of the day. The all day
efficiency:

(A) of transformer-1 will be higher.  (B) of transformer-2 will be higher.
(B) will be same for both transformers. (D) none of the choices.

6. The current drawn on no load by a single phase transformer is ig = 3 sin (3147 - 60°) A,

when a voltage vi = 300 sin(3147)V is applied across the primary. The values of
magnetizing current and the core loss component current are respectively:

(A)I2A&1.8A (B)26A&1I5A (CO18A&I2A (D)I5A&26A

7. A4kVA,400/200 V single phase transformer has 2 % equivalent resistance. The
equivalent resistance referred to the HV side in ohms will be:

(A)0.2 (B) 0.8 ©) 1.0 (D) 0.25

8. The % resistance and the % leakage reactance of a 5 kVA, 220 V /440 V, 50 Hz, single
phase transformer are respectively 3 % and 4 %. The voltage to be applied to the HV side,
to carry out S.C test at rated current is:

(A 11V (B) 154V (C)22V (D)30.8V
25.6 Solve the Problems

1. A 30KVA, 6000/230V, 50Hz single phase transformer has HV and LV winding
resistances of 10.2Q and 0.0016Q respectively. The equivalent leakage reactance as
referred to HV side is 34Q). Find the voltage to be applied to the HV side in order to
circulate the full load current with LV side short circuited. Also estimate the full load %
regulation of the transformer at 0.8 lagging power factor.

2. A single phase transformer on open circuit condition gave the following test results:

Applied voltage | Frequency | Power drawn
192V 40 Hz 392 W
288 V 60 Hz 732 W




Assuming Steinmetz exponent n = 1.6, find out the hysteresis and eddy current loss
separately if the transformer is supplied with 240 V, 50 Hz.

3. Following are the test results on a 4KVA, 200V/400V, 50Hz single phase transformer.
While no load test is carried out from the LV side, the short circuit test is carried out from

the HV side.

No load test: | 200v 074 60w
Short Circuit Test: | 9V 6A 21.6 W

Draw the equivalent circuits (i) referred to LV side and then (ii) referred to HV side and
insert all the parameter values.

4. The following data were obtained from testing a 48 kVA, 4800/240V, 50 Hz transformer.

0.C test (from LV side): | 240V 2A 120W
S.C test (from HV side): | 150V 10A 600 W

(i) Draw the equivalent circuit referred to the HV side and insert all the parameter
values.

(i1)) At what kVA the transformer should be operated for maximum efficiency? Also
calculate the value of maximum efficiency for 0.8 lagging factor load.
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28.1 Introduction

In this lesson some typical problems on transformer are solved with emphasis on logical steps
involved. For a practical two winding transformer, the knowledge of approximate equivalent
circuit is of utmost importance in order to predict its performance. Equivalent circuit parameters
are either supplied directly or indirectly in terms of O.C and S.C test data. The first problem
enumerates in detail how to get the equivalent circuit parameters from test data. The importance
of the side (LV or HV) in which calculations are carried out is highlighted. The second problem,
in fact, is an extension of the first problem. Calculation of regulation, efficiency and maximum
efficiency are dealt with in these problems.

Next few problems highlight the basic calculation steps involved in ideal 3-phase
transformer and ideal auto transformer since the equivalent circuit of these transformers are
outside the scope of first year electrical technology course.

28.2 Problems on 2 winding single phase transformers

1. The O.C and S.C test data are given below for a single phase, 5 kVA, 200V/400V, 50Hz
transformer.

O.C test from LV side :| 200V 1.25A  150W
S.C test from HV side ;| 20VV 12.5A 175W

Draw the equivalent circuit of the transformer (1) referred to LV side and (ii) referred to HV side
inserting all the parameter values.

Solution

Let us represent LV side parameters with suffix 1 and HV side parameters with suffix 2.

Computation with O.C test data

Let us show the test data in the approximate equivalent circuit (Figure 28.1) of the transformer as
given below.

Due to the fact that the HV side is open circuited, there will be no current in the branch re1 + jxeq -

So entire power of 150W is practically dissipated in R.;1. The no load current Ip; = 1.25 A is

divided into: magnetizing component /,,;; and core loss component /.1 as depicted in the phasor
diagram figure 28.1.

No load (or O.C) power factor cos 6, = __ 150
200-1.25
= 0.6
0, = cos ' 0.6

53.13°



Hence, sin 8, = 0.8

After knowing the value of cos 6, and sin 6, and referring to the no load phasor diagram, /,,,; and
1.1 can be easily calculated as follows.

Magnetizing component 1,1 = Ip sin 6,

1.25-0.8

Iy = 1A
core loss component, I.;; = Iy cos 6,

1.25-0.6
I.;1 = 0.75A

Thus the parallel branch parameters Xj,;; and R.j1 can be calculated.

. . \%
Magnetizing reactance X1 = 7+

ml

200
1

200Q

. . |4
Resistance representing core loss Ry = 7;

Xm1

cll
200
0.75

,Ren = 266.67Q

It may be noted that from the O.C test data we can get the parallel branch impedances namely the
magnetizing reactance and the resistance representing the core loss referred to the side where
measurements have been taken.

Computation with S.C test data

Since the test has been carried out from the HV side with LV side shorted, we draw the
equivalent circuit referred to the HV side as shown in figure 28.2. Parameter values are denoted
by using suffix 2. Important point to note here is the absence of the parallel branch. The reason

being, the voltage applied during S.C test is quite low causing a low flux level. Hence
magnetizing and core loss component of currents will be pretty small compared to the rated

current flowing through r¢; + jxe; . In this case, power drawn from the supply gets practically
dissipated in winding resistances i.e., 7).
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Figure 28.2: O.C equivalent circuit and phasor diagram.

Calculation of series parameters is rather simple and as follows.

Power drawn W, = [ 2 r
woo
OI', rez = _;L
[SC
175
12.5%
Fep = 1120
|4

Now S.C impedance 7z, = T

sc

= 20/12.5
Zse = 1.6Q= X,
e2 e2
Thus, x,o  _ f ZSCZ - Py
= J1.6°-1.12°
Xe2 = 1.14Q

Although calculation of parameters from the test results are over, it is very important to note that
parallel branch parameters have been obtained referred to LV side and series branch parameters
have been obtained referred to HV side. However to draw a meaningful equivalent circuit
referred to a particular side, all the parameters are to be represented/calculated referred to that
side.



Equivalent circuit referred LV side

The parallel branch parameters R.j; = 266.67Q and X,,,; = 200Q have already been calculated wrt
LV side. Naturally no further transformations are necessary. However, series parameters r,» and
X2 have been calculated above from test data. So we need to calculate r,1 and x,.q in order to
correctly represent the equivalent circuit referred to primary side.

Turns ratio, a = 200/400 = 0.5
but we know, 7.1 = g2re
2
and xX,1 = a xe
Thus r,; = 0.5 - 1.12=0.28Q
and x,; = 0.5% -1.14=0.285Q

So the equivalent circuit referred to LV side can now be drawn showing all the parameter values
as shown below in figure 28.3.

Figure 28.3: Equivalent circuit referred to LV side.

0.28Q0 0.285 Q

c AMA—— O

~
>
n
Ly

=
267.57Q
0200




Equivalent circuit referred HV side

Here we note that series parameters referred to HV side are already known to be rep = 1.12Q and

xe2 = 1.14Q). However, the parallel branch parameters are to be transformed as follows.
Turns ratio,a = 0.5
but we know, R.p = Rc11/612
and X;;p = Xml/a2
Thus, Rep = 266.67/0.5" = 1066.68Q
and X,p = 200/0.5” = 800Q

We are now in a position to draw the equivalent circuit of the same transformer referred to the
HV side as shown in figure 28.4.

After getting the equivalent circuit, regulation, efficiency of the transformer can be predicted
under various loading conditions. Solution of the next problem shows how equivalent circuit can
be used to predict the performance,
2. For the same transformer (single phase, 5 kVA, 200V/400V, 50 Hz) of problem 1, the
equivalent circuit of which is known, calculate the following:

1. the efficiency of the transformer at 75% loading with load power factor = 0.7

1.12Q 1.140

— 0

3

L e )
1066 Q
0800

¢ <
@ G §—>.

Figure 28.4: Equivalent circuit referred to HV side.

ii. At what load or kVA the transformer is to be operated for maximum efficiency? Also
calculate the value of maximum efficiency.

iii. The regulation of the transformer at full load 0.8 power factor lag.

iv. What should be the applied voltage to the LV side when the transformer delivers rated
current at 0.7 power factor lagging, at a terminal voltage of 400 V?

Solution

i. From the test data of the previous problem, we have:

Full load kVA rating, S = 5kVA
Core loss at rated voltage & frequency, Peore = 150W
Full load copper loss, P.,, = 175W



xScoséd
xScos@+P +x" P

core cu

We know, efficiency, 7 =

75% loading means, x = 0.75
load power factor, cos 8 = 0.7

0.75%5000%0.7
0.75%5000x0.7 +150 + 0.75% x175
2625/2873.44

% efficiency, ) = 91.35%
ii. We know maximum efficiency occurs when x P, = Pcore, Where P, is the full load copper
loss and P, is the iron loss. Now P, = 175 W and P, = 120 W.

/7:

Per unit value of loading for 4 iSx = [P/ P,



= J120/175

x = 0.83
Thus the load for 7,4 = xS

= 0.83-5kVA
the required load for 77,4, = 4.15kVA

iii. To calculate the regulation of the transformer at load current /> and load power factor cos 6,

we use the following formula in terms of HV side parameters.

12r cosH+12x sin 0
> v .

20
12.5%1.12x0.7 +12.5%1.14x0.71
400

Per unit regulation, R

Putting the values, R =
% regulation, R = 4.9%

iv. It is interesting to note that the difference between the reflected primary supply voltage
magnitude V| and the secondary load terminal voltage magnitude V; is the numerator of the

regulation formula used above.

Vi -V, = ILr,ocos8+ 1 x,,sin6

or, V1' = Vo+Dhr,pcos+1x,sin6
= 125-1.12-0.7+125-1.14-0.71
= 400+ 19.92V

so, V| = 419.92v

Remember Vly represents the applied voltage to LV calculated in terms of HV side. So the

magnitude of the actual voltage to be applied across the primary is:

V1 = a Vlv

= 0.5-419.92
Vi =210V



28.3 Problems on 3-phase ideal transformer

It may be recalled that one can make a 3-phase transformer by using a bank of three numbers of
identical single phase transformers or a single unit of a 3-phase transformers.

1. Three single phase ideal transformers, each of rating SkVA, 200V/400V, 50 Hz are
available.

a) The LV sides are connected in star and HV sides are connected in delta. What line to
line 3-phase voltage should be applied and what will be the corresponding HV side
line to line voltage will be? Also calculate and show the line and phase current
magnitudes in both LV & HV sides corresponding to rated condition.

b) The LV sides are connected in delta and HV sides are connected in delta. What line to
line 3-phase voltage should be applied and what will be the corresponding HV side
line to line voltage will be? Also calculate and show the line and phase current
magnitudes in both LV & HV sides corresponding to rated condition.

Solution

Here the idea is not to exceed the voltage and current rating of HV and LV coils of each single
phase transformer. Now for each transformer having rating 5 kVA, 200V/100V, 50 Hz we have:

Rated voltage of each HV coil is = 200V
Rated voltage of each LV coilis = 100V
Phase turns ratio is a,, = 200/100 =2

5000/200 = 25A
5000/100 = 50A

Rated current of each HV coil is

Rated current of each LV coil is

Solution of (a)

In this case HV sides are connected in star and LV sides are connected in delta as shown in figure
28.5. Thus line to line voltage to be applied to HV side must not exceed 200 3 =F46.4V . This
will ensure that rated voltage is applied across each of the HV coil and rated voltage of 100 V is
induced in each of the LV coil. Obviously the available line to line voltage on the LV side will be
100 V since the coils on this side are connected in delta.

25 A

T 86.6 A
3ﬂ.4_ \Y \50 N

i 86.6 A
3464V 190V
b 2sa 86.6 A

25 A

Figure 28.5: Connection of transformers for part (a).



Now the question is how much line current should be allowed to be supplied by the LV side
when balanced 3-phase load is connected across it? The constrain is that we should not allow
overloading of any of the coils in terms of current as well. Since rated current of each LV side
coil is 50 A and the coils are connected in delta, so the corresponding allowed line current in the
LV side will be is 50.% = 86.6 A (Note: line current = /3 phase current in delta connection).

But we know for any individual ideal transformer if LV coil carries a 50 A current, the

corresponding HV coil must carry a current of 50/a,, = 25 A as shown in fig 28.5. Thus HV side
line current drawn from the supply must be also 25 A as these coils are connected in star (Note:
line current = phase current in star connection).

Now we are in a position to calculate the total kVA handled by the bank of 3-phase transformer.
Referring to the LV side the transformers supplies 86.6 A line current at a line to line voltage of

100 V. Therefore, total kVA supplied is equal to BVl =\/.><100><86.6 VA=15 kVAI.

Similarly total kVA drawn from the supply is calculated as.8 x346.4x 25 mbox VA = 15 kVA .
Thus we see the total kVA becomes 3 times the individual kVA rating of the transformers. Since
the transformers are assumed to be ideal Total kVA input = Total kVA output.

Solution of (b)

In this case HV sides are connected in delta and LV sides are connected in star as shown in figure
28.6. Thus line to line voltage to be applied to HV side must not exceed 200V. This will ensure
that rated voltage is applied across each of the HV coil and rated voltage of 100 V is

induced in each of the LV coils. The available line to line voltage on the LV side will be 100 3,5

173.2 V since coils on this side are connected in star.

Since LV coils are connected in star allowed line current to be delivered is 50 A. So total kKVA
output is 3 x173.2x50 VA = 15 kVA . In each HV coil current has to be 25 A and the
corresponding  supply line current is 3-25=433A. Total input kVA is
3 x200x 43.3 VA = 15 kVA . Distribution of phase and line currents in LV and HV sides are
shown in figure 28.6.

2. Three identical single phase transformers each of rating 5 kVA, 200V/100V, 50Hz are
connected in delta-delta. Calculate what line to line voltage to be applied to the HV side?
Also find out corresponding LV side line to line voltage. Find out the kV A rating of the
bank such that none of the transformers get over loaded.



Solution

433 A

200V
t
00 V
¥

[\

433 A 50 A

Figure 28.6: Connection of transformers for part (b).

The connection diagram of the delta-delta arrangement is shown in figure 28.7

86.6 A
-t

100 V

100V
. S0A
433A ‘
86.6 A

Figure 28.7: Connection of transformers for delta-delta.

As explained in the first two problems, line to line voltage to be applied to the HV side is 200 V
because of delta connection. Induced voltage in each coil has to be 100 V in the LV side. Since
the LV coils are also connected in delta the line to line voltage on the LV side is 100 V.

Since coil current has to be rated values, line currents on HV and LV sides are obtained as 43.3

A and 86.6 A. Total kVA that <can be handled by the bank
is /3 x 200x 43.3 VA = .3 x100x86.6 VA = 15 kVA .

3. Two identical transformers each of rating 5 kVA, 200V/100V, 50 Hz transformers are
connected in open delta. Calculate the kV A rating of the open delta bank when HV side is
used as primary.



S0A

t
T 100 V

> ¥
y S 50 A
t =
- vk 100V
y |
25 A
200V
25 A
200V
50 A
25 A
50 A

Figure 28.8: Connection of transformers for open delta.

In open delta connection each coil is connected across the lines; therefore, the line to line voltage
to be applied to the HV side is 200 V. Induced voltage in the LV coils will be 100 V. Hence line
to line voltage in the LV side is 100 V.

A careful look at the circuit in fig 28.8 shows that both HV and LV coils are in series with the

lines. Thus if we want the transformers not to be over loaded, line currents on the LV side must
be 50 A whi¢h automatically fixes the HV side line current to be 25 A.

Let us use 3 V1 I; to calculate the kVA handled by the bank of two single phase transformers i.e;
Total KVA = 3 x100x50 = 3 xZ00x 25 VA = 8,66 kVA

It is interesting to note that in other types of 3-phase connection of transformers such as star-star,
star-delta, delta-delta, total kVA handled without overloading any of the transformers is 3 times
the individual rating of the transformers. This we learned while solving previous problems where
we got the total kVA as 15 kVA (= 3%x5 kVA) . But in open delta connection where two single

phase identical transformers each of rating 5 kVA has been employed we note the total kVA

handled is not 10 kVA ( = 2x5)kVA but 8.66 kVA only. Thus total kVA available as open delta
is only s79e6 X100 = 86.6% of the installed capacity.

4. A 3-phase, 500 kVA, 6000V/400V, 50Hz, delta-star connected transformer is delivering
300 kW, at 0.8 pf lagging to a balanced 3-phase load connected to the LV side with HV
side supplied from 6000 V, 3- phase supply. Calculate the line and winding currents in
both the sides. Assume the transformer to be ideal.

Solution

First note that it is not a bank of single phase transformers. In fact it is a single unit of 3-phase
transformer with the name plate rating as 500 kVA, 6000 V/400 V, 5S0Hz, delta-star connected 3-
phase transformer. 500 kVA represents the fotal kVA and voltages specified are always line to
line. Similarly unless otherwise specified, kW rating of a 3-phase load is the total kW absorbed
by the load. The connection diagram is shown in figure 28.9.






5413 A

400V E =

400 V
Kl
5413 A

Figure 28.9: Connection diagram with 3-phase load.

Noting the relation kVA, S =P /cosf@and =S/ \/5 Vi let us start out calculation.

Load kVA = 300/0.8 =375 kVA = input kVA
Line current drawn by the load, I>;, = 375000/ b - 400

DL =5413A
Because of star connection, LV coil current = 541.3 A
since input kVA = 375 kVA
HV side line current, I1;, = 375000
3 - 6000
I =36.1A

Actual phase winding currents can also be calculated as:

LV side line current

1633
541.3 A due to star connection.

LV side line current / 3

or, Ilph IlL/\ﬁ_
Ipn = 36.1/3=20.8 A due to delta
connection.

LV side phase coil current

or, Ioph
I 2ph

HYV side phase coil current



28.4 Problems on ideal auto transformers

Recall that an auto transformer essentially is essentially a single winding transformer with a
portion of the winding common to both supply and the load side. In contrast to a two winding
transformer it can not provide isolation between HV and LV side. Here VA is transferred from
one side to the other not only by magnetic coupling but also by electrical conduction.
Autotransformer becomes cheaper than a similarly rated two winding transformer when the
voltage transformation ratio is close to unity. A single phase two winding transformer can be
suitably connected to perform like an auto transformer.

1. A 5kVA, 200 V/ 100 V, 50 Hz, single phase ideal two winding transformer is to used to
step up a voltage of 200 V to 300 V by connecting it like an auto transformer. Show the
connection diagram to achieve this. Calculate the maximum kVA that can be handled by
the autotransformer (without over loading any of the HV and LV coil). How much of this
kVA is transferred magnetically and how much is transferred by electrical conduction.

Solution

Two connect a two winding transformer as an auto transformer, it is essential to know the dot
markings on the two coils. The coils are to be now series connected appropriately so as to
identify clearly between which two terminals to give supply and between which two to connect
the load. Since the input voltage here is 200 V, supply must be connected across the HV
terminals. The induced voltage in the LV side in turn gets fixed to 100 V. But we require 300 V
as output, so LV coil is to be connected in additive series with the HV coil. This is what has been
shown in figure 28.10.

. >
>
o
S
o
75 A
> P Va0 Load
200 V o l
supply

25A l

Figure 28.10: Two winding transformer as an autotransformer.

Here the idea is not to exceed the voltage and current rating of HV and LV coils of the two
winding transformer. Now for the transformer having rating 5 kVA, 200 V/ 100 V, 50 Hz we
have:

Rated voltage of HV coil is = 200 V
Rated voltage of LV coilis = 100 V
Phase turns ratiois @ = 200/100 =2

5000/200 =25 A
5000/100 =50 A

Rated current of each HV coil is

Rated current of each LV coil is



Since the load is in series with LV coil, so load current is same as the current flowing through the
LV coil. Thus a maximum of 50 A can be drawn by the load otherwise overloading of the coils
take place.

Output kVA = 30050 VA =15kVA
input kKVA = Output kVA = 15 kVA

" transformer is ideal



Current drawn form the supply = 15000/200 =75 A

Now the question is now much current is flowing in the HV coil and in which direction?
However, this is quite easy since supply and load currents are already known along with their
directions as shown in figure 28.10. Applying KCl at the junction P, we get:

Current through HV coil Igy=75-50=25 A

The direction of Iyy is obviously from top to bottom. No matter whether a two winding
transformer is used as a two winding transformer or as an autotransformer, mmf must be
balanced in the coils. If current comes out through the dot terminal in the LV coil, current must
flow in through the dot of the HV caoil.

It is important to note that as a two winding transformer, kVA handling capacity is 5 kVA, the
rating of the transformer. However, the same transformer when connected as auto transformer,
kV A handling capacity becomes 15 kVA without overloading any of the coils.

kVA transferred magnetically = kVA of either HV or LV coil

= 200-25 VA =100 50 VA=5kVA
kVA transferred magnetically = 5kVA

kVA transferred electrically = total kVA transferred — kVA
transferred magnetically

= 15-5=10kVA

2. An autotransformer has a coil with total number of turns Ncp = 200 between terminals C
and D. It has got one tapping at A such that Ngc = 100 and another tapping at B such that
Npa = 50.

Calculate currents in various parts of the circuit and show their directions when 400 V
supply is connected across AC and two resistive loads of 60Q & 40Q are connected
across BC and DC respectively.

Solution

Let us first draw the circuit diagram (shown in figure 28.11) as per data given in the problem.
First let us calculate the voltages applied across the loads remembering the fact that voltage per
turn in a transformer remains constant.

Supply voltage across AC, Voc = 400V

Number of turns between A & C Nac = 100
Voltage per turn = 400/100 = 4V

Voltage across the 40Q load = Npc - Voltage per turn
= 200 -4 =800V
So, current through 40Q =  800/40 = 20A
Voltage across the 60Q load = Npc - Voltage per turn



= 150-4=600V

So, current through 60Q = 600/60 = 10A
(28.1)

20 A

Npc =200
Nac =100

Nag =50

AN

Ngp =50

Figure 28.11: Circuit arrangement.
Total output kVA will be the simple addition of the kV As supplied to the loads 1,e.,

(600 - 10 + 800 - 20) VA =22000 VA =22 kVA

Assuming the autotransformer to be ideal, input kVA must also be 22 kVA. We are therefore in a
position to calculate the current drawn from the supply.

Current drawn from the supply = 22000/400 = 55 A

Now we know all the load currents and the current drawn from the supply. Current calculations in
different parts of the transformer winding becomes pretty simple-one has to apply KCL at the tap
points B and A.

20A
20+ 10=30 A
Applying KCL at A, current in AC part [4c = 55-30=25A

Current in DB part of the winding Igp

Applying KCL at B, current in AB part /4

It is suggested to repeat the problem if 40Q resistor is replaced by an impedance (30 + j40) Q
other things remaining unchanged.
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Chapter 22

Eddy Current & Hysteresis Losses (Lesson 22)

22.1 Lesson goals

In this lesson we shall show that (i) a time varying field will cause eddy currents to be
induced in the core causing power loss and (ii) hysteresis effect of the material also
causes additional power loss called hysteresis loss. The effect of both the losses will
make the core hotter. We must see that these two losses, (together called core loss) are
kept to a minimum in order to increase efficiency of the apparatus such as transformers &
rotating machines, where the core of the magnetic circuit is subjected to time varying
field. If we want to minimize something we must know the origin and factors on which
that something depends. In the following sections we first discuss eddy current
phenomenon and then the phenomenon of hysteresis.

Finally expressions for (i) inductance, (ii) stored energy density in a magnetic field and
(ii1) force between parallel faces across the air gap of a magnetic circuit are derived.
Key Words: Hysteresis loss; hysteresis loop; eddy current loss; Faraday’s laws;

After going through this section students will be able to answer the following questions.
After going through this lesson, students are expected to have clear ideas of the
following:
1. Reasons for core losses.
. That core loss is sum of hysteresis and eddy current losses.

2
3. Factors on which hysteresis loss depends.
4

. Factors on which eddy current loss depends.



Effects of these losses on the performance of magnetic circuit.
How to reduce these losses?
Energy storing capability in a magnetic circuit.

Force acting between the parallel faces of iron separated by air gap.

A S AN

Iron cored inductance and the factors on which its value depends.

22.2 Introduction

While discussing magnetic circuit in the previous lesson (no. 21) we assumed the exciting
current to be constant d.c. We also came to know how to calculate flux (¢) or flux density (B)
in the core for a constant exciting current. When the exciting current is a function of time, it
is expected that flux (¢) or flux density (B) will be functions of time too, since @ produced
depends on i. In addition if the current is also alternating in nature then both the



magnitude of the flux and its direction will change in time. The magnetic material is now
therefore subjected to a time varying field instead of steady constant field with d.c
excitation. Let:

The exciting current i(f) = Ty Si0 W
Assuming linearity, flux density B(f) = Lty t H®®)
= Mo Hr %
= N I,,4,81n wt
Potr =7
= W

B(?) Bpaxsin  t
22.2.1 Voltage induced in a stationary coil placed in a time varying field

If normal to the area of a coil, a time varying field ¢(7) exists as in figure 22.1, then an
emf is induced in the coil. This emf will appear across the free ends 1 & 2 of the coil.
Whenever we talk about some voltage or emf, two things are important, namely the
magnitude of the voltage and its polarity. Faraday’s law tells us about the both.
Mathematically it is written as e(t) = -N dji,‘/’

() do
e(t) =-dt
a et) =- 49
+\/ - dt
A2 i ) 1+ -2
S
Figure 22.1:

Let us try to understand the implication of this equation a bit deeply. ¢(¢) is to be
taken normal to the surface of the coil. But a surface has two normals; one in the upward
direction and the other in downward direction for the coil shown in the figure. Which one
to take? The choice is entirely ours. In this case we have chosen the normal along the
upward direction. This direction is obtained if you start your journey from the terminal-2
and reach the terminal-1 in the anticlockwise direction along the contour of the coil. Once
the direction of the normal is chosen what we have to do is to express ¢(f) along the same
direction. Then calculate N dz‘” and put a — ve sign before it. The result obtained will give
you eq3 i.e., potential of terminal -1 wrt terminal-2. In other words, the whole coil can be
considered to be a source of emf wrt terminals 1 & 2 with polarity as indicated. If at any
time flux is increasing with time in the upward direction, dd,w—is + ve and eo will come out to

be — ve as well at that time. On the other hand, at any time flux is decreasing with time

in the upward direction, d—d,‘/’ is — ve and e, will come out to be + ve as well at that time.
Mathematically let:
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Flux density B(f) = - w
Area of the coil = A
Flux crossing the area @(r) = B() A
= BuAsin 1 w
. . de
Induced voltage in the coil ej2 = -N o
= -]xd—(p "." N =1 here
dt
Dnaxo cos wt
Se12 = Epgy cOs WE
¢ w

max

RMS value of e120 E =

V2

" E= 2ff Quax putting o = 27 f

If the switch S is closed, this voltage will drive a circulating current i, in the coil the
direction of which will be such so as to oppose the cause for which it is due. Correct
instantaneous polarity of the induced voltage and the direction of the current in the coil are

shown in figure 22.2, for different time intervals with the switch S closed. In the jpteryal 0
<wt<nz, 4

_ __is+ve
2 dt
(0] ¢
increasing ) increasin
d. g
e(t)=- t=-ve
— i
30 direction of i is
1 2 12 Guch that it
(i) O<wt<T1/2 0<Wt<T/2  opposes increase
¢ ofo
M decreasing
decreasing do
et)=-dt=+ve
+ -
— > i
‘1'_‘:2 direction of i is
1 2 such that it
. T/2< WE<TT  opposes decrease
(i) T/2<Wt<TT of @

Figure 22.2: Direction of induced current.
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22.2.2 Eddy current

Look at the Figure 22.3 where a rectangular core of magnetic material is shown along with
the exciting coil wrapped around it. Without any loss of generality, one may consider this to
be a part of a magnetic circuit. If the coil is excited from a sinusoidal source, exciting current
flowing will be sinusoidal too. Now put your attention to any of the cross section of the core
and imagine any arbitrary rectangular closed path abcd. An emf will be induced in the path
abcd following Faraday’s law. Here of course we don’t require a switch S to close the path
because the path is closed by itself by the conducting magnetic material (say iron). Therefore

a circulating current ipqgy Will result. The direction

of ieqqy is shown at the instant when B(7 ) is increasing with time. It is important to note
here that to calculate induced voltage in the path, the value of flux to be taken is the flux
enclosed by the path i.e., @,,x = By X area of the loop abcd. The magnitude of the eddy
current will be limited by the path resistance , Rpq, neglecting reactance effect. Eddy

current will therefore cause power loss in Ryqs, and heating of the core. To calculate the
total eddy current loss in the material we have to add all the power losses of different
eddy paths covering the whole cross section.

22.2.3 Use of thin plates or laminations for core

We must see that the power loss due to eddy current is minimized so that heating of the
core is reduced and efficiency of the machine or the apparatus is increased. It is obvious
if the cross sectional area of the eddy path is reduced then eddy voltage induced too will
be reduced (Ecqqy » area), hence eddy loss will be less. This can be achieved by using
several thin electrically insulated plates (called laminations) stacked together to form the
core instead a solid block of iron. The idea is depicted in the Figure 22.4 where the plates
have been shown for clarity, rather separated from each other. While assembling the core
the laminations are kept closely pact. Conclusion is that solid block of iron should not be

Eddy current
path
Figure 22.3: Eddy current paths

used to construct the core when exciting current will be ac. However, if exciting current
is dc, the core need not be laminated.
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Insulated thin plates
(Laminations)

// .

{7 | are restricted to
smaller areas.

Figure 22.4: Laminated core to reduce eddy loss.

22.2.4 Derivation of an expression for eddy current loss in a thin plate

From physical consideration we have seen that thin plates each of thickness T, are to be
used to reduce eddy loss. With this in mind we shall try to derive an approximate
expression for eddy loss in the following section for a thin plate and try to identify the
factors on which it will depend. Section of a thin plate T << L and 4 is shown in the plane
of the screen in Figure 22.5.

D | C
3 | y
| g e h M '

<>
Q) | X hX dx
f—r —
Figure 22.5: Elemental eddy current Figure 22.6: Section of the elemental
path. eddy current path.

Eddy current loss is essentially 12R loss occurring inside the core. The current is
caused by the induced voltage in any conceivable closed path due to the time varying
field as shown in the diagram 22.5.

Let us consider a thin magnetic plate of length L, height & and thickness 7 such
that 7 is very small compared to both L and A. Also let us assume a sinusoidally time
varying field b = Bpaxsinwt exists perpendicular to the rectangular area formed by 7 and
h as shown in figure 22.5.

Let us consider a small elemental rectangular closed path ABCDA of thickness dx
and at a distance x from the origin. The loop may be considered to be a single coil
through which time varying flux is crossing. So there will be induced voltage in it, in
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similar manner as voltage is induced in a coil of single turn shown in the previous
section. Now,

Area of the loop ABCD = 2hx
Flux crossing the loop = w
Byyax 2hx sin t
RMS voltage induced in the loop, E = \/En f Biax 2hx
: . p (2h + 4x)
Resistance of the path through which eddy current flows, Rpa = T
X

To derive an expression for the eddy current loss in the plate, we shall first
calculator the power loss in the elemental strip and then integrate suitably to for total loss.
Power loss in the loop dP is given by:

o
dP = —

path
E>Ldx
p ( 2h+4x)

E°Ldx .
= sincet << h

ffffff 2
Total eddy current loss, Pegiy = ‘ =0 2 d

Volume of the thin plate = ALT
Eddy loss per unit volume, boldmath Peqqy = 7" f" By 1

or, Peddy = k,f 2 BW2 72

Thus we find eddy current loss per unit volume of the material directly depends
upon the square of the frequency, flux density and thickness of the plate. Also it is
inversely proportional to the resistivity of the material. The core of the material is
constructed using thin plates called laminations. Each plate is given a varnish coating for
providing necessary insulation between the plates. Cold Rolled Grain Oriented, in short
CRGO sheets are used to make transformer core.
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22.3 Hysteresis Loss

22.3.1 Unidirectional time varying exciting current

Consider a magnetic circuit with constant (d.c) excitation current /. Flux established will

have fixed value with a fixed direction. Suppose this final current Iy has been attained
from zero current slowly by energizing the coil from a potential divider arrangement as
depicted in Figure 22.7. Let us also assume that initially the core was not magnetized.
The exciting current therefore becomes a function of time till it reached the desired
current / and we stopped further increasing it. The flux too naturally will be function of

time and cause induced voltage e in the coil with a polarity to oppose the increase of
inflow of current as shown. The coil becomes a source of emf with terminal-1, +ve and
terminal-2, -ve. Recall that a source in which current enters through its +ve terminal
absorbs power or energy while it delivers power or energy when current comes out of the
+ve terminal. Therefore during the interval when i(¢) is increasing the coil absorbs
energy. Is it possible to know how much energy does the coil absorb when current is

increased from O to /p? This is possible if we have the B-H curve of the material with us.

B A
B P
0
v dB
D.C B
supply dH
- (0 H Hy H
Figure 22.7: Figure 22.8:

22.3.2 Energy stored, energy returned & energy density

Let:
i = current at time ¢
H = field intensity corresponding to i at time ¢

B = flux density corresponding to i at time ¢
(22.1)

Let an infinitely small time dt elapses so that new values become:

i +di = Current at time ¢ + dt
H + dH = Field intensity corresponding to i + di at time ¢ + dt

B + dB = Flux density corresponding to i + di at time ¢ + dt

dg

Voltage induced in the coil ejp = y
t
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= NA T
Power absorbed at ¢t = ej)i
dB
= NA Jti
dB Ni
= AlH —ynoting, H=""1
Energy absorbed in time dt, dW dB
’ = AlH yi-dt
= AIlHdB
total energy absorbed per unit j B,
volume, W o HdB

Graphically therefore, the closed area OKPBpBO is a measure of the energy stored by the
field in the core when current is increased from 0 to Iy. What happens if now current is
gradually reduced back to O from /y? The operating point on B- H curve does not trace

back the same path when current was increasing from O to /y. In fact, B- H curve (PHT)
remains above during decreasing current with respect the B-H curve (OGP) during
increasing current as shown in figure 22.9. This lack of retracing the same path of the
curve is called hysteresis. The portion OGP should be used for increasing current while
the portion (PHT) should be used for decreasing current. When the current is brought
back to zero external applied field H becomes zero and the material is left magnetized
with a residual field OT. Now the question is when the exciting current is decreasing,
does the coil absorb or return the energy back to supply. In this case d—Bd, being —ve, the

induced voltage reverses its polarity although direction of i remains same. In other words,
current leaves from the +ve terminal of the induced voltage thereby returning power back
to the supply. Proceeding in the same fashion as adopted for increasing current, it can be
shown that the area PMTRP represents amount of energy returned per unit volume.

Obviously energy absorbed during rising current from O to Iy is more than the energy

returned during lowering of current from /y to 0. The balance of the energy then must
have been lost as heat in the core.

B a
inT
\Y | = | P
i
T G i OT = Residual field
1
: >
(0 H(A/m) or I(A)

Figure 22.9:
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22 .4 Hysteresis loop with alternating exciting current

In the light of the above discussion, let us see how the operating point is traced out if the
exciting current is i = I, sin wt. The nature of the current variation in a complete cycle
can be enumerated as follows:

In the interval 0 £ wt < izt :11s +ve and % 1S +ve.
In the interval 2§ Swt<rm :iis+veand % s —ve.
In the interval 7 £ wt 37” 1 i1s —ve and % is —ve.

In the interval32—” Swt<2r :iis—ve and % 8 +ve.
t

Let the core had no residual field when the coil is excited by i = I,,; sin wt. In the
interval 0 < wt < =5, B will rise along the path OGP. Operating point at P corresponds to

+10x OF +H,pqy. For the interval ™ < ot < m operating moves along the path PRT. At
point T, current is zero. However, due to sinusoidal current, i starts increasing in the —ve
direction as shown in the Figure 22.10 and operating point moves along TSEQ. It may be
noted that a —ve H of value OS is necessary to bring the residual field to zero at S. OS is
called the coercivity of the material. At the end of the interval 7= < wt < 3pz , current reaches —

Lyax or field —H,,, ;. In the next internal, 32” < wt <27 , current changes from —Ix

to zero and operating point moves from M to N along the path MN. After this a new
cycle of current variation begins and the operating point now never enters into the path
OGP. The movement of the operating point can be described by two paths namely: (i)

QFMNKRP for increasing current from —I,;,4, to +1;;,4 and (ii) from +1,,,, to —1I 4y along
PRTSEQ.

E- ____
=]
-
o

i o

v

i = Ijax sinwt

Figure 22.10: B-H loop with sinusoidal current.
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22.4.1 Hysteresis loss & loop area

In other words the operating point trace the perimeter of the closed area QFMNKPRTSEQ.
This area is called the B-H loop of the material. We will now show that the area enclosed by
the loop is the hysteresis loss per unit volume per cycle variation of the current. In the
interval 0 € wt <7, , i is +ve and d,di is also +ve, moving the -
operating point from M to P along the path MNKP. Energy absorbed during this interval
is given by the shaded area MNKPLTM shown in Figure 22.11 (i).
In the interval 5 < wt < 7, i is +ve but g;di is —ve, moving the operating point from P to T
along the path PRT. Energy returned during this interval is given by the shaded area
PLTRP shown in Figure 22.11 (ii). Thus during the +ve half cycle of current variation net
amount of energy absorbed is given by the shaded area MNKPRTM which is nothing but
half the area of the loop.

In the interval 7 < wt 532” ,iis —ve and g,—d "is also —ve, moving the operating point from T
to Q along the path TSEQ. Energy absorbed during this interval is given by the shaded
area QJMTSEQ shown in Figure 22.11 (iii).

B B,
p (ii) L p (iii)
R T

)

P

K H

VAN, ®
P SRS S

H /7 H S / 7 H
0 RS S

Q J N

(=}

Figure 22.11: B-H loop with sinusoidal current.

In the interval 325 < wt £ 2x, iis —ve but dzfl "is + ve, moving the operating point from Q to

M along the path QEM. Energy returned during this interval is given by the shaded area
QJMEFQ shown in Figure 22.11 (iv).

Thus during the —ve half cycle of current variation net amount of energy absorbed is
given by the shaded area QFMTSEQ which is nothing but the other half the loop area.
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Therefore total area enclosed by the B-H loop is the measure of the hysteresis loss per
unit volume per unit cycle. To reduce hysteresis loss one has to use a core material for
which area enclosed will be as small as possible.

Steinmetz’s empirical formula for hysteresis loss

Based on results obtained by experiments with different ferromagnetic materials with
sinusoidal currents, Charles Steimetz proposed the empirical formula for calculating
hysteresis loss analytically.

Hysteresis loss per unit volume, P, =k, f Brax

Where, the coefficient k;, depends on the material and n, known as Steinmetz

exponent, may vary from 1.5 to 2.5. For iron it may be taken as 1.6.
22.5 Seperation of core loss

The sum of hyteresis and eddy current losses is called core loss as both the losses occur
within the core (magnetic material). For a given magnetic circuit with a core of
ferromagnetic material, volume and thickness of the plates are constant and the total core
loss can be expressed as follows.

Core loss = Hysteresis loss + Eddy current loss
2 2
Peore=Kp meaxn+Kef Bmax

It is rather easier to measure the core loss with the help of a wattmeter (W) by
energizing the N turn coil from a sinusoidal voltage of known frequency as shown in
figure 22.12.

Sinusoidal

a.c supply,
variable @
voltage and
frequency

Figure 22.12: Core loss measurement.

Let A be the cross sectional area of the core and let winding resistance of the coil
be negligibly small (which is usually the case), then equating the applied rms voltage to
the induced rms voltage of the coil we get:
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VEN2Tf G N
Or, V=277f Bypax AN

. V.. .
The above result i.e., Byax « 7 is important because it tells us that to keep Bpyax constant

at rated value at lower frequency of operation, applied voltage should be proportionately

decreased. In fact, from the knowledge of N (number of turns of the coil) and A (cross

sectional area of the core), V (supply voltage) and f (supply frequency) one can estimate
V

the maximum value of the flux density from the relation Byax = \/_2 T} AN . This point

has been further discussed in the future lesson on transformers.

Now coming back to the problem of separation of core loss into its components:
we note that there are three unknowns, namely K}, K, and n (Steinmetz’s exponent) to be
determined in the equation Py = K j, fBmax + K o f 2 Bmax2 . LHS of this equation is nothing
but the wattmeter reading of the experimental set up shown in Figure 22.12. Therefore, by
noting down the wattmeter readings corresponding to three different applied voltages and
frequencies, we can have three independent algebraic equations to solve for Ky, K, and n.
However, to simplify the steps in solving of the equations two readings may be

Vv

taken at same flux density (keeping _f ratio constant) and the third one at different flux

density. To understand this, solve the following problem and verify the answers given.

For a magnetic circuit, following results are obtained.

Frequency Bmax Core loss
50 Hz 1.2T 115W
30 Hz 1.2T 60.36 W
30 Hz 14T 87.24 W

Estimate the constants, Ky, K, and n and separate the core loss into hysteresis and eddy

losses at the above frequencies and flux densities.
The answer of the problem is:

Frequency [ Bmax | Coreloss [ Hystloss | Eddy loss
50 Hz 12T 115W 79 W 36 W
30 Hz 1.2T | 60.36 W 474 W 12.96 W
30 Hz 14T | 87.24W 69.6 W 17.64 W
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22.6 Inductor

One can make an inductor L, by having several turns N, wound over a core as shown in
figure 22.13. In an ideal inductor, as we all know, no power loss takes place. Therefore,
we must use a very good magnetic material having negligible B-H loop area. Also we
must see that the operating point lies in the linear zone of the B-H characteristic in order
to get a constant value of the inductance. This means (/- may be assumed to be constant.
To make eddy current loss vanishingly small, let us assume the lamination thickness is
extremely small and the core material has a very high resistivity 0. Under these
assumptions let us derive an expression for the inductance L, in order to have a feeling on
the factors it will depend upon. Let us recall that inductance of a coil is defined as the
flux linkage with the coil when 1 A flows through it.

Figure 22.13: An inductor.

Let @ be the flux produced when i A flows through the coil. Then by definition:

Total flux linkage = N¢

N.
~inductance is L = l—¢ by definition.
= NB ...¢= BXA
i
Nw iwHA |
=— - “B=uumH
NHA
= fotr —
N M A .
= foptr putting H = 7
N’aA

Finally, L = wyu, ]

The above equation relates inductance with the dimensions of the magnetic
circuit, number of turns and permeability of the core in the similar way as we relate
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resistance of a wire, with the dimensions of the wire and the resistivity (recall, R = p 4+).

It is important to note that L is directly proportional to the square of the number of turns,
directly proportional to the sectional area of the core, directly proportional to the
permeability of the core and inversely proportional to the mean length of the flux path. In
absence of any core loss and linearity of B-H characteristic, Energy stored during
increasing current from 0 to I is exactly equal to the energy returned during decreasing
current from / to 0. From our earlier studies we know for increasing current:

Voltage induced in the coil e NA a8
=" d
Energy absorbed in time dtis dW = ,; gr NAdB

dt
dB
NA gridt
= NiAdB

= AIlHdB
B
Energy absorbed toreach JorB = A l§0 H dB

gp_B_
= Al)o 4. dB
B2
= Al2upu
0 r

Z

B

Energy stored per unit volume 20 1y

By expressing B in terms of current, / in the above equation one can get a more
familiar expression for energy stored in an inductor as follows:

Energy absorbed toreach /orB = A/l

.Energy stored in the inductor =

Version 2 EE IIT, Kharagpur



22.7 Force between two opposite faces of the core across an air gap

In a magnetic circuit involving air gap, magnetic force will exist between the parallel
faces across the air gap of length x. The situation is shown for a magnetic circuit in figure
22.14 (i) . Direction of the lines of forces will be in the clockwise direction and the left
face will become a north pole and the right face will become a south pole. Naturally there
will be force of attraction F, between the faces. Except for the fact that this force will
develop stress in the core, no physical movement is possible as the structure is rigid.

Let the flux density in the air gapbe = B

2
B
energy stored per unit volume in the gap P

gap volume = Ax

Total energy stored 2 xgap volume

Z
B
:TAX

(22.2)

Air gap Air gap

—>fx — —lx f—

/’N S\ N

Yy
w

™YY

\4 n\j j’\J 4 Wy
Hi B
-] |Je—dx
> x <
(iii)

Figure 22.14: Force between parallel faces.

Easiest way to derive expression for F is to apply law of conservation of energy
by using the concept of virtual work. To do this, let us imagine that right face belongs to
a freely moving structure with initial gap x as in figure 22.14 (ii). At this gap x, we have

find F,. Obviously if we want to displace the moving structure by an elemental distance
dx to the right, we have apply a force F, toward right. As dx is very small tending to 0,
we can assume B to remain unchanged. The magnitude of this external force F, has to be

Version 2 EE IIT, Kharagpur



same as the prevailing force of attraction F, between the faces. Where does the energy
expended by the external agency go? It will go to increase the energy stored in the gap as
its volume increase by A dx. Figure 22.14 (iii) shows an expanded view of the gap portion
for clarity. Let us put it in mathematical steps as follows:

2

energy stored per unit volume in the gap _ _B

2p19

initial gap volume _ 4

B

Total energy stored, W, _ - xgap volume
52
W -
= 2/10 Ax
let the external force applied be = F,
let the force of attractionbe as = F,
explained above, Fe work done = Fj
by external agency = Fodx=F,dx
increase in the volume of the gap = A (x +dx)—Ax =A dx

2
B

increase in stored energy -

= 2#0 A dx
but work done by external agency = increase in stored energy
B>
F,dx _
or, desired force of attraction F, =
-5,
2 uo A

22.8 Tick the correct answer

1. If the number of turns of a coil wound over a core is halved, the inductance of the
coil will become:

(A) doubled. (B) halved. (C) quadrapuled. (D) Ya th

2. The expression for eddy current loss per unit volume in a thin ferromagnetic plate
of thickness 7 is:

(A) 6_177_2f2 B2 T (B) 4 7Tzszz g
(C) 6_372sz m (D) 6—,}”2f32 m

max max
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3. As suggested by Steinmetz, hyteresis loss in a ferromagnetic material is
proportional to:

(A) [ Bimax (B) fB"

2 2 maxn
(C) 7 Bmax (D) fBmax
where, n may very between 1.5 to 2.5 depending upon material.

4. The eddy current loss in a magnetic circuit is found to be 100 W when the
exciting coil is energized by 200 V, 50 Hz source. If the coil is supplied with 180
V, 54 Hz instead, the eddy current loss will become

(A) 90 W (B) 81 W (C) 108 W (D) 50 W

5. A magnetic circuit draws a certain amount of alternating sinusoidal exciting
current producing a certain amount of alternating flux in the core. If an air gap is
introduced in the core path, the exciting current will:

(A) increase. (B) remain same. (C) decrease. (D) vanish

22.9 Solve the following

1. The area of the hysteresis loop of a 1200 cm3 ferromagnetic material is 0.9 cm2
with Bpax = 1.5 T. The scale factors are Icm = 10A/m along x-axis and 1 cm =
0.8T along y-axis. Find the power loss in watts due to hysteresis if this material is
subjected to an 50 Hz alternating flux density with a peak value 1.5 T.

2. Calculate the core loss per kg in a specimen of alloy steel for a maximum density
of 1.1 T and a frequency of 50 Hz, using 0.4 mm plates. Resistivity pis 24 p Q-
cm; density 1s 7.75 g/cm3; hysteresis loss 355 J/m3 per cycle.

3. (a) A linear magnetic circuit has a mean flux length of 100 cm and uniform cross

sectional area of 25 cmz. A coil of 100 turns is wound over it and carries a
current of 0.5 A. If relative permeability of the core is 1000, calculate the
inductance of the coil and energy stored in the coil.

(b) In the magnetic circuit of part (a), if an air gap of 2 mm length is introduced
calculate (i) the energy stored in the air gap (ii) energy stored in core and (iii)
force acting between the faces of the core across the gap for the same coil
current.

4. An iron ring with a mean diameter of 35 cm and a cross section of 17.5 cm2 has
110 turns of wire of negligible resistance. (a) What voltage must be applied to the
coil at 50 Hz to obtain a maximum flux density of 1.2 T; the excitation required
corresponding to this density 450 AT/m? Find also the inductance. (b) What is the
effect of introducing a 2 mm air gap?
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5. A coil wound over a core, is designed for 200 V (rms), 50 Hz such that the
operating point is on the knee of the B-H characteristic of the core. At this rated
voltage and frequency the value of the exciting current is found to be 1 A. Give
your comments on the existing current if the coil is energized from:

(a) 100 V, 25 Hz supply.
(b) 200 V, 25 Hz supply.
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26.1 Goals of the lesson

Three phase system has been adopted in modern power system to generate, transmit and
distribute power all over the world. In this lesson, we shall first discuss how three number of
single phase transformers can be connected for 3-phase system requiring change of voltage level.
Then we shall take up the construction of a 3-phase transformer as a single unit. Name plate
rating of a three phase transformer is explained. Some basic connections of a 3-phase transformer
along with the idea of vector grouping is introduced.

Key Words: bank of three phase transformer, vector group.

After going through this section students will be able to answer the following questions.

Point out one important advantage of connecting a bank of 3-phase transformer.
] Point out one disadvantage of connecting a bank of 3-phase transformer.

] Is it possible to transform a 3-phase voltage, to another level of 3-phase voltage by
using two identical single phase transformers? If yes, comment on the total kVA
rating obtainable.

"] From the name plate rating of a 3-phase transformer, how can you get individual coil
rating of both HV and LV side?

"] How to connect successfully 3 coils in delta in a transformer?
26.2 Three phase transformer

It is the three phase system which has been adopted world over to generate, transmit and
distribute electrical power. Therefore to change the level of voltages in the system three phase
transformers should be used.

Three number of identical single phase transformers can be suitably connected for use in a
three phase system and such a three phase transformer is called a bank of three phase
transformer. Alternatively, a three phase transformer can be constructed as a single unit.

26.3 Introducing basic ideas

In a single phase transformer, we have only two coils namely primary and secondary. Primary is
energized with single phase supply and load is connected across the secondary. However, in a 3-
phase transformer there will be 3 numbers of primary coils and 3 numbers of secondary coils. So
these 3 primary coils and the three secondary coils are to be properly connected so that the
voltage level of a balanced 3-phase supply may be changed to another 3-phase balanced system
of different voltage level.

Suppose you take three identical transformers each of rating 10 kVA, 200 V / 100 V, 50 Hz
and to distinguish them call them as A, B and C. For transformer-A, primary terminals are

marked as A1 A and the secondary terminals are marked as a; a>. The markings are done in such

a way that A| and a; represent the dot (¢) terminals. Similarly terminals for B and C transformers
are marked and shown in figure 26.1.



Transformer-A
primary

secondar
® Zj.(.jZNj ¢ 6666. 3

Transformer-B
primary

secondar
0000 w0000

Transformer-C
primary

secondar
g] {UUU(; \ g;z @ (606&\ 9
® Y

Figure 26.1: Terminal markings along with dots

Transformer-A

Transformer-B

Transformer-C

It may be noted that individually each transformer will work following the rules of single phase
transformer i.e, induced voltage in ajap will be in phase with applied voltage across A1A; and the

ratio of magnitude of voltages and currents will be as usual decided by a where a = N1/N>
= 2/1, the turns ratio. This will be true for transformer-B and transformer-C as well i.e., induced

voltage in b1by will be in phase with applied voltage across B1B> and induced voltage in cicp
will be in phase with applied voltage across C1C5.

Now let us join the terminals Ap, By and Cp of the 3 primary coils of the transformers and
no inter connections are made between the secondary coils of the transformers. Now to the free

terminals A1, By and C; a balanced 3-phase supply with phase sequence A-B-C is connected as
shown in figure 26.2. Primary is said to be connected in star.

)
S Y BO00 N —Y,  Zruvoob
o L )
2
58 000  2rvsooyi
= o ®
3]
EC Ci Cy c2 c1
: o—"—L 0000 —= VOO0
Aq a
ArB2C» C  ap

C By c1/ b2 \bl

Figure 26.2: Star connected primar y with secondary coils left alone.

If the line voltage of the supply is Vi = 200\/_3 V , the magnitude of the voltage impressed
across each of the primary coils will be \/_ 3 times less i.e., 200 V. However, the phasors Vyj 4 »



Vg B, and V¢, will be have a mutual phase difference of 120° as shown in figure 26.2. Then from
the fundamental principle of single phase transformer we know, secondary coil voltage V,, ,, will be
parallel to Vy, 45 ; Vpipe Will be parallel to Vg, g, and V.., will be parallel to V¢, . Thus the

secondary induced voltage phasors will have same magnitude i.e., 100 V but are displaced by 120°
mutually. The secondary coil voltage phasors V,, 4 , V;,;,z and_Vclc2 are shown in figure 26.2.

Since the secondary coils are not interconnected, the secondary voltage phasors too have been
shown independent without any interconnections between them. In contrast, the terminals A , By
and C» are physically joined forcing them to be equipotential which has been reflected in the
primary coil voltage phasors as well where phasor points Ay, B> and C, are also shown joined.
Coming back to secondary, if a voltmeter is connected across any coil i.e., between a; and aj or
between by and by or between c; and ¢, it will read 100 V. However, voltmeter will not read

anything if connected between a; and b or between by and ¢ | or between c; and aj as open
circuit exist in the paths due to no physical connections between the coils.

Imagine now the secondary coil terminals ap, b, and ¢, are joined together physically as shown

in figure 26.3. So the secondary coil phasors should not be shown isolated as ap, b and ¢, become
equipotential due to shorting of these terminals. Thus, the secondary coil voltage phasors should not

only be parallel to the respective primary coil voltages but also ap, by and ¢; should be equipotential.
Therefore, shift and place the phasors V,, 4, , Vpip, and V., in such a way

that they remain parallel to the respective primary coil voltages and the points ap, by and c; are
superposed.

— & OO0 —L oo
— B o000 — erooooyi

Balanced 3-phase supply

L()
%O
p—
.
@
[}
S
[ ]
2

Ly

A2B2C2

C1 By
Figure 26.3: Both primary & secondary are star connected.

Here obviously, if a voltmeter is connected between a; and b1 or between b1 and ¢ or
between ¢ and ay it will read corresponding phasor lengths a1by or b ¢ 1 or cja; which are all
equal IQ/EOO 3V.Thus, Vyp , Ve - and V., are of same magnitude and displaced mutually by
11 1 2

21

120° to form a balanced 3-phase voltage system. Primary 3-phase line to line voltage of 200§ V
is therefore stepped down to 3-phase, IOOVB_ V line to line voltage at the secondary. The junction
of Ay, By and C can be used as primary neutral and may be denoted by N. Similarly the junction
of ap, by and ¢ may be denoted by n for secondary neutral.



26.3.1 A wrong star-star connection

In continuation with the discussion of the last section, we show here a deliberate wrong
connection to highlight the importance of proper terminal markings of the coils with dots (¢). Let
us start from the figure 26.2 where the secondary coils are yet to be connected. To implement star

connection on the secondary side, let us assume that someone joins the terminals ap, b1 and cp
together as shown in figure 26.4.

The question is: is it a valid star connection? If not why? To answer this we have to
interconnect the secondary voltage phasors in accordance with the physical connections of the coils.

In other words, shift and place the secondary voltage phasors so that a; , by and ¢, overlap each other
to make them equipotential. The lengths of phasors V,; 4 , Vpip, and V., are no doubt,

same and equal to 100 V but they do not maintain 120° mutual phase displacement between them
as clear from figure 26.4. The magnitude of the line to line voltages too will not be equal. From
simple geometry, it can easily be shown that

v
ab

8 BOO0
B OO0

v
¢| ca

_|'V

bc

Balanced 3-phase supply

120°

Figure 26.4: Both primary & secondary are star connected.

Thus both the phase as well as line voltages are not balanced 3-phase voltage. Hence the
above connection is useless so far as transforming a balanced 3-phase voltage into another level
of balanced 3-phase voltage is concerned.

Appropriate polarity markings with letters along with dots (¢) are essential in order to make
various successful 3-phase transformer connections in practice or laboratory.

26.3.2 Bank of three phase transformer

In the background of the points discussed in previous section, we are now in a position to study
different connections of 3-phase transformer. Let the discussion be continued with the same three
single phase identical transformers, each of rating 10kVA, 200V / 100V, 50Hz,. These



transformers now should be connected in such a way, that it will change the level of a balanced
three phase voltage to another balanced three phase voltage level. The three primary and the three
secondary windings can be connected in various standard ways such as star / star or star / delta
or delta / delta or in delta / star fashion. Apart from these, open delta connection is also used in
practice.

Star-star connection

We have discussed in length in the last section, the implementation of star-star connection of a 3-
phase transformer. The connection diagram along with the phasor diagram are shown in figure
26.5 and 26.6.

As discussed earlier, we need to apply to the primary terminals (A1B1C1) a line to line
voltage of 200 d_ V so that rated voltage (200 V) is impressed across each of the primary coils of
the individual transformer. This ensures 100 V to be induced across each of the secondary coil
and the line to line voltage in the secondary will be 100 3 V. Tius a 3-phase line to line

voltage of 200 3/V is stepped down to a 3-phase line to line voltage of 100 3 V. Now we have to
calculate how much load current or kVA can be supplied by this bank of three phase transformers
without over loading any of the single phase transformers. From the individual rating of each

transformer, we know maximum allowable currents of HV and LV windings are respectively Iy

= 10000/200 = 50A and Iy vy = 10000/100 = 100A. Since secondary side is connected in star, line
current and the winding currents are same. Therefore total kVA that can

be supplied to a balanced 3-phase load is \/g Vi I, :\/3_ (\é_l 00 )100 =30 kVA. While solving

problems, it is not necessary to show all the terminal markings in detail and a simple and popular
way of showing the same star-star connection is given in figure 26.7.

A A A
1 2
o—/c_m_;._
*
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Figure 26.6: Phasor diagram.
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Figure 26.5: Star/star Connection.
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Figure 26.7: Simplified way of showing star-star connection



Star-delta connection

To connect windings in delta, one should be careful enough to avoid dead short circuit. Suppose
we want to carry out star / delta connection with the help of the above single phase transformers.

HV windings are connected by shorting A, By and C» together as shown in the figure 26.8. As
we know, in delta connection, coils are basically connected in series and from the junction points,
connection is made to supply load. Suppose we connect quite arbitrarily (without paying much

attention to terminal markings and polarity), a; with b and by with ¢ 1. Should we now join a;

with ¢ by closing the switch S, to complete the delta connection? As a rule, we should not join
(i.e., put short circuit) between any two terminals if potential difference exists between the two. It
is equivalent to put a short circuit across a voltage source resulting into very large circulating

current. Therefore before closing S, we must calculate the voltage difference between ap with ¢5.
To do this, move the secondary voltage phasors such that a; and b, superpose as well as by with
c1 superpose — this is because aj and by are physically joined to make them equipotential;

similarly b1 and c; are physically joined so as to make them equipotential. The phasor diagram is
shown in figure 26.9. If a voltmeter is connected across S (i.e., between a2 and c2), it is going to
read the length of the phasor V,, ., . By referring to phasor

diagram of figure 26.9, it can be easily shown that the voltage across the switch S, under this
condition isV,;, ., = 100 + 2c0s60°100 = 200V . So this connection is not proper and the switch S

should not be closed.
al

B B B, b1

&—cA" 0000 42
) °—/°—m6\—°'\
= 6Ly 5000 =

S C1

Voltage across the switch

Figure 26.8: Incomplete Connection. Figure 26.9: Phasor diagram.

Another alternative way to attempt delta connection in the secondary could be: join a

with b and by with ¢,. Before joining a with ¢ to complete delta connection, examine the open
circuit voltage V,, ., . Following the methods described before it can easily be shown that V,, ., =

0, which allows to join ap with ¢; without any circulating current. So this, indeed is a correct
delta connection and is shown in figure 26.10 where a is joined with bp, b1 is joined with ¢, and

c1 1s joined with ap. The net voltage acting in the closed delta in this case is zero. Although
voltage exists in each winding, the resultant sum becomes zero as they are 120° mutually apart.
The output terminals are taken from the junctions as a, b and ¢ for supplying 3-phase load. The
corresponding phasor diagram is shown in figure 26.11.
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Figure 26.10: Star/delta Connection. Figure 26.11: Phasor diagram.

Here also we can calculate the maximum kVA this star / delta transformer can handle without
over loading any of the constituents transformers. In this case the secondary line to line voltage is
same as the winding voltage i.e., 100V, but the line current which can be supplied to the load

ileO\;ﬁ_ . Because it is at this line current, winding current becomes the rated 100A. Therefore

total load that can be supplied is ML I, = 3\/1_00( 3\1/60) VA =30kVA . Here also total kKVA
is 3 times the kVA of each transformer. The star-delta connection is usually drawn in a simplified
manner for problem solving and easy understanding as shown in figure 26.12.

A Igv=50A a TLyv=1003 A E
% o B3V by " IOT)A@OV:
é “r §i b 100 v].
% ‘ /:Alr i
§ I ILy =100V3 A

B 50A

Figure 26.12: Simplified way of showing star-star connection

Another valid delta connection on the LV side is also possible by joining ap with by, by

with ¢ and ¢ with aj. It is suggested that the reader tries other 3-phase connections and verify
that the total KVA is 3-times the individual KVA of each transformer. However, we shall discuss
about delta / delta and open delta connection.

Delta / delta and open delta connection

Here we mention about the delta/delta connection because, another important and useful
connection namely open delta connection can be understood well. Valid delta connection can be
implé;nented in the usual way as shown in the figure 26.13. The output line to line voltage will be
100V for an input line voltage of 200V. From the secondary one can draw a line current of

100 3 A which means a total of 30 kVA can be supplied without overloading any of the Version



individual transformers. A simplified representation of the delta-delta connection is shown in
figure 26.15 along with the magnitude of the currents in the lines and in the coils of HV and LV
side.

Let us now imagine that the third transformer C be removed from the circuit as shown in
the second part of the figure 26.13. In effect now two transformers are present. If the HV sides is
energized with three phase 200V supply, in the secondary we get 3-phase balanced 100V supply
which is clear from the phasor diagram shown in figure 26.14. Although no transformer winding
exist now between Ay & B on the primary side and between ap & by on the secondary side, the

voltage between Ap & Bj on the primary side and between ap & b1 on the secondary side exist.
Their phasor representation are shown by the dotted line confirming balanced 3-phase supply.
But what happens to kVA handling capacity of the open delta connection? Is it 20 kVA, because
two transformers are involved? Let us see. The line current that we can allow to flow in the
secondary is 100A (and not 100 3 gs in delta / delta connection). Therefore total maximum

KVA handled is given by V3V, I, =( 3100 100) VA = 17.32 kVA , which is about 57.7% of the

delta connected system. This is one of the usefulness of using bank of 3-phase transformers and
connecting them in delta-delta. In case one of them develops a fault, it can be removed from the
circuit and power can be partially restored.
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Delta-delta Connection.

5 A Aq Azaz a; a Ay B, b

B b1 b
g o_/ ,’ 1 bl
c B1 2 g
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:g C C A ;’,

o—/ I f— 2" Delta-delta

Open delta Connection.

Figure 26.13: Delta/delta and open delta connection. Figure 26.14: Phasor diagram



load

e

LAY
Iy = 100V3 A

Balanced 3-phase supply

c >
B S0A

Figure 26.15: Simplified way of showing delta-delta connection

26.3.3 3-phase transformer- a single unit

Instead of using three number of single phase transformers, a three phase transformer can be
constructed as a single unit. The advantage of a single unit of 3-phase transformer is that the cost
is much less compared to a bank of single phase transformers. In fact all large capacity
transformers are a single unit of three phase transformer.

Al / (s [)Yal
A2 » B <
al B1 C1
a2 B2 C2
bl cl
b2 c2
Figure 26.16: A conceptual three Figure 26.17: A practical core type
phase transformer. three phase transformer.

To understand, how it is constructed let us refer to figure 26.16. Here three, single phase transformers
are so placed that they share a common central limb. The primary and the secondary windings of each
phase are placed on the three outer limbs and appropriately marked. If the primary windings are
connected to a balanced 3-phase supply (after connecting the windings in say star), the fluxes @4(?),
@p(t) and @c(f) will be produced in the cores differing in time phase mutually by 120°. The return
path of these fluxes are through the central limb of the core structure. In other words the central limb
carries sum of these three fluxes. Since instantaneous sum of the fluxes, @4(H)+ @p(t)+ @c(t) = 0, no
flux lines will exist in the central limb at any time. As such the central common core material can be
totally removed without affecting the working of the transformer. Immediately we see that
considerable saving of the core material takes place if a 3-phase transformer is constructed as a single
unit. The structure however requires more floor area as the three outer limbs protrudes outwardly in
three different directions.



A further simplification of the structure can be obtained by bringing the limbs in the same plane
as shown in the figure 26.17. But what do we sacrifice when we go for this simplified structure?
In core structure of figure 26.16, we note that the reluctance seen by the three fluxes are same,
Hence magnetizing current will be equal in all the three phases. In the simplified core structure of
figure 26.17, reluctance encountered by the flux @p is different from the reluctance encountered
by fluxes @4 and @c, Hence the magnetizing currents or the no load currents drawn will remain
slightly unbalanced. This degree of unbalanced for no load current has practically no influence on
the performance of the loaded transformer. Transformer having this type of core structure is
called the core type transformer.

26.4 Vector Group of 3-phase transformer

The secondary voltages of a 3-phase transformer may undergo a phase shift of either +30°
leading or -30° lagging or 0° i.e, no phase shift or 180° reversal with respective line or phase to
neutral voltages. On the name plate of a three phase transformer, the vector group is mentioned.
Typical representation of the vector group could be Yd1 or Dyll etc. The first capital latter Y
indicates that the primary is connected in star and the second lower case latter d indicates delta
connection of the secondary side. The third numerical figure conveys the angle of phase shift
based on clock convention. The minute hand is used to represent the primary phase to neutral
voltage and always shown to occupy the position 12. The hour hand represents the secondary
phase to neutral voltage and may, depending upon phase shift, occupy position other than 12 as
shown in the figure 26.18.

30° lead

Figure 26.18: Clock convention representing vector groups.

The angle between two consecutive numbers on the clock is 30°. The star-delta

connection and the phasor diagram shown in the figures 26.10 and 26.11 correspond to Yd;. It
can be easily seen that the secondary a phase voltage to neutral n (artificial in case of delta
connection) leads the A phase voltage to neutral N by 30°. However the star delta connection

shown in the figure 26.19 correspond to Yd1.
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Figure 26.19: Connection and phasor diagram for Y dj;.

26.5 Tick the correct answer

1.

The secondary line to line voltage of a star-delta connected transformer is measured to be
400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line
to line voltage in the primary is:

(A)462V (B) 346 V (C)1386 V. (D)800V

The secondary line to line voltage of a delta-delta connected transformer is measured to
be 400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied
line to line voltage in the primary is:

(A)462V (B) 346 V (C)1386 V. (D)800V

The secondary line to line voltage of a delta-star connected transformer is measured to be
400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line
to line voltage in the primary is:

(A) 800V (B) 500 V (C)1386 V. (D)462V

The secondary line current of a star-delta connected transformer is measured to be 100 A.
If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the
primary is:

(A)50 A (B)289A (C)57T7A (D)60A

The secondary line current of a delta-star connected transformer is measured to be 100 A.
If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the
primary is:

(A)86.6 A (B)S0A (C)60 A (D) 57.7TA



6. The primary line current of an open delta connected transformer is measured to be 100 A.

If the turns ratio between the primary and secondary coils 2 : 1, the line current in the
primary is:

(A)1732A (B)200A (C)I150A  (D)SO0A

Two single-phase transformers, each of rating 15 kVA, 200 V / 400 V, 50 Hz are
connected in open delta fashion. The arrangement can supply safely, a balanced 3-phase
load of:

(A)45kVA (B)259kVA (C)30kVA (D) 7.5kVA

. In figure 26.20 showing an incomplete 3-phase transformer connection, the reading of the

voltmeter will be:

(A)OV (B) 1732V (C)3464V (D)300V

= A A N1 =100 A
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Figure 26.20:

26.6 Problems

1.

Three number of single phase ideal transformers, each of rating. 10kVA, 200V / 100V,
50Hz is connected in star/delta fashion to supply a balanced three phase 20 kW, 0.8 power
factor load at 100V (line to line). Draw a circuit diagram for this. Calculate (1) what line to
line voltage should be applied to the primary side? (ii) Calculate the line and phase
currents on the secondary and primary sides and indicate them on the diagram.

How two identical single phase transformers each of rating SkVA, 200V/100V, 50Hz be
used to step down a balanced 3-phase, 200V supply to a balanced 3-phase, 100V supply?
Explain with circuit and phasor diagrams. Calculate also the maximum kVA that can be
supplied from this connection.

A balanced 3-phase load of 20kW, 0.8 power factor lagging is to be supplied at a line to
line voltage of 110V. However, a balanced 3-phase voltage of 381V (line to line) is
available. Using three numbers of identical single phase ideal transformers each of rating
10kVA, 220V/110V, 50Hz make an arrangement such that the above load can be
supplied. Draw the circuit diagram and show the magnitude of currents in the l/ines and in
the windings of the transformers on both LV and HV side.



4. Refer to the following figure 26.21 which shows the windings of a 3-phase transformer.
Primary turns per phase is 250. Each phase has got two identical secondary windings each

having 100 turns. The primary windings are connected in star by shorting A, By and C;
and supplied from a balanced 3-phase 1000 V (line to line), 50 Hz source.

a) If the secondary coils are connected by joining ap with b3 and b4 with c1 then
calculateV,, ., .
b) All the 6 coils are connected in series in the following way:

aj joined with by b1 joined with ¢;
c1 joined with ¢4 c3 joined with by

b3 joined with a3

Draw the phasor diagram and calculate the voltage V,, .

A A
008 Lomnd oo
B1 B b1 b2 b3 b
.-(m\-& SrOU0 s oL OO0
C C
008 oo oo

Figure 26.21: 3-phase transformer with two secondary coils per phase
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27.1 Goals of the lesson

In this lesson we shall learn about the working principle of another type of transformer called
autotransformer and its uses. The differences between a 2-winding and an autotransformer will
be brought out with their relative advantages and disadvantages. At the end of the lesson some
objective type questions and problems for solving are given. Key Words: tapping’s, conducted
VA, transformed VA.

After going through this section students will be able to understand the following.

1. Constructional differences between a 2-winding transformer and an autotransformer.
2. Economic advantages/disadvantages between the two types.

3. Relative advantages/disadvantages of the two, based on technical considerations.

4

. Points to be considered in order to decide whether to select a 2-winding transformer or an
autotransformer.

5. The difference between an autotransformer and variac (or dimmerstat).
6. The use of a 2-winding transformer as an autotransformer.

7. The connection of three identical single phase transformers to be used in 3-phase system.

27.2 Introduction

So far we have considered a 2-winding transformer as a means for changing the level of a given
voltage to a desired voltage level. It may be recalled that a 2- winding transformer has two
separate magnetically coupled coils with no electrical connection between them. In this lesson we
shall show that change of level of voltage can also be done quite effectively by using a single coil
only. The idea is rather simple to understand. Suppose you have a single coil of 200 turns (=

Npc) wound over a iron core as shown in figure 27.1. If we apply an a.c voltage of 400 V, 50 Hz
to the coil (between points B and C), voltage per turn will be 400/200 =2 V. If we take out a wire
from one end of the coil say C and take out another wire tapped from any arbitrary point E, we
would expect some voltage available between points E and C. The magnitude of the voltage will

obviously be 2 - Ngc where Ngc is the number of turns between points E and C. If tapping has

been taken in such a way that Ngc = 100, voltage between E and C would be 200 V. Thus we
have been able to change 400 V input voltage to a 200 V output voltage by using a single coil
only. Such transformers having a single coil with suitable tapings are called autotransformers.

It is possible to connect a conventional 2-winding transformer as an autotransformer or
one can develop an autotransformer as a single unit.

400V
50 Hz

Figure 27.1: Transformer with a single coil.



27.3 2-winding transformer as Autotransformer

Suppose we have a single phase 200V/100V, 50Hz, 10kVA two winding transformer with
polarity markings. Then the coils can be connected in various ways to have voltage ratios other
than 2 also, as shown in figure 27.2.

S0A

(b) (c) (d)
Figure 27.2: A two winding transformer connected as an autotransformer in
various ways.

Let us explain the one of the connections in figure 27.2(a) in detail. Here the LV and the HV
sides are connected in additive series. For rated applied voltage (100V) across the LV winding,
200V must be induced across the HV winding. So across the whole combination we shall get a
voltage of 300V. Thus the input voltage is stepped up by a factor of 3 (300 V/100 V). Now how
much current can be supplied to a load at 300 V? From the given rating of the transformer we
know, Iy rated = 50 A and Iy rated = 100 A. Therefore for safe operation of the transformer, these
rated currents should not be exceeded in HV and LV coils. Since the load is in series with the
HV coil, 50A current can be safely supplied. But a current of 50A in the HV demands that the LV
winding current must be 100A and in a direction as shown, in order to keep the flux in the core
constant. Therefore by applying KCL at the junction, the current drawn from the supply will be
150A. Obviously the kVA handled by the transformer is 30 kVA and without overloading either
of the windings. It may look a bit surprising because as a two winding transformer its rating is
only 10 kVA. The explanation is not far to seek. Unlike a two winding transformer, the coils here
are connected electrically. So the kVA transferred from supply to the load side takes place both
inductively as well as conductively — 10kV A being transferred inductively and remaining 20kVA
transferred conductively. The other connections shown in (b), (¢) and (d) of figure 27.2 can
similarly explained and left to the reader to verify.

27.4 Autotransformer as a single unit

Look at the figure 27.3 where the constructional features of an auto transformer is shown. The
core is constructed by taking a rectangular long strip of magnetic material (say CRGO) and rolled
to give the radial thickness. Over the core, a continuous single coil is wound the free terminals of
which are marked as C and A. A carbon brush attached to a manually rotating handle makes
contact with different number of turns and brought out as a terminal, marked E. The number of

turns between E & C, denoted by Ng¢ can be varied from zero to a maximum of total number of

turns between A & C i.e, Noc. The output voltage can be varied smoothly from zero to the value
of the input voltage simply by rotating the handle in the clockwise direction.



Fixed input E
Variable output
M4 3
C
Figure 27.3: Autotransformer or Figure 27.4: Schematic representation
Variac. of autotransformer.

This type of autotransformers are commercially known as varic or dimmerstat and is an
important piece of equipment in any laboratory.

Now we find that to change a given voltage V] to another level of voltage V, and to
transfer a given KVA from one side to the other, we have two choices namely by using a Two
Winding Transformer or by using an Autotransformer. There are some advantages and
disadvantages associated with either of them. To understand this aspect let us compare the two
types of transformers in equal terms. Let,

Vi

Input voltage
Output voltage required across the load = V2

Rated current to be supplied to the load = I»

Current drawn from the supply at rated condition = I

KVA to be handled by both types of transformers = ViI| =Valp

The above situation is pictorially shown in figures 27.5(a) and (b). Let for the two winding
transformer,
For the two winding transformer:
Primary number of turns = N
Secondary number of turns = N2
For the autotransformer:
Number of turns between A & C = Nj
Number of turns between E & C = Ny

Therefore, number of turns between A & E = N1—-N»



(a) (b)
Figure 27.5: A two winding transformer and an autotransformer
of same rating.

Let us now right down the mmf balance equation of the transformers.

For the two winding transformer:
MMF balance equation is N1I1 = Nzl
For the autotransformer:
MMF balance equation is (N1 —N2)I1 = No(lp - 11)
or, NiI1 = Nolp

It may be noted that in case of an autotransformer, the portion EC is common between the

primary and the secondary. At loaded condition current flowing through Ngc is (I — I1).
Therefore, compared to a two winding transformer lesser cross sectional area of the conductor in
the portion EC can be chosen, thereby saving copper. We can in fact find out the ratio of amount
of copper required in two types of transformers noting that the volume of copper required will be
proportional to the product of current and the number of turns of a particular coil. This is because,
length of copper wire is proportional to the number of turns and crossectional area of wire is
proportional to the current value i.e.,

Volume of copper length of the wire x cross sectional area of copper wire

NxI
Hence,
Amount of copper required in an autotransformer _ (N 1-N» ) LI +N>) (I -1 )
Amount of copper required in a two winding transformer NI+N I,

2N I - 2N,
2N

Noting that N1I1 =N I, =

- 1 2




1

=1- where, a is the turns ratio.

Here we have assumed that Ny is greater than N7 i.e., a is greater than 1. The savings will
of course be appreciable if the value of a is close to unity. For example if a = 1.2, copper required
for autotransformer will be only 17% compared to a two winding transformer, i.e, saving will be
about 83%. On the other hand, if a = 2, savings will be only 50%. Therefore, it is always
economical to employ autotransformer where the voltage ratio change is close to unity. In fact
autotransformers could be used with advantage, to connect two power systems of voltages say 11
kV and 15 kV.

Three similar single units of autotransformers could connected as shown in the figure 27.6
to get variable balanced three phase output voltage from a fixed three phase voltage. Such
connections are often used in the laboratory to start 3-phase induction motor at reduced voltage.
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Figure 27.6: 3 — phase autotransformer connection

Apart from being economical, autotransformer has less leakage flux hence improved
regulation. Copper loss in the common portion of the winding will be less, so efficiency will be
slightly more. However its one major disadvantage is that it can not provide isolation between
HV and LV side. In fact, due to an open circuit in the common portion between E & C, the
voltage on the load side may soot up to dangerously high voltage causing damage to equipment.
This unexpected rise in the voltage on the LV side is potentially dangerous to the personnel
working on the LV side.

27.5 Tick the correct answers

1. Savings of copper, in an autotransformer will be significant over a two winding
transformer of same rating when the ratio of the voltages is

(A) =1 (B) >> 1 C) =1 (D) << 1

2. 110 V, 50 Hz single phase supply is needed from a 220 V, 50 Hz source. The ratio of
weights of copper needed for a two winding and an autotransformer employed for the
purpose is:



(A)2 (B)0.5 ©4 (D) 0.25

3. The two winding transformer and the autotransformer of the circuit shown in Figure 27.7
are ideal. The current in the section BC of the autotransformer is

(A) 28 A from B to C B)12 AfromCtoB
(C)28 AfromCtoB (D) 12 A from B to C
A

N1=200 Npc=20
N2=100 Npa=30

VW

10A B
200V
N1:N2
Figure 27.7:

4. A22KkVA, 110 V/ 220V, 50 Hz transformer is connected in such away that it steps up
110 V supply to 330 V. The maximum kVA that can be handled by the transformer is

(A) 22 kVA (B) 33 kVA (C) 11 kVA (D) 5.5kVA

27.6 Problems

1. The following figure 27.8 shows an ideal autotransformer with number of turns of various

sections as Nap = 100, Ncg = 60 and Npp = 80. Calculate the current drawn from the
supply and the input power factor when the supply voltage is 400V, 50Hz.

60 Q

D C 20Q

6000 1

400V ———
50 Hz

Figure 27.8:

A



2. An ideal autotransformer steps down a 400 V, single phase voltage to 200 V, single phase
voltage. Across the secondary an impedance of (6 + j8)Q is connected. Calculate the
currents in all parts of the circuit.

3. Calculate the values of currents and show their directions in the various branches of a 3-
phase, star connected autotransformer of ratio of 400 / 500 V and loaded with 600 kW at
0.85 lagging. Autotransformer may be considered to be ideal. It may be noted that, unless
otherwise specified, voltage value of a 3-phase system corresponds to line to line voltage.

4. A delta-star connected 3-phase transformer is supplied with a balanced 3-phase, 400 V
supply as shown in figure 27.9. A 3-phase auto transformer is fed from the output of the
3-phase transformer. Finally the at the secondary of the autotransformer a balanced 3-
phase load is connected. The per phase primary and secondary turns of both the
transformers are given in figure 27.9.
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3-phase transformer

3-phase auto transformer
Nxy =200 & Nzy =175
Figure 27.9:

Calculate line to line voltage at which the load receives power. If the load draws 10 A current,
calculate currents (a) in the section XZ & ZY of the autotransformer and (b) line currents and
coil currents of both the sides of the 3-phase, delta-star connected transformer.
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Rotating Magnetic Field
in Three-phase
Induction Motor

In the previous module, containing six lessons (23-28), mainly, the study of the single-
phase two-winding Transformers — a static machine, fed from ac supply, has been
presented. In this module, containing six lessons (29-34), mainly, the study of Induction
motors, fed from balanced three-phase supply, will be described.

In this (first) lesson of this module, the formation of rotating magnetic field in the air
gap of an induction motor, is described, when the three-phase balanced winding of the
stator is supplied with three-phase balanced voltage. The balanced winding is of the same
type, as given in lesson no. 18, for a three-phase ac generator.

Keywords: Induction motor, rotating magnetic field, three-phase balanced winding, and
balanced voltage.

After going through this lesson, the students will be able to answer the following
questions:

1. How a rotating magnetic field is formed in the air gap of a three-phase Induction
motor, when the balanced winding of the stator is fed from a balanced supply?
2. Why does the magnitude of the magnetic field remain constant, and also what is the

speed of rotation of the magnetic field, so formed? Also what is meant by the term
‘synchronous speed’?



Three-phase Induction Motor

A three-phase balanced winding in the stator of the Induction motor (IM) is shown in
Fig. 29.1 (schematic form). In a three-phase balanced winding, the number of turns in
three windings, is equal, with the angle between the adjacent phases, say R & Y, is 120°
(electrical). Same angle of 120° (elec.) is also between the phases, Y & B.

R

R

3-phase
supply N

Y
B

Fig. 29.1: Schematic diagram of the stator windings in a
three-phase induction motor.

A three-phase balanced voltage, with the phase sequence as R-Y-B, is applied to the
above winding. In a balanced voltage, the magnitude of the voltage in each phase,
assumed to be in star in this case, is equal, with the phase angle of the voltage between the
adjacent phases, say R & Y, being120° .



Rotating Magnetic Field

The three phases of the stator winding (balanced) carry balanced alternating
(sinusoidal) currents as shown in Fig. 29.2.

l\\ Axis of phase B

1,/ Axis of phase Y

Fig. 29.2: The relative location of the magnetic axis of three phases.

ip =1,,coswt

iy =1,,cos (wt—120°)

ig =1,,cos(wt+120°)=1,,cos (wt—240°)

Please note that the phase sequence is R-Y-B. I ,, is the maximum value of the phase
chrrlsntls, 4nd|, a4 the phase currents are balanced, the rms values are equal (I g=1y=1p).

Three pulsating mmf waves are now set up in the air- gap, which have a time phase
difference of 120° from each other. These mmf’s are oriented in space along the magnetic
axes of the phases, R, Y & B, as illustrated by the concentrated coils in Fig. 29.2. Please
note that 2-pole stator is shown, with the angle between the adjacent phases, R & Y as
120° , in both mechanical and electrical terms. Since the magnetic axes are located 120°
apart in space from each other, the three mmf’s are expresses mathematically as

Fr =F,, cos wtcos @

Fy =F,, cos (wt—120°) cos (6-120°)

Fpg =F,, cos (wt+ 120°) cos (68+ 120°)
wherein it has been considered that the three mmf waves differ progressively in time
phase by 120° , i.e. 277/ 3 rad (elect.), and are separated in space phase by 120°, i.e.
21/ 3 rad (elect.). The resultant mmf wave, which is the sum of three pulsating mmf
waves, is



F= FR + Fy + FB
Substituting the values,

F(8,1)

=F,, [cos wtcos B+ cos (wt—120°) cos (8—-120°) + cos (wt + 120°) cos (8+
120°)] The first term of this expression is

cos wtcos @=0.5[cos (8- wt)+cos (B8+ wt)]
The second term is

cos (wt—120°) cos (8- 120°) =0.5[cos (B— wi) +cos (B+ wt —240°)]
Similarly, the third term can be rewritten in the form shown.
The expression is

F@,Hn=15F, cos (- wt)

+0.5 F,, [cos (B+ wt) + cos (B+ wt = 240°) + cos (B+ wt +

240°)] Note that

cos (8+ wt — 240°) = cos (8+ wt+ 120°) , and

cos (B+ wt+240°) =cos (8+ wt— 120°) .
If these two terms are added, then

cos (B+ wt+120°) +cos (B+ wt—120°) == cos (B+ wt)
So, in the earlier expression, the second part of RHS within the capital bracket is zero. In
other words, this part represents three unit phasors with a progressive phase difference of
120°, and therefore add up to zero. Hence, the resultant mmf is

F(@,t)=1.5F, cos (8- wri)
So, the resultant mmf is distributed in both space and time. It can be termed as a rotating
magnetic field with sinusoidal space distribution, whose space phase angle changes
linearly with time as wt . It therefore rotates at a constant angular speed of w rad
(elect.)/s. This angular speed is called synchronous angular speed (w ).

The peak value of the resultant mmf is F,.qx = 1.5 F), . The value of F,,, depends on No. of
turns/phase, winding current, No. of poles, and winding factor. At w ¢t = 0 , i.e. when the

current in R phase has maximum positive value, F (8, 0) = 1.5 F,, cos 8, i.e. the
mmf wave has its peak value (at = 0 ) lying on the axis of R phase, when it carries
maximum positive current. At wt=277/3 (120°), the phase Y (assumed lagging) has its
positive current maximum, so that the peak of the rotating magnetic field (mmf) lying on
the axis of Y phase. By the same argument, the peak of the mmf coincides with the axis of
phase B at wt=4717/3 (240°) . It is, therefore, seen that the resultant mmf moves from
the axis of the leading phase to that of the lagging phase, i.e. from phase R towards phase
Y, and then phase B, when the phase sequence of the currents is R-Y-B (R leads Y, and Y
leads B). As described in brief later, the direction of rotation of the resultant mmf is
reversed by simply changing the phase sequence of currents.

From the above discussion, the following may be concluded: Whenever a balanced
three-phase winding with phases distributed in space so that the relative space angle
between them is 277/ 3 rad (elect.) [120°], is fed with balanced three-phase currents with

relative phase difference of 277/ 3 rad (elect.) [ 120°], the resultant mmf rotates in the air-

gap at an angular speed of wy, =27 (f/p), where fis the frequency (Hz) of currents



and p is No. of pairs of poles for which the winding is designed. The synchronous speed
in rpm (r/min) is N ;= w; (60 /21) = 60 ( f/ p) . The direction of rotation of the mmf is
from the leading phase axis to lagging phase axis. This is also valid for g-phase balanced
winding, one value of which may be ¢ =2 (two). For a 2-phase balanced winding, the
time and phase angles are (77/2) rad or 90° (elect.).

Alternatively, this production of rotating magnetic field can be shown by the
procedure described. As stated earlier, the input voltage to three-phase balanced winding
of the stator is a balanced one with the phase sequence (R-Y-B). This is shown in the
sinusoidal voltage waveforms of the three phases, R, Y & B (Fig. 29.3).

O - — —

1 |
j 0=150°,
O=120° 0=180°

0=90

Fig. 29.3: Three-phase voltage waveforms with phase sequence R-Y-B.

A two-pole, three-phase balanced winding in the stator of IM is shown in Fig. 29.4(i)-
(a-d), where the winding of each phase, say for example, ( R — R' ) is assumed to be
concentrated in one slot each, both for forward and return conductors, with required no. as
needed. Same is the case for other two phases. Please note that the angle of 120° is same
in both mechanical (as shown) and also electrical terms, as no. of poles is two only. The
two (forward and return) parts of the winding in each phase, say R are referred as R and R’
respectively. So, also for two other phases, Y & B as shown.

Let us first consider, what happens at the time instant #; , of the voltage waveforms as
given in Fig. 29.3. At this instant, the voltage in the R-phase is positive maximum (&, =
90° ), while the two other voltages in the phases, Y & B are half of the maximum
value, and also negative. The three waveforms are represented by the following equations:
egy = E,,sin@; eyy =E,sin (8-120°); egy =E,, sin (6+ 120°)
where,

O= wt (rad)
f = Supply frequency (Hz or c/s)



w=217f = Angular frequency (rad/s)
E,, = Maximum value of the voltage, or induced emf in each phase

The currents in three windings are shown in Fig. 29.4(a)-(i). For (6 = 90° ), the current in

R-phase in positive maximum, while the currents in both Y and B phases are negative,
with magnitude as half of maximum value (0.5). The fluxes due to the currents in the
windings are shown in Fig. 29.4(a)-(ii). It may be noted that ® is taken as reference,
while @y leads P by 60° and Pp lags Pr by 60°, as can be observed from the
direction of currents in all three phases as given earlier. If the fluxes are added to find the
resultant in phasor form, the magnitude is found as (1.5 - @ ). It may be noted that this
magnitude is same as that found mathematically earlier. Its direction is also shown in
same figure. The resultant flux is given by,
DPpr0°+Dy60°+Pp—60°=(DP+2-(0.5:D)-cos60°) -120°=(1.5-D) £0°

Now, let us shift to the instant, t, (6, = 120°) as shown in Fig. 29.3. The voltages in

the two phases, R & B are ( /3712 =0.866 ) times the maximum value, with R-phase as
positive and B-phase as negative. The voltage in phase Y is zero. This is shown in Fig.
29.4(b)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(b)-(ii).
As given earlier, @y is taken as reference here, while ®p lags @ by 60° . Please note

the direction of the currents in both R and B phases. If the fluxes are added to find the
resultant in phasor form, the magnitude is found as (1.5 - ® ). The direction is shown in
the same figure. The resultant flux is given by,
Pra°+Dps-60°=(@Pg30°+Dpg2-30°-1.0 2-30°

=(2-(0.866 - ®) - cos 30°)-12-30°=(1.5-D) 2-30°.

It may be noted that the magnitude of the resultant flux remains constant, with its
direction shifting by 30°= 120° — 90° in the clockwise direction from the previous
instant.

Similarly, if we now shift to the instant, 3 (€5 = 150° ) as shown in Fig. 29.3. The
voltage in the B- phase is negative maximum, while the two other voltages in the phases,
R & Y, are half of the maximum value (0.5), and also positive. This is shown in Fig.
29.4(c)-(1). The fluxes due to the currents in the windings are shown in Fig. 29.4(c)-(i1).
The reference of flux direction ( Py ) is given earlier, and is not repeated here. If the
fluxes are added to find the resultant in phasor form, the magnitude is found as (1.5 - @ ).
The direction is shown in the same figure. The resultant flux is given by,
CDRAOO+(DYA—120°+CDBA—6OOZ(¢BAOO+(DRA6OO+(DYA—600)'1.04—600
=(P+2-(05-D)-cos60°)-12-60°=(1.5-P) 2-60°.

It may be noted that the magnitude of the resultant flux remains constant, with the
direction shifting by another 30° in the clockwise direction from the previous instant.

If we now consider the instant, z4 (6y = 180°) as shown in Fig. 29.3. The voltages in

the two phases, Y & B are ( 3 /2 =0.866) times the maximum value, with Y -phase as
positive and B-phase as negative. The voltage in phase R is zero. This is shown in Fig.
29.4(d)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(d)-(ii).



If the fluxes are added to find the resultant in phasor form, the magnitude is found as (1.5
- ® ). The direction is shown in the same figure. The resultant flux is given by,

Py 2-120°+ P 5 2 - 60°=(Py 2 —30°+ P 5 £30°) 12 — 90°

=(2:(0.866 - ®)-cos30°)-12-90°=(1.5-D) -90°.

It may be noted that the magnitude of the resultant flux remains constant, with its
direction shifting by another 30° in the clockwise direction from the previous instant.

0 = 90° 0 = 120°
Fig. 29.4(a)i) Fig. 29.4(b)(i)
B(0.5®)

(1.5®) R(®) !ob\
\‘{my

Y(0.5®) R(0.866D)

Fig. 29.4(a)(ii) Fig. 29.4(b)(ii)
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Fig. 29.4: (i) The currents in the three-phase balanced windings and
(ii) The location (position) of the axis of resultant flux
(or mmf), with the change in time (0 = wt).



A study of the above shows that, as we move from #; (6, = 90° ) to #4 (65 = 180° )
along the voltage waveforms (Fig. 29.3), the magnitude of the resultant flux remains

constant at the value (1.5 - @ ) as shown in Fig. 29.4(ii)-(a-d). If another point, say #5 (65

=210°) is taken, it can be easily shown that the magnitude of the resultant flux at

that instant remains same at (1.5 - @ ), which value is obtained mathematically earlier. If
any other arbitrary point, 7 (8) on the waveform is taken, the magnitude of the resultant
flux at that instant remains same at (1.5 - @ ). Also, it is seen that the axis of the resultant
flux moves through 90° , as the angle, 8 changes from 90° to 180° , i.e. by the same angle
of 90° . So, if we move through one cycle of the waveform, by 360° (electrical), the axis
of the resultant flux also moves through 360° (2-pole stator), i.e. one complete revolution.
The rotating magnetic field moves in the clockwise direction as shown, from phase R to
phase Y. Please note that, for 2-pole configuration as in this case, the mechanical and
electrical angles are same. So, the speed of the rotating magnetic field for this case is 50
rev/sec (rps), or 3,000 rev/min (rpm), as the supply frequency is 50 Hz or c/s, with its
magnitude, i.e. resultant, remaining same.



Four-Pole Stator

A 4-pole stator with balanced three-phase winding (Fig. 29.5) is taken as an example.
The winding of each phase (one part only), say for example, ( R; — R;" ) is assumed to be
concentrated in one slot each, both for forward and return conductors, with required no. as
needed. Same is the case for other two phases. The connection of two parts of the winding
in R-phase, is also shown in the same figure. The windings for each of three phases are in
two parts, with the mechanical angle between the start of adjacent windings being 60°
only, whereas the electrical angle remaining same at 120° . As two pairs of poles are
there, electrically two cycles, i.e. 720° are there for one complete revolution, with each N-
S pair for one cycle of 360° , but the mechanical angle is only 360° . If we move through
one cycle of the waveform, by 360° (electrical), the axis of the resultant flux in this case
moves through a mechanical angle of 180° , i.e. one pole pair ( 360° - elec.), or half
revolution only. As stated earlier, for the resultant flux axis to make one complete
revolution ( 360° - mech.), two cycles of the waveform ( 720° - elec.), are required, as No.
of poles ( p ) is four (4). So, for the supply frequency of f= 50 Hz (c/s),
the speed of the rotating magnetic field is given by,

ng =Q2-f)/p=fI(p/l2)=50/(4/2)=25rev/sec (rps), or N ; = 1,500 rev/min (rpm).

For winding in R-phase

Fig. 29.5: Three-phase balanced windings in a 4-pole stator.

The relation between the synchronous speed, i.e. the speed of the rotating magnetic field,
in rpm and the supply frequency in Hz, is given by

Ng=(00-2-f)/p=(120-f)/p

To take another example of a 6 -pole stator, in which, for 50 Hz supply, the synchronous
speed is 1,000 rpm, obtained by using the above formula.



The Reversal of Direction of Rotating Magnetic Field

R

R'
Fig. 29.6: Three-phase windings for Induction motor.

The direction of the rotating magnetic field is reversed by changing the phase
sequence to R-B-Y, i.e. changing only the connection of any two of the three phases, and
keeping the third one same. The schematic of the balanced three-phase winding for a 2-
pole stator, with the winding of each phase assumed to be concentrated in one slot, is
redrawn in Fig. 29.6, which is same as shown in Fig. 29.4(i) (a -d) . The space phase
between the adjacent windings of any two phases (say R & Y, or R & B) is 120° , i.e. 277/
3 rad (elect.), as a 2-pole stator is assumed. Also, it may be noted that, while the
connection to phase R remains same, but the phases, Y and B of the winding are now
connected to the phases, B and Y of the supply respectively. The waveforms for the above
phase sequence (R-B-Y) are shown in Fig. 29.7. Please note that, the voltage in phase R
leads the voltage in phase B, and the voltage in phase B leads the voltage in phase Y. As
compared to the three waveforms shown in Fig. 29.3, the two waveforms of the phases Y
& B change, while the reference phase R remains same, with the phase sequence reversed
as given earlier. The currents in three phases of the stator winding are

i =1,,coswt
iy =1,,cos (wt+ 120°)
ip =1,,cos(wt—-120°)=1,, cos (wt+ 240°)
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Fig. 29.7: Three phase voltage waveforms with phase sequence R-B-Y.

Without going into the details of the derivation, which has been presented in detail earlier,
the resultant mmf wave is obtained as

F(8,1)=Fr+Fy + Fs

=F, [cos wtcos @+ cos (wt+ 120°) cos (8—-120°) + cos (wt —120°) cos (8 +

120°)] As shown earlier, the first term of this expression is
cos wtcos 8=0.5[cos (B+ wt)+cos (8- wt)]
The second term is

cos (wt+ 120°) cos (8- 120°) = 0.5 [cos (B+ wt) + cos (B— wt = 240°)]

Similarly, the third term can be rewritten in the form shown.
The expression is

F@,1)=15F, cos (6+ wri)

+0.5 F,, [cos (8- wi) + cos (8- wt=240°) + cos (8- wt+240°)]

As shown or derived earlier, the expression, after simplification, is

F@,1)=15F, cos (6+ wri)

Note that the second part of the expression within square bracket is zero.

It can be shown that the rotating magnetic field now moves in the reverse (i.e.,
anticlockwise) direction (Fig. 29.6), from phase R to phase B (lagging phase R by 120°),
which is the reverse of earlier (clockwise) direction as shown in Fig. 29.4(i), as the phase
sequence is reversed. This is also shown in the final expression of the resultant mmf
wave, as compared to the one derived earlier. Alternatively, the reversal of direction of
the rotating magnetic field can be derived by the procedure followed in the second
method as given earlier.

In this lesson — the first one of this module, it has been shown that, if balanced three-
phase voltage is supplied to balanced three-phase windings in the stator of an Induction
motor, the resultant flux remains constant in magnitude, but rotates at the synchronous
speed, which is related to the supply frequency and No. of poles, for which the winding
(stator) has been designed. This is termed as rotating magnetic field formed in the air gap
of the motor. The construction of three-phase induction motor (mainly two types of rotor
used) will be described, in brief, in the next lesson, followed by the principle of operation.



UNIT-4

Three-phase Induction Motor



Construction and

Principle of Operation of
IM

In the previous, i.e. first, lesson of this module, the formation of rotating magnetic
field in the air gap of an induction motor (IM), has been described, when the three-phase
balanced winding of the stator is supplied with three-phase balanced voltage. The
construction of the stator and two types of rotor — squirrel cage and wound (slip-ring) one,
used for three-phase Induction motor will be presented. Also described is the principle of
operation, i.e. how the torque is produced.

Keywords: Three-phase induction motor, cage and wound (slip-ring) rotor, synchronous
and rotor speed, slip, induced voltages in stator winding and rotor
bar/winding.

After going through this lesson, the students will be able to answer the following
questions:

1. How would you identify the two types (cage and wound, or slip-ring) of rotors in
three-phase induction motor?

2. What are the merits and demerits of the two types (cage and wound, or slip-ring) of
rotors in IM?

3. How is the torque produced in the rotor of the three-phase induction motor?

4. How does the rotor speed differ from synchronous speed? Also what is meant by the
term ‘slip’?

Construction of Three-phase Induction Motor

R

3-phase
supply

Y
B

Fig. 30.1: Schematic diagram of the stator windings in a
three-phase induction motor.



This is a rotating machine, unlike the transformer, described in the previous module,
which is a static machine. Both the machines operate on ac supply. This machine mainly
works as a motor, but it can also be run as a generator, which is not much used. Like all
rotating machines, it consists of two parts — stator and rotor. In the stator (Fig. 30.1), the
winding used is a balanced three-phase one, which means that the number of turns in each
phase, connected in star/delta, is equal. The windings of the three phases are placed 120°
(electrical) apart, the mechanical angle between the adjacent phases being [ (2 -120°) / p ],
where p is no. of poles. For a 4-pole (p = 4) stator, the mechanical angle



between the winding of the adjacent phases, is [(2 -120°) / 4] = 120° / 2 = 60° , as shown

in Fig. 29.4. The conductors, mostly multi-turn, are placed in the slots, which may be
closed, or semi-closed, to keep the leakage inductance low. The start and return parts of
the winding are placed nearly 180° , or (180° — ) apart. The angle of short chording ( 5)
is nearly equal to 30° , or close to that value. The short chording results in reducing the
amount of copper used for the winding, as the length of the conductor needed for
overhang part is reduced. There are also other advantages. The section of the stampings
used for both stator and rotor, is shown in Fig. 30.2. The core is needed below the teeth to
reduce the reluctance of the magnetic path, which carries the flux in the motor (machine).
The stator is kept normally inside a support.

Slot for winding ch(h

Aa00t-

RRSESRSy

Slol for bars (rotor)

Fig. 30.2: Section for stamping of stator and rotor in IM (not to scale).

There are two types of rotor used in IM, viz. squirrel cage and wound (slip-ring) one.
The cage rotor (Fig. 30.3a) is mainly used, as it is cheap, rugged and needs little or no
maintainance. It consists of copper bars placed in the slots of the rotor, short circuited at
the two ends by end rings, brazed with the bars. This type of rotor is equivalent to a
wound (slip-ring) one, with the advantage that this may be used for the stator with
different no. of poles. The currents in the bars of a cage rotor, inserted inside the stator,
follow the pattern of currents in the stator winding, when the motor (IM) develops torque,
such that no. of poles in the rotor is same as that in the stator. If the stator winding of IM
is changed, with no. of poles for the new one being different from the earlier one, the cage
rotor used need not be changed, thus, can be same, as the current pattern in the rotor bars
changes. But the no. of poles in the rotor due to the above currents in the bars is same as
no. of poles in the new stator winding. The only problem here is that the equivalent
resistance of the rotor is constant. So, at the design stage, the value is so chosen, so as to
obtain a certain value of the starting torque, and also the slip at full load torque is kept
within limits as needed.

The other type of rotor, i.e., a wound rotor (slip ring) used has a balanced three-phase
winding (Fig. 30.3b), being same as the stator winding, but no. of turns used depends on
the voltage in the rotor. The three ends of the winding are brought at the three slip-rings,
at which points external resistance can be inserted to increase the starting torque
requirement. Other three ends are shorted inside. The motor with additional starting



resistance is costlier, as this type of rotor is itself costlier than the cage rotor of same
power rating, and additional cost of the starting resistance is incurred to increase the
starting torque as required. But the slip at full load torque is lower than that of a cage rotor
with identical rating, when no additional resistance is used, with direct short-circuiting at
the three slip-ring terminals. In both types of rotor, below the teeth, in which bars of a
cage rotor, or the conductors of the rotor winding, are placed, lies the iron core, which
carries the flux as is the case of the core in the stator. The shaft of the rotor passes below
the rotor core. For large diameter of the rotor, a spider is used between the rotor core and
the shaft. For a wound (slip-ring) rotor, the rotor winding must be designed for same no.
of poles as used for the stator winding. If the no. of poles in the rotor winding is different
from no. of poles in the stator winding, no torque will be developed in the motor. It may
be noted that this was not the case with cage rotor, as explained earlier.

Copper or
Aluminium
bars
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Rotor core

Fig. 30.3(a): Squirrel cage rotor of induction motor
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Fig. 30.3(b): Wound rotor (slip ring) of induction motor

The wound rotor (slip ring) shown in Fig. 30.3 (b) is shown as star-connected,
whereas the rotor windings can also be connected in delta, which can be converted into its
equivalent star configuration. This shows that the rotor need not always be connected in
star as shown. The No. of rotor turns changes, as the delta-connected rotor is converted
into star-connected equivalent. This point may be kept in mind, while deriving the
equivalent circuit as shown in the next lesson (#31), if the additional resistance (being in
star) is connected through the slip rings, in series with the rotor winding



Principle of Operation

The balanced three-phase winding of the stator is supplied with a balanced three-
phase voltage. As shown in the previous lesson (#29), the current in the stator winding
produces a rotating magnetic field, the magnitude of which remains constant. The axis of
the magnetic field rotates at a synchronous speed ( ng=(2 - f)/ p ), a function of the
supply frequency (f), and number of poles (p) in the stator winding. The magnetic flux
lines in the air gap cut both stator and rotor (being stationary, as the motor speed is zero)
conductors at the same speed. The emfs in both stator and rotor conductors are induced at
the same frequency, i.e. line or supply frequency, with No. of poles for both stator and
rotor windings (assuming wound one) being same. The stator conductors are always
stationary, with the frequency in the stator winding being same as line frequency. As the
rotor winding is short-circuited at the slip-rings, current flows in the rotor windings. The
electromagnetic torque in the motor is in the same direction as that of the rotating
magnetic field, due to the interaction between the rotating flux produced in the air gap by
the current in the stator winding, and the current in the rotor winding. This is as per
Lenz’s law, as the developed torque is in such direction that it will oppose the cause,
which results in the current flowing in the rotor winding. This is irrespective of the rotor
type used — cage or wound one, with the cage rotor, with the bars short-circuited by two
end-rings, is considered equivalent to a wound one The current in the rotor bars interacts
with the air-gap flux to develop the torque, irrespective of the no. of poles for which the
winding in the stator is designed. Thus, the cage rotor may be termed as universal one.
The induced emf and the current in the rotor are due to the relative velocity between the
rotor conductors and the rotating flux in the air-gap, which is maximum, when the rotor is
stationary ( n, = 0.0 ). As the rotor starts rotating in the same direction, as that of the
rotating magnetic field due to production of the torque as stated earlier, the relative
velocity decreases, along with lower values of induced emf and current in the rotor. If the
rotor speed is equal that of the rotating magnetic field, which is termed as synchronous
speed, and also in the same direction, the relative velocity is zero, which causes both the
induced emf and current in the rotor to be reduced to zero. Under this condition, torque
will not be produced. So, for production of positive (motoring) torque, the rotor speed
must always be lower than the synchronous speed. The rotor speed is never equal to the
synchronous speed in an IM. The rotor speed is determined by the mechanical load on the
shaft and the total rotor losses, mainly comprising of copper loss.

The difference between the synchronous speed and rotor speed, expressed as a ratio of
the synchronous speed, is termed as ‘slip’ in an IM. So, slip (s) in pu is

ng =N, n,

s=—""=1
nS nS

or, n, =(1—-15)-ny

where, n; and n, are synchronous and rotor speeds in rev/s.
Interms of Ny =60 - ng and N, =60 - n,., both in rev/min (rpm), slip is
s=(Ng—N,)/IN;
If the slip is expressed in %, then s =[(Ny =N )/ N ;]-100
Normally, for torques varying from no-load (= zero) to full load value, the slip is pro-
portional to torque. The slip at full load is 4-5% (0.04-0.05).
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Fig. 30.4: Production of torgue

An alternative explanation for the production of torque in a three-phase induction
motor is given here, using two rules (right hand and left hand) of Fleming. The stator and
rotor, along with air-gap, is shown in Fig. 30.4a. Both stator and rotor is shown there as
surfaces, but without the slots as given in Fig, 30.2. Also shown is the path of the flux in
the air gap. This is for a section, which is under North pole, as the flux lines move from
stator to rotor. The rotor conductor shown in the figure is at rest, i.e., zero speed (stand-
still). The rotating magnetic field moves past the conductor at synchronous speed in the
clockwise direction. Thus, there is relative movement between the flux and the rotor
conductor. Now, if the magnetic field, which is rotating, is assumed to be at standstill as
shown in Fig. 30.4b, the conductor will move in the direction shown. So, an emf is
induced in the rotor conductor as per Faraday’s law, due to change in flux linkage. The
direction of the induced emf as shown in the figure can be determined using Fleming’s
right hand rule.

As described earlier, the rotor bars in the cage rotor are short circuited via end rings.
Similarly, in the wound rotor, the rotor windings are normally short-circuited externally



via the slip rings. In both cases, as emf is induced in the rotor conductor (bar), current
flows there, as it is short circuited. The flux in the air gap, due to the current in the rotor
conductor is shown in Fig. 30.4c. The flux pattern in the air gap, due to the magnetic
fields produced by the stator windings and the current carrying rotor conductor, is shown
in Fig. 304d. The flux lines bend as shown there. The property of the flux lines is to travel
via shortest path as shown in Fig. 30.4a. If the flux lines try to move to form straight line,
then the rotor conductor has to move in the direction of the rotating magnetic field, but
not at the same speed, as explained earlier. The current carrying rotor conductor and the
direction of flux are shown in Fig. 30.4e. It is known that force is produced on the
conductor carrying current, when it is placed in a magnetic field. The direction of the
force on the rotor conductor is obtained by using Fleming’s left hand rule, being same as
that of the rotating magnetic field. Thus, the rotor experiences a motoring torque in the
same direction as that of the rotating magnetic field. This briefly describes how torque is
produced in a three-phase induction motor.

The frequency of the induced emf and current in the rotor

As given earlier, both the induced emf and the current in the rotor are due to the
relative velocity between the rotor conductors and the rotating flux in the air-gap, the
speed of which is the synchronous speed ( N ;= (120 - f) / p ). The rotor speed is

N,=(10-s5)-Ng
The frequency of the induced emf and current in the rotor is

fr=p-(ng—n.)=s-(p-ng)=s-f
For normal values of slip, the above frequency is small. Taking an example, with full load slip
as 4% (0.04), and supply (line) frequency as 50 Hz, the frequency (Hz) of the rotor induced
emf and current, is f , = 0.04 - 50.0 = 2.0 , which is very small, whereas the frequency (f) of
the stator induced emf and current is 50 Hz, i.e. line frequency. At standstill, i.e. rotor
stationary ( n, = 0.0 ), the rotor frequency is same as line frequency, as
shown earlier, with slip [s = 1.0 (100%)]. The reader is requested to read the next lesson

(#31), where some additional points are included in this matter. Also to note that the
problems are given there (#31).

In this lesson — the second one of this module, the construction of a three-phase
Induction Motor has been presented in brief. Two types of rotor — squirrel cage and
wound (slip-ring) ones, along with the stator part, are described. Then, the production of
torque in IM, when the balanced stator winding is fed from balanced three-phase voltage,
with the balanced rotor winding in a wound one being short -circuited, is taken up. In the
next lesson, the equivalent circuit per phase of IM will be derived first. Then, the
complete power flow diagram is presented.



UNIT4

Three-phase Induction Motor



Torque-Slip (speed)
Characteristics of
Induction Motor (IM)

Instructional Objectives

] Derivation of the expression for the gross torque developed as a function of slip
(speed) of Induction motor

Sketch the above characteristics of torque-slip (speed), explaining the various features

Derive the expression of maximum torque and the slip (speed) at which it occurs

| Draw the above characteristics with the variation in input (stator) voltage and rotor
resistance

Introduction

In the previous, i.e. third, lesson of this module, starting with the formulas for the
induced emfs per phase in both stator and rotor windings, the equivalent circuit per phase
of the three-phase induction motor (IM), has been derived. The relation between the rotor
input, rotor copper loss and rotor output (gross) are derived next. Finally, the various
losses — copper losses (stator/rotor), iron loss (stator) and mechanical loss, including the
determination of efficiency, and also power flow diagram, are presented. In this lesson,
firstly, the torque-slip (speed) characteristics of IM, i.e., the expression of the gross torque
developed as a function of slip, will be derived. This is followed by the sketch of the
different characteristics, with the variations in input (stator) voltage and rotor resistance,
along with the features. Lastly, the expression of maximum torque developed and the slip
(speed) at which it occurs, are derived.

Keywords: The equivalent circuit per phase of IM, gross torque developed, torque-slip
(speed) characteristics, maximum torque, slip at maximum torque, variation
of the characteristics with changes in input (stator) voltage and rotor
resistance.



Gross Torque Developed

The current per phase in the rotor winding (the equivalent circuit of the rotor, per
phase is shown in Fig. 31.1) is (as given in earlier lesson (#31))
r.

1 sE, r
CR G x Y T @l @)

Please note that the symbols used are same as given in the earlier lesson.
In a similar way, the output power (gross) developed (W) is the loss in the fictitious
resistance in the equivalent circuit as shown earlier, which is

Py=3(1,) [ =9/s]=3GE) [ra-s1/s] 3(E) rs(-s)
() +(5 1) ()Y +G6xn) ]

The motor speed inrpsis n, = (1 — ) ng

The motor speed (angular) in rad/s is w, =(1-s5) W;
The gross torque developed in N m is



;P _ 3(E Y rs(l-s)
“w a-vw [ +ex)?’] 2mn ()Y +e )]

The synchronous speed (angular) is w ;= 21T ny

The input power to the rotor (or the power transferred from the stator via air gap) is the

loss in the total resistance ( 1o / s ), which is

Pi:3(12)2(r2/S)=3(SE)2 (r/s)zgdéE_};l =5
[+ 0] fontes u)l

The relationship between the input power and the gross torque developed is P; = w T
So, the input power is also called as torque in synchronous watts, or the torque is
Ty =P;/wy

3(E)2 rs

Torque-slip (speed) Characteristics

The torque-slip or torque-speed characteristic, as per the equation derived earlier, is
shown in Fig. 32.1. The slipis s= (W~ w, ) /ws=(ng—n, )/ ng=1-(n,/ ng) . The range
of speed, n, is between 0.0 (standstill) and n, (synchronous speed). The range of slip is
between 0.0 (n, =ng)and 1.0 (n, =0.0).

:
]
T" i 1 1 1 }(TO)“
0.05g % 0.25 0.5 0.75 1.0
P Slip (s)
Wy < 0.0
speed(om,)

Fig. 32.1: Terque-slip(speed) characteristics of Induction Motor

For low values of slip, r, >> (s x2 ) . So, torque is
3(Er)2 rs 3(Er Y s

= w( )y = w r

N 2

This shows that T s , the characteristic being linear. The following points may be
noted. The output torque developed is zero (0.0), at s = 0.0, or if the motor is rotated at
synchronous speed ( n, = ng ). This has been described in lesson No. 30, when the



principle of operation was presented. Also, the slip at full load (output torque = (Ty ) 1) 1s

normally 4-5% (55 =0.04 —0.05),the full load speed of IM being 95-96% of
synchronous speed ( (n,) g=(1-s4)n; =(0.05 = 0.96) ny ).
For large values of slip, r, << (s x3) . So, torque is
To :3(E,-)2 rs 23(E,)2 r
w, 0w, sE)
This shows that, Ty (1/ s) , the characteristic being hyperbolic. The starting torque ( s

2

= 1.0, or n, = 0.0 ) developed, along with starting current, is discussed later.

So, starting from low value of slip ( s > 0.0 ), at which torque is proportional to slip,
whereas for large values of slip ( s < 1.0 ), torque is inverse proportional to slip, both
being derived earlier. In the characteristic shown, it may be observed that torque reaches a
maximum value, which can be obtained in the following way. The relation between
torque and slip is

K r 2 8 2
To =[(n) +(s x2)° | where, k=3 (E,) lw,

1 [P+ n?] 1rn sm)?

or, T = Krs =Ks + r
0 2

2
To determine the maximum value of torque (7 ) in terms of slip, the minimum value

of its inverse (1/ T ) need be determined from the relation,
2
d 1 1 ry (XQ )

dsT = K 2+ r =0
0 2
2 () 2
from which s = 3 or,s=ry/x .
(x2)

Please note that, for motoring condition as shown earlier, slip, s is positive (+ve), as n, <
ng . At this slip, s = s, , > = 5, X2 . This may be termed as slip at maximum torque.

The motor speed is [ (n, ), = (1 = s, ) ng ]. This value of slip is small, for normal wound
rotor (or slip ring) IM, without any additional resistance inserted in the rotor circuit. This
value is higher in the case of squirrel cage IM. Substituting the value of s, the maximum
value of torque is

K 3(E) 1
2X> W 2x

which shows that it is independent of r, . The maximum torque is also termed as pull-out
torque. If the load torque on the motor exceeds this value, the motor will stall, i,e. will

come to standstill condition.
The values of maximum torque and the slip at that torque, can be obtained by using

Tom =

d
ds (To)=00
which is not shown here.



It may be observed from the torque-slip characteristic (Fig. 32.1), or described earlier,
that the output torque developed increases, if the slip increases from 0.0 to s, , or the
motor speed decreases from ng to (n, ),, . This ensures stable operation of IM in this
region ( 0.0 < s < s, ), for constant load torque. But the output torque developed
decreases, if the slip increases from s, to 1.0, or the motor speed decreases from (n, ),, .to
zero (0.0). This results in unstable operation of IM in this region ( s, < s < 1.0 ), for
constant load torque. However, for fan type loads with the torque as (77, (n, )2 ), stable

operation of IM is achieved in this region ( s, < s < 1.0).

Starting Current and Torque
The starting current (rotor) is
E

(12)st = (r)2 +(x 2 )L

as slip at starting (n, =0.0) is 1.0, which is the same at standstill (or stalling condition).
The magnitude of the induced voltage per phase in the stator winding is nearly same as
input voltage per phase fed to the stator, if the voltage drop in the stator impedance, being
small, is neglected, i.e. Vi = E; . As shown in the earlier lesson (#31), the ratio of the
induced emfs per phase in the stator and rotor winding can be taken as t}}e ratio of the

effective turns in two windings, i.e. E /[E=T'"/T" ,where T =k T and

r N r N r N ws s

T =k T.The winding factor for the stator windingis k =k & .Same formula is

r wror ws ds ps
used for the above factor in the rotor winding, assuming it to be wound rotor one.
The starting current in the stator winding can be shownas (I ) =({ ) (T /T ),
N st N

rost r
neglecting the no load current. This current is normally large, much greater than full load
current. This current is reduced by using starters in both types (cage and wound rotor) of
IM, which will be taken up in the next lesson.

The starting torque in N m is

(T) =3

0 st

3(E) r

I / =
(( 2 )st )2 r2 w Ws [( r2 )r2 + (XZZ )2 ]

This expression is obtained substituting s = 1.0 in the expression of T derived earlier. If
the starter is used, the starting torque is also reduced, as is the case with starting current.

Torque-slip (speed) Characteristics,
with variation in input (stator) voltage and rotor circuit resistance
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Fig. 32.1: Terque-speed characteristics for
{a) variation in input{statorjvoltage.

The set of torque-slip characteristics with variation in input (stator) voltage is shown
in Fig. 32.2a. The point to note that the torque at a given slip decreases with the decrease

in input (stator) voltage, as To V 2. The characteristics shown are for decreasing stator
voltages (V1 > V, > V3 ). The speed decreases or the slip increases with constant load
torque, as the input (stator) voltage decreases. The region for stable operation with
constant load torque remains same ( 0.0 < s < s,, ), as given earlier. But again, stable
operation can be obtained in the region ( s, < s < 1.0 ), with fan type loads with the torque
as (T, (n, )2 ). Another problem is that the maximum or pull-out torque decreases as (7
dm V 2 , where V is input (stator) voltage, which is a drawback with constant load torque
operation..

{Tﬁj i

—p =

| ']
0.25 0.5 0,75 1.0
— Slip (8)
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Fig. 32.2: variation in total rotor resistance.



The set of torque-slip characteristics with variation in rotor circuit resistance is shown
in Fig. 32.2b. The characteristics shown are for increasing rotor circuit resistances ( r, >

Ry > R3 > Ry ). The point to note that, the maximum torque remains same for all the
characteristics. This has been shown earlier that the maximum torque depends on rotor
reactance only, but not on rotor circuit resistance. Only the slip at maximum torque
increases with the increase in rotor circuit resistance. So, for constant load torque
operation, the slip increases or the speed decreases with the increase in rotor circuit
resistance. The motor efficiency decreases, as the rotor copper loss increases with the
increase in slip. The load torque remains same, but the output power decreases, as the
speed decreases. Also, it may be observed that the starting torque increases with the
increase in rotor circuit resistance, with the total rotor circuit resistance lower than rotor
reactance. The starting torque is equal to the maximum torque, when the total rotor circuit
resistance is equal to rotor reactance. If the rotor circuit resistance is more than rotor
reactance, the starting torque decreases.

In this lesson — the fourth one of this module, the expression of gross torque
developed, as a function of slip (speed), in IM has been derived first. The sketches of the
different torque-slip (speed) characteristics, with the variations in input (stator) voltage
and rotor resistance, are presented, along with the explanation of their features. Lastly, the
expression of maximum torque developed and also the slip, where it occurs, have been
derived. In the next lesson, the various types of starters used in IM will be presented,
along with the need of the starters, followed by the comparison of the starting current and
torque developed using the starters.
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Three-phase Induction Motor



Different Types of
Starters for Induction
Motor (IM)

Instructional Objectives

] Need of using starters for Induction motor

] Two (Star-Delta and Auto-transformer) types of starters used for Squirrel cage
Induction motor

1 Starter using additional resistance in rotor circuit, for Wound rotor (Slip-ring)
Induction motor

Introduction

In the previous, i.e. fourth, lesson of this module, the expression of gross torque
developed, as a function of slip (speed), in IM has been derived first. The sketches of the
different torque-slip (speed) characteristics, with the variations in input (stator) voltage
and rotor resistance, are presented, along with the explanation of their features. Lastly, the
expression of maximum torque developed and also the slip, where it occurs, have been
derived. In this lesson, starting with the need for using starters in IM to reduce the starting
current, first two (Star- Delta and Auto-transformer) types of starters used for Squirrel
cage IM and then, the starter using additional resistance in rotor circuit, for Wound rotor
(Slip-ring) IM, are presented along with the starting current drawn from the input (supply)
voltage, and also the starting torque developed using the above starters.

Keywords: Direct-on-Line (DOL) starter, Star- delta starter, auto-transformer starter,
rotor resistance starter, starting current, starting torque, starters for squirrel cage and
wound rotor induction motor, need for starters.

Direct-on-Line (DOL) Starters

Induction motors can be started Direct-on-Line (DOL), which means that the rated
voltage is supplied to the stator, with the rotor terminals short-circuited in a wound rotor
(slip-ring) motor. For the cage rotor, the rotor bars are short circuited via two end rings.
Neglecting stator impedance, the starting current in the stator windings is (see lesson 32)

1S
4

E,

() =
t /(;zf )2+ (x 2')2

where,

14

(It )ss =2 )g¢ = 2 )g/ a=Starting current in the motor (stator)



! I/
a=Ts /T, =Effective turns ratio between stator and rotor windings
!

E; =E, =aE, =Input voltage per phase to the motor (stator)

E, = Induced emf per phase in the rotor winding
l4

2 . . o
r2 =a rp =Rotor resistance in terms of stator winding
!
2 o1 o
x2 =a” xp = Rotor reactance at standstill in terms of stator winding



The input voltage per phase to the stator is equal to the induced emf per phase in the
stator winding, as the stator impedance is neglected (also shown in the last lesson (#32)).

In the formula for starting current, no load current is neglected. It may be noted that
the starting current is quite high, about 4-6 times the current at full load, may be higher,
depending on the rating of IM, as compared to no load current.

The starting torque is ( (T ) [(I 1 ))st ]2 ), which shows that, as the starting current

increases, the starting torque also increases. This results in higher accelerating torque
(minus the load torque and the torque component of the losses), with the motor reaching
rated or near rated speed quickly.

Need for Starters in IM

Sub-station

I ll

Consumers Consumers

Consumer

Fig. 33.1: The distribution line fed from substation for
supply to various consumers.

The main problem in starting induction motors having large or medium size lies
mainly in the requirement of high starting current, when started direct-on-line (DOL).
Assume that the distribution line is starting from a substation (Fig. 33.1), where the
supply voltage is constant. The line feeds a no. of consumers, of which one consumer has
an induction motor with a DOL starter, drawing a high current from the line, which is
higher than the current for which this line is designed. This will cause a drop (dip) in the
voltage, all along the line, both for the consumers between the substation and this
consumer, and those, who are in the line after this consumer. This drop in the voltage is
more than the drop permitted, i.e. higher than the limit as per ISS, because the current
drawn is more than the current for which the line is designed. Only for the current lower
the current for which the line is designed, the drop in voltage is lower the limit. So, the
supply authorities set a limit on the rating or size of IM, which can be started DOL. Any
motor exceeding the specified rating, is not permitted to be started DOL, for which a
starter is to be used to reduce the current drawn at starting.

Starters for Cage IM

The starting current in IM is proportional to the input voltage per phase (Vs ) to the

V| =

dance is small compared to the input voltage, or |Vl = |E;

motor (stator), i.e. ( 11 )g Es,

, if the stator impedance is

neglected. This has been shown earlier. So, in a (squirrel) cage induction motor, the



starter is used only to decrease the input voltage to the motor so as to decrease the starting
current. As described later, this also results in decrease of starting torque.

Star-Delta Starter

Fig. 33.2(b): same winding of 1M, reconnected as star at start.
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Fig. 33.2{c): T.PD.T. switch used to first start the motor with the windings
connected in star and then switch for delta connection in run
position{star-delta starter).

This type is used for the induction motor, the stator winding of which is nominally
delta-connected (Fig. 33.2a). If the above winding is reconnected as star (Fig. 33.2b), the
voltage per phase supplied to each winding is reduced by 1/ /3 (0.577) . This is a simple
starter, which can be easily reconfigured as shown in Fig. 33.2c. As the voltage per phase
in delta connection is V; , the phase current in each stator winding is (V;/ Z ), where Z g
is the impedance of the motor per phase at standstill or start (stator impedance and rotor
impedance referred to the stator, at standstill). The line current or the input current to the
motor is [ ( I )s, = (: 3V,)/ Z], which is the current, if the motor is started direct-on-line
(DOL). Now, if the stator winding is connected as star, the phase or line current drawn
from supply at start (standstill) is [ (Vs / Z )/ {3 ], which is (17 3 =(1/ [3)2 ) of the
starting current, if DOL starter is used. The voltage per phase in each stator winding is
now (.Vs/~B). So, the starting current using star-delta starter is reduced by 33.3%. As

for starting torque, being proportional to the square of the current in each of the stator
windings in two different connections as shown earlier, is also reduced by

(1/3= (lﬂ\ 3)2 ), as the ratio of the two currents is (1/ B ), same as that (ratio) of the
voltages applied to each winding as shown earlier. So, the starting torque is reduced by
33.3%, which is a disadvantage of the use of this starter. The load torque and the loss
torque, must be lower than the starting torque, if the motor is to be started using this
starter. The advantage is that, no extra component, except that shown in Fig. 33.2¢, need
be used, thus making it simple. As shown later, this is an auto-transformer starter with the
voltage ratio as 57.7%. Alternatively, the starting current in the second case with the
stator winding reconnected as star, can be found by using star-delta conversion as given in

lesson #18, with the impedance per phase after converting to delta, found as ( 3 Z; ),



and the starting current now being reduced to ( 1/ 3 ) of the starting current obtained using
DOL starter, with the stator winding connected in delta.

Auto-transformer Starter

Auto-Transformer Starter

—
{

-0
supply

V9
L J

Stator
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motor

(b}
Fig. 33.3: Auto-transformer starter for 1M

An auto-transformer, whose output is fed to the stator and input is from the supply
(Fig. 33.3), is used to start the induction motor. The input voltage of IM is x V, which is

the output voltage of the  auto-transformer, the input voltage being V. The output
voltage/input voltage ratio is x, the value of which lies between 0.0 and 1.0

(0.0<x<1.0).Let ( I )s, be the starting current, when the motor is started using DOL
starter, i.e applying rated input voltage. The input current of IM, which is the output
current of auto-transformer, is x (I 1 )st , when this starter is used with input voltage as

x V. The input current of auto-transformer, which is the starting current drawn from the

supply, is 'S ( I ) st » obtained by equating input and output volt-amperes, neglecting
losses and assuming nearly same power factor on both sides. As discussed earlier, the
starting torque, being proportional to the square of the input current to IM in two cases,
with and without auto-transformer (i.e. direct), is also reduced by x 2 , as the ratio of the
two currents is x , same as that (ratio) of the voltages applied to the motor as shown
earlier. So, the starting torque is reduced by the same ratio as that of the starting current.
If the ratio is x = 0.8 (80%) , both starting current and torque are

K= (0.8)2 =0.64 (64%) times the values of starting current and torque with DOL

starting, which is nearly 2 times the values obtained using star-delta starter. So, the
disadvantage is that starting current is increased, with the result that lower rated motor can
now be started, as the current drawn from the supply is to be kept within limits, while the
advantage is that the starting torque is now doubled, such that the motor can start against
higher load torque. The star-delta starter can be considered equivalent to an auto-
transformer starter with the ratio, x = 0.577 (57.7%) . If x = 0.7 (70%) , both starting

current and torque are X = (0.7)2 =0.49 = 0.5 (50%) times the values of starting current

and torque with DOL starting, which is nearly 1.5 times the values obtained using star-
delta starter. By varying the value of the voltage ratio x of the auto-transformer, the

values of the starting current and torque can be changed. But additional cost of auto-
transformer with intermittent rating is to be incurred for this purpose.



Rotor Resistance Starters for Slip-ring (wound rotor) IM

In a slip-ring (wound rotor) induction motor, resistance can be inserted in the rotor
circuit via slip rings (Fig. 33.4), so as to increase the starting torque. The starting current

in the rotor winding is
r

1 o = L
(I 2)s \/ oo )+(x2)

where R,,; = Additional resistance per phase in the rotor circuit.

ext

3 - phase
supply
External
resistance
(o

Stator Rotor

Fig. 33.4: Rotor resistance starter for IM

The input (stator) current is proportional to the rotor current as shown earlier. The starting
current (input) reduces, as resistance is inserted in the rotor circuit. But the

starting torque, [ (Tp )gr =3 [( I5)g ]2 (r» + R,,; ) | increases, as the total resistance in the rotor
circuit is increased. Though the starting current decreases, the total resistance increases, thus
resulting in increase of starting torque as shown in Fig. 32.2b, and also obtained by using the
expression given earlier, for increasing values of the resistance in the rotor circuit. If the
additional resistance is used only for starting, being rated for intermittent duty, the resistance
is to be decreased in steps, as the motor speed increases. Finally, the external resistance is to
be completely cut out, i.e. to be made equal to zero (0.0), thus leaving the slip-rings short-
circuited. Here, also the additional cost of the external resistance with intermittent rating is to
be incurred, which results in decrease of starting current, along with increase of starting
torque, both being advantageous. Also it may be noted that the cost of a slip-ring induction is
higher than that of IM with cage rotor, having same power rating. So, in both cases, additional
cost is to be incurred to obtain the above advantages. This is only used in case higher starting
torque is needed to start IM with high load torque. It may be observed from Fig. 32.2b that the

starting torque increases till it reaches maximum value, i.e. ( (Tg )g < (To )i, ), as the external
resistance in

the rotor circuit is increased, the range of total resistance being [ 7o < (12 + Reyr ) < X3 .

The range of external resistance is between zero (0.0) and ( x, — r, ). The starting torque is
equal to the maximum value, i.e. ( (T )g; = (T )m ), if the external resistance inserted is
equal to ( xp — rp ). But, if the external resistance in the rotor circuit is increased further,



1.e. [ Royy > (xp — rp ) ], the starting torque decreases ( (Tg )g; < (T ) )- This is, because the
starting current decreases at a faster rate, even if the total resistance in the rotor circuit is
increased.

In this lesson — the fifth one of this module, the direct-on-line (DOL) starter used for
IM, along with the need for other types of starters, has been described first. Then, two
types of starters — star-delta and auto-transformer, for cage type IM, are presented. Lastly,
the rotor resistance starter for slip-ring (wound rotor) IM is briefly described. In the next
(sixth and last) lesson of this module, the various types of single phase induction motors,
along with the starting methods, will be presented.
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Starting Methods for
Single-phase Induction
Motor

Instructional Objectives

] Why there is no starting torque in a single-phase induction motor with one (main)
winding in the stator?

] Various starting methods used in the single-phase induction motors, with the intro-
duction of additional features, like the addition of another winding in the stator, and/or
capacitor in series with it.

Introduction

In the previous, i.e. fifth, lesson of this module, the direct-on-line (DOL) starter used
in three -phase IM, along with the need for starters, has been described first. Two types of
starters — star-delta, for motors with nominally delta-connected stator winding, and auto-
transformer, used for cage rotor IM, are then presented, where both decrease in starting
current and torque occur. Lastly, the rotor resistance starter for slip-ring (wound rotor) IM
has been discussed, where starting current decreases along with increase in starting
torque. In all such cases, additional cost is to be incurred. In the last (sixth) lesson of this
module, firstly it is shown that there is no starting torque in a single-phase induction
motor with only one (main) winding in the stator. Then, the various starting methods used
for such motors, like, say, the addition of another (auxiliary) winding in the stator, and/or
capacitor in series with it.

Keywords: Single-phase induction motor, starting torque, main and auxiliary windings,
starting methods, split-phase, capacitor type, motor with capacitor start/run.

Single-phase Induction Motor

Stator

Rotor

+ -
1-phase

ac supply
Fig. 34.1: Single Phase Induction Motor



The winding used normally in the stator (Fig. 34.1) of the single-phase induction
motor (IM) is a distributed one. The rotor is of squirrel cage type, which is a cheap one, as
the rating of this type of motor is low, unlike that for a three-phase IM. As the stator
winding is fed from a single-phase supply, the flux in the air gap is alternating only, not a
synchronously rotating one produced by a poly-phase (may be two- or three-) winding in

the stator of IM. This type of alternating field cannot produce a torque ( (7 )s; = 0.0), if

the rotor is stationery (w , = 0.0 ). So, a single-phase IM is not self-starting, unlike a three-
phase one. However, as shown later, if the rotor is initially given some torque in either

direction (w , * 0.0 ), then immediately a torque is produced in the motor. The
motor then accelerates to its final speed, which is lower than its synchronous speed. This
is now explained using double field revolving theory.

Double field revolving theory

®/2

0 =0 (any angle) 0=m/2
O =10

(@ (ii) (iii)

Fig. 34.2(a): Position of the pulsating and rotating in fluxes with change in angle (0)
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Fig. 34.2(b): Pulsating (sinusoidal) flux as a function of space angle (0)

When the stator winding (distributed one as stated earlier) carries a sinusoidal current
(being fed from a single-phase supply), a sinusoidal space distributed mmf, whose peak or
maximum value pulsates (alternates) with time, is produced in the air gap. This
sinusoidally varying flux (¢ ) is the sum of two rotating fluxes or fields, the magnitude of
which is equal to half the value of the alternating flux (¢/2 ), and both the fluxes rotating
synchronously at the speed, (ny= (2 -f)/ P ) in opposite directions. This is shown in Fig.
34.2a. The first set of figures (Fig. 34.1a (i-iv)) show the resultant sum of the two rotating
fluxes or fields, as the time axis (angle) is changing from 8= 0° to 77(180°) . Fig. 34.2b
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Fig. 34.3:Speed-torque characteristics of single phase induction motor

The flux or field rotating at synchronous speed, say, in the anticlockwise direction, i.e.
the same direction, as that of the motor (rotor) taken as positive induces emf (voltage) in
the rotor conductors. The rotor is a squirrel cage one, with bars short circuited via end
rings. The current flows in the rotor conductors, and the electromagnetic torque is
produced in the same direction as given above, which is termed as positive (+ve). The
other part of flux or field rotates at the same speed in the opposite (clockwise) direction,
taken as negative. So, the torque produced by this field is negative (-ve), as it is in the
clockwise direction, same as that of the direction of rotation of this field. Two torques are
in the opposite direction, and the resultant (total) torque is the difference of the two
torques produced (Fig. 34.3). If the rotor is stationary (w , = 0.0 ), the slip due to forward
(anticlockwise) rotating field is s ;= 1.0 . Similarly, the slip due to backward rotating field

is also s, = 1.0 . The two torques are equal and opposite, and the resultant torque is 0.0
(zero). So, there is no starting torque in a single-phase IM.

But, if the motor (rotor) is started or rotated somehow, say in the anticlockwise
(forward) direction, the forward torque is more than the backward torque, with the
resultant torque now being positive. The motor accelerates in the forward direction, with
the forward torque being more than the backward torque. The resultant torque is thus
positive as the motor rotates in the forward direction. The motor speed is decided by the
load torque supplied, including the losses (specially mechanical loss).

Mathematically, the mmf, which is distributed sinusoidally in space, with its peak
value pulsating with time, is described as F' = F),.qx cos&, € (space angle) measured

from the winding axis. Now, Fpeqr = Frax cosw t . So, the mmf is distributed both in
space and time, i.e. F = Fp,x cos@-coswt . This can be expressed as,

F = (Frax/2)cos(B—wt) + (Frax / 2)-cos(B+wt) ,
which shows that a pulsating field can be considered as the sum of two synchronously
rotating fields (wy = 277 n, ). The forward rotating field is, Fy= (Fiax / 2)-cos(6 -w ) ,
and the backward rotating field is, F}, = (Fiax / 2)-cos(@+wt) . Both the fields have the



same amplitude equal to (Fiax / 2) , where Fiax 1S the maximum value of the pulsating mmf
along the axis of the winding.

When the motor rotates in the forward (anticlockwise) direction with angular speed (w
»=21Tn, ), the slip due to the forward rotating field is,
Sf =(Wy— W) lwy = 1= (W, /Wy ) , or W, :(1_Sf)ws-
Similarly, the slip due to the backward rotating field, the speed of which is (—w ), is,
sp = (Ws+ W) Tws =1+ (W /ws ) =2 = 5 .
The torques produced by the two fields are in opposite direction. The resultant torque is,
T=T;-T,
It was earlier shown that, when the rotor is stationary, Ty= T}, , with both s =5, = 1.0, as

w ,=0.0 or n,= 0.0 . Therefore, the resultant torque at start is 0.0 (zero).

Starting Methods

The single-phase IM has no starting torque, but has resultant torque, when it rotates at
any other speed, except synchronous speed. It is also known that, in a balanced two-phase
IM having two windings, each having equal number of turns and placed at a space angle
of 90° (electrical), and are fed from a balanced two-phase supply, with two voltages equal
in magnitude, at an angle of 90° , the rotating magnetic fields are produced, as in a three-
phase IM. The torque- speed characteristic is same as that of a three-phase one, having
both starting and also running torque as shown earlier. So, in a single-phase IM, if an
auxiliary winding is introduced in the stator, in addition to the main winding, but placed at
a space angle of 90° (electrical), starting torque is produced. The currents in the two
(main and auxiliary) stator windings also must be at an angle of 90° , to produce
maximum starting torque, as shown in a balanced two-phase stator. Thus, rotating
magnetic field is produced in such motor, giving rise to starting torque. The various
starting methods used in a single-phase IM are described here.



Resistance Split-phase Motor

I, Main winding

\% >0

switch opens
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Fig. 34.4: Resistance Split-phase Induction Motor
(a) Schematic Diagram
(b) Phasor Diagram
(c) Torque-Speed characteristic

The schematic (circuit) diagram of this motor is given in Fig. 34.4a. As detailed
earlier, another (auxiliary) winding with a high resistance in series is to be added along

with the main winding in the stator. This winding has higher resistance to reactance ( R, /
X 4 ) ratio as compared to that in the main winding, and is placed at a space angle of

90° from the main winding as given earlier. The phasor diagram of the currents in two
windings and the input voltage is shown in Fig. 34.4b. The current ( I , ) in the auxiliary

winding lags the voltage (V') by an angle, ¢, , which is small, whereas the current ( 7,,, ) in
the main winding lags the voltage (V') by an angle, ¢,, , which is nearly 90° . The phase

angle between the two currents is ( 90° — ¢, ), which should be at least 30° . This

results in a small amount of starting torque. The switch, S (centrifugal switch) is in series
with the auxiliary winding. It automatically cuts out the auxiliary or starting winding,
when the motor attains a speed close to full load speed. The motor has a starting torque of
100—200% of full load torque, with the starting current as 5-7 times the full load current.
The torque-speed characteristics of the motor with/without auxiliary winding are shown in
Fig. 34.4c. The change over occurs, when the auxiliary winding is switched off as given
earlier. The direction of rotation is reversed by reversing the terminals of any one of two
windings, but not both, before connecting the motor to the supply terminals. This motor is
used in applications, such as fan, saw, small lathe, centrifugal pump, blower, office
equipment, washing machine, etc.
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Fig. 34.5: Capacitor-Start Induction Motor
(a) Schematic Diagram
(b) Phasor Diagram
(c) Torque-Speed characteristic

The schematic (circuit) diagram of this motor is given in Fig. 34.5a. It may be
observed that a capacitor along with a centrifugal switch is connected in series with the
auxiliary winding, which is being used here as a starting winding. The capacitor may be
rated only for intermittent duty, the cost of which decreases, as it is used only at the time
of starting. The function of the centrifugal switch has been described earlier. The phasor
diagram of two currents as described earlier, and the torque-speed characteristics of the
motor with/without auxiliary winding, are shown in Fig. 34.5b and Fig. 34.5c
respectively. This motor is used in applications, such as compressor, conveyor, machine
tool drive, refrigeration and air-conditioning equipment, etc.



Capacitor-start and Capacitor-run Motor
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Fig. 34.6: Capacitor-Start and Capacitor-run Induction Motor
(a) Schematic Diagram
(b) Phasor Diagrams
(¢) Torque-Speed characteristics



In this motor (Fig. 34.6a), two capacitors — C; for starting, and C, for running, are

used. The first capacitor is rated for intermittent duty, as described earlier, being used
only for starting. A centrifugal switch is also needed here. The second one is to be rated
for continuous duty, as it is used for running. The phasor diagram of two currents in both
cases, and the torque-speed characteristics with two windings having different values of
capacitors, are shown in Fig. 34.6b and Fig. 34.6¢c respectively. The phase difference
between the two currents is (@, + @, > 90° ) in the first case (starting), while it is 90° for
second case (running). In the second case, the motor is a balanced two phase one, the two
windings having same number of turns and other conditions as given earlier, are also
satisfied. So, only the forward rotating field is present, and the no backward rotating field
exists. The efficiency of the motor under this condition is higher. Hence, using two
capacitors, the performance of the motor improves both at the time of starting and then
running. This motor is used in applications, such as compressor, refrigerator, etc.

= Run capacitor
el (long-time rated)

>0

Fig. 34.7: Schematic Diagram of Capacitor-run Induction Motor

Beside the above two types of motors, a Permanent Capacitor Motor (Fig. 34.7) with
the same capacitor being utilised for both starting and running, is also used. The power
factor of this motor, when it is operating (running), is high. The operation is also quiet

and smooth. This motor is used in applications, such as ceiling fans, air circulator, blower,
etc.
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37.1 Goals of the lesson

After going through the lesson, the student will be able to understand:

the factors on which induced voltage in the armature depend.

the factors on which the electromagnetic torque developed depend.

the derivation of the emf and torque equations.

that emf and torque equations are applicable to both generator and motor operations.
why the generated emf in motor called the back emf.

armature reaction, its ill effects and remedial measures.

the purpose of compensating winding — its location and connection.

the purpose of interpole — its location and connection.

A S R A e

the difference between the GNP (geometric neutral plane) and MNP (magnetic neutral
plane).

37.2 Introduction

Be it motor or generator operations, the analysis of D.C machine performance center around two
fundamental equations namely the emf equation and the torque equations. In fact both motoring
and generating actions go together in d.c machines. For example in a d.c motor there will be
induced voltage across the brushes in the same way as in a generator. The induced voltage in d.c
motor is however called by a different name back emf. Thus the factors on which induced emf in
generator depend will be no different from motor action. In fact the same emf equation can be
employed to calculate induced emf for both generator and motor operation. In the same way same
torque equation can be used to calculate electromagnetic torque developed in both motoring and
generating actions.

In this lesson these two fundamental equations have been derived.

Field patterns along the air gap of the machine for both motor and generator modes are
explained. The ill effects of armature mmf (for a loaded machine) is discussed and possible
remedial measures are presented. Calculation of cross magnetizing and demagnetizing AT
(ampere turns) of d.c machines with shifted brush are presented. Depending on your course
requirement the derivation for these ATs with sifted brush may be avoided. Finally, the
phenomenon of armature reaction and a brief account of commutation are presented.

37.3 EMF & Torque Equations

In this section we shall derive two most fundamental and important formulas (namely emf and
torque equations) for d.c machine in general. These will be extensively used to analyse the
performance and to solve problems on d.c machines.



37.3.1 EMF Equation

Consider a D.C generator whose field coil is excited to produce a flux density distribution along
the air gap and the armature is driven by a prime mover at constant speed as shown in figure.



Length of machine = L

(perpendicular to the screen)

Area under each pole = aDL/p
¢

Thus,B =
av. aDL/p

N

Figure 37.1: Pole pitch & area on armature surface per pole.

Let us assume a p polar d.c generator is driven (by a prime mover) at n rps. The excitation of
the stator field is such that it produces a ¢ Wb flux per pole. Also let z be the total number of
armature conductors and a be the number of parallel paths in the armature circuit. In general, as
discussed in the earlier section the magnitude of the voltage from one conductor to another is
likely to very since flux density distribution is frapezoidal in nature. Therefore, total average
voltage across the brushes is calculated on the basis of average flux density Ba. If D and L are

the rotor diameter and the length of the machine in meters then area under each pole is —

Hence average flux density in the gap is given by

Average flux density By,

4
= 7D
()
_ _9p
Induced voltage in a single conductor TDL
= BgLv
Number of conductors present in each parallel path Zav
If v is the tangential velocity then, v a
. = 7Dn
Therefore, total voltage appearing across the brushes I BL
= 2 %
a av
= 2 % Lz Dn
a
Thus voltage induced across the armature, E4 d
= Plon (37.1)



We thus see that across the armature a voltage will be generated so long there exists some flux
per pole and the machine runs with some speed. Therefore irrespective of the fact that the
machine is operating as generator or as motor, armature has an induced voltage in it governed
essentially by the above derived equation. This emf is called back emf for motor operation.

37.3.2 Torque equation

Whenever armature carries current in presence of flux, conductor experiences force which gives
rise to the electromagnetic torque. In this section we shall derive an expression for the
electromagnetic torque 7, developed in a d.c machine. Obviously 7, will be developed both in
motor and generator mode of operation. It may be noted that the direction of conductor currents
reverses as we move from one pole to the other. This ensures unidirectional torque to be
produced. The derivation of the torque expression is shown below.

Let,I; = Armature current
Average flux density B,, = _9P
n DL
I
Then, 7* = Current flowing through each conductor.
F ingl d ! a
orce on a single conductor _ o' L
. 1 D

Torque on a single conductor  _ Bw " L™ 2

Total electromagnetic torque developed, T, _I a D
= ZBaV a L 2

Putting the value of By, we get T, _ ziza ol, (37.2)

Thus we see that the above equation is once again applicable both for motor and generator
mode of operation. The direction of the electromagnetic torque, T, will be along the direction of
rotation in case of motor operation and opposite to the direction of rotation in case of generator

operation. When the machine runs steadily at a constant rpm then T, = Tjpqq and T, = Ty,
respectively for motor and generator mode.
The emf and torque equations are extremely useful and should be remembered by heart.

37.4 GNP and MNP

In a unloaded d.c machine field is produced only by the field coil as armature does not carry any
current. For a unloaded generator, net field is equal to M ; produced by field coil alone and as

G
shown in figure 37.2 (a). Then for a plane which is at right angles to M ¢, no field can exist

along the plane, since My cos900 = 0. The plane along which there will be no field is called
Magnetic Neutral Plane or MNP in short. The Geometrical Neutral Plane (GNP) is defined as a
plane which is perpendicular to stator field axis. Thus for an unloaded generator GNP and MNP
coincide. In a loaded generator, apart from M , there will exist field produced by armature M .

as well making the resultant fci;eld M ; shifted as shown in figure 37.2 (b). Thus MNP in this case

will be perpendicular to M , . Therefore it may be concluded that MNP for generator mode gets
shifted along the direction of rotation of the armature.






Direction of rotation Direction of rotation
—Th T

MNP & GNP
coincides
(a) Unloaded Generator (b) Loaded Generator

Figure 37.2: MNP & GNP : Generator mode.

The shift of MNP for a loaded motor will be in a direction opposite to the rotation as depicted
in figure 37.3 (b). The explanation of this is left to the reader as an exercise.

37.5 Armature reaction

In a unloaded d.c machine armature current is vanishingly small and the flux per pole is decided
by the field current alone. The uniform distribution of the lines of force get upset when armature
too carries current due to loading. In one half of the pole, flux lines are concentrated and in the
other half they are rarefied. Qualitatively one can argue that during loading condition flux per
pole will remain same as in no load operation because the increase of flux in one half will be
balanced by the decrease in the flux in the other half. Since it is the flux per pole which decides
the emf generated and the torque produced by the machine, seemingly there will be no effect felt
so far as the performance of the machine is concerned due to armature reaction. This in fact is
almost true when the machine is lightly or moderately loaded.

Direction of rotation Direction of rotation
i T

MNP & GNP
coincides

(a) Unloaded motor (b) Loaded motor
Figure 37.3: MNP & GNP : Motor mode.



However at rated armature current the increase of flux in one half of the pole is rather less than
the decrease in the other half due to presence of saturation. In other words there will be a net
decrease in flux per pole during sufficient loading of the machine. This will have a direct bearing
on the emf as well as torque developed affecting the performance of the machine.

Apart from this, due to distortion in the flux distribution, there will be some amount of flux
present along the g-axis (brush axis) of the machine. This causes commutation difficult. In the
following sections we try to explain armature reaction in somewhat detail considering motor and
generator mode separately.

Direction of rotation

Leading pole tip 4=

Trailing pole tip
Figure 37.4: Flux lines during Figure 37.5: Flux lines for a
no load condition. loaded generator.

Direction of rotation

Figure 37.6: Flux lines for a loaded motor.

37.5.1 No Load operation

When a d.c machine operates absolutely under no load condition, armature current is zero. Under
such a condition 7, developed is zero and runs at constant no load speed. In absence of any /,,
the flux per pole @, inside the machine is solely decided by the field current and lines of force are
uniformly distributed under a pole as shown in figure 37.4.

37.5.2 Loaded operation

A generator gets loaded when a resistance across the armature is connected and power is
delivered to the resistance. The direction of the current in the conductor (either cross or dot) is
decided by the fact that direction of 7, will be opposite to the direction of rotation. It is therefore
obvious to see that flux per pole @, developed in the generator should be decided not only by the
mmf of the field winding alone but the armature mmf as well as the armature is carrying current
now. By superposing the no load field lines and the armature field lines one can get the resultant



field lines pattern as shown in Figures 37.5 and 37.7. The tip of the pole which is seen by a
moving conductor first during the course of rotation is called the leading pole tip and the tip of
the pole which is seen later is called the trailing pole tip. In case of generator mode we see that
the lines of forces are concentrated near the trailing edge thereby producing torque in the opposite
direction of rotation. How the trapezoidal no load field gets distorted along the air gap of the
generator is shown in the Figure 37.7.

e Field by
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armature together g

b resultant field
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Figure 37.7: Effect of Armature Reaction

In this figure note that the armature mmf distribution is triangular in nature and the flux density
distribution due to armature current is obtained by dividing armature mmf with the reluctance of
the air gap. The reluctance is constant and small at any point under the pole. This means that the
armature flux density will simply follow the armature mmf pattern. However, the reluctance in
the g-axis region is quite large giving rise to small resultant flux of polarity same as the main pole
behind in the g-axis.

In the same way one can explain the effect of loading a d.c motor by referring to Figures 37.6
and 37.7. Point to be noted here is that the lines of forces gets concentrated near the leading pole
tip and rarefied near the trailing pole thereby producing torque along the direction of rotation.
Also note the presence of some flux in the g-axis with a polarity same as main pole ahead.

37.6 Cross magnetising & Demagnetising AT
G

Usually the brushes in a d.c machine are along the GNP. The armature mmf M , which acts

always along the direction of the brush axis also acts along GNP. It may also be noted that M

. . , G
is at right angles to the field mmf M ¢ when brushes are not shifted. Thus M , has cross
G ,

G
magnetising effect on M . Apparently M , does not have any component opposing M ¢ directly.



The presence of cross magnetising armature mmf M . distorts the no load field pattern caused by
G

My;.
The cross magnetising armature AT can be calculated as shown below.

Let, P = Number of poles
z = Total number of armature conductors
a = Number of parallel paths
Armature current = [,
Current through armature conductor =1,/ a

Total Ampere conductors = %Z
Lz

Total AT = a 2

I,z

~.Armature AT/pole = 2aP

Demagnetising by armature mmf can occur when a deliberate brush shift is introduced.
Small brush shift is sometimes given to improve commutation. For generator brush shift is given
in the forward direction (in the direction of rotation) while for motor mode the brush shift is
given in the backward direction (opposite to the direction of rotation) as shown in figures 37.8
and 37.9.

Direction of rotation Directign of rotation
f-‘

GNP C
Brush shift in forward direction Brush shift in backward direction
for Generator for Motor
Figure 37.8: Figure 37.9:

Let the brush shift be £° (mechanical) for all the brushes. Then as depicted in the figure 37.8
the conductors present within the angle 2 f° (i.e., ZAOB and «COD) will be responsible for
demagnetization and conductors present within the angle (180° - 2 £°) (i.e., ZAOD and «BOC)
will be responsible for crossmagnetisation for a 2 polar machine.

Ampere turns for demagnetization can be calculated as follows:

Number of conductors spread over 360°

Il
S|

I
g
=

Number of conductors spread over 2 5°



I

Demagnetizing Ampere conductors contributed by 2 f° = —aLD 2B
a 360

Since brushes are placed in the inter polar regions and there are P number of brush positions,

Z
~Total number of conductors responsible for demagnetization =3¢,7 ( P 26 ] )
1

Total Demagnetising Ampere conductors = P — ﬁu‘ 20
a

Pl
Total Demagnetising Ampere turns = 2—“3—6205- 28°
a

D
Lqz28
Total Demagnetising Ampere turns per pole = 2a 360°

To find expression for the cross magnetising, replace 2 £° by (180° - 2 £°) in the above
expression to get:

2360° - P2 8°)

Number of conductors responsible for cross magnetization = 360°
1, 23600 - P2 8°)
Total cross Ampere turns = 2a 360"
L, z360°-P28°)
Total cross Ampere turns per pole = 2aP 360°

It may easily be verified that the sum of demagnetizing AT/pole and cross magnetising
AT/pole is equal to total AT/pole as shown below:

[
L2 e 2060°-P2°) Lz
2a360° 2aP 3600 2P

37.6.1 Commutation & Armature reaction

If we concentrate our attention to a single conductor, we immediately recognize that the direction
of current reverses as it moves from the influence of one pole to the influence of the next
opposite pole. This reversal of current in the conductor is called commutation. During no load
operation when the conductor reaches the magnetic neutral axis or the g-axis, the induced voltage
in it is zero as there is no flux is present in the g-axis. Also any coil present in this position and
under going commutation, will get short circuited by the commutator segments and brushes. In
other words we see that every coil will be short circuited whenever it undergoes commutation and
fortunately at that time induced emtf in the coil being zero, no circulating current will be present
at least during no load condition. But as discussed earlier, flux in the quadrature axis will never
be zero when the machine is loaded. Hence coil undergoing commutation will have circulating
current causing problem so far as smooth commutation is concerned.



For small machines (up to few kilo watts) no special care is taken to avoid the armature
reaction effects. However for large machines, to get rid of the ill effects of armature reaction one
can use compensating winding, inter poles or both.

The basic idea of nullifying armature mmf is based on a very simple fact. We know that a
magnetic field is produced in the vicinity when a conductor carries current. Naturally another
conductor carrying same current but in the opposite direction if placed in close proximity of the
first conductor, the resultant field in the vicinity will be close to zero. Additional winding called
compensating winding is placed on the pole faces of the machine and connected in series with the
armature circuit in such a way that the direction of current in compensating winding is opposite
to that in the armature conductor as shown in Figure 37.10. It may be noted that compensating
winding can not nullify the quadrature axis armature flux completely. Additional small poles
called inter poles are provided in between the main poles in large machines to get rid of the
commutation problem arising out of armature reaction.

Sectional view of a machine provided with both compensating and inter poles is shown in
Figure 37.11 and the schematic representation of such a machine is shown in Figure 37.12.

Careful inspection of the figures mentioned reveal that the polarity of the inter pole should be
same as that of the main pole ahead in case of generator and should be same as that of main pole
behind in case of motor.

Pole face Pole face €

»
Inter pole

Compensating Compensating =
Winding

Winding

LA
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¥
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Figure 37.10: Position of compensating winding.

Figure 37.11: Inter pole coil.
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Main field coil
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Figure 37.12: Interpole & compensating coil connection.



37.7 Tick the correct answer

1.

A d.c generator is found to develop an armature voltage of 200 V. If the flux is reduced
by 25% and speed is increased by 40%, the armature generated voltage will become:

(A)20V (B) 107 V © 210V (D)373V

A d.c motor runs steadily drawing an armature current of 15 A. To develop the same
amount of torque at 20 A armature current, flux should be:

(A) reduced by 25% (B) increased by 25%
(C) reduced by 33% (D) increased by 33%

A d.c generator develops 200 V across its armature terminals with a certain polarity. To
reverse the polarity of the armature voltage:

(A) direction of field current should be reversed

(B) direction of rotation should be reversed.
(C) either of (A) and (B)
(D) direction of both field current and speed should be reversed.

In a d.c shunt machine, the inter pole winding should be connected in

(A) series with the armature.

(B) series with the field winding.
(C) parallel with the armature.

(D) parallel with the field winding.

In a d.c shunt machine, compensating winding should be connected in

(A) series with the armature.

(B) series with the field winding.
(C) parallel with the armature.

(D) parallel with the field winding.

In a d.c generator, interpole coil should be connected in such a fashion that the polarity of
the interpole is

(A) same as that of main pole ahead.

(B) same as that main pole behind.
(C) either of (A) and (B).
(D) dependent on armature current.

In a d.c motor, interpole coil should be connected in such a fashion that the polarity of the
interpole is



(A) same as that of main pole ahead.

(B) same as that of main pole behind.
(C) either of (A) and (B).
(D) dependent on feild current.

37.8 Answer the following

1.

Write down the expression for electromagnetic torque in a d.c motor. Now comment how
the direction of rotation can be reversed.

Write down the expression for the generated voltage in a d.c generator. Now comment
how can you reverse the polarity of the generated voltage.

Comment on the direction of electromagnetic torque in a d.c motor if both armature
current and field current are reversed.

A 4-pole, lap wound, d.c machine has total number of 800 armature conductors and
produces 0.03 Wb flux per pole when field is excited. If the machine is driven by a prime
mover at 1000 rpm, calculate the generated emf across the armature. If the generator is
loaded to deliver an armature current of 50 A, Calculate the prime mover and
electromagnetic torques developed at this load current. Neglect frictional torque.

. A 4-pole, lap wound, d.c machine has a total number of 800 armature conductors and an

armature resistance of 0.4 Q. If the machine is found to run steadily as motor at 1000 rpm
and drawing an armature current of 10 A from a 220 V D.C supply, calculate the back
emf, electromagnetic torque and the load torque.

Clearly mention the purpose of providing interpoles in large d.c machines.
Comment on the polarity of the interpole for motor and generator modes.
Why and what for, is the compensating winding provided in large d.c machines?

How are interpole coil and compensating windings connected in d.c machine?
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37.1 Goals of the lesson

After going through the lesson, the student will be able to understand:

the factors on which induced voltage in the armature depend.

the factors on which the electromagnetic torque developed depend.

the derivation of the emf and torque equations.

that emf and torque equations are applicable to both generator and motor operations.
why the generated emf in motor called the back emf.

armature reaction, its ill effects and remedial measures.

the purpose of compensating winding — its location and connection.

the purpose of interpole — its location and connection.

A S RSN R o I S .

the difference between the GNP (geometric neutral plane) and MNP (magnetic neutral
plane).

37.2 Introduction

Be it motor or generator operations, the analysis of D.C machine performance center around two
fundamental equations namely the emf equation and the torque equations. In fact both motoring
and generating actions go together in d.c machines. For example in a d.c motor there will be
induced voltage across the brushes in the same way as in a generator. The induced voltage in d.c
motor is however called by a different name back emf. Thus the factors on which induced emf in
generator depend will be no different from motor action. In fact the same emf equation can be
employed to calculate induced emf for both generator and motor operation. In the same way same
torque equation can be used to calculate electromagnetic torque developed in both motoring and
generating actions.

In this lesson these two fundamental equations have been derived.

Field patterns along the air gap of the machine for both motor and generator modes are
explained. The ill effects of armature mmf (for a loaded machine) is discussed and possible
remedial measures are presented. Calculation of cross magnetizing and demagnetizing AT
(ampere turns) of d.c machines with shifted brush are presented. Depending on your course
requirement the derivation for these ATs with sifted brush may be avoided. Finally, the
phenomenon of armature reaction and a brief account of commutation are presented.

37.3 EMF & Torque Equations

In this section we shall derive two most fundamental and important formulas (namely emf and
torque equations) for d.c machine in general. These will be extensively used to analyse the
performance and to solve problems on d.c machines.

37.3.1 EMF Equation

Consider a D.C generator whose field coil is excited to produce a flux density distribution along
the air gap and the armature is driven by a prime mover at constant speed as shown in figure 37.1.



Length of machine = L
(perpendicular to the screen)
Area under each pole = aDL/p
¢
Thus,B =
av. aDL/p

N

Figure 37.1: Pole pitch & area on armature surface per pole.

Let us assume a p polar d.c generator is driven (by a prime mover) at n rps. The excitation of
the stator field is such that it produces a ¢ Wb flux per pole. Also let z be the total number of
armature conductors and a be the number of parallel paths in the armature circuit. In general, as
discussed in the earlier section the magnitude of the voltage from one conductor to another is
likely to very since flux density distribution is frapezoidal in nature. Therefore, total average
voltage across the brushes is calculated on the basis of average flux density Ba. If D and L are

the rotor diameter and the length of the machine in meters then area under each pole is —

Hence average flux density in the gap is given by

Average flux density By,

4
= 7D
()
_ _9p
Induced voltage in a single conductor TDL
= BgLv
Number of conductors present in each parallel path Zav
If v is the tangential velocity then, v a
. = 7Dn
Therefore, total voltage appearing across the brushes I BL
= 2 %
a av
= 2 % Lz Dn
a
Thus voltage induced across the armature, E4 d
= Plon (37.1)
a

We thus see that across the armature a voltage will be generated so long there exists some flux
per pole and the machine runs with some speed. Therefore irrespective of the fact that the
machine is operating as generator or as motor, armature has an induced voltage in it governed
essentially by the above derived equation. This emf is called back emf for motor operation.



37.3.2 Torque equation

Whenever armature carries current in presence of flux, conductor experiences force which gives
rise to the electromagnetic torque. In this section we shall derive an expression for the
electromagnetic torque 7, developed in a d.c machine. Obviously 7, will be developed both in
motor and generator mode of operation. It may be noted that the direction of conductor currents
reverses as we move from one pole to the other. This ensures unidirectional torque to be
produced. The derivation of the torque expression is shown below.

Let,I; = Armature current
Average flux density B,, = _#P_
w DL
Il :
Then, 5° = Current flowing through each conductor.
Force on a single conductor - p — 4" L
. 1 D
Torque on a single conductor  _ Bo ('L 2
Total electromagnetic torque developed, 7, _I a D
= ZBaV a L 2
Putting the value of B,,, we get T, _ % ol, (37.2)
T

Thus we see that the above equation is once again applicable both for motor and generator

mode of operation. The direction of the electromagnetic torque, 7, will be along the direction of
rotation in case of motor operation and opposite to the direction of rotation in case of generator

operation. When the machine runs steadily at a constant rpm then T, = Tjpqq and T, = Tpp,
respectively for motor and generator mode.
The emf and torque equations are extremely useful and should be remembered by heart.

37.4 GNP and MNP

In a unloaded d.c machine field is produced only by the field coil as armature does not carry any
current. For a unloaded generator, net field is equal to My produced by fieldG coil alone and as

shown in figure 37.2 (a). Then for a plane which is at right angles to M ¢, no field can exist

along the plane, since My cos900 = 0. The plane along which there will be no field is called
Magnetic Neutral Plane or MNP in short. The Geometrical Neutral Plane (GNP) is defined as a
plane which is perpendicular to stator field axis. Thus for an unloaded generator GNP and MNP
coincide. In a loaded generator, apart from M , there will exist field produced by armature M .

as well making the resultant f(iaeld M . shifted as shown in figure 37.2 (b). Thus MNP in this case

will be perpendicular to M , . Therefore it may be concluded that MNP for generator mode gets
shifted along the direction of rotation of the armature



Direction of rotation Direction of rotation
—Th T

MNP & GNP
coincides
(a) Unloaded Generator (b) Loaded Generator

Figure 37.2: MNP & GNP : Generator mode.

The shift of MNP for a loaded motor will be in a direction opposite to the rotation as depicted
in figure 37.3 (b). The explanation of this is left to the reader as an exercise.

37.5 Armature reaction

In a unloaded d.c machine armature current is vanishingly small and the flux per pole is decided
by the field current alone. The uniform distribution of the lines of force get upset when armature
too carries current due to loading. In one half of the pole, flux lines are concentrated and in the
other half they are rarefied. Qualitatively one can argue that during loading condition flux per
pole will remain same as in no load operation because the increase of flux in one half will be
balanced by the decrease in the flux in the other half. Since it is the flux per pole which decides
the emf generated and the torque produced by the machine, seemingly there will be no effect felt
so far as the performance of the machine is concerned due to armature reaction. This in fact is
almost true when the machine is lightly or moderately loaded.

Direction of rotation Direction of rotation
i T

MNP & GNP
coincides

(a) Unloaded motor (b) Loaded motor
Figure 37.3: MNP & GNP : Motor mode.



However at rated armature current the increase of flux in one half of the pole is rather less than
the decrease in the other half due to presence of saturation. In other words there will be a net
decrease in flux per pole during sufficient loading of the machine. This will have a direct bearing
on the emf as well as torque developed affecting the performance of the machine.

Apart from this, due to distortion in the flux distribution, there will be some amount of flux
present along the g-axis (brush axis) of the machine. This causes commutation difficult. In the
following sections we try to explain armature reaction in somewhat detail considering motor and
generator mode separately.

Direction of rotation

Leading pole tip 4=

Trailing pole tip
Figure 37.4: Flux lines during Figure 37.5: Flux lines for a
no load condition. loaded generator.

Direction of rotation

Figure 37.6: Flux lines for a loaded motor.

37.5.1 No Load operation

When a d.c machine operates absolutely under no load condition, armature current is zero. Under
such a condition 7, developed is zero and runs at constant no load speed. In absence of any /,,
the flux per pole @, inside the machine is solely decided by the field current and lines of force are
uniformly distributed under a pole as shown in figure 37.4.

37.5.2 Loaded operation

A generator gets loaded when a resistance across the armature is connected and power is
delivered to the resistance. The direction of the current in the conductor (either cross or dot) is
decided by the fact that direction of 7, will be opposite to the direction of rotation. It is therefore
obvious to see that flux per pole @, developed in the generator should be decided not only by the
mmf of the field winding alone but the armature mmf as well as the armature is carrying current
now. By superposing the no load field lines and the armature field lines one can get the resultant



field lines pattern as shown in Figures 37.5 and 37.7. The tip of the pole which is seen by a
moving conductor first during the course of rotation is called the leading pole tip and the tip of
the pole which is seen later is called the trailing pole tip. In case of generator mode we see that
the lines of forces are concentrated near the trailing edge thereby producing torque in the opposite
direction of rotation. How the trapezoidal no load field gets distorted along the air gap of the
generator is shown in the Figure 37.7.

e Field by

4 ~

~
Motor Generator
== Direction of rotatiomr——-—=>

L

armature together g

b resultant field
v
=)

Figure 37.7: Effect of Armature Reaction

In this figure note that the armature mmf distribution is triangular in nature and the flux density
distribution due to armature current is obtained by dividing armature mmf with the reluctance of
the air gap. The reluctance is constant and small at any point under the pole. This means that the
armature flux density will simply follow the armature mmf pattern. However, the reluctance in
the g-axis region is quite large giving rise to small resultant flux of polarity same as the main pole
behind in the g-axis.

In the same way one can explain the effect of loading a d.c motor by referring to Figures 37.6
and 37.7. Point to be noted here is that the lines of forces gets concentrated near the leading pole
tip and rarefied near the trailing pole thereby producing torque along the direction of rotation.
Also note the presence of some flux in the g-axis with a polarity same as main pole ahead.

37.6 Cross magnetising & Demagnetising AT
G

Usually the brushes in a d.c machine are along the GNP. The armature mmf M , which acts

always along the direction of the brush axis also acts along GNP. It may also be noted that M

. . , G
is at right angles to the field mmf M ¢ when brushes are not shifted. Thus M , has cross
G ,

G
magnetising effect on M . Apparently M , does not have any component opposing M ¢ directly.



The presence of cross magnetising armature mmf M . distorts the no load field pattern caused by
G

My;.
The cross magnetising armature AT can be calculated as shown below.

Let, P = Number of poles
z = Total number of armature conductors
a = Number of parallel paths
Armature current = [,
Current through armature conductor =1,/ a

Total Ampere conductors = %Z
Lz

Total AT = a 2

I,z

~.Armature AT/pole = 2aP

Demagnetising by armature mmf can occur when a deliberate brush shift is introduced.
Small brush shift is sometimes given to improve commutation. For generator brush shift is given
in the forward direction (in the direction of rotation) while for motor mode the brush shift is
given in the backward direction (opposite to the direction of rotation) as shown in figures 37.8
and 37.9.

Direction of rotation Directign of rotation
f-‘

GNP C
Brush shift in forward direction Brush shift in backward direction
for Generator for Motor
Figure 37.8: Figure 37.9:

Let the brush shift be £° (mechanical) for all the brushes. Then as depicted in the figure 37.8
the conductors present within the angle 2 f° (i.e., ZAOB and «COD) will be responsible for
demagnetization and conductors present within the angle (180° - 2 £°) (i.e., ZAOD and «BOC)
will be responsible for crossmagnetisation for a 2 polar machine.

Ampere turns for demagnetization can be calculated as follows:

Number of conductors spread over 360°

Il
S|

I
g
=

Number of conductors spread over 2 5°



I

Demagnetizing Ampere conductors contributed by 2 f° = —aLD 2B
a 360

Since brushes are placed in the inter polar regions and there are P number of brush positions,

Z
~Total number of conductors responsible for demagnetization =3¢,7 ( P 26 ] )
1

Total Demagnetising Ampere conductors = P — ﬁu‘ 20
a

Pl
Total Demagnetising Ampere turns = 2—“3—6205- 28°
a

D
Lqz28
Total Demagnetising Ampere turns per pole = 2a 360°

To find expression for the cross magnetising, replace 2 £° by (180° - 2 £°) in the above
expression to get:

2360° - P2 8°)

Number of conductors responsible for cross magnetization = 360°
1, 23600 - P2 8°)
Total cross Ampere turns = 2a 360"
L, z360°-P28°)
Total cross Ampere turns per pole = 2aP 360°

It may easily be verified that the sum of demagnetizing AT/pole and cross magnetising
AT/pole is equal to total AT/pole as shown below:

[
L2 e 2060°-P2°) Lz
2a360° 2aP 3600 2P

37.6.1 Commutation & Armature reaction

If we concentrate our attention to a single conductor, we immediately recognize that the direction
of current reverses as it moves from the influence of one pole to the influence of the next
opposite pole. This reversal of current in the conductor is called commutation. During no load
operation when the conductor reaches the magnetic neutral axis or the g-axis, the induced voltage
in it is zero as there is no flux is present in the g-axis. Also any coil present in this position and
under going commutation, will get short circuited by the commutator segments and brushes. In
other words we see that every coil will be short circuited whenever it undergoes commutation and
fortunately at that time induced emtf in the coil being zero, no circulating current will be present
at least during no load condition. But as discussed earlier, flux in the quadrature axis will never
be zero when the machine is loaded. Hence coil undergoing commutation will have circulating
current causing problem so far as smooth commutation is concerned.



For small machines (up to few kilo watts) no special care is taken to avoid the armature
reaction effects. However for large machines, to get rid of the ill effects of armature reaction one
can use compensating winding, inter poles or both.

The basic idea of nullifying armature mmf is based on a very simple fact. We know that a
magnetic field is produced in the vicinity when a conductor carries current. Naturally another
conductor carrying same current but in the opposite direction if placed in close proximity of the
first conductor, the resultant field in the vicinity will be close to zero. Additional winding called
compensating winding is placed on the pole faces of the machine and connected in series with the
armature circuit in such a way that the direction of current in compensating winding is opposite
to that in the armature conductor as shown in Figure 37.10. It may be noted that compensating
winding can not nullify the quadrature axis armature flux completely. Additional small poles
called inter poles are provided in between the main poles in large machines to get rid of the
commutation problem arising out of armature reaction.

Sectional view of a machine provided with both compensating and inter poles is shown in
Figure 37.11 and the schematic representation of such a machine is shown in Figure 37.12.

Careful inspection of the figures mentioned reveal that the polarity of the inter pole should be
same as that of the main pole ahead in case of generator and should be same as that of main pole
behind in case of motor.

Pole face Pole face €

»
Inter pole

Compensating Compensating =
Winding

Winding

LA
r Y
¥
A",

Figure 37.10: Position of compensating winding.

Figure 37.11: Inter pole coil.

O
Interpole
coil
Compensating
coil
Main field coil
0

Figure 37.12: Interpole & compensating coil connection.



37.7 Tick the correct answer

1.

A d.c generator is found to develop an armature voltage of 200 V. If the flux is reduced
by 25% and speed is increased by 40%, the armature generated voltage will become:

(A)20V (B) 107 V © 210V (D)373V

A d.c motor runs steadily drawing an armature current of 15 A. To develop the same
amount of torque at 20 A armature current, flux should be:

(A) reduced by 25% (B) increased by 25%
(C) reduced by 33% (D) increased by 33%

A d.c generator develops 200 V across its armature terminals with a certain polarity. To
reverse the polarity of the armature voltage:

(A) direction of field current should be reversed

(B) direction of rotation should be reversed.
(C) either of (A) and (B)
(D) direction of both field current and speed should be reversed.

In a d.c shunt machine, the inter pole winding should be connected in

(A) series with the armature.

(B) series with the field winding.
(C) parallel with the armature.

(D) parallel with the field winding.

In a d.c shunt machine, compensating winding should be connected in

(A) series with the armature.

(B) series with the field winding.
(C) parallel with the armature.

(D) parallel with the field winding.

In a d.c generator, interpole coil should be connected in such a fashion that the polarity of
the interpole is

(A) same as that of main pole ahead.

(B) same as that main pole behind.
(C) either of (A) and (B).
(D) dependent on armature current.

In a d.c motor, interpole coil should be connected in such a fashion that the polarity of the
interpole ir



(A) same as that of main pole ahead.

(B) same as that of main pole behind.
(C) either of (A) and (B).
(D) dependent on feild current.

37.8 Answer the following

1.

Write down the expression for electromagnetic torque in a d.c motor. Now comment how
the direction of rotation can be reversed.

Write down the expression for the generated voltage in a d.c generator. Now comment
how can you reverse the polarity of the generated voltage.

Comment on the direction of electromagnetic torque in a d.c motor if both armature
current and field current are reversed.

A 4-pole, lap wound, d.c machine has total number of 800 armature conductors and
produces 0.03 Wb flux per pole when field is excited. If the machine is driven by a prime
mover at 1000 rpm, calculate the generated emf across the armature. If the generator is
loaded to deliver an armature current of 50 A, Calculate the prime mover and
electromagnetic torques developed at this load current. Neglect frictional torque.

. A 4-pole, lap wound, d.c machine has a total number of 800 armature conductors and an

armature resistance of 0.4 Q. If the machine is found to run steadily as motor at 1000 rpm
and drawing an armature current of 10 A from a 220 V D.C supply, calculate the back
emf, electromagnetic torque and the load torque.

Clearly mention the purpose of providing interpoles in large d.c machines.
Comment on the polarity of the interpole for motor and generator modes.
Why and what for, is the compensating winding provided in large d.c machines?

How are interpole coil and compensating windings connected in d.c machine?
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39.1 Goals of the lesson

In this lesson aspects of starting and speed control of d.c motors are discussed and explained. At
the end principles of electric braking of d.c. shunt motor is discussed. After going through the
lesson, the reader is expected to have clear ideas of the following.

1. The problems of starting d.c motors with full rated voltage.

2. Use and selection of variable resistance as a simple starter in the armature circuit of a d.c
motor.

3. Superiority of commercial starter (3-point starter) over resistance starter. Various
protective features incorporated in a commercial starter.

4. Various strategies (namely-armature resistance control, armature voltage control and field
current control) adopted for controlling speed of d.c motors.

5. Importance of characteristics such as (i) speed vs. armature current and (i1) speed vs.
torque which are relevant for clear understanding of speed control technique.

6. Principle of electric braking — qualitative explanation.

39.2 Introduction

Although in this section we shall mainly discuss shunt motor, however, a brief descriptions of (1)

D.C shunt, (i1) separately excited and (iii) series motor widely used are given at the beginning.
The armature and field coils are connected in parallel in a d.c shunt motor as shown in figure

39.1 and the parallel combination is supplied with voltage V. I1, I, and Ir are respectively the
current drawn from supply, the armature current and the field current respectively. The following
equations can be written by applying KCL, and KVL in the field circuit and KVL in the armature
circuit.

Iy, = I, + I rapplying KCL
I = Y from KVLin field circuit
Ry
V-E, ) .
1, = from KVL in the armature circuit
ra
= V-kon

Ta



I, I
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Visupply}) : Visupply)
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Figure 39.1: D.C shunt motor connection & its circuit representation.

39.3 Important Ideas

We have learnt in the previous lecture (37), that for motor operation:

1. Electromagnetic torque 7, = k@ I, developed by the motor acts along the direction of
rotation.

2. The load torque 77, acts in the opposite direction of rotation or in opposition to 7.
3. If T, = T1 , motor operates with constant speed. .
4. If at any time 7, > Ty, , the motor will accelerate.
5. If at any time 7, < Ty , the motor will decelerate.

Although our main focus of study will be the operation of motor under steady state condition,
a knowledge of “how motor moves from one steady state operating point to another steady
operating point” is important to note. To begin with let us study, how a motor from rest condition
settles to the final operating point. Let us assume the motor is absolutely under no-load condition
which essentially means 77, = 0 and there is friction present. Thus when supply is switched on,
both I, = v/ r, and @ will be established developing T,. As 77, = 0, motor should pick up speed
due to acceleration. As motor speed increases, armature current decreases since back emf Ej
rises. The value of T, also progressively decreases. But so long 7, is present, acceleration will
continue, increasing speed and back emf. A time will come when supply voltage and Ej, will be
same making armature current I, zero. Now T, becomes zero and acceleration stops and motor
continues to run steadily at constant speed given by n = V/ (k(p) and drawing no
armature current. Note that input power to the armature is zero and mechanical output power is

zero as well.

Let us bring a little reality to the previous discussion. Let us not neglect frictional torque
during acceleration period from rest. Let us also assume frictional torque to be constant and
equal to Tfyic. How the final operating point will be decided in this case? When supply will be
switched on T, will be developed and machine will accelerate if T, > Tfyc. With time T, will
decrease as I, decreases. Eventually, a time will come when 7, becomes equal to 77, and motor
will continue to run at constant steady no load speed ng. The motor in the final steady state



however will continue to draw a definite amount of armature current which will produce 7, just

enough to balance Tfc.

Suppose, the motor is running steadily at no load speed ng, drawing no load armature I,y and
producing torque T,0 (= Tfic). Now imagine, a constant load torque is suddenly imposed on the shaft
of the motor at # = 0. Since speed can not change instantaneously, at =0, I,(t=0 ) =1,
and T,(t = 0+) = T,0. Thus, at t = 0+, opposing torque is (77, + Tfyic) < Tep . Therefore, the motor
should start decelerating drawing more armature current and developing more 7. Final steady
operating point will be reached when, T, = Tfc + Ty, and motor will run at a new speed lower
than no load speed ng but drawing I, greater than the no load current I, (.

In this section, we have learnt the mechanism of how a D.C motor gets loaded. To find out
steady state operating point, one should only deal with steady state equations involving torque
and current. For a shunt motor, operating point may change due to (i) change in field current or
@, (i1) change in load torque or (iii) change in both. Let us assume the initial operating point to
be:

Armature current = a
1
Field current = 1

Flux per pole = ¢
Speedinrps = nj

Load torque = u
1 kool 1
a = Pa = (39.1)
E
bl = k@ony = V-Igr, (39.2)

Now suppose, we have changed field  cyrrent and load torque to new values I and Ty
respectively. Our problem is to find out the new steady state armature current and speed. Let,

1

New armature current = a2
1

New field current = r2
New flux perpole = @»

Speedintps = no
1
New load torque = 2
1
2 = k@olao =T (39.3)
E (39.4)
o= k@oy =V-I,0or,
Now from equations 39.1 and 39.3 we get:
r T k¢ 1
e2 — L2 — 2 a2 (39 5)

T
T kgl

el Ll 1 al

From equation 39.5, one can calculate the new armature current /7, the other things being
known. Similarly using equations 39.2 and 39.4 we get:



E

0 _k@ony _V-1airg (39.6)
E ken VvV-I r
b2 11 al a

Now we can calculate new steady state speed n, from equation 39.6.

39.4 Starting of D.C shunt motor
39.4.1 Problems of starting with full voltage
We know armature current in a d.c motor is given by

V-E vy
=__ v = 7

rq r,
At the instant of starting, rotor speed n = 0, hence starting armature current is lasr = v Since,

armature resistance is quite small, starting current may be quite high (many times larger than the
rated current) . A large machine, characterized by large rotor inertia (J), will pick up speed rather
slowly. Thus the level of high starting current may be maintained for quite some time so as to
cause serious damage to the brush/commutator and to the armature winding. Also the source
should be capable of supplying this burst of large current. The other loads already connected to
the same source, would experience a dip in the terminal voltage, every time a D.C motor is
attempted to start with full voltage. This dip in supply voltage is caused due to sudden rise in
voltage drop in the source's internal resistance. The duration for which this drop in voltage will
persist once again depends on inertia (size) of the motor.

Hence, for small D.C motors extra precaution may not be necessary during starting as large
starting current will very quickly die down because of fast rise in the back emf. However, for
large motor, a starter is to be used during starting.

39.4.2 A simple starter

To limit the starting current, a suitable external resistance R,y; is connected in series (Figure
39.2(a)) with the armature so that [ o = 2o At the time of starting, to have sufficient starting

ext a

torque, field current is maximized by keeping the external field resistance Ry, to zero value. As

the motor picks up speed, the value of R, is gradually decreased to zero so that during running
no external resistance remains in the armature circuit. But each time one has to restart the motor,
the external armature resistance must be set to maximum value by moving the jockey manually.

Imagine, the motor to be running with R,,; = 0 (Figure 39.2(b)).
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Figure 39.2: A simple starter in the form of external armature resistance.

Now if the supply goes off (due to some problem in the supply side or due to load shedding),
motor will come to a stop. All on a sudden, let us imagine, supply is restored. This is then nothing
but full voltage starting. In other words, one should be constantly alert to set the resistance to
maximum value whenever the motor comes to a stop. This is one major limitation of a simple
rheostatic starter.

39.4.3 3-point starter

A “3-point starter” is extensively used to start a D.C shunt motor. It not only overcomes the
difficulty of a plain resistance starter, but also provides additional protective features such as over
load protection and no volt protection. The diagram of a 3 -point starter connected to a shunt
motor is shown in figure 39.3. Although, the circuit looks a bit clumsy at a first glance, the basic
working principle is same as that of plain resistance starter.

The starter is shown enclosed within the dotted rectangular box having three terminals
marked as A, L and F for external connections. Terminal A is connected to one armature terminal
Al of the motor. Terminal F is connected to one field terminal F1 of the motor and terminal L is
connected to one supply terminal as shown. F2 terminal of field coil is connected to A2 through
an external variable field resistance and the common point connected to supply (-ve). The
external armatures resistances consist of several resistances connected in series and are shown in
the form of an arc. The junctions of the resistances are brought out as terminals (called studs) and
marked as 1,2,.. .12. Just beneath the resistances, a continuous copper strip also in the form of an
arc is present.

There is a handle which can be moved in the clockwise direction against the spring tension.
The spring tension keeps the handle in the OFF position when no one attempts to move it. Now
let us trace the circuit from terminal L (supply + ve) . The wire from L passes through a small
electro magnet called OLRC, (the function of which we shall discuss a little later) and enters
through the handle shown by dashed lines. Near the end of the handle two copper strips are
firmly connected with the wire. The furthest strip is shown circular shaped and the other strip is
shown to be rectangular. When the handle is moved to the right, the circular strip of the handle
will make contacts with resistance terminals 1, 2 etc. progressively. On the other hand, the



rectangular strip will make contact with the continuous arc copper strip. The other end of this
strip is brought as terminal F after going through an electromagnet coil (called NVRC). Terminal
F is finally connected to motor field terminal FI.
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Figure 39.3: A 3-point starter.
Working principle

Let us explain the operation of the starter. Initially the handle is in the OFF position. Neither
armature nor the field of the motor gets supply. Now the handle is moved to stud number 1. In
this position armature and all the resistances in series gets connected to the supply. Field coil gets
full supply as the rectangular strip makes contact with arc copper strip. As the machine picks up
speed handle is moved further to stud number 2. In this position the external resistance in the
armature circuit is less as the first resistance is left out. Field however, continues to get full
voltage by virtue of the continuous arc strip. Continuing in this way, all resistances will be left
out when stud number 12 (ON) is reached. In this position, the electromagnet (NVRC) will attract
the soft iron piece attached to the handle. Even if the operator removes his hand from the handle,
it will still remain in the ON position as spring restoring force will be balanced by the force of
attraction between NVRC and the soft iron piece of the handle. The no volt release coil (NVRC)
carries same current as that of the field coil. In case supply voltage goes off, field coil current will
decrease to zero. Hence NVRC will be deenergised and will not be able to exert any force on the
soft iron piece of the handle. Restoring force of the spring will bring the handle back in the OFF
position.

The starter also provides over load protection for the motor. The other electromagnet, OLRC
overload release coil along with a soft iron piece kept under it, is used to achieve this. The
current flowing through OLRC is the line current /;, drawn by the motor. As the motor is loaded,

1, hence Ij, increases. Therefore, I7, is a measure of loading of the motor. Suppose we want that
the motor should not be over loaded beyond rated current. Now gap between the electromagnet



and the soft iron piece is so adjusted that for I; < I,4.4 , the iron piece will not be pulled up.
However, if I} < I,4.4 force of attraction will be sufficient to pull up iron piece. This upward
movement of the iron piece of OLRC is utilized to de-energize NVRC. To the iron a copper strip
( shaped in figure) is attached. During over loading condition, this copper strip will also move up
and put a short circuit between two terminals B and C. Carefully note that B and C are nothing
but the two ends of the NVRC. In other words, when over load occurs a short circuit path is
created across the NVRC. Hence NVRC will not carry any current now and gets deenergised.
The moment it gets deenergised, spring action will bring the handle in the OFF position thereby
disconnecting the motor from the supply.

Three point starter has one disadvantage. If we want to run the machine at higher speed
(above rated speed) by field weakening (i.e., by reducing field current), the strength of NVRC
magnet may become so weak that it will fail to hold the handle in the ON position and the spring
action will bring it back in the OFF position. Thus we find that a false disconnection of the motor
takes place even when there is neither over load nor any sudden disruption of supply.

39.5 Speed control of shunt motor

We know that the speed of shunt motor is given by:
V-Ir

a a

n =

kg
where, V, is the voltage applied across the armature and @ is the flux per pole and is proportional
to the field current Ir. As explained earlier, armature current /, is decided by the mechanical load
present on the shaft. Therefore, by varying V, and Ir we can vary n. For fixed supply voltage and
the motor connected as shunt we can vary V, by controlling an external resistance connected in

series with the armature. Ir of course can be varied by controlling external field resistance Ry
connected with the field circuit. Thus for .shunt motor we have essentially two methods for
controlling speed, namely by:

1. varying armature resistance.
2. varying field resistance.

39.5.1 Speed control by varying armature resistance

The inherent armature resistance r, being small, speed n versus armature current /, characteristic
will be a straight line with a small negative slope as shown in figure 39.4. In the discussion to
follow we shall not disturb the field current from its rated value. At no load (i.e., I, = 0) speed is
highest and ny = Vk_@ :_kV¢ . Note that for shunt motor voltage applied to the field and armature

circuit are same and equal to the supply voltage V. However, as the motor is loaded, I, , drop

increases making speed a little less than the no load speed ng . For a well designed shunt motor
this drop in speed is small and about 3 to 5% with respect to no load speed. This drop in speed
from no load to full load condition expressed as a percentage of no load speed is called the

inherent speed regulation of the motor. n-n

Inherent % speed regulation = —-100
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It is for this reason, a d.c shunt motor is said to be practically a constant speed motor (with no
external armature resistance connected) since speed drops by a small amount from no load to full
load condition.

Since T, = k@ I, , for constant ¢ operation, 7, becomes simply proportional to 1,. Therefore,
speed vs. torque characteristic is also similar to speed vs. armature current characteristic as
shown in figure 39.5.

The slope of the n vs I, or n vs T, characteristic can be modified by deliberately connecting
external resistance ry; in the armature circuit. One can get a family of speed vs. armature curves
as shown in figures 39.6 and 39.7 for various values of r.,;. From these characteristic it can be
explained how speed control is achieved. Let us assume that the load torque 77 is constant and
field current is also kept constant. Therefore, since steady state operation demands 7, = Ty, T, =
ke 1, too will remain constant; which means 7, will not change. Suppose r¢,; = 0, then at rated
load torque, operating point will be at C and motor speed will be n. If additional resistance rexs] 1S
introduced in the armature circuit, new steady state operating speed will be n] corresponding to
the operating point D. In this way one can get a speed of ny corresponding to the operating point
E, when rgyp is introduced in the armature circuit. This same load torque is supplied at various

speed. Variation of the speed is smooth and speed will decrease smoothly if r.,; is increased.
Obviously, this method is suitable for controlling speed below the base speed and for supplying
constant rated load torque which ensures rated armature current always. Although, this method
provides smooth wide range speed control (from base speed down to zero speed), has a serious
draw back since energy loss takes place in the external resistance r,y; reducing the efficiency of
the motor.
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39.5.2 Speed control by varying field current

In this method field circuit resistance is varied to control the speed of a d.c shunt motor. Let us
rewrite .the basic equation to understand the method.
V-1

n= a
—r

k@

If we vary Iy, flux ¢ will change, hence speed will vary. To change Iy an external resistance is

connected in series with the field windings. The field coil produces rated flux when no external
resistance is connected and rated voltage is applied across field coil. It should be understood that
we can only decrease flux from its rated value by adding external resistance. Thus the speed of
the motor will rise as we decrease the field current and speed control above the base speed will
be achieved. Speed versus armature current characteristic is shown in figure 39.8 for two flux

values @ and @, . Since @; < @, the no load speed nlo for flux value ¢ | is more than the no load
speed n,, corresponding to ¢ . However, this method will not be suitable for constant load torque.



To make this point clear, let us assume that the load torque is constant at rated value. So from the
initial steady condition, we have Ty ,ueq = To1 = k@ 1, yareq - If 10ad torque remains constant and
flux is reduced to @; , new armature current in the steady state is obtained from k@I ;1 = 17 rateq
. Therefore new armature current is
I =¢]
al ¢ 1 a rated

But the fraction, ¢ _ .
s, > 1; hence new armature current will be greater than the rated armature

current and the motor will be overloaded. This method therefore, will be suitable for a load
whose torque demand decreases with the rise in speed keeping the output power constant as
shown in figure 39.9. Obviously this method is based on flux weakening of the main field.
Therefore at higher speed main flux may become so weakened, that armature reaction effect will
be more pronounced causing problem in commutation.

n, = v
1 T ki
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At C, higher speed but less torgue
At D, lower speed but higher torgue

Figure 39.8: Family of speed vs. armature current characteristic.
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39.5.3 Speed control by armature voltage variation

In this method of speed control, armature is supplied from a separate variable d.c voltage source,
while the field is separately excited with fixed rated voltage as shown in figure 39.10. Here the

armature resistance and field current are not varied. Since the no load speed ngy = Vk—@ , the speed
versus I, characteristic will shift parallely as shown in figure 39.11 for different values of V,,.
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d.e wuru m

Figure 39.10: Speed control by controlling armature voltage.
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As flux remains constant, this method is suitable for constant torque loads. In a way armature
voltage control method is similar to that of armature resistance control method except that the
former one is much superior as no extra power loss takes place in the armature circuit. Armature
voltage control method is adopted for controlling speed from base speed down to very small
speed as one should not apply across the armature a voltage which is higher than the rated
voltage.

39.5.4 Ward Leonard method: combination of V,; and /s control

In this scheme, both field and armature control are integrated as shown in figure 39.12.
Arrangement for field control is rather simple. One has to simply connect an appropriate rheostat
in the field circuit for this purpose. However, in the pre power electronic era, obtaining a variable
d.c supply was not easy and a separately excited d.c generator was used to supply the motor
armature. Obviously to run this generator, a prime mover is required. A 3-phase induction motor
is used as the prime mover which is supplied from a 3-phase supply. By controlling t



field current of the generator, the generated emf, hence V, can be varied. The potential divider

connection uses two rheostats in parallel to facilitate reversal of generator field current.

First the induction motor is started with generator field current zero (by adjusting the jockey
positions of the rheostats). Field supply of the motor is switched on with motor field rheostat set

to zero. The applied voltage to the motor V,, can now be gradually increased to the rated value by
slowly increasing the generator field current. In this scheme, no starter is required for the d.c
motor as the applied voltage to the armature is gradually increased. To control the speed of the
d.c motor below base speed by armature voltage, excitation of the d.c generator is varied, while
to control the speed above base speed field current of the d.c motor is varied maintaining constant

V4. Reversal of direction of rotation of the motor can be obtained by adjusting jockeys of the
generator field rheostats. Although, wide range smooth speed control is achieved, the cost
involved is rather high as we require one additional d.c generator and a 3-phase induction motor
of simialr rating as that of the d.c motor whose speed is intended to be controlled.

In present day, variable d.c supply can easily be obtained from a.c supply by using controlled
rectifiers thus avoiding the use of additional induction motor and generator set to implement
Ward leonard method.

3-phase
induction motor

<

Figure 39.12: Scheme for Ward Leonard method.

39.6 Series motor

In this motor the field winding is connected in series with the armature and the combination is
supplied with d.c voltage as depicted in figure 39.13. Unlike a shunt motor, here field current is

not independent of armature current. In fact, field and armature currents are equal i.e., Iy = I,.
Now torque produced in a d.c motor is:
r o« ol
<[l
o« Ia2 before saturation sets in i.e., @ « [, =

1, after saturation sets in at large I,



Figure 39.13: Series motor,

Since torque is proportional to the square of the armature current, starting torque of a series
motor is quite high compared to a similarly rated d.c shunt motor.

39.6.1 Characteristics of series motor
Torque vs. armature current characteristic

Since T « Ia2 in the linear zone and T « [, in the saturation zone, the T vs. I, characteristic is as

shown in figure 39.14
speed vs. armature current

From the KVL equation of the motor, the relation between speed and armature current can be
obtained as follows:

V = I, (”a+rxe)+ Ep

I,r+ kon

V-1,r
ko

In the linear zone n =

V-1,r
K'Q sar

The relationship is inverse in nature making speed dangerously high as 7, - 0 . Remember that

In the saturation zone n =

the value of 1, is a measure of degree of loading. Therefore, a series motor should never be
operated under no load condition. Unlike a shunt motor, a series motor has no finite no load
speed. Speed versus armature current characteristic is shown in figure nvsia:side: b.
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Since I, « JT in the linear zone, the relationship between speed and torque is
_V =r
Tk
k" and k' represent appropriate constants to take into account the proportionality that exist
between current, torque and flux in the linear zone. This relation is also inverse in nature

indicating once again that at light load or no load (T - O) condition; series motor speed
approaches a dangerously high value. The characteristic is shown in figure 39.16. For this reason,
a series motor is never connected to mechanical load through belt drive. If belt snaps, the motor

becomes unloaded and as a consequence speed goes up unrestricted causing mechanical damages
to the motor.



39.7 Speed control of series motor
39.7.1 Speed control below base speed

For constant load torque, steady armature current remains constant, hence flux also remains
constant. Since the machine resistance r, + ry, is quite small, the back emf Ej, is approximately
equal to the armature terminal voltage V. Therefore, speed is proportional to V. If V, is reduced,

speed too will be reduced. This V, can be controlled either by connecting external resistance in
series or by changing the supply voltage.

Series-parallel connection of motors

If for a drive two or more (even number) of identical motors are used (as in traction), the motors
may be suitably connected to have different applied voltages across the motors for controlling
speed. In series connection of the motors shown in figure 39.17, the applied voltage across each
motor is V/2 while in parallel connection shown in figure 39.18, the applied voltage across each
motor is V. The back emf in the former case will be approximately half than that in the latter case.
For same armature current in both the cases (which means flux per pole is same), speed will be
half in series connection compared to parallel connection.

o Supply ¥ -

Figure 32.17: Motors connected in series.

-

Figure 39.18: Motors connected in parallel.



39.7.2 Speed control above base speed

Flux or field current control is adopted to control speed above the base speed. In a series motor,
independent control of field current is not so obvious as armature and field coils are in series.
However, this can be achieved by the following methods:

1.

Using a diverter resistance connected across the field coil.

In this method shown in figure 39.19, a portion of the armature current is diverted through
the diverter resistance. So field current is now not equal to the armature current; in fact it
is less than the armature current. Flux weakening thus caused, raises the speed of the
motor.

Changing number of turns of field coil provided with tapings.
In this case shown figure 39.20, armature and field currents are same. However provision
is kept to change the number of turns of the field coil. When number of turns changes,

field mmf N . I s changes, changing the flux hence speed of the motor.

\n

Diverter
resistor

Field
tappings

Supply

¥
-

Figure 39.20: Field control with tappings.

Connecting field coils wound over each pole in series or in. parallel.

Generally the field terminals of a d.c machine are brought out after connecting the field
coils (wound over each pole) in series. Consider a 4 pole series motor where there will be
4 individual coils placed over the poles. If the terminals of the individual coils are brought
out, then there exist several options for connecting them. The four coils could be
connected in series as in figure 39.21; the 4 coils could be connected in parallel or parallel
combination of 2 in series and other 2 in series as shown in figure 39.22. n figure For

series connection of the coils (figure 39.21) flux produced is proportional to 7, and



for series-parallel connection (figure 39.22) flux produced is proportional to L.

Therefore, for same armature current /,, flux will be doubled in the second case and
naturally speed will be approximately doubled as back emf in both the cases is close to
supply voltage V. Thus control of speed in the ratio of 1:2 is possible for series parallel

connection.
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Figure 39.22: Series-parallel connection of coils.

In a similar way, reader can work out the variation of speed possible between (i) all coils
connected in series and (ii) all coils connected in parallel.

39.8 Braking of d.c shunt motor: basic idea

It is often necessary in many applications to stop a running motor rather quickly. We know that
any moving or rotating object acquires kinetic energy. Therefore, how fast we can bring the
object to rest will depend essentially upon how quickly we can extract its kinetic energy and
make arrangement to dissipate that energy somewhere else. If you stop pedaling your bicycle, it
will eventually come to a stop eventually after moving quite some distance. The initial kinetic
energy stored, in this case dissipates as heat in the friction of the road. However, to make the
stopping faster, brake is applied with the help of rubber brake shoes on the rim of the wheels.
Thus stored K.E now gets two ways of getting dissipated, one at the wheel-brake shoe interface
(where most of the energy is dissipated) and the other at the road-tier interface. This is a good
method no doubt, but regular maintenance of brake shoes due to wear and tear is necessary.

If a motor is simply disconnected from supply it will eventually come to stop no doubt, but
will take longer time particularly for large motors having high rotational inertia. Because here the
stored energy has to dissipate mainly through bearing friction and wind friction. The situation can
be improved, by forcing the motor to operate as a generator during braking. The idea can be
understood remembering that in motor mode electromagnetic torque acts along the



direction of rotation while in generator the electromagnetic torque acts in the opposite direction
of rotation. Thus by forcing the machine to operate as generator during the braking period, a
torque opposite to the direction of rotation will be imposed on the shaft, thereby helping the
machine to come to stop quickly. During braking action, the initial K.E stored in the rotor is
either dissipated in an external resistance or fed back to the supply or both.

39.8.1 Rheostatic braking

Consider a d.c shunt motor operating from a d.c supply with the switch S connected to position 1
as shown in figure 39.23. S is a single pole double throw switch and can be connected either to
position 1 or to position 2. One end of an external resistance Ry is connected to position 2 of the
switch S as shown.

Let with S in position 1, motor runs at n rpm, drawing an armature current /, and the back
emf is Ej, = k@ n. Note the polarity of E; which, as usual for motor mode in opposition with the
supply voltage. Also note T, and n have same clock wise direction.
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Figure 39.23: Machine operates as Figure 39.24: Machine operates as
motor generator during braking

Now if S is suddenly thrown to position 2 at ¢ = 0, the armature gets disconnected from the
supply and terminated by R}, with field coil remains energized from the supply. Since speed of
the rotor can not change instantaneously, the back emf value Ej, is still maintained with same
polarity prevailing at ¢ = 0_. Thus at t = 04, armature current will be I, = Ep/(r, + Rp) and with
reversed direction compared to direction prevailing during motor mode at ¢t =0_.

Obviously for ¢ > 0, the machine is operating as generator dissipating power to Rj, and now
the electromagnetic torque 7, must act in the opposite direction to that of n since I, has changed
direction but ¢ has not (recall 7, « @ I;). As time passes after switching, n decreases reducing
K.E and as a consequence both Ej, and I, decrease. In other words value of braking torque will be
highest at r = 04, and it decreases progressively and becoming zero when the machine finally
come to a stop.

39.8.2 Plugging or dynamic braking

This method of braking can be understood by referring to figures 39.25 and 39.26. Here S is a
double pole double throw switch. For usual motoring mode, S is connected to positions 1 and 1'.
Across terminals 2 and 2', a series combination of an external resistance R and supply voltage
with polarity as indicated is connected. However, during motor mode this part of the circuit
remains inactive.
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Figure 39.25: Machine operates as Figure 39.26: Machine operates as
motor generator during braking (plugging).

To initiate braking, the switch is thrown to position 2 and 2' at ¢t = 0, thereby
disconnecting the armature from the left hand supply. Here at t = 0;, the armature current will be
1, = (Ep + V)I(ry + Rp) as Ep, and the right hand supply voltage have additive polarities by virtue
of the connection. Here also I, reverses direction producing 7, in opposite direction to n. I,

decreases as Ej, decreases with time as speed decreases. However, I, can not become zero at any
time due to presence of supply V. So unlike rheostatic braking, substantial magnitude of braking
torque prevails. Hence stopping of the motor is expected to be much faster then rheostatic
breaking. But what happens, if S continuous to be in position 1' and 2' even after zero speed has
been attained? The answer is rather simple, the machine will start picking up speed in the reverse
direction operating as a motor. So care should be taken to disconnect the right hand supply, the
moment armature speed becomes zero.

39.8.3 Regenerative braking

A machine operating as motor may go into regenerative braking mode if its speed becomes
sufficiently high so as to make back emf greater than the supply voltage i.e., Ep > V. Obviously
under this condition the direction of I, will reverse imposing torque which is opposite to the
direction of rotation. The situation is explained in figures 39.27 and 39.28. The normal motor
operation is shown in figure 39.27 where armature motoring current /, is drawn from the supply
and as usual E, < V. Since Ep = k@ nj. The question is how speed on its own become large
enough to make Ej, < V causing regenerative braking. Such a situation may occur in practice
when the mechanical load itself becomes active. Imagine the d.c motor is coupled to the wheel of
locomotive which is moving along a plain track without any gradient as shown in figure 39.27.
Machine is running as a motor at a speed of n; rpm. However, when the track has a downward
gradient (shown in figure 39.28), component of gravitational force along the track also appears
which will try to accelerate the motor and may increase its speed to ny such that E},

= k@ ny > V. In such a scenario, direction of I, reverses, feeding power back to supply.
Regenerative braking here will not stop the motor but will help to arrest rise of dangerously high
speed.
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39.9 Tick the correct answer

1.

A 200 V, 1000 rpm, d.c shunt motor has an armature resistance of 0.8 Q and its rated
armature current is 20 A. Ratio of armature starting current to rated current with full

voltage starting will be:
A1V (B)125V (C)25V (D)16 'V

A 200 V, 1000 rpm, d.c shunt motor has an armature resistance of 0.8 € and found to run
from a 200 V supply steadily at 950 rpm with a back emf of 190 V. The armature current
is:

(A)2375A (B) 10 A (C)250 A (D) 125 A

A d.c 220 V, shunt motor has an armature resistance of 1 Q and a field circuit resistance
of 150 Q. While running steadily from 220 V supply, its back emf is found to be 209 V.
The motor is drawing a line current of:

(A) 11 A (B) 12.47 A (C) 221.47 A (D) 9.53 A

A 220 V, d.c shunt motor has ry = 0.8 Q and draws an armature current of 20 A while
supplying a constant load torque. If flux is suddenly reduced by 10%, then immediately
the armature current will become:



(A) 45.5 A and the new steady state armature current will be 22.2 A.

(B) 20 A and the new steady state armature current will be 22.2 A.
(C) 22.2 A and the new steady state armature current will be 45.5 A.
(D) 20 A and the new steady state armature current will be 25 A.

5. A 220 V, d.c shunt motor has r; = 0.8 Q and draws an armature current of 20 A while

supplying a constant load torque. If a 4.2 Q resistance is inserted in the armature circuit
suddenly, then immediately the armature current will become:

(A) 20 A and the new steady state armature current will be 3.2 A.
(B) 3.2 A and the new steady state armature current will be 20 A.
(C) 47.2 A and the new steady state armature current will be 3.2 A.
(D) 3.2 A and the new steady state armature current will be 47.2 A.

A separately excited 220 V, d.c generator has r, = 0.6 Q and while supplying a constant
load torque, draws an armature current of 30 A at rated voltage. If armature supply
voltage is reduced by 20%, the new steady state armature current will be:

(A)24 A (B)6 A (C)30A (D)36 A

A 250 V, d.c shunt motor having negligible armature resistance runs at 1000 rpm at rated
voltage. If the supply voltage is reduced by 25%, new steady state speed of the motor will
be about:

(A) 750 rpm (B) 250 rpm (C) 1000 rpm (D) 1250 rpm

39.10 Solve the following

1.

A d.c motor takes an armature current of S0A at 220V. The resistance of the armature is
0.2Q. The motor has 6 poles and the armature is lap wound with 430 conductors. The flux
per pole is 0.03Wb. Calculate the speed at which the motor is running and the
electromagnetic torque developed.

A 10KW, 250V, 1200 rpm d.c shunt motor has a full load efficiency of 80%, r, = 0.2Q
and Ry = 125Q. The machine is initially operating at full load condition developing full
load torque.

i.  What extra resistance should be inserted is the armature circuit if the motor speed is to
be reduced to 960 rpm?
ii.  What additional resistance is to be inserted in the field circuit in order to raise the
speed to 1300 rpm?

Note that for both parts (i) and (ii) the initial condition is the same full load condition as stated in
the first paragraph and load torque remains constant throughout. Effect of saturation and
armature reaction may be neglected.



