

LECTURE NOTES

ON

MATHEMATICAL FOUNDATIONS OF

COMPUTER SCIENCE

II B. Tech I semester (JNTUH-R16)

COMPUTER SCIENCE AND ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. II Year I Sem

CS303ES: MATHEMATICAL FOUNDATIONS OF COMPUTER

SCIENCE

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of

Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations

and Ordering, Functions.

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Groups,

Lattices as Partially Ordered Sets, Boolean algebra.

UNIT - III

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of

Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions,

Enumerating Permutations with Constrained Repetitions, Binomial Coefficients, The Binomial and

Multinomial Theorems, The Principle of Inclusion-Exclusion.

UNIT - IV

Recurrence Relations: Generating Functions of Sequences, Calculating Coefficients of Generating

functions, Recurrence relations, Solving recurrence relations by substitution and Generating functions,

The method of Characteristic roots, Solutions of Inhomogeneous Recurrence Relations.

UNIT - V

Graphs: Basic Concepts, Isomorphisms and Subgraphs, Trees and their Properties, Spanning Trees,

Directed Trees, Binary Trees, Planar Graphs, Euler’s Formula, Multigraphs and Euler Circuits,

Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS

1. Discrete Mathematical Structures with Applications to Computer Science, J.P.

 Tremblay, R. Manohar, McGraw Hill education (India) Private Limited. (UNITS - I ,II)

2. Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott,

 Abraham Kandel, Theodore P. Baker, Pearson , 2nd ed. (Units - III, IV, V)

REFERENCE BOOKS

1. Discrete Mathematics and its Applications, Kenneth H. Rosen, 7th Edition, McGraw

 Hill education (India) Private Limited.

2. Discrete Mathematics, D.S. Malik & M.K. Sen, Revised edition Cengage Learning.

3. Elements of Discrete Mathematics, C. L. Liu and D. P. Mohapatra, 4th edition,

 McGraw Hill education (India) Private Limited.

4. Discrete Mathematics with Applications, Thomas Koshy, Elsevier.

5. Discrete and Combinatorial Mathematics, R. P. Grimaldi, Pearson

L T/P/D C

4 -/-/- 4

UNIT-I

Mathematical Logic

Statements and notations:

A proposition or statement is a declarative sentence that is either true or false (but not both).

For instance, the following are propositions: ―Paris is in France‖ (true), ―London is in Denmark‖

(false), ―2 < 4‖ (true), ―4 = 7 (false)‖. However the following are not propositions: ―what is your

name?‖ (this is a question), ―do your homework‖ (this is a command), ―this sentence is false‖

(neither true nor false), ―x is an even number‖ (it depends on what x represents),

―Socrates‖ (it is not even a sentence). The truth or falsehood of a proposition is called its truth

value.

Connectives:

Connectives are used for making compound propositions. The main ones are the

following (p and q represent given propositions):

Name Represented Meaning

Negation ¬p ―not p‖

Conjunction Q ―p and q‖
Disjunction p ∨ Q ―p or q (or both)‖

Exclusive Or p ⊕ q ―either p or q, but not both‖

Implication p → q ―if p then q‖

Biconditional p ↔ q ―p if and only if q‖

Truth Tables:

Logical identity

Logical identity is an operation on one logical value, typically the value of a proposition that

produces a value of true if its operand is true and a value of false if its operand is false.

The truth table for the logical identity operator is as follows:

Logical Identity

p

p

T T

F F

Logical negation

Logical negation is an operation on one logical value, typically the value of a proposition that

produces a value of true if its operand is false and a value of false if its operand is true.

The truth table for NOT p (also written as ¬p or ~p) is as follows:

Logical Negation

p ¬p

T F

F T

Binary operations

Truth table for all binary logical operators

Here is a truth table giving definitions of all 16 of the possible truth functions of 2 binary

variables (P,Q are thus boolean variables):

P Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T F F F F F F F F T T T T T T T T

T F F F F F T T T T F F F F T T T T

F T F F T T F F T T F F T T F F T T

F F F T F T F T F T F T F T F T F T

where T = true and F = false.

Key:

0, false, Contradiction

1, NOR, Logical NOR

2, Converse nonimplication

3, ¬p, Negation

4, Material nonimplication

5, ¬q, Negation

6, XOR, Exclusive disjunction

7, NAND, Logical NAND

8, AND, Logical conjunction

9, XNOR, If and only if, Logical

biconditional 10, q, Projection function

11, if/then, Logical implication

12, p, Projection function

13, then/if, Converse implication

14, OR, Logical disjunction

15, true, Tautology

Logical operators can also be visualized using Venn diagrams.

Logical conjunction

Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value
of true if both of its operands are true. The truth table for p AND q (also written as p ∧ q, p & q, or p q) is as follows:

Logical Conjunction

p q

p ∧ q

 T T T

 T F F

 F T F

 F F F

In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true.
For all other assignments of logical values to p and to q the conjunction p ∧ q is false.
It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.

Logical disjunction

Logical disjunction is an operation on two logical values, typically the values of two

propositions, that produces a value of true if at least one of its operands is true.
The truth table for p OR q (also written as p ∨ q, p || q, or p + q) is as follows:

Logical Disjunction

p q

p ∨ q

 T T T

 T F T

 F T T

 F F F

Logical implication

Logical implication and the material conditional are both associated with an operation on two logical values,

typically the values of two propositions, that produces a value of false just in the singular case the first operand is

true and the second operand is false.The truth table associated with the material conditional if p then q

(symbolized as p → q) and the logical implication p implies q (symbolized as p ⇒ q) is as follows:

Logical Implication

 p q p → q

 T T T

 T F F

 F T T

 F F T

Logical equality

Logical equality (also known as biconditional) is an operation on two logical values, typically

the values of two propositions, that produces a value of true if both operands are false or both

operands are true.The truth table for p XNOR q (also written as p ↔ q ,p = q, or p ≡ q) is as

follows:

Logical Equality

 p q p ≡ q

 T T T

 T F F

 F T F

 F F T

Exclusive disjunction

Exclusive disjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if one but not both of its operands is
true.The truth table for p XOR q (also written as p ⊕ q, or p ≠ q) is as follows:

Exclusive Disjunction

p q

p ⊕ q

 T T F

 T F T

 F T T

 F F F

Logical NAND

The logical NAND is an operation on two logical values, typically the values of two

propositions, that produces a value of false if both of its operands are true. In other words, it

produces a value of true if at least one of its operands is false.The truth table for p NAND q (also

written as p ↑ q or p | q) is as follows:

Logical NAND

 p q p ↑ q

 T T F

 T F T

 F T T

 F F T

It is frequently useful to express a logical operation as a compound operation, that is, as an operation that is built

up or composed from other operations. Many such compositions are possible, depending on the operations that are

taken as basic or "primitive" and the operations that are taken as composite or "derivative".In the case of logical

NAND, it is clearly expressible as a compound of NOT and AND.The negation of a conjunction: ¬(p ∧ q), and the

disjunction of negations: (¬p) ∨ (¬q) can be tabulated as follows:

p q

p ∧ q

¬(p ∧

q)
¬p ¬q

(¬p

) ∨

(¬q

)

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Logical NOR

The logical NOR is an operation on two logical values, typically the values of two propositions,

that produces a value of true if both of its operands are false. In other words, it produces a value of
false if at least one of its operands is true. ↓ is also known as the Peirce arrow after its inventor,

Charles Sanders Peirce, and is a Sole sufficient operator.
The truth table for p NOR q (also written as p ↓ q or p ⊥ q) is as follows:

Logical NOR

 p q p ↓ q

 T T F

 T F F

 F T F

 F F T

 The negationm of a disjunction ¬(p ∨ q), and the conjunction of negations (¬p) ∧ (¬q) can be

tabulated as follows:

p q
p ∨ q ¬(p ∨ q)

¬p ¬q
(¬p) ∧ (¬q)

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

Inspection of the tabular derivations for NAND and NOR, under each assignment of logical values to the functional arguments p and q, produces
the identical patterns of functional values for ¬(p ∧ q) as for (¬p) ∨ (¬q), and for ¬(p ∨ q) as for (¬p) ∧ (¬q). Thus the first and second
expressions in each pair are logically equivalent, and may be substituted for each other in all
contexts that pertain solely to their logical values.

This equivalence is one of De Morgan's laws.

The truth value of a compound proposition depends only on the value of its components.

Writing F for ―false‖ and T for ―true‖, we can summarize the meaning of the connectives in

the following way:

p q ¬p p ∧ q p ∨ q p ⊕ q p → q p ↔ q

T T F T T F T T

T F F F T T F F

F T T F T T T F

F F T F F F T T

Note that ∨ represents a non-exclusive or, i.e., p ∨ q is true when any ofp, q is true and also when both are
true. On the other hand ⊕ represents an exclusive or, i.e., p ⊕ q is true only when exactly one of p and q is true.

Well formed formulas(wff):

Not all strings can represent propositions of the predicate logic. Those which produce a

proposition when their symbols are interpreted must follow the rules given below, and they are

called wffs(well-formed formulas) of the first order predicate logic.

Rules for constructing Wffs

A predicate name followed by a list of variables such as P(x, y), where P ispredicate

name, and x and y are variables, is called an atomic formula.

A well formed formula of predicate calculus is obtained by using the following rules.

1. An atomic formula is a wff.

2. If A is a wff, then 7A is also a wff.

3. If A and B are wffs, then (A V B), (A ٨ B), (A → B) and (A D B).

4. If A is a wff and x is a any variable, then (x)A and ($x)A are wffs.

5. Only those formulas obtained by using (1) to (4) are wffs.

Since we will be concerned with only wffs, we shall use the term formulas for wff. We shall

follow the same conventions regarding the use of parentheses as was done in the case of

statement formulas.

Wffs are constructed using the following rules:

1. True and False are wffs.

2. Each propositional constant (i.e. specific proposition), and each propositional

variable (i.e. a variable representing propositions) are wffs.

3. Each atomic formula (i.e. a specific predicate with variables) is a wff.

4. If A, B, and C are wffs, then so are A, (A B), (A B), (A B), and (A B).

5. If x is a variable (representing objects of the universe of discourse), and A is a wff, then

so are x A and x A .

For example, "The capital of Virginia is Richmond." is a specific proposition. Hence it is a wff

by Rule 2. Let B be a predicate name representing "being blue" and let x be a variable. Then

B(x) is an atomic formula meaning "x is blue". Thus it is a wff by Rule 3. above. By applying

Rule 5. To B(x), xB(x) is a wff and so is xB(x). Then by applying Rule 4. to them x B(x)

x B(x) is seen to be a wff. Similarly if R is a predicate name representing "being round".

Then R(x) is an atomic formula. Hence it is a wff. By applying Rule 4 to B(x) and R(x), a wff

B(x) R(x) is obtained.

In this manner, larger and more complex wffs can be constructed following the rules given

above.

Note, however, that strings that can not be constructed by using those rules are not wffs. For

example, xB(x)R(x), and B(x) are NOT wffs, NOR are B(R(x)), and B(x R(x)) . More

examples: To express the fact that Tom is taller than John, we can use the atomic formula

taller(Tom, John), which is a wff. This wff can also be part of some compound statement such

as taller(Tom, John) taller(John, Tom), which is also a wff. If x is a variable representing

people in the world, then taller(x,Tom), x taller(x,Tom), x taller(x,Tom), x y taller(x,y)

are all wffs among others. However, taller(x,John) and taller(Tom Mary, Jim), for example,

are NOT wffs.

Tautology, Contradiction, Contingency:

A proposition is said to be a tautology if its truth value is T for any assignment of truth
values to its components. Example: The proposition p ∨ ¬p is a tautology.

A proposition is said to be a contradiction if its truth value is F for any assignment of truth
values to its components. Example: The proposition p ∧ ¬p is a contradiction.

A proposition that is neither a tautology nor a contradiction is called a contingency.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

T F T F

F T T F

F T T F

Equivalence Implication:

We say that the statements r and s are logically equivalent if their truth tables are identical.
For example the truth table of

shows that is equivalent to . It is easily shown that the statements r and s are

equivalent if and only if is a tautology.

Normal forms:

Let A(P1, P2, P3, …, Pn) be a statement formula where P1, P2, P3, …, Pn are the atomic

variables. If A has truth value T for all possible assignments of the truth values to the

variables P1, P2, P3, …, Pn , then A is said to be a tautology. If A has truth value F, then A is

said to be identically false or a contradiction.

Disjunctive Normal Forms

A product of the variables and their negations in a formula is called an elementary product. A
sum of the variables and their negations is called an elementary sum. That is, a sum of
elementary products is called a disjunctive normal form of the given formula.
Example:

(1)

(2)

(3)

(4)

(5)

Conjunctive Normal Forms

A formula which is equivalent to a given formula and which consists of a product of elementary
sums is called a conjunctive normal form of a given formula.

Example:

(1)
(2)
(3)
(4)

Predicates

Predicative logic:

A predicate or propositional function is a statement containing variables. For instance ―x + 2 = 7‖,

―X is American‖, ―x < y‖, ―p is a prime number‖ are predicates. The truth value of the predicate

depends on the value assigned to its variables. For instance if we replace x with 1 in the predicate

―x + 2 = 7‖ we obtain ―1 + 2 = 7‖, which is false, but if we replace it with 5 we get ―5

+ 2 = 7‖, which is true. We represent a predicate by a letter followed by the variables enclosed

between parenthesis: P (x), Q(x, y), etc. An example for P (x) is a value of x for which P (x) is

true. A counterexample is a value of x for which P (x) is false. So, 5 is an example for ―x + 2 =

7‖, while 1 is a counterexample. Each variable in a predicate is assumed to belong to a universe

(or domain) of discourse, for instance in the predicate ―n is an odd integer‖ ’n’ represents an

integer, so the universe of discourse of n is the set of all integers. In ―X is American‖ we

may assume that X is a human being, so in this case the universe of discourse is the set of all

human beings.

Free & Bound variables:

Let's now turn to a rather important topic: the distinction between free variable s and bound

variables.

Have a look at the following formula:

The first occurrence of x is free, whereas the second and third occurrences of x are bound,

namely by the first occurrence of the quantifier . The first and second occurrences of the

variable y are also bound, namely by the second occurrence of the quantifier .

Informally, the concept of a bound variable can be explained as follows: Recall that

quantifications are generally of the form:
or

where may be any variable. Generally, all occurences of this variable within the quantification are

bound. But we have to distinguish two cases. Look at the following formula to see why:

1. may occur within another, embedded, quantification or , such as the in

in our example. Then we say that it is bound by the quantifier of this

embedded quantification (and so on, if there's another embedded quantification over

within).

2.Otherwise, we say that it is bound by the top-level quantifier (like all other occurences of

in our example).

Here's a full formal simultaneous definition of free and bound:

1.Any occurrence of any variable is free in any atomic formula.

2.No occurrence of any variable is bound in any atomic formula.

3.If an occurrence of any variable is free in or in , then that same occurrence is free in

, , , and .

4. If an occurrence of any variable is bound in or in , then that same occurrence is

bound in , , , . Moreover, that same occurrence is bound in

and as well, for any choice of variable y.

5.In any formula of the form or (where y can be any variable at all in this case)

the occurrence of y that immediately follows the initial quantifier symbol is bound.

6.If an occurrence of a variable x is free in , then that same occurrence is free in and

, for any variable y distinct from x. On the other hand, all occurrences of x that

are free in , are bound in and in .

If a formula contains no occurrences of free variables we call it a sentence.

Rules of inference:

The two rules of inference are called rules P and T.

Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if s is tautologically implied

by any one or more of the preceding formulas in the derivation.

Before proceeding the actual process of derivation, some important list of implications

and equivalences are given in the followingtables.

Implications

I1 P٨Q =>P } Simplification

I2 PQ٨ =>Q

I3 P=>PVQ } Addition

I4 Q =>PVQ

I5 7P => P→ Q

I6 Q => P→ Q

I7 7(P→Q) =>P

I8 7(P → Q) => 7Q

I9 P, Q => P ٨ Q

I10 7P, PVQ => Q (disjunctive syllogism)

I11 P, P→ Q => Q (modus ponens)

I12 7Q, P → Q => 7P (modus tollens)

I13 P → Q, Q → R => P → R (hypothetical syllogism)

I14 P V Q, P → Q, Q → R => R (dilemma)

Equivalences

E1 77P <=>P

E2 P ٨ Q <=> Q ٨ P } Commutative laws

E3P V Q <=> Q V P

E4 (P ٨ Q) ٨ R <=> P ٨ (Q ٨ R) } Associative laws

E5(P V Q) V R <=> PV (Q V R)

E6 P ٨ (Q V R) <=> (P ٨ Q) V (P ٨ R) } Distributive laws

E7P V (Q ٨ R) <=> (P V Q) ٨ (PVR)

E8 7(P ٨ Q) <=> 7P V7Q

E9 7(P V Q) <=>7P ٨ 7Q } De Morgan’s laws

E10P V P <=> P

E11 P ٨ P <=> P

E12 R V (P ٨ 7P) <=>R

E13 R ٨ (P V 7P) <=>R

E14 R V (P V 7P) <=>T

E15 R ٨ (P ٨ 7P) <=>F

E16 P → Q <=> 7P V Q

E17 7 (P→ Q) <=> P ٨ 7Q

E18 P → Q<=> 7Q → 7P

E19 P → (Q → R) <=> (P ٨ Q) → R

E20 7(PD Q) <=> P D 7Q

E21 PDQ <=> (P → Q) ٨ (Q → P)

E22 (PDQ) <=> (P ٨ Q) V (7 P ٨ 7Q)

Example 1.Show that R is logically derived from P → Q, Q → R, and P

Solution. {1} (1) P → Q Rule P

 {2} (2) P Rule P

 {1, 2} (3) Q Rule (1), (2) and I11

 {4} (4) Q → R Rule P

 {1, 2, 4} (5) R Rule (3), (4) and I11.

Example 2.Show that S V R tautologically implied by (P V Q) ٨ (P → R) ٨ (Q → S).

Solution . {1} (1) P V Q Rule P

 {1} (2) 7P → Q T, (1), E1 and E16

 {3} (3) Q → S P

 {1, 3} (4) 7P → S T, (2), (3), and I13

 {1, 3} (5) 7S → P T, (4), E13 and E1

 {6} (6) P → R P

 {1, 3, 6} (7) 7S → R T, (5), (6), and I13

 {1, 3, 6) (8) S V R T, (7), E16 and E1

Example 3. Show that 7Q, P→ Q => 7P

Solution . {1} (1) P → Q Rule P

 {1} (2) 7P → 7Q T, and E

{3} (3) 7Q P

{1, 3} (4) 7P T, (2), (3), and I11 .

Example 4 .Prove that R ٨ (P V Q) is a valid conclusion from the premises PVQ ,

Q → R, P → M and 7M.

Solution . {1} (1) P → M P

{2} (2) 7M P

{1, 2} (3) 7P T, (1), (2), and I12

{4} (4) P V Q P

{1, 2 , 4} (5) Q T, (3), (4), and I10.

{6} (6) Q → R P

{1, 2, 4, 6} (7) R T, (5), (6) and I11

{1, 2, 4, 6} (8) R ٨ (PVQ) T, (4), (7), and I9.

There is a third inference rule, known as rule CP or rule of conditional proof.

Rule CP: If we can derives s from R and a set of premises , then we can derive R → S from

the set of premises alone.

Note. 1. Rule CP follows from the equivalence E10 which states that

(P ٨ R) → S óP → (R → S).

2. Let P denote the conjunction of the set of premises and let R be any formula

The above equivalence states that if R is included as an additional premise and

S is derived from P ٨ R then R → S can be derived from the premises P alone.

3. Rule CP is also called the deduction theorem and is generally used if

the conclusion is of the form R → S. In such cases, R is taken as an

additional premise and S is derived from the given premises and R.

Example 5 .Show that R → S can be derived from the premises

P → (Q → S), 7R V P , and Q.

Solution. {1} (1) 7R V P P

 {2} (2) R P, assumed premise

 {1, 2} (3) P T, (1), (2), and I10

 {4} (4) P → (Q → S) P

 {1, 2, 4} (5) Q → S T, (3), (4), and I11

 {6} (6) Q P

 {1, 2, 4, 6} (7) S T, (5), (6), and I11

 {1, 4, 6} (8) R → S CP.

Example 6.Show that P → S can be derived from the premises, 7P V Q,

7Q V R, and R → S .

Solution.

{1} (1) 7P V Q P

{2} (2) P P, assumed premise

{1, 2} (3) Q T, (1), (2) and I11

{4} (4) 7Q V R P

{1, 2, 4} (5) R T, (3), (4) and I11

{6} (6) R → S P

{1, 2, 4, 6} (7) S T, (5), (6) and I11

{2, 7} (8) P → S CP

Example 7. ‖ If there was a ball game , then traveling was difficult. If they arrived on time, then

traveling was not difficult. They arrived on time. Therefore, there was no ball game‖. Show that

these statements constitute a valid argument.

Solution. Let P: There was a ball game

Q: Traveling was difficult.

R: They arrived on time.

Given premises are: P → Q, R → 7Q and R conclusion is: 7P

{1} (1) P → Q P

{2} (2) R → 7Q P

{3} (3) R P

{2, 3} (4) 7Q T, (2), (3), and I11

{1, 2, 3} (5) 7P T, (2), (4) and I12

Consistency of premises:

Consistency

A set of formulas H1, H2, …, Hm is said to be consistent if their conjunction has the truth

value T for some assignment of the truth values to be atomic appearing in H1, H2, …, Hm.

Inconsistency

If for every assignment of the truth values to the atomic variables, at least one of the

formulas H1, H2, … Hm is false, so that their conjunction is identically false, then the formulas

H1, H2, …, Hm are called inconsistent.

A set of formulas H1, H2, …, Hm is inconsistent, if their conjunction implies

a contradiction, that is H1٨ H2 ٨… ٨ Hm => R ٨ 7R

Where R is any formula. Note that R ٨ 7R is a contradiction and it is necessary and

sufficient that H1, H2, …,Hm are inconsistent the formula.

Indirect method of proof

In order to show that a conclusion C follows logically from the premises H1, H2,…, Hm, we

assume that C is false and consider 7C as an additional premise. If the new set of premises is

inconsistent, so that they imply a contradiction, then the assumption that 7C is true does not hold

simultaneously with H1٨ H2 ٨..… ٨ Hm being true. Therefore, C is true whenever H1٨ H2٨

..… ٨ Hm is true. Thus, C follows logically from the premises H1, H2 ….., Hm.

Example 8 Show that 7(P ٨ Q) follows from 7P٨ 7Q.

Solution.

We introduce 77 (P٨ Q) as an additional premise and show that this additional premise leads to

a contradiction.

{1} (1) 77(P٨ Q) P assumed premise

{1} (2) P٨ Q T, (1) and E1

{1} (3) P T, (2) and I1

{1} {4) 7P٨7Q P

{4} (5) 7P T, (4) and I1

{1, 4} (6) P٨ 7P T, (3), (5) and I9

Here (6) P٨ 7P is a contradiction. Thus {1, 4} viz. 77(P٨ Q) and 7P٨

7Q leads to a contradiction P ٨ 7P.

Example 9Show that the following premises are inconsistent.

1. If Jack misses many classes through illness, then he fails high school.

2. If Jack fails high school, then he is uneducated.

3. If Jack reads a lot of books, then he is not uneducated.

4. Jack misses many classes through illness and reads a lot of books.

Solution.

P: Jack misses many classes.

Q: Jack fails high school.

R: Jack reads a lot of books.

S: Jack is uneducated.

The premises are P→ Q, Q → S, R→ 7S and P٨ R

{1} (1) P→Q P

{2} (2) Q→ S P

{1, 2} (3) P → S T, (1), (2) and I13

{4} (4) R→ 7S P

{4} (5) S → 7R T, (4), and E18

{1, 2, 4} (6) P→7R T, (3), (5) and I13

{1, 2, 4} (7) 7PV7R T, (6) and E16

{1, 2, 4} (8) 7(P٨R) T, (7) and E8

{9} (9)P٨ R P

{1, 2, 4, 9) (10) (P٨ R) ٨ 7(P٨ R) T, (8), (9) and I9

The rules above can be summed up in the following table. The "Tautology" column

shows how to interpret the notation of a given rule.

Rule of inference Tautology Name

Addition

Simplification

Conjunction

Modus ponens

Modus tollens

Hypothetical syllogism

Disjunctive syllogism

Resolution

Example 1

Let us consider the following assumptions: "If it rains today, then we will not go on a canoe

today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore

(Mathematical symbol for "therefore" is), if it rains today, we will go on a canoe trip

tomorrow. To make use of the rules of inference in the above table we let p be the proposition

"If it rains today", q be " We will not go on a canoe today" and let r be "We will go on a canoe

trip tomorrow". Then this argument is of the form:

Example 2
Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than

yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will

have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the

conclusion "We will be home before sunset." Proof by rules of inference: Let p be the

proposition "It is sunny this today", q the proposition "It is colder than yesterday", r the

proposition "We will go swimming", s the proposition "We will have a barbecue", and t the

proposition "We will be home by sunset". Then the hypotheses become

and . Using our intuition we conjecture that the conclusion

might be t. Using the Rules of Inference table we can proof the conjecture easily:

Step Reason

1. Hypothesis

2. Simplification using Step 1

3. Hypothesis

4. Modus tollens using Step 2 and 3

5. Hypothesis

6. s Modus ponens using Step 4 and 5

7. Hypothesis

8. t Modus ponens using Step 6 and 7

Proof of contradiction:

The "Proof by Contradiction" is also known as reductio ad absurdum, which is

probably Latin for "reduce it to something absurd".

Here's the idea:

1. Assume that a given proposition is untrue.

2. Based on that assumption reach two conclusions that contradict each other.

This is based on a classical formal logic construction known as Modus Tollens: If P implies Q

and Q is false, then P is false. In this case, Q is a proposition of the form (R and not R) which is

always false. P is the negation of the fact that we are trying to prove and if the negation is not

true then the original proposition must have been true. If computers are not "not stupid" then

they are stupid. (I hear that "stupid computer!" phrase a lot around here.)

Example:

Lets prove that there is no largest prime number (this is the idea of Euclid's original
proof). Prime numbers are integers with no exact integer divisors except 1 and themselves.

1. To prove: "There is no largest prime number" by contradiction.

2. Assume: There is a largest prime number, call it p.

3. Consider the number N that is one larger than the product of all of the primes smaller

than or equal to p. N=1*2*3*5*7*11...*p + 1. Is it prime?

4. N is at least as big as p+1 and so is larger than p and so, by Step 2, cannot be prime.

5. On the other hand, N has no prime factors between 1 and p because they would all leave

a remainder of 1. It has no prime factors larger than p because Step 2 says that there are

no primes larger than p. So N has no prime factors and therefore must itself be prime (see

note below).

We have reached a contradiction (N is not prime by Step 4, and N is prime by Step 5) and

therefore our original assumption that there is a largest prime must be false.

Note: The conclusion in Step 5 makes implicit use of one other important theorem: The

Fundamental Theorem of Arithmetic: Every integer can be uniquely represented as the product

of primes. So if N had a composite (i.e. non-prime) factor, that factor would itself have prime

factors which would also be factors of N.

UNIT II

Relations

RELATIONS

Introduction

The elements of a set may be related to one another. For example, in the set of natural

numbers there is the ‗less than‘ relation between the elements. The elements of one set may

also be related to the elements another set.

Binary Relation

A binary relation between two sets A and B is a rule R which decides, for any

elements, whether a is in relation R to b. If so, we write a R b. If a is not in relation R to b, then

we shall write a /R b.

We can also consider a R b as the ordered pair (a, b) in which case we can define a binary
relation from A to B as a subset of A X B. This subset is denoted by the relation R.

In general, any set of ordered pairs defines a binary relation.

For example, the relation of father to his child is F = {(a, b) / a is the father of b} In this relation
F, the first member is the name of the father and the second is the name of the child.

The definition of relation permits any set of ordered pairs to define a relation.

For example, the set S given by

S = {(1, 2), (3, a), (b, a) ,(b, Joe)}

Definition

The domain D of a binary relation S is the set of all first elements of the ordered pairs in the
relation.(i.e) D(S)= {a / $ b for which (a, b) Є S}

The range R of a binary relation S is the set of all second elements of the

ordered pairs in the relation.(i.e) R(S) = {b / $ a for which (a, b) Є S}

For example

For the relation S = {(1, 2), (3, a), (b, a) ,(b,
Joe)} D(S) = {1, 3, b, b} and
R(S) = {2, a, a, Joe}

Let X and Y be any two sets. A subset of the Cartesian product X * Y defines a relation, say C.

For any such relation C, we have D(C) Í X and R(C) Í Y, and the relation C is said to from X

to Y. If Y = X, then C is said to be a relation form X to X. In such case, c is called a relation in

X. Thus any relation in X is a subset of X * X . The set X * X is called a universal relation in X,

while the empty set which is also a subset of X * X is called a void relation in X.

For example

Let L denote the relation ―less than or equal to‖ and D denote the relation

―divides‖ where x D y means ― x divides y‖. Both L and D are defined on the

set {1, 2, 3, 4}

L = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4,
4)} D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

L Ç D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3),
(4, 4)} = D

Properties of Binary Relations:

Definition: A binary relation R in a set X is reflexive if, for every x Є X, x

R x, That is (x, x) Є R, or R is reflexive in X ó (x) (x Є X ® x R x).

For example

 The relation £ is reflexive in the set of real numbers.

 The set inclusion is reflexive in the family of all subsets of a universal set.

 The relation equality of set is also reflexive.

 The relation is parallel in the set lines in a plane.

The relation of similarity in the set of triangles in a plane is reflexive.

Definition: A relation R in a set X is symmetric if for every x and y in X, whenever x R y,
then y R x.(i.e) R is symmetric in X ó (x) (y) (x Є X ٨ y Є X ٨ x R y ® y R x}

For example

 The relation equality of set is symmetric.

 The relation of similarity in the set of triangles in a plane is symmetric.
 The relation of being a sister is not symmetric in the set of all people.

 However, in the set females it is symmetric.

Definition: A relation R in a set X is
whenever x R y and y R z , then x R z. (i.e)

transitive if, for every x, y, and z are in X, R is

transitive in X ó (x) (y) (z) (x Є X٨ y Є X٨ z Є

X ٨ x R y٨ y R z® x R z)
For example

 The relations <, £, >, ³ and = are transitive in the set of real numbers

 The relations Í, Ì, Ê, É and equality are also transitive in the family of sets.

 The relation of similarity in the set of triangles in a plane is transitive.

Definition: A relation R in a set X is irreflexive if, for every x Є X , (x, x)ÏX.

For example

 The relation < is irreflexive in the set of all real numbers.

 The relation proper inclusion is irreflexive in the set of all nonempty subsets of a
universal set.

 Let X = {1, 2, 3} and S = {(1, 1), (1, 2), (3, 2), (2, 3), (3, 3)} is neither irreflexive

nor reflexive.

Definition:A relation R in a set x is anti symmetric if , for every x and yin X,

whenever x R y and y R x, then x = y.

Symbolically,(x) (y) (x Є X ٨ y Є X ٨ x R y ٨ y R x ® x = y)

For example

 The relations £ , ³ and = are anti symmetric

 The relation Í is anti symmetric in set of subsets.
 The relation ―divides‖ is anti symmetric in set of real numbers.

 Consider the relation ―is a son of‖ on the male children in a family.Evidently the

relation is not symmetric, transitive and reflexive.
 The relation ― is a divisor of ― is reflexive and transitive but not symmetric on the

set of natural numbers.

 Consider the set H of all human beings. Let r be a relation ― is married to ―

R is symmetric.

 Let I be the set of integers. R on I is defined as a R b if a – b is an even number.R is an
reflexive, symmetric and transitive.

Equivalence Relation:

Definition:A relation R in a set A is called an equivalence relation if

 a R a for every i.e. R is reflexive

a R b => b R a for every a, b Є A i.e. R is symmetric

 a R b and b R c => a R c for every a, b, c Є A, i.e. R is transitive.

For example

 The relation equality of numbers on set of real numbers. The relation being

parallel on a set of lines in a plane.

Problem1: Let us consider the set T of triangles in a plane. Let us define a relation

R in T as R= {(a, b) / (a, b Є T and a is similar to b}

We have to show that relation R is an equivalence relation

Solution :

 A triangle a is similar to itself. a R a

 If the triangle a is similar to the triangle b, then triangle b is similar to the triangle a then
a R b => b R a

 If a is similar to b and b is similar to c, then a is similar to c (i.e) a R b and b R c => a R

c.

Hence R is an equivalence relation.

Problem 2: Let x = {1, 2, 3, … 7} and R = {(x, y) / x – y is divisible by 3} Show that R is an
equivalence relation.

Solution: For any a Є X, a- a is divisible by
3, Hence a R a, R is reflexive

For any a, b Є X, if a – b is divisible by 3, then b – a is also
divisible by 3, R is symmetric.

For any a, b, c Є, if a R b and b R c, then a – b is divisible by 3

and b–c is divisible by 3. So that (a – b) + (b – c) is also divisible by

3, hence a – c is also divisible by 3. Thus R is transitive.

Hence R is equivalence.

Problem3 Let Z be the set of all integers. Let m be a fixed integer. Two integers a and

b are said to be congruent modulo m if and only if m divides a-b, in which case we write a º

b (mod m). This relation is called the relation of congruence modulo m and we can show
that is an equivalence relation.

Solution :

 a - a=0 and m divides a – a (i.e) a R a, (a, a) Є R, R is reflexive .

 a R b = m divides a-b

m divides b -
a b º a (mod
m) b R a
that is R is symmetric.

 a R b and b R c => a ºb (mod m) and bº c (mod m)

O m divides a – b and m divides b-c

O a – b = km and b – c = lm for some k ,l Є z

O (a – b) + (b – c) = km +

lm O a – c = (k +l) m

O aº c (mod

m) O a R c

O R is transitive

Hence the congruence relation is an equivalence relation.

Equivalence Classes:

Let R be an equivalence relation on a set A. For any a ЄA, the equivalence class generated by a

is the set of all elements b Є A such a R b and is denoted [a]. It is also called the R –

equivalence class and denoted by a Є A. i.e., [a] = {b Є A / b R a}

Let Z be the set of integer and R be the relation called ―congruence
modulo 3‖ defined by R = {(x, y)/ xÎ Z Ù yÎZ Ù (x-y) is divisible by 3}

Then the equivalence classes are

[0] = {… -6, -3, 0, 3, 6, …}
[1] = {…, -5, -2, 1, 4, 7, …}
[2] = {…, -4, -1, 2, 5, 8, …}

Composition of binary relations:

Definition:Let R be a relation from X to Y and S be a relation from Y to Z. Then the relation R

 S is given by R o S = {(x, z) / xÎX Ù z Î Z Ù y Î Y such that (x, y) Î R Ù (y, z) Î S)}
is called the composite relation of R and S.

The operation of obtaining R o S is called the composition of relations.

Example: Let R = {(1, 2), (3, 4), (2, 2)} and
S = {(4, 2), (2, 5), (3, 1),(1,3)}

Then R o S = {(1, 5), (3, 2), (2, 5)} and S o R = {(4, 2), (3, 2), (1, 4)}

It is to be noted that R o S ≠ S o R.

Also Ro(S o T) = (R o S) o T = R o S o T

Note: We write R o R as R2; R o R o R as R3 and so on.

Definition

Let R be a relation from X to Y, a relation R from Y to X is called the converse of

R, where the ordered pairs of Ř are obtained by interchanging the numbers in each of

the ordered pairs of R. This means for x Î X and y Î Y, that x R y ó y Ř x.

Then the relation Ř is given by R = {(x, y) / (y, x) Î R} is called the converse
of R Example:

Let R = {(1, 2),(3, 4),(2, 2)}

Then Ř = {(2, 1),(4, 3),(2, 2)}

Note: If R is an equivalence relation, then Ř is also an equivalence relation.

Definition Let X be any finite set and R be a relation in X. The relation R+ =

R U R2 U R3…in X. is called the transitive closure of R in X

Example: Let R = {(a, b), (b, c), (c, a)}.

Now R2 = R o R = {(a, c), (b, a), (c, b)}

R3 = R2 o R = {(a, a), (b, b), (c, c)}

R4 = R3 o R = {(a, b), (b, c), (c, a)} = R

R5= R3o R2 = R2 and so on.

Thus, R+ = R U R2 U R3 U R4 U…

= R U R2 U R3.
={(a, b),(b, c),(c, a),(a, c),(b, a),(c ,b),(a, b),(b, b),(c, c)}

We see that R+ is a transitive relation containing R. In fact, it is the smallest
transitive relation containing R.

Partial Ordering Relations:

Definition

A binary relation R in a set P is called partial order relation or partial ordering in
P iff R is reflexive, anti symmetric, and transitive.

A partial order relation is denoted by the symbol £., If £ is a partial ordering on
P, then the ordered pair (P, £) is called a partially ordered set or a poset.

 Let R be the set of real numbers. The relation ―less than or equal to ‖ or
O , is a partial ordering on R.

 Let X be a set and r(X) be its power set. The relation subset, Í on X is partial ordering.

 Let Sn be the set of divisors of n. The relation D means ―divides‖ on Sn ,is partial

 ordering on Sn .

In a partially ordered set (P, £) , an element y Î P is said to cover an element x Î P

if x <y and if there does not exist any element z Î P such that x £ z and z £ y;

that is, y covers x Û (x < y Ù (x £ z £ y Þ x = z Ú z = y))

 A partial order relation £ on a set P can be represented by means of a diagram known as

a Hasse diagram or partial order set diagram of (P, £). In such a diagram, each element is

represented by a small circle or a dot. The circle for x Î P is drawn below the circle for y Î P if x

< y, and a line is drawn between x and y if y covers x.

If x < y but y does not cover x, then x and y are not connected directly by a single line.However,
they are connected through one or more elements of P.

Hasse Diagram:

A Hasse diagram is a digraph for a poset which does not have loops and arcs implied by the
transitivity.

Example 10: For the relation {< a, a >, < a, b >, < a, c >, < b, b >, < b, c >, < c, c >} on set {a,
b,c}, the Hasse diagram has the arcs {< a, b >, < b, c >} as shown below.

Ex: Let A be a given finite set and r(A) its power set. Let Í be the subset relation on
the elements of r(A). Draw Hasse diagram of (r(A), Í) for A = {a, b, c}

Functions

Introduction

A function is a special type of relation. It may be considered as a relation in which each

element of the domain belongs to only one ordered pair in the relation. Thus a function from A

to B is a subset of A X B having the property that for each a ЄA, there is one and only one

b Є B such that (a, b) Î G.

Definition

Let A and B be any two sets. A relation f from A to B is called a function if for every a Є A

there is a unique b Є B such that (a, b) Є f .

Note that the definition of function requires that a relation must satisfy two additional
conditions in order to qualify as a function.

The first condition is that every a Є A must be related to some b Є B, (i.e) the

domain of f must be A and not merely subset of A. The second requirement of uniqueness

can be expressed as (a, b) Є f ٨ (b, c) Є f => b = c

Intuitively, a function from a set A to a set B is a rule which assigns to every element of A, a unique

element of B. If a ЄA, then the unique element of B assigned to a under f is denoted by f

(a).The usual notation for a function f from A to B is f: A® B defined by a ® f (a) where a Є
A, f(a) is called the image of a under f and a is called pre image of f(a).

 Let X = Y = R and f(x) = x2 + 2. Df = R and Rf Í R.

 Let X be the set of all statements in logic and let Y = {True,

False}. A mapping f: X®Y is a function.

 A program written in high level language is mapped into a machine language by a
compiler. Similarly, the output from a compiler is a function of its input.

 Let X = Y = R and f(x) = x2 is a function from X ® Y,and g(x2) = x is not a function

from X ® Y.

A mapping f: A ® B is called one-to-one (injective or 1 –1) if distinct elements of A
are mapped into distinct elements of B. (i.e) f is one-to-one if

a1 = a2 => f (a1) = f(a2) or equivalently f(a1) ¹ f(a2) => a1 ¹ a2

For example, f: N ® N given by f(x) = x is 1-1 where N is the set of a natural numbers.

A mapping f: A® B is called onto (surjective) if for every b Є B there is an a Є A such

that f (a) = B. i.e. if every element of B has a pre-image in A. Otherwise it is called into.

For example, f: Z®Z given by f(x) = x + 1 is an onto
mapping. A mapping is both 1-1 and onto is called bijective
.

For example f: R®R given by f(x) = X + 1 is bijective.

Definition: A mapping f: R® b is called a constant mapping if, for all aÎA, f (a)
= b, a fixed element.

For example f: Z®Z given by f(x) = 0, for all x ÎZ is a constant mapping.

Definition

A mapping f: A®A is called the identity mapping of A if f (a) = a, for all aÎA. Usually
it is denoted by IA or simply I.

Composition of functions:

If f: A®B and g: B®C are two functions, then the composition of functions f and g, denoted
by g o f, is the function is given by g o f : A®C and is given by

g o f = {(a, c) / a Є A ٨ c Є C ٨ $bÎ B ': f(a)= b ٨ g(b)
= c} and (g of)(a) = ((f(a))

Example 1: Consider the sets A = {1, 2, 3},B={a, b} and C = {x,
y}. Let f: A® B be defined by f (1) = a ; f(2) = b and f(3)=b
and Let g: B® C be defined by g(a) = x and g(b) = y

(i.e) f = {(1, a), (2, b), (3, b)} and g = {(a, x),
(b, y)}. Then g o f: A®C is defined by

(g of) (1) = g (f(1)) = g(a) = x
(g o f) (2) = g (f(2)) = g(b) = y
(g o f) (3) = g (f(3)) = g(b) = y

i.e., g o f = {(1, x), (2, y),(3, y)}

If f: A® A and g: A®A, where A= {1, 2, 3}, are given by

f = {(1, 2), (2, 3), (3, 1)} and g = {(1, 3), (2, 2), (3, 1)}

Then g of = {(1, 2), (2, 1), (3, 3)}, fog= {(1, 1), (2, 3), (3, 2)}
f of = {(1, 3), (2, 1), (3, 2)} and gog= {(1, 1), (2, 2), (3, 3)}

Example 2: Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of
real numbers.

Then f o f = {(x, x+4)/xÎ R} f
o g = {(x, x)/ x Î X} g
o f = {(x, x)/ xÎ X}

g o g = {(x, x-4)/x Î X}
h o g = {(x,3x-6)/ x Î X} h
o f = {(x, 3x+6)/ x Î X}

Inverse functions:

Let f: A® B be a one-to-one and onto mapping. Then, its inverse, denoted by f -1 is given by f -
1 = {(b, a) / (a, b) Î f} Clearly f-1: B® A is one-to-one and onto.

Also we observe that f o f -1 = IB and f -1o f = IA.
If f -1 exists then f is called invertible.

For example:Let f: R ®R be defined by f(x) = x + 2

Then f -1: R® R is defined by f -1(x) = x - 2

Theorem: Let f: X ®Y and g: Y ® Z be two one to one and onto functions. Then gof is also
one to one and onto function.

Proof
Let f:X ® Y g : Y ® Z be two one to one and onto functions. Let x1, x2 Î X

 g o f (x1) = g o f(x2),
 g (f(x1)) = g(f(x2)),

 g(x1) = g(x2) since [f is 1-1]

x1 = x2 since [g is 1-1}
so that gof is 1-1.

By the definition of composition, gof : X ® Z is a function.

We have to prove that every element of z Î Z an image element for some x Î X

under gof.

Since g is onto $ y ÎY ': g(y) = z and f is onto from X to Y,

$ x ÎX ': f(x) = y.

Now, gof (x) = g (f (x))

= g(y) [since f(x) = y]

= z [since g(y) = z]

which shows that gof is onto.

Theorem (g o f) -1 = f -1 o g -1

(i.e) the inverse of a composite function can be expressed in terms of
the composition of the inverses in the reverse order.

Proof.
f: A ® B is one to one and onto.
g: B ® C is one to one and onto.

gof: A ® C is also one to one and onto. Þ
(gof) -1: C ® A is one to one and onto.

Let a Î A, then there exists an element b Î b such that f (a) = b Þ a = f-1

(b). Now b Î B Þ there exists an element c Î C such that g (b) = c Þ b = g -
1(c). Then (gof)(a) = g[f(a)] = g(b) = c Þ a = (gof) -1(c). …….(1)

(f -1 o g-1) (c) = f -1(g -1 (c)) = f -1(b) = a Þ a = (f -1 o g -1)(

c) ….(2) Combining (1) and (2), we have

(gof) -1 = f -1 o g -1

Theorem: If f: A ® B is an invertible mapping ,
then f o f -1 = I B and f-1 o f = IA

Proof: f is invertible, then f -1 is defined by f(a) = b ó f-1(b)
= a where a Î A and bÎ B .
Now we have to prove that f of -1 = IB

. Let bÎ B and f -1(b) = a, a Î A

then fof-1(b) = f(f-1(b))
= f(a) = b

therefore f o f -1 (b) = b " b Î B => f o f -1 =
IB Now f -1 o f(a) = f -1 (f(a)) = f -1 (b) = a

therefore f -1 o f(a) = a " a Î A => f -1 o f = IA.
Hence the theorem.

Recursive Functions:

The term "recursive function" is often used informally to describe any function that is defined

with recursion. There are several formal counterparts to this informal definition, many of which

only differ in trivial respects.

Kleene (1952) defines a "partial recursive function" of nonnegative integers to be any function that

is defined by a noncontradictory system of equations whose left and right sides are composed from

(1) function symbols (for example, , , , etc.), (2) variables for nonnegative integers (for example,

, , , etc.), (3) the constant 0, and (4) the successor function .

For example,

 (1)

(2)

(3)

(4)

defines to be the function that computes the product of and .

Note that the equations might not uniquely determine the value of for every possible input, and

in that sense the definition is "partial." If the system of equations determines the value of f for

every input, then the definition is said to be "total." When the term "recursive function" is used

alone, it is usually implicit that "total recursive function" is intended. Note that some authors use

the term "general recursive function to mean partial recursive function, although others use it to

mean "total recursive function."

The set of functions that can be defined recursively in this manner is known to be equivalent to
the set of functions computed by Turing machines and by the lambda calculus.

Lattice and its Properties:

Introduction:

A lattice is partially ordered set (L, £) in which every pair of elements a, b ÎL
has a greatest lower bound and a least upper bound.
The glb of a subset, {a, b} Í L will be denoted by a * b and the lub by a Å b.

.

Usually, for any pair a, b Î L, GLB {a, b} = a * b, is called the meet or product and LUB{a,
b} = a Å b, is called the join or sum of a and b.

Example1 Consider a non-empty set S and let P(S) be its power set. The relation

Í ―contained in‖ is a partial ordering on P(S). For any two subsets A, BÎ P(S)

GLB {A, B} and LUB {A, B} are evidently A Ç B and A È B respectively.

Example2 Let I+ be the set of positive integers, and D denote the relation of ―division‖ in
I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a lattice in which

the join of a and b is given by the least common multiple(LCM) of a and b, that is,

a Å b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common
divisor (GCD) of a and b.

A lattice can be conveniently represented by a diagram.

For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the

relation ―division‖ such that for any a, b Î Sn, a D b iff a divides b.

Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b).

Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in
Fig(1). Take n=8. Then S8 = {1, 2, 4, 8}

Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), Í) and (S6,D)

have the same diagram viz. fig(1), but the nodes are differently labeled .

 We observe that for any partial ordering relation £ on a set S the

converse relation ³ is also partial ordering relation on S. If (S, £) is a lattice

With meet a * b and join a Å b , then (S, ³) is the also a lattice with meet

a Å b and join a * b i.e., the GLB and LUB get interchanged . Thus we have

the principle of duality of lattice as follows.

Any statement about lattices involving the operations ^ and V and the relations £ and ³
remains true if ^, V, ³ and £ are replaced by V, ^, £ and ³ respectively.

The operation ^ and V are called duals of each other as are the relations £ and ³.. Also,

the lattice (L, £) and (L, ³) are called the duals of each other.

Properties of lattices:
Let (L, £) be a lattice with the binary operations * and Å then for any a, b, c Î L,

 a * a = a a Å a = a (Idempotent)

 a * b = b * a, a Å b = b Å a (Commutative)

 (a * b) * c = a * (b * c) , (a Å) Å c = a Å (b Å c)

O (Associative)
a * (a Å b) = a , a Å (a * b) = a (absorption)

For any a ÎL, a £ a, a £ LUB {a, b} => a £ a * (a Å b). On the other
hand, GLB {a, a Å b} £ a i.e., (a Å b) Å a, hence a * (a Å b) = a

Theorem 1

Let (L, £) be a lattice with the binary operations * and Å denote the operations of meet
and join respectively For any a, b Î L,

a £ b ó a * b = a ó a Å b = b

Proof

Suppose that a £ b. we know that a £ a, a £ GLB {a, b}, i.e., a £ a * b.

But from the definition of a * b, we get a * b £ a.
Hence a £ b => a * b = a ………………………… (1)

Now we assume that a * b = a; but is possible only if a £ b,

that is a * b = a => a £ b ………………………… (2)

From (1) and (2), we get a £ b ó a * b = a.

Suppose a * b = a.

then b Å (a * b) = b Å a = a Å b ……………………. (3)

but b Å (a * b) = b (by iv)…………………….. (4)

Hence a Å b = b, from (3) => (4)

Suppose aÅ b = b, i.e., LUB {a, b} = b, this is possible only if a£ b, thus(3) => (1)

(1) => (2) => (3) => (1). Hence these are equivalent.

Let us assume a * b = a.

Now (a * b) Å b = a Å b

We know that by absorption law , (a * b) Å b = b

so that a Å b = b, therefore a * b = a Þ a Å b = b (5)

similarly, we can prove a Å b = b Þ a * b = a (6)

From (5) and (6), we get

a * b = a Û a Å b = b
Hence the theorem.

Theorem2 For any a, b, c Î L, where (L, £) is a lattice. b

£ c => { a * b £ a * c and
{ a Å b £ a Å c

Proof Suppose b £ c. we have proved that b £ a ó b * c = b…….. (1)

Now consider

(a * b) * (a * c) = (a * a) * (b * c)
= a * (b * c)
= a * b

(by Idempotent)

(by (1))

Thus (a * b) * (a * c) = a * b which => (a * b) £ (a * c)
Similarly (a Å b) Å (a Å c) = (a Å a) Å (b Å c)

= a Å (b Å c)
= a Å c

which => (a Å b) £ (a Å c)

note:These properties are known as isotonicity.

Algebraic structures

Algebraic systems:

An algebraic system, loosely speaking, is a set, together with some operations on the set. Before

formally defining what an algebraic system is, let us recall that a n -ary operation (or operator)

on a set A is a function whose domain is An and whose range is a subset of A . Here, n is a non-

negative integer. When n=0 , the operation is usually called a nullary operation, or a constant,

since one element of A is singled out to be the (sole) value of this operation. A finitary operation

on A is just an n -ary operation for some non-negative integer n .

Definition. An algebraic system is an ordered pair (A O) , where A is a set, called the
underlying set of the algebraic system, and O is a set, called the operator set, of finitary

operations on A .

We usually write A , instead of (A O) , for brevity.

A prototypical example of an algebraic system is a group, which consists of the underlying set G

, and a set O consisting of three operators: a constant e called the multiplicative identity, a unary

operator called the multiplicative inverse, and a binary operator called the multiplication.

For a more comprehensive listing of examples, please see this entry.

Remarks.

 An algebraic system is also called algebra for short. Some authors require that A be non-empty.

Note that A is automatically non-empty if O contains constants. A finite algebra is an algebra

 whose underlying set is finite.

 By definition, all operators in an algebraic system are finitary. If we allow O to contain infinitary

operations, we have an infinitary algebraic system. Other generalizations are possible. For

example, if the operations are allowed to be multivalued, the algebra is said to be a multialgebra.

If the operations are not everywhere defined, we get a partial algebra. Finally, if more than one

underlying set is involved, then the algebra is said to be many-sorted.

The study of algebraic systems is called the theory of universal algebra. The first important thing

in studying algebraic system is to compare systems that are of the same ``type''. Two algebras are

said to have the same type if there is a one-to-one correspondence between their operator sets

such that an n -ary operator in one algebra is mapped to an n -ary operator in the other algebra.

Examples:

Some recurring universes: N=natural numbers; Z=integers; Q=rational numbers;
R=real numbers; C=complex numbers.

N is a pointed unary system, and under addition and multiplication, is both
the standard interpretation of Peano arithmetic and a commutative semiring.

Boolean algebras are at once semigroups, lattices, and rings. They would even be abelian

groups if the identity and inverse elements were identical instead of complements.

Group-like structures

 Nonzero N under addition (+) is a magma.
 N under addition is a magma with an identity.

 Z under subtraction (−) is a quasigroup.

 Nonzero Q under division (÷) is a quasigroup.

 Every group is a loop, because a * x = b if and only if x = a
−1

 * b, and y * a = b if

and only if y = b * a
−1

.
 2x2 matrices(of non-zero determinant) with matrix multiplication form a group.

 Z under addition (+) is an abelian group.

 Nonzero Q under multiplication (×) is an abelian group.

 Every cyclic group G is abelian, because if x, y are in G, then xy = a
m

a
n

 = a
m+n

 = a
n+m

 =

 a
n

a
m

 = yx. In particular, Z is an abelian group under addition, as is the integers modulo n
 Z/nZ.

 A monoid is a category with a single object, in which case the composition of

 morphisms and the identity morphism interpret monoid multiplication and

identity element, respectively.

 The Boolean algebra 2 is a boundary algebra.

General Properties:

Property of Closure

If we take two real numbers and multiply them together, we get another real number. (The real

numbers are all the rational numbers and all the irrational numbers.) Because this is always true,

we say that the real numbers are "closed under the operation of multiplication": there is no way

to escape the set. When you combine any two elements of the set, the result is also included in

theset.

Real numbers are also closed under addition and subtraction. They are not closed under the
square root operation, because the square root of -1 is not a real number.

Inverse

The inverse of something is that thing turned inside out or upside down. The inverse of an
operation undoes the operation: division undoes multiplication.

A number's additive inverse is another number that you can add to the original number to get the

additive identity. For example, the additive inverse of 67 is -67, because 67 + -67 = 0, the

additive identity.

Similarly, if the product of two numbers is the multiplicative identity, the numbers are

multiplicative inverses. Since 6 * 1/6 = 1 (the multiplicative identity), the multiplicative inverse

of 6 is 1/6.

Zero does not have a multiplicative inverse, since no matter what you multiply it by, the answer
is always 0, not 1.

Equality

The equals sign in an equation is like a scale: both sides, left and right, must be the same in order
for the scale to stay in balance and the equation to be true.

The addition property of equality says that if a = b, then a + c = b + c: if you add the same

number to (or subtract the same number from) both sides of an equation, the equation continues

to be true.

The multiplication property of equality says that if a = b, then a * c = b * c: if you multiply (or
divide) by the same number on both sides of an equation, the equation continues to be true.

The reflexive property of equality just says that a = a: anything is congruent to itself: the equals
sign is like a mirror, and the image it "reflects" is the same as the original.

The symmetric property of equality says that if a = b, then b = a.

The transitive property of equality says that if a = b and b = c, then a = c.

Semi groups and monoids:

In the previous section, we have seen several algebraic system with binary operations.

Here we consider an algebraic system consisting of a set and an associative binary operation on

the set and then the algebraic system which possess an associative property with an identity

element. These algebraic systems are called semigroups and monoids.

Semi group

Let S be a nonempty set and let * be a binary operation on S. The algebraic system (S, *)
is called a semi-group if * is associative

i.e. if a * (b*c) = (a * b) * c for all a, b, c Î S.

Example The N of natural numbers is a semi-group under the operation of usual
addition of numbers.

Monoids

Let M be a nonempty set with a binary operation * defined on it. Then (M, *) is
called a monoid if

 * is associative

(i.e) a * (b * c) = (a * b) * c for all a, b, c Î M and

there exists an element e in M such that

a * e = e * a = a for all a Î M

e is called the identity element in (M,*).

It is easy to prove that the identity element is unique. From the definition it follows that (M,*) is
a semigroup with identity.

Example1 Let S be a nonempty set and r(S) be its power set. The algebras (r(S),U) and (r(S), Ç)
are monoids with the identities f and S respectively.

Example2 Let N be the set of natural numbers, then (N,+), (N, X) are monoids with the
identities 0 and 1 respectively.

Groups Sub Groups:

Recalling that an algebraic system (S, *) is a semigroup if the binary operation * is associative. If

there exists an identity element e Î S, then (S,*) is monoid. A further condition is imposed on the

elements of the monoid, i.e., the existence of an inverse for each element of S then the algebraic

system is called a group.

Definition

Let G be a nonempty set, with a binary operation * defined on it. Then the
algebraic system (G,*) is called a group if

 * is associative i.e. a * (b * c) = (a * b) * c for all a, b, c,Î G.

 there exists an element e in G such that a * e = e * a = a for all a Î G

 for each a Î G there is an element denoted by a-1 in G such that

a * a-1 = a-1 * a = e, a-1 is called the inverse of a.

From the definition it follows that (G,*) is a monoid in which each element has an inverse w.r.t.
* in G.

A group (G,*) in which * is commutative is called an abelian group or a commutative

group. If * is not commutative then (G,*) is called a non-abelian group or non-commutative

group.

The order of a group (G,*) is the number of elements of G, when G is finite and is denoted
by o(G) or |G|

Examples 1. (Z5, +5) is an abelian group of order 5.

2. G = {1, -1, i, -i} is an abelian group with the binary operation x is
defined as 1 x 1 = 1, -1 x -1 = 1, i x i = -1 , -i x -i = 1, …

Homomorphism of semigroups and monoids

Semigroup homomorphism.

Let (S, *) and (T, D) be any two semigroups. A mapping g: S ® T such that any

two elements a, b Î S , g(a * b) = g(a) D g(b) is called a semigroup homomorphism.

Monoid homomorphism

Let (M, *,eM) and (T, D,eT) be any two monoids. A mapping g: M® T such that
any two elements a, b Î M ,

g(a * b) = g(a) D g(b)
and g(eM) = eT

is called a monoid homomorphism.

Theorem 1 Let (s, *) , (T, D) and (V, Å) be semigroups. A mapping g: S ® T and
h: T ® V be semigroup homomorphisms. Then (hog): S ® V is a

semigroup homomorphism from (S,*) to(V,Å).

 Proof. Let a, b Î S. Then

(h o g)(a * b) = h(g(a* b))
= h(g(a) D g(b))
= h(g(a)) Å h(g(b))
= (h o g)(a) Å (h o g)(b)

Theorem 2 Let (s,*) be a given semigroup. There exists a homomorphism g: S ® SS,

where (SS, o) is a semigroup of function from S to S under the operation of

composition.

Proof For any element a Î S, let g(a) = fa where f aÎ SS and f a is defined by
f a(b) = a * b for any a, bÎ S
g(a * b) = f a*b

Now f a*b(c) = (a * b) * c = a*(b * c)
where = f a(f b(c)) = (f a o f b) (c).

Therefore, g(a * b) = f a*b = f a o f b = g(a) o g(b), this shows that g: S ® SS is

a homomorphism.

Theorem 3 For any commutative monoid (M, *),the set of idempotent elements of M forms
a submonoid.

Proof. Let S be the set of idempotent elements of M.
Since the identity element e Î M is idempotent, e Î S.

Let a, b Î S, so that a* a = a and b * b = b
Now (a * b) * (a * b) = (a * b) * (b * a)

= a * (b * b) * a
= a * b * a
= a * a * b
= a * b

Hence a * b Î S and (S, *) is a submonoid.

Isomorphism:

In abstract algebra, an isomorphism is a bijective map f such that both f and its inverse f
−1

 are

homomorphisms, i.e., structure-preserving mappings. In the more general setting of category
theory, an isomorphism is a morphism f: X → Y in a category for which there exists an

"inverse" f
−1

: Y → X, with the property that both f
−1

f = idX and f f
−1

 = idY.

Informally, an isomorphism is a kind of mapping between objects, which shows a relationship
between two properties or operations. If there exists an isomorphism between two structures, we
call the two structures isomorphic. In a certain sense, isomorphic structures are structurally

identical, if you choose to ignore finer-grained differences that may arise from how they are

defined.

Purpose:

Isomorphisms are studied in mathematics in order to extend insights from one phenomenon to

others: if two objects are isomorphic, then any property which is preserved by an isomorphism

and which is true of one of the objects, is also true of the other. If an isomorphism can be found

from a relatively unknown part of mathematics into some well studied division of mathematics,

where many theorems are already proved, and many methods are already available to find

answers, then the function can be used to map whole problems out of unfamiliar territory over to

"solid ground" where the problem is easier to understand and work with.

UNIT-III

Elementary Combinatorics

Basis of counting:

If X is a set, let us use |X| to denote the number of elements in X.

Two Basic Counting Principles

Two elementary principles act as ―building blocks‖ for all counting problems. The
first principle says that the whole is the sum of its parts; it is at once immediate and elementary.

Sum Rule: The principle of disjunctive counting :

If a set X is the union of disjoint nonempty subsets S1, ….., Sn, then | X | = | S1 | + | S2 | + ….. +
| Sn |.

We emphasize that the subsets S1, S2, …., Sn must have no elements in common.

Moreover, since X = S1 U S2 U ……U Sn, each element of X is in exactly one of the
subsets Si. In other words, S1, S2, …., Sn is a partition of X.

If the subsets S1, S2, …., Sn were allowed to overlap, then a more

profound principle will be needed--the principle of inclusion and exclusion.

Frequently, instead of asking for the number of elements in a set perse, some

problems ask for how many ways a certain event can happen.

The difference is largely in semantics, for if A is an event, we can let X be the set of ways

that A can happen and count the number of elements in X. Nevertheless, let us state the sum rule

for counting events.

If E1, ……, En are mutually exclusive events, and E1 can happen e1 ways, E2 happen e2

ways,…. ,En can happen en ways, E1 or E2 or …. or En can happen e1 + e2 + …….. + en ways.

Again we emphasize that mutually exclusive events E1 and E2 mean that E1 or E2 can

happen but both cannot happen simultaneously.

The sum rule can also be formulated in terms of choices: If an object can be selected

from a reservoir in e1 ways and an object can be selected from a separate reservoir in e2 ways

and an object can be selected from a separate reservoir in e2 ways, then the selection of one

object from either one reservoir or the other can be made

in e1 + e2 ways.

Product Rule: The principle of sequencing counting

If S1, ….., Sn are nonempty sets, then the number of elements in the Cartesian product

S1 x S2 x ….. x Sn is the product ∏in=1 |S i |. That is,

| S1 x S2 x x Sn | = ∏in=1| S i |.

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1

and to each of these branches there are 3 branches in the second stage corresponding to the 3

elements of S2 giving a total of 15 branches altogether. Moreover, the Cartesian product S1 x S2

can be partitioned as (a1 x S2) U (a2 x S2) U (a3 x S2) U (a4 x S2) U (a5 x S2), where (ai x S2)

= {(ai, b1), (ai i, b2), (ai, b3)}. Thus, for example, (a3 x S2) corresponds to the third branch in

the first stage followed by each of the 3 branches in the second stage.

More generally, if a1,….., an are the n distinct elements of S1 and b1,….,bm are the m

distinct elements of S2, then S1 x S2 = Uin =1 (ai x S2).

For if x is an arbitrary element of S1 x S2 , then x = (a, b) where a Î S1 and b Î

S2. Thus, a = ai for some i and b = bj for some j. Thus, x = (ai, bj) Î(ai x S2) and

therefore x Î Uni =1(ai x S2).

Conversely, if x Î Uin =1(ai x S2), then x Î (ai x S2) for some i and thus x = (ai, bj)

where bj is some element of S2. Therefore, x Î S1 x S2.

Next observe that (ai x S2) and (aj x S2) are disjoint if i ≠ j since if

x Î (ai x S2) ∩ (aj x S2) then x = (ai, bk) for some k and x = (aj, b1) for some l.

But then (ai, bk) = (aj, bl) implies that ai = aj and bk = bl. But since i ≠ j , ai ≠ a j.

Thus, we conclude that S1 x S2 is the disjoint union of the sets (ai x S2). Furthermore |ai x

S2| = |S2| since there is obviously a one-to-one correspondence between the sets ai x S2 and

S2, namely, (ai, bj) → bj.

Then by the sum rule |S1 x S2| = ∑nni=1 | ai x S2|

7. (n summands) |S2| + |S2| +…….+ |S2|

8. n |S2|

9. nm.

Therefore, we have proven the product rule for two sets. The general rule follows by

mathematical induction.

We can reformulate the product rule in terms of events. If events E1, E2 , …., En can

happen e1, e2,…., and en ways, respectively, then the sequence of events E1 first, followed by

E2,…., followed by En can happen e1e2 …en ways.

In terms of choices, the product rule is stated thus: If a first object can be chosen

e1 ways, a second e2 ways , …, and an nth object can be made in e1e2….en ways.

Combinations & Permutations:

Definition.

A combination of n objects taken r at a time (called an r-combination of n objects)

is an unordered selection of r of the objects.

A permutation of n objects taken r at a time (also called an r-permutation of

n objects) is an ordered selection or arrangement of r of the objects.

Note that we are simply defining the terms r-combinations and r-permutations

here and have not mentioned anything about the properties of the n objects.

For example, these definitions say nothing about whether or not a given

element may appear more than once in the list of n objects.

In other words, it may be that the n objects do not constitute a set in the normal usage

of the word.

SOLVED PROBLEMS

Example1. Suppose that the 5 objects from which selections are to be made are: a, a, a, b,
c. then the 3-combinations of these 5 objects are : aaa, aab, aac, abc. The permutations are:

aaa, aab, aba, baa, aac, aca, caa,

abc, acb, bac, bca, cab, cba.

Neither do these definitions say anything about any rules governing the selection of the r-

objects: on one extreme, objects could be chosen where all repetition is forbidden, or on the

other extreme, each object may be chosen up to t times, or then again may be some rule of

selection between these extremes; for instance, the rule that would allow a given object to be

repeated up to a certain specified number of times.

We will use expressions like {3 . a , 2. b ,5.c} to indicate either

(1) that we have 3 + 2 + 5 =10 objects including 3a‘s , 2b‘s and 5c‘s, or (2) that we have 3

objects a, b, c, where selections are constrained by the conditions that a can be selected

at most three times, b can be selected at most twice, and c can be chosen up to five times.

The numbers 3, 2 and 5 in this example will be called repetition numbers.

Example 2 The 3-combinations of {3. a, 2. b, 5. c} are:

aaa, aab, aac, abb, abc,
ccc, ccb, cca, cbb.

Example 3. The 3-combinations of {3 . a, 2. b, 2. c , 1. d} are:

aaa, aab, aac, aad, bba, bbc, bbd,
cca, ccb, ccd, abc, abd, acd, bcd.

In order to include the case where there is no limit on the number of times an object
can be repeated in a selection (except that imposed by the size of the selection) we use the symbol ∞

as a repetition number to mean that an object can occur an infinite number of times.

Example 4. The 3-combinations of {∞. a, 2.b, ∞.c} are the same as in Example 2
even though a and c can be repeated an infinite number of times. This is because, in 3-
combinations, 3 is the limit on the number of objects to be chosen.

If we are considering selections where each object has ∞ as its repetition number then

we designate such selections as selections with unlimited repetitions. In particular, a selection of

r objects in this case will be called r-combinations with unlimited repetitions and any ordered

arrangement of these r objects will be an r-permutation with unlimited repetitions.

Example5 The combinations of a ,b, c, d with unlimited repetitions are the 3-
combinations of {∞ . a , ∞. b, ∞. c, ∞. d}. These are 20 such 3-combinations, namely:

aaa, aab, aac, aad,
bbb, bba, bbc, bbd,
ccc, cca, ccb, ccd,
ddd, dda, ddb, ddc,
abc, abd, acd, bcd.

Moreover, there are 43 = 64 of 3-permutations with unlimited repetitions since the first position
can be filled 4 ways (with a, b, c, or d), the second position can be filled 4 ways, and likewise
for the third position.

The 2-permutations of {∞. a, ∞. b, ∞. c, ∞. d} do not present such a formidable
list and so we tabulate them in the following table.

 2-permutations

2-combinations with Unlimited Repetitions

with Unlimited

Repetitions

aa aa

ab ab, ba

ac ac, ca

ad ad, da

bb bb

bc bc, cb

bd bd, db

cc cc

cd cd, dc

dd dd

10 16

Of course, these are not the only constraints that can be placed on

selections; the possibilities are endless. We list some more examples just for concreteness. We

might, for example, consider selections of {∞.a, ∞. b, ∞. c} where b can be chosen only even

number of times. Thus, 5-combinations with these repetition numbers and this constraint would

be those 5-combinations with unlimited repetitions and where b is chosen 0, 2, or 4 times.

Example6 The 3-combinations of {∞ .a, ∞ .b, 1 .c,1 .d} where b can be chosen only an even

number of times are the 3-combinations of a, b, c, d where a can be chosen up 3 times, b can be

chosen 0 or 2 times, and c and d can be chosen at most once. The 3-cimbinations subject to these

constraints are:

aaa, aac, aad, bbc, bbd, acd.

As another example, we might be interested in, selections of {∞.a, 3.b, 1.c} where a can

be chosen a prime number of times. Thus, the 8-combinations subject to these constraints would

be all those 8-combinations where a can be chosen 2, 3, 5, or 7 times, b can chosen up to 3

times, and c can be chosen at most once.

There are, as we have said, an infinite variety of constraints one could place on

selections. You can just let your imagination go free in conjuring up different constraints

on the selection, would constitute an r-combination according to our definition. Moreover,

any arrangement of these r objects would constitute an r-permutation.

While there may be an infinite variety of constraints, we are primarily interested in two

major types: one we have already described—combinations and permutations with unlimited

repetitions, the other we now describe.

If the repetition numbers are all 1, then selections of r objects are called r-combinations

without repetitions and arrangements of the r objects are r-permutations without repetitions.

We remind you that r-combinations without repetitions are just subsets of the n elements

containing exactly r elements. Moreover, we shall often drop the repetition number 1 when

considering r-combinations without repetitions. For example, when considering r-combinations

of {a, b, c, d} we will mean that each repetition number is 1 unless otherwise designated, and,

of course, we mean that in a given selection an element need not be chosen at all, but, if it is

chosen, then in this selection this element cannot be chosen again.

Example7. Suppose selections are to be made from the four objects a, b, c, d.

2-combinations 2-Permutations

without Repetitions without Repetitions

ab ab, ba

ac ac, ca

ad ad, da

bc bc, cb

bd bd, db

cd cd, dc

6 12

There are six 2-combinations without repetitions and to each there are two 2-

permutations giving a total of twelve 2-permutations without repetitions.

Note that total number of 2-combinations with unlimited repetitions in Example 5

included six 2-combinations without repetitions of Example.7 and as well 4 other 2-

combinations where repetitions actually occur. Likewise, the sixteen 2-permutations with

unlimited repetitions included the twelve 2-permutations without repetitions.

3-combinations

without Repetitions

abc

abd

acd

bcd

 4

3-Permutations

without Repetitions

abc, acb, bac, bca, cab, cba

abd, adb, bad, bda, dab, dba

acd, adc, cad, cda, dac, dca

bcd, bdc, cbd, cdb, dbc, dcb

 24

Note that to each of the 3-combinations without repetitions there are 6 possible 3-permutations without

repetitions. Momentarily, we will show that this observation can be generalized.

Combinations And Permutations With Repetitions:

General formulas for enumerating combinations and permutations will now be presented.

At this time, we will only list formulas for combinations and permutations without repetitions or

with unlimited repetitions. We will wait until later to use generating functions to give general

techniques for enumerating combinations where other rules govern the selections.

Let P (n, r) denote the number of r-permutations of n elements without repetitions.

Theorem 5.3.1.(Enumerating r-permutations without repetitions).

P(n, r) = n(n-1)……. (n – r + 1) = n! / (n-r)!

Proof. Since there are n distinct objects, the first position of an r-permutation may be filled in

n ways. This done, the second position can be filled in n-1 ways since no repetitions are

allowed and there are n – 1 objects left to choose from. The third can be filled in n-2 ways. By

applying the product rule, we conduct that

P (n, r) = n(n-1)(n-2)……. (n – r + 1).

From the definition of factorials, it follows that

P (n, r) = n! / (n-r)!

When r = n, this formula becomes

P (n, n) = n! / 0! = n!

When we explicit reference to r is not made, we assume that all the objects are to

be arranged; thus we talk about the permutations of n objects we mean the case

r=n. Corollary 1. There are n! permutations of n distinct objects.

Example 1.
 There are 3! = 6 permutations of {a, b, c}.

There are 4! = 24 permutations of (a, b, c, d). The number of 2-

permutations {a, b, c, d, e}

is P(5, 2) = 5! /

(5 - 2)! = 5 x 4 = 20. The number of 5-letter words using the letters a, b, c, d, and e at most once

is P (5, 5) = 120.

Example 2 There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since each

such number is just an arrangement of four of the digits 0, 1, 2, 3 , …., 9 (leading zeroes are

allowed). There are P (26, 3) P(10, 4) license plates formed by 3 distinct letters

followed by 4 distinct digits.

Example3. In how many ways can 7 women and 3 men be arranged in a row if the 3

men must always stand next to each other?

There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each

other, we treat them as a single entity, which we denote by X. Then if W1, W2, ….., W7

represents the women, we next are interested in the number of ways of arranging {X, W1, W2,

W3,……., W7}. There are 8! permutations these 8 objects. Hence there are (3!) (8!)

permutations altogether. (of course, if there has to be a prescribed order of an arrangement on the

3 men then there are only 8! total permutations).

Example4. In how many ways can the letters of the English alphabet be arranged so that there

are exactly 5 letters between the letters a and b?

There are P (24, 5) ways to arrange the 5 letters between a and b, 2 ways to place a and
b, and then 20! ways to arrange any 7-letter word treated as one unit along with the remaining
19 letters. The total is P (24, 5) (20!) (2).

permutations for the objects are being arranged in a line. If instead of arranging objects
in a line, we arrange them in a circle, then the number of permutations decreases.

Example 5. In how many ways can 5 children arrange themselves in a ring?

Solution. Here, the 5 children are not assigned to particular places but are only arranged

relative to one another. Thus, the arrangements (see Figure 2-3) are considered the same if the

children are in the same order clockwise. Hence, the position of child C1 is immaterial and it is

only the position of the 4 other children relative to C1 that counts. Therefore, keeping C1 fixed

in position, there are 4! arrangements of the remaining children.

Binomial Coefficients:In mathematics, the binomial coefficient is the coefficient of the

x
k

 term in the polynomial expansion of the binomial power (1 + x)
n

.

In combinatorics, is interpreted as the number of k-element subsets (the k-combinations) of an

n-element set, that is the number of ways that k things can be "chosen" from a set of n things.

Hence, is often read as "n choose k" and is called the choose function of n and k. The

notation was introduced by Andreas von Ettingshausen in 182, although the numbers were

already known centuries before that (see Pascal's triangle). Alternative notations include C(n, k),

nCk,
n

Ck, , in all of which the C stands for combinations or choices.

For natural numbers (taken to include 0) n and k, the binomial coefficient can be defined as

the coefficient of the monomial X
k

 in the expansion of (1 + X)
n

. The same coefficient also
occurs (if k ≤ n) in the binomial formula

(valid for any elements x,y of a commutative ring), which explains the name "binomial
coefficient".

Another occurrence of this number is in combinatorics, where it gives the number of ways,
disregarding order, that a k objects can be chosen from among n objects; more formally, the number
of k-element subsets (or k-combinations) of an n-element set. This number can be seen to be equal to
the one of the first definition, independently of any of the formulas below to compute

it: if in each of the n factors of the power (1 + X)
n

 one temporarily labels the term X with an index i (running
from 1 to n), then each subset of k indices gives after expansion a contribution

X
k

, and the coefficient of that monomial in the result will be the number of such subsets. This

shows in particular that is a natural number for any natural numbers n and k. There are many

other combinatorial interpretations of binomial coefficients (counting problems for which the

answer is given by a binomial coefficient expression), for instance the number of words formed

of n bits (digits 0 or 1) whose sum is k, but most of these are easily seen to be equivalent to

counting k-combinations.

Several methods exist to compute the value of without actually expanding a binomial power

or counting k-combinations.

Binomial Multinomial theorems:
Binomial theorem:
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial.

n

involving terms of the form ax
b

y
c

, where the coefficient of each term is a positive integer, and
the sum of the exponents of x and y in each term is n. For example,

The coefficients appearing in the binomial expansion are known as binomial coefficients. They are

the same as the entries of Pascal's triangle, and can be determined by a simple formula n−k k
involving factorials. These numbers also arise in combinatorics, where the coefficient of x y

is equal to the number of different combinations of k elements that can be chosen from an n-
element set.

According to the theorem, it is possible to expand any power of x + y into a sum of the form

where denotes the corresponding binomial coefficient. Using summation notation,

the formula above can be written

This formula is sometimes referred to as the Binomial Formula or the Binomial Identity.

A variant of the binomial formula is obtained by substituting 1 for x and x for y, so that
it involves only a single variable. In this form, the formula reads

or equivalently

EXAMPLE

Simplify (x+v(x2-1)) + (x- v(x2-1))6

Solution: let vx2-1 = a, so we have:
(x=a)6 + (x-a)6

= [x6+6C1x5.a+6C2.x4.a2 + 6C3x3a3 + 6C4x2a4 + 6C5xa5 +6C6a6]

[x6-6C1x5a+6C2.x4.a2 – 6C3x3a3 + 6C4x2a4 – 6C5xa5 +6C6a6]

2[x6+6C2x4a2+6C4x2a4+6C6a6]

2[x6+15x4(x2-1)+15x2(x2-1)2+(x2-1)3]

2[x6+15x6-15x4+15x6+15x2-30x4+x6-1-3x4+3x3]

2[32x6-48x4+18x2-1]

Multinomial theorem:

In mathematics, the multinomial theorem says how to write a power of a sum in terms of powers
of the terms in that sum. It is the generalization of the binomial theorem to polynomials.

For any positive integer m and any nonnegative integer n, the multinomial formula tells us how a
polynomial expands when raised to an arbitrary power:

The summation is taken over all sequences of nonnegative integer indices k1 through km such
the sum of all ki is n. That is, for each term in the expansion, the exponents must add up to n.

Also, as with the binomial theorem, quantities of the form x
0

 that appear are taken to equal 1
(even when x equals zero). Alternatively, this can be written concisely using multiindices as

α α α α

where α = (α1,α2,…,αm) and x = x1 1x2 2⋯xm m.
Example

3 3 3 3 2

2

2

2

2

2

(a + b + c) = a + b + c + 3a b + 3a c + 3b a + 3b c + 3c a + 3c b + 6abc.

(a + b + c)
2

 = a
2

 + b
2

 + c
2

 + 2ab + 2bc + 2ac, then self-multiplying it again to get (a + b + c)
3

(and then if we were raising it to higher powers, we'd multiply it by itself even some more).

However this process is slow, and can be avoided by using the multinomial theorem. The multinomial

theorem "solves" this process by giving us the closed form for any coefficient we might want. It is
possible to "read off" the multinomial coefficients from the terms by using the multinomial
coefficient formula. For example:

a2b0c1

a
1

b
1

c
1

has the coefficient

has the coefficient .

We could have also had a 'd' variable, or even more variables—hence the multinomial theorem.

The principles of Inclusion – Exclusion:

Let denote the cardinality of set , then it follows immediately that

(1)

where denotes union, and denotes intersection. The more general statement

(2)

also holds, and is known as Boole's inequality.

This formula can be generalized in the following beautiful manner. Let be a

p-system of consisting of sets , ..., , then

3

where the sums are taken over k-subsets of . This formula holds for infinite sets as well

as finite sets.

The principle of inclusion-exclusion was used by Nicholas Bernoulli to solve

the recontres problem of finding the number of derangements.

For example, for the three subsets , , and

of , the following table summarizes the terms appearing

the sum.

term set length

1 2, 3, 7, 9, 10 5

 1, 2, 3, 9 4

 2, 4, 9, 10 4

2 2, 3, 9 3

 2, 9, 10 3

 2, 9 2

3 2, 9 2

is therefore equal to, corresponding to the

seven elements .

Pigeon hole principles and its application:

The statement of the Pigeonhole Principle:

If m pigeons are put into m pigeonholes, there is an empty hole iff there's a hole with more than

one pigeon.

If n > m pigeons are put into m pigeonholes, there's a hole with more than one pigeon.

Example:

Consider a chess board with two of the diagonally opposite corners removed. Is it possible to
cover the board with pieces of domino whose size is exactly two board squares?

Solution

No, it's not possible. Two diagonally opposite squares on a chess board are of the same color.
Therefore, when these are removed, the number of squares of one color exceeds by 2 the number
of squares of another color. However, every piece of domino covers exactly two squares and
these are of different colors. Every placement of domino pieces establishes a 1-1 correspondence
between the set of white squares and the set of black squares. If the two sets have different
number of elements, then, by the Pigeonhole Principle, no 1-1 correspondence between the two
sets is possible.

Generalizations of the pigeonhole principle

A generalized version of this principle states that, if n discrete objects are to be allocated to m

containers, then at least one container must hold no fewer than objects, where is the

ceiling function, denoting the smallest integer larger than or equal to x. Similarly, at least one

container must hold no more than objects, where is the floor function, denoting the

largest integer smaller than or equal to x.

A probabilistic generalization of the pigeonhole principle states that if n pigeons are randomly
put into m pigeonholes with uniform probability 1/m, then at least one pigeonhole will hold more
than one pigeon with probability

where (m)n is the falling factorial m(m − 1)(m − 2)...(m − n + 1). For n = 0 and for n = 1 (and m

> 0), that probability is zero; in other words, if there is just one pigeon, there cannot be a conflict.
For n > m (more pigeons than pigeonholes) it is one, in which case it coincides with the ordinary
pigeonhole principle. But even if the number of pigeons does not exceed the number of
pigeonholes (n ≤ m), due to the random nature of the assignment of pigeons to pigeonholes there
is often a substantial chance that clashes will occur. For example, if 2 pigeons are randomly
assigned to 4 pigeonholes, there is a 25% chance that at least one pigeonhole will hold more than
one pigeon; for 5 pigeons and 10 holes, that probability is 69.76%; and for 10 pigeons and 20
holes it is about 93.45%. If the number of holes stays fixed, there is always a greater probability
of a pair when you add more pigeons. This problem is treated at much greater length at birthday
paradox.

A further probabilistic generalisation is that when a real-valued random variable X has a finite
mean E(X), then the probability is nonzero that X is greater than or equal to E(X), and similarly
the probability is nonzero that X is less than or equal to E(X). To see that this implies the
standard pigeonhole principle, take any fixed arrangement of n pigeons into m holes and let X be
the number of pigeons in a hole chosen uniformly at random. The mean of X is n/m, so if there
are more pigeons than holes the mean is greater than one. Therefore, X is sometimes at least 2.

Applications:

The pigeonhole principle arises in computer science. For example, collisions are inevitable in a
hash table because the number of possible keys exceeds the number of indices in the array. No
hashing algorithm, no matter how clever, can avoid these collisions. This principle also proves
that any general-purpose lossless compression algorithm that makes at least one input file
smaller will make some other input file larger. (Otherwise, two files would be compressed to the
same smaller file and restoring them would be ambiguous.)

A notable problem in mathematical analysis is, for a fixed irrational number a, to show that the
set {[na]: n is an integer} of fractional parts is dense in [0, 1]. After a moment's thought, one

finds that it is not easy to explicitly find in tegers , such that | − | < , where > 0 is a n m ∈ na m e e

small positive number and a is some arbitrary irrational number. But if one takes M such that

1/ M < e, by the pigeonhole principle there must be n1, n2 {1, 2, ..., M + 1} such that n1a and n2a are in
the same integer subdivision of size 1/M (there are only M such subdivisions between consecutive

integers) . In particular, we can find n1, n2 such that n1a is in (p + k/ M, p + (k + 1)/M), and n2a is in (q + k/M, q
+ (k + 1)/M), for some p, q integers and k in {0, 1, ..., M − 1}. We can
then easily verify that (n2 − n1)a is in (q − p − 1/M, q − p + 1/M). This implies that [na] < 1/M < e, where n = n2 − n1 or n = n1 − n2.
This shows that 0 is a limit point of {[na]}. We can then use

this fact to prove the case for p in (0, 1]: find n such that [na] < 1/M < e; then if p (0, 1/M], we
are done. Otherwise in (/ , (+ 1)/], and by setting = sup{ : [] < / ∈

∈

|[(k + 1)na] − p| < 1/M < e.

UNIT-IV

Recurrence Relation

Generating Functions:

In mathematics, a generating function is a formal power series in one indeterminate, whose

coefficients encode information about a sequence of numbers an that is indexed by the natural

numbers. Generating functions were first introduced by Abraham de Moivre in 1730, in order to
solve the general linear recurrence problem. One can generalize to formal power series in more
than one indeterminate, to encode information about arrays of numbers indexed by several
natural numbers.

Generating functions are not functions in the formal sense of a mapping from a domain to a
codomain; the name is merely traditional, and they are sometimes more correctly called
generating series.

Ordinary generating function

The ordinary generating function of a sequence an is

When the term generating function is used without qualification, it is usually taken to mean an
ordinary generating function.

If an is the probability mass function of a discrete random variable, then its ordinary generating

function is called a probability-generating function.

The ordinary generating function can be generalized to arrays with multiple indices. For

example, the ordinary generating function of a two-dimensional array am, n (where n and m are natural
numbers) is

Example:

Exponential generating function

The exponential generating function of a sequence an is

Example:

Function of Sequences:

Generating functions giving the first few powers of the nonnegative integers are given
in the following table.

series
1

There are many beautiful generating functions for special functions in number theory.
A few particularly nice examples are

(2)

(3)

(4)

for the partition function P, where is a q-Pochhammer symbol, and

(5)

(6)

(7)

for the Fibonacci numbers .

Generating functions are very useful in combinatorial enumeration problems. For example,

the subset sum problem, which asks the number of ways to select out of given integers

such that their sum equals , can be solved using generating functions.

Calculating Coefficient of generating function:

By using the following polynomial expansions, we can calculate the coefficient of a
generating function.

Polynomial Expansions:

1 xm 1
1) 1 x x... x

1 x

1
 1 x x

2
 ...

2) 1 x

3) (1 x)
n

1 C(n,1) x C(n, 2) x
2

4) (1 x m) n 1 C (n,1) x
m

 C (n, 2) x
2m

 1
1 C (1 n 1,1) x C(2

5)

(1 x)
n

6) If h(x)=f(x)g(x), where f(x) 0 1 2

 a a x a x
2

 h(x) a b (a b a b) x (a b a b a b) x
2

...
 0 0 1 0 0 1 2 0 1 1 0 2

... C(n, r) x
r

... C(n, n) x
n

... (1)
k

 C (n, k) x
km

... (1)
n

 C (n, n)x
nm

n 1, 2) x
2

 ... C(r n 1, r) x
r
 ...

and g(x) 0 1 2 , then
... b b x b x...

(a b a ba b ... a b) x
r

...
r 0r 1 1 r 2 2 0 r

Recurrence relations:

Introduction :A recurrence relation is a formula that relates for any integer n ≥ 1, the n-th term
of a sequence A = {ar}∞r=0 to one or more of the terms a0,a1,….,an-1. Example. If Sn denotes
the sum of the first n positive integers, then

10. Sn = n + Sn-1. Similarly if d is a real number, then the nth term of an arithmetic
progression with common difference d satisfies the relation

11. an = an -1 + d. Likewise if pn denotes the nth term of a geometric progression with
common ratio r, then

pn = r pn – 1. We list other examples
as: an – 3an-1 + 2an-2 = 0.
an – 3 an-1+ 2 an-2 = n2 + 1.

an – (n - 1) an-1 - (n - 1) an-2 = 0.
an – 9 an-1+ 26 an-2 – 24 an-3 = 5n.
an – 3(an-1)2 + 2 an-2 = n.

an = a0 an-1+ a1 an-2+ … + an-
1a0. a2n + (an-1)2 = -1.

Definition. Suppose n and k are nonnegative integers. A recurrence relation of the form c0(n)an
+ c1(n)an-1 + …. + ck(n)an-k = f(n) for n ≥ k, where c0(n), c1(n),…., ck(n), and f(n) are

functions of n is said to be a linear recurrence relation. If c0(n) and ck(n) are not identically

zero, then it is said to be a linear recurrence relation degree k. If c0(n), c1(n),…., ck(n) are

constants, then the recurrence relation is known as a linear relation with constant coefficients.

If f(n) is identically zero, then the recurrence relation is said to be homogeneous; otherwise, it is

inhomogeneous.

Thus, all the examples above are linear recurrence relations except (8), (9), and (10);
the relation (8), for instance, is not linear because of the squared term.
The relations in (3), (4) , (5), and (7) are linear with constant coefficients.

Relations (1), (2), and (3) have degree 1; (4), (5), and (6) have degree 2; (7) has degree
3. Relations (3) , (4), and (6) are homogeneous.

There are no general techniques that will enable one to solve all recurrence
relations. There are, nevertheless, techniques that will enable us to solve linear recurrence
relations with constant coefficients.

SOLVING RECURRENCE RELATIONS BY
SUSTITUTION AND GENERATING FUNCTIONS

We shall consider four methods of solving recurrence relations in this and the

next two sections:
5. Substitution (also called iteration),
6. Generating functions,
7. Characteristics roots, and
8. Undetermined coefficients.

In the substitution method the recurrence relation for an is used repeatedly to solve for
a general expression for an in terms of n. We desire that this expression involve no other
terms of the sequence except those given by boundary conditions.

The mechanics of this method are best described in terms of examples. We used

this method in Example5.3.4. Let us also illustrate the method in the following examples.

Example

Solve the recurrence relation an = a n-1 + f(n) for n ³1 by substitution

a1= a0 + f(1)

a2 = a1 + f(2) = a0 + f(1) + f(2))

a3 = a2 + f(3)= a0 + f(1) + f(2) + f(3)
.
.

.
an = a0 + f(1) + f(2) +….+

f(n) n
= a0 + ∑ f(k)

K = 1

Thus, an is just the sum of the f(k) „s plus a0.

More generally, if c is a constant then we can solve an = c a n-1 + f(n) for n ³1 in the same way:

a1 = c a0 + f(1)

a2 = c a1 + f(2) = c (c a0 + f(1)) +
f(2) = c2 a0 + c f(1) + f(2)

a3= c a2 + f(3) = c(c 2 a0 + c f(1) + f(2)) +
f(3) =c3 a0 + c2 f(1) + c f(2) + f(3)
.

.

.

an = c a n -1 + f(n) = c(c n-1 a0 + c n-2 f(1) +. . . + c n -2 + f(n-1))

+ f(n) =c n a0 + c n-1 f(1) + c n-2 f(2) +. . .+ c f(n-1) + f(n)
Or

an = c n a0 + ∑c n-k f(k)

Solution of Linear Inhomogeneous Recurrence Relations:

The equation + 1 −1+ 2 −2=(), where 1and 2 are constant, and () is not identically

0, is called a second-order linear inhomogeneous recurrence relation (or difference equation) with

constant coefficients. The homogeneous case, which we‟ve looked at already, occurs when

()≡0. The inhomogeneous case occurs more frequently. The homogeneous case is so important
largely because it gives us the key to solving the inhomogeneous equation. If you‟ve studied
linear differential equations with constant coefficients, you‟ll see the parallel. We will call the

difference obtained by setting the right-hand side equal to 0, the ―associated homogeneous

equation.‖ We know how to solve this. Say that is a solution. Now suppose that () is any

particular solution of the inhomogeneous equation. (That is, it solves the equation, but does not

necessarily match the initial data.) Then = +() is a solution to the inhomogeneous

equation, which you can see simply by substituting into the equation. On the other hand, every

solution of the inhomogeneous equation is of the form = +() where is a solution of

the homogeneous equation, and () is a particular solution of the inhomogeneous equation.

The proof of this is straightforward. If we have two solutions to the inhomogeneous equation,

say 1 and 2, then their difference 1− 2= is a solution to the homogeneous equation,

which you can check by substitution. But then 1= + 2, and we can set 2=(), since by

assumption, 2 is a particular solution. This leads to the following theorem: the general

solution to the inhomogeneous equation is the general solution to the associated

homogeneous equation, plus any particular solution to the inhomogeneous equation. This

gives the following procedure for solving the inhomogeneous equation:

4. Solve the associated homogeneous equation by the method we‟ve learned. This will involve
variable (or undetermined) coefficients.

5. Guess a particular solution to the inhomogeneous equation. It is because of the guess that I‟ve
called this a procedure, not an algorithm. For simple right-hand sides , we can say how to
compute a particular solution, and in these cases, the procedure merits the name ―algorithm.‖

6. The general solution to the inhomogeneous equation is the sum of the answers from the two
steps above.

7. Use the initial data to solve for the undetermined coefficients from step 1.

To solve the equation − 6 −1 + 8 −2 = 3. Let‟s suppose that we are also given the initial

data 0 = 3, 1 = 3. The associated homogeneous equation is − 6 −1 + 8 −2 = 0, so the

characteristic equation is 2 − 6 + 8 = 0, which has roots 1 = 2 and 2 = 4. Thus, the general

solution to the associated homogeneous equation is 12 + 24 . When the right-hand side is a

polynomial, as in this case, there will always be a particular solution that is a polynomial.

Usually, a polynomial of the same degree will work, so we‟ll guess in this case that there is a

constant that solves the homogeneous equation. If that is so, then = −1 = −2 = ,

and substituting into the equation gives − 6 + 8 = 3, and we find that = 1. Now, the

general solution to the inhomogeneous equations is 12 + 24 + 1. Reassuringly, this is the

answer given in the back of the book. Our initial data lead to the equations 1 + 2 + 1 = 3 and

2 1 + 4 2 + 1 = 3, whose solution is 1 = 3, 2 = −1. Finally, the solution to the

inhomogeneous equation, with the initial condition given, is = 3 ∙ 2 − 4 + 1. Sometimes, a

polynomial of the same degree as the right-hand side doesn‟t work. This happens when the

characteristic equation has 1 as a root. If our equation had been − 6 −1 + 5 −2 = 3,

when we guessed that the particular solution was a constant , we‟d have arrived at the

equation − 6 + 5 = 3, or 0 = 3. The way to deal with this is to increase the degree of the

polynomial. Instead of assuming that the solution is constant, we‟ll assume that it‟s linear. In

fact, we‟ll guess that it is of the form

= . Then we have −6 −1 +5 −2 =3, which simplifies to 6 −10 =3 so that
=−34 . Thus, = −3 4 . This won‟t be enough if 1 is a root of multiplicity 2, that is, if
−1 2 is a factor of the characteristic polynomial. Then there is a particular solution of the form

 = 2. For second-order equations, you never have to go past this. If the right-hand side is a

polynomial of degree greater than 0, then the process works juts the same, except that you start

with a polynomial of the same degree, increase the degree by 1, if necessary, and then once

more, if need be. For example, if the right-hand side were =2 −1, we would start by
guessing a particular solution = 1 + 2. If it turned out that 1 was a characteristic root,

we would amend our guess to = 1 2+ 2 + 3. If 1 is a double root, this will fail also,
but = 1 3+ 2 2+ 3 + 4 will work in this case.

Another case where there is a simple way of guessing a particular solution is when the right-

hand side is an exponential, say = . In that case, we guess that a particular solution is just

a constant multiple of , say ()= . Again, we gave trouble when 1 is a characteristic root.
We then guess that = , which will fail only if 1 is a double root. In that case we must
use = 2 , which is as far as we ever have to go in the second-order case. These same

ideas extend to higher-order recurrence relations, but we usually solve them numerically, rather

than exactly. A third-order linear difference equation with constant coefficients leads to a cubic

characteristic polynomial. There is a formula for the roots of a cubic, but it‟s very complicated.

For fourth-degree polynomials, there‟s also a formula, but it‟s even worse. For fifth and higher

degrees, no such formula exists. Even for the third-order case, the exact solution of a simple-
looking inhomogeneous linear recurrence relation with constant coefficients can take pages to

write down. The coefficients will be complicated expressions involving square roots and cube

roots. For most, if not all, purposes, a simpler answer with numerical coefficients is better, even
though they must in the nature of things, be approximate.

The procedure I‟ve suggested may strike you as silly. After all, we‟ve already solved the

characteristic equation, so we know whether 1 is a characteristic root, and what it‟s multiplicity

is. Why not start with a polynomial of the correct degree? This is all well and good, while

you‟re taking the course, and remember the procedure in detail. However, if you have to use this

procedure some years from now, you probably won‟t remember all the details. Then the method

I‟ve suggested will be valuable. Alternatively, you can start with a general polynomial of the

maximum possible degree This leads to a lot of extra work if you‟re solving by hand, but it‟s

the approach I prefer for computer solution.

UNIT V

Graph Theory

Representation of Graphs:

There are two different sequential representations of a graph. They are

Adjacency Matrix representation

Path Matrix representation

Adjacency Matrix Representation

Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been
ordered and are called v1, v2, . . . , vm. Then the adjacency matrix A = (aij) of the graph G is the
m x m matrix defined as follows:

1 if vi is adjacent to Vj, that is, if there is an edge (Vi, Vj)
aij =0 otherwise

Suppose G is an undirected graph. Then the adjacency matrix A of G will be

a symmetric matrix, i.e., one in which aij = aji; for every i and j.

Drawbacks
12. It may be difficult to insert and delete nodes in G.

13. If the number of edges is 0(m) or 0(m log2 m), then the matrix A will be sparse, hence

a great deal of space will be wasted.

Path Matrix Represenation

Let G be a simple directed graph with m nodes, v1,v2, . . . ,vm. The path matrix of G is
the m-square matrix P = (pij) defined as follows:

1 if there is a path from Vi to Vj
Pij =0 otherwise

Graphs and Multigraphs
A graph G consists of two things:

1.A set V of elements called nodes (or points or vertices)

2.A set E of edges such that each edge e in E is identified with a unique

(unordered) pair [u, v] of nodes in V, denoted by e = [u, v]

Sometimes we indicate the parts of a graph by writing G = (V, E).

Suppose e = [u, v]. Then the nodes u and v are called the endpoints of e, and u and v are said

to be adjacent nodes or neighbors. The degree of a node u, written deg(u), is the number of

edges containing u. If deg(u) = 0 — that is, if u does not belong to any edge—then u is called

an isolated node.

Path and Cycle

A path P of length n from a node u to a node v is defined as a sequence of n + 1 nodes. P
= (v0, v1, v2, . . . , vn) such that u = v0; vi-1 is adjacent to vi for i = 1,2, . . ., n and vn = v.
Types of Path

1. Simple Path
2. Cycle Path

(i) Simple Path
Simple path is a path in which first and last vertex are different (V0 ≠ Vn)

(ii) Cycle Path

Cycle path is a path in which first and last vertex are same (V0 = Vn).It is also
called as Closed path.

Connected Graph
A graph G is said to be connected if there is a path between any two of its nodes.

Complete Graph
A graph G is said to be complete if every node u in G is adjacent to every other node v in G.

Tree
A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree.

Labeled or Weighted Graph

If the weight is assigned to each edge of the graph then it is called as
Weighted or Labeled graph.

The definition of a graph may be generalized by permitting the following:

Multiple edges: Distinct edges e and e' are called multiple edges if they connect the same
endpoints, that is, if e = [u, v] and e' = [u, v].

Loops: An edge e is called a loop if it has identical endpoints, that is, if e = [u, u].

Finite Graph:A multigraph M is said to be finite if it has a finite number of nodes and a
finite number of edges.

Directed Graphs

A directed graph G, also called a digraph or graph is the same as a multigraph except that each
edge e in G is assigned a direction, or in other words, each edge e is identified with an ordered
pair (u, v) of nodes in G.

Outdegree and Indegree
Indegree : The indegree of a vertex is the number of edges for which v is head

Example

Indegree of 1 = 1
Indegree pf 2 = 2

Outdegree :The outdegree of a node or vertex is the number of edges for which v is tail.

Example

Outdegree of 1 =1

Outdegree of 2 =2

Simple Directed Graph

A directed graph G is said to be simple if G has no parallel edges. A simple graph
G may have loops, but it cannot have more than one loop at a given node.

Graph Traversal

The breadth first search (BFS) and the depth first search (DFS) are the two algorithms used for
traversing and searching a node in a graph. They can also be used to find out whether a node is
reachable from a given node or not.

Breadth First Search

Breadth First Search (BFS) starts at starting level-0 vertex XX of the graph GG. Then we visit all the

vertices that are the neighbors of XX. After visiting, we mark the vertices as "visited," and place them into

level-1. Then we start from the level-1 vertices and apply the same method on every level-1 vertex and so

on. The BFS traversal terminates when every vertex of the graph has been visited.

BFS Algorithm

The concept is to visit all the neighbor vertices before visiting other neighbor vertices of neighbor vertices.

 Initialize status of all nodes as “Ready”.

 Put source vertex in a queue and change its status to “Waiting”.

 Repeat the following two steps until queue is empty −

o Remove the first vertex from the queue and mark it as “Visited”.

o Add to the rear of queue all neighbors of the removed vertex whose status is “Ready”. Mark their

status as “Waiting”.

Problem

Let us take a graph (Source vertex is ‘a’) and apply the BFS algorithm to find out the traversal order.

Solution −

 Initialize status of all vertices to “Ready”.

 Put a in queue and change its status to “Waiting”.

 Remove a from queue, mark it as “Visited”.

 Add a’s neighbors in “Ready” state b, d and e to end of queue and mark them as “Waiting”.

 Remove b from queue, mark it as “Visited”, put its “Ready” neighbor cat end of queue and mark c as

“Waiting”.

 Remove d from queue and mark it as “Visited”. It has no neighbor in “Ready” state.

 Remove e from queue and mark it as “Visited”. It has no neighbor in “Ready” state.

 Remove c from queue and mark it as “Visited”. It has no neighbor in “Ready” state.

 Queue is empty so stop.

So the traversal order is −

a→b→d→e→ca→b→d→e→c

The alternate orders of traversal are −

a→b→e→d→ca→b→e→d→c

Or, a→d→b→e→ca→d→b→e→c

Or, a→e→b→d→ca→e→b→d→c

Or, a→b→e→d→ca→b→e→d→c

Or, a→d→e→b→ca→d→e→b→c

Application of BFS

 Finding the shortest path

 Minimum spanning tree for un-weighted graph

 GPS navigation system

 Detecting cycles in an undirected graph

 Finding all nodes within one connected component

DFS Algorithm

The concept is to visit all the neighbor vertices of a neighbor vertex before visiting the other neighbor

vertices.

 Initialize status of all nodes as “Ready”

 Put source vertex in a stack and change its status to “Waiting”

 Repeat the following two steps until stack is empty −

o Pop the top vertex from the stack and mark it as “Visited”

o Push onto the top of the stack all neighbors of the removed vertex whose status is “Ready”. Mark their status as

“Waiting”.

Problem

Let us take a graph (Source vertex is ‘a’) and apply the DFS algorithm to find out the traversal order.

Solution

 Initialize status of all vertices to “Ready”.

 Push a in stack and change its status to “Waiting”.

 Pop a and mark it as “Visited”.

 Push a’s neighbors in “Ready” state e, d and b to top of stack and mark them as “Waiting”.

 Pop b from stack, mark it as “Visited”, push its “Ready” neighbor conto stack.

 Pop c from stack and mark it as “Visited”. It has no “Ready” neighbor.

 Pop d from stack and mark it as “Visited”. It has no “Ready” neighbor.

 Pop e from stack and mark it as “Visited”. It has no “Ready” neighbor.

 Stack is empty. So stop.

So the traversal order is −

a→b→c→d→ea→b→c→d→e

The alternate orders of traversal are −

a→e→b→c→da→e→b→c→d

Or, a→b→e→c→da→b→e→c→d

Or, a→d→e→b→ca→d→e→b→c

Or, a→d→c→e→ba→d→c→e→b

Or, a→d→c→b→e

Spanning Trees:

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G

is a tree composed of all the vertices and some (or perhaps all) of the edges of G. Informally, a

spanning tree of G is a selection of edges of G that form a tree spanning every vertex. That is,

every vertex lies in the tree, but no cycles (or loops) are formed. On the other hand, every bridge

of G must belong to T.

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that
contains no cycle, or as a minimal set of edges that connect all vertices.
Example:

 A spanning tree of a connected undirected graph GG is a tree that minimally includes all of the vertices

of GG. A graph may have many spanning trees.

Example

Minimum Spanning Tree

A spanning tree with assigned weight less than or equal to the weight of every possible spanning tree of a weighted,

connected and undirected graph GG, it is called minimum spanning tree (MST). The weight of a spanning tree is the

sum of all the weights assigned to each edge of the spanning tree.

Example

Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted graph. It

finds a tree of that graph which includes every vertex and the total weight of all the edges in the tree is less than or

equal to every possible spanning tree.

Algorithm

Step 1 − Arrange all the edges of the given graph G(V,E)G(V,E) in non-decreasing order as per their edge weight.

Step 2 − Choose the smallest weighted edge from the graph and check if it forms a cycle with the spanning tree

formed so far.

Step 3 − If there is no cycle, include this edge to the spanning tree else discard it.

Step 4 − Repeat Step 2 and Step 3 until (V−1)(V−1) number of edges are left in the spanning tree.

Problem

Suppose we want to find minimum spanning tree for the following graph G using Kruskal’s algorithm.

Solution

From the above graph we construct the following table −

Edge

No.

Vertex

Pair

Edge

Weight

E1 (a, b) 20

E2 (a, c) 9

E3 (a, d) 13

E4 (b, c) 1

E5 (b, e) 4

E6 (b, f) 5

E7 (c, d) 2

E8 (d, e) 3

E9 (d, f) 14

Now we will rearrange the table in ascending order with respect to Edge weight −

Edge

No.

Vertex

Pair

Edge

Weight

E4 (b, c) 1

E7 (c, d) 2

E8 (d, e) 3

E5 (b, e) 4

E6 (b, f) 5

E2 (a, c) 9

E3 (a, d) 13

E9 (d, f) 14

E1 (a, b) 20

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal spanning tree and its

total weight is (1+2+3+5+9)=20(1+2+3+5+9)=20.

Prim's Algorithm

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert C. Prim, is a greedy algorithm

that finds a minimum spanning tree for a connected weighted graph. It finds a tree of that graph which includes

every vertex and the total weight of all the edges in the tree is less than or equal to every possible spanning tree.

Prim’s algorithm is faster on dense graphs.

Algorithm

 Initialize the minimal spanning tree with a single vertex, randomly chosen from the graph.

 Repeat steps 3 and 4 until all the vertices are included in the tree.

 Select an edge that connects the tree with a vertex not yet in the tree, so that the weight of the edge is

minimal and inclusion of the edge does not form a cycle.

 Add the selected edge and the vertex that it connects to the tree.

Problem

Suppose we want to find minimum spanning tree for the following graph G using Prim’s algorithm.

Solution

Here we start with the vertex ‘a’ and proceed.

This is the minimal spanning tree and its total weight is (1+2+3+5+9)=20(1+2+3+5+9)=20.

A spanning tree (blue heavy edges) of a grid graph.
Spanning forests

A spanning forest is a type of subgraph that generalises the concept of a spanning tree.

However, there are two definitions in common use. One is that a spanning forest is a subgraph

that consists of a spanning tree in each connected component of a graph. (Equivalently, it is a

maximal cycle-free subgraph.) This definition is common in computer science and optimisation.

It is also the definition used when discussing minimum spanning forests, the generalization to

disconnected graphs of minimum spanning trees. Another definition, common in graph theory, is

that a spanning forest is any subgraph that is both a forest (contains no cycles) and spanning

(includes every vertex).

Counting spanning trees

The number t(G) of spanning trees of a connected graph is an important invariant. In some cases,
it is easy to calculate t(G) directly. It is also widely used in data structures in different computer

languages. For example, if G is itself a tree, then t(G)=1, while if G is the cycle graph Cn with n
vertices, then t(G)=n. For any graph G, the number t(G) can be calculated using Kirchhoff's
matrix-tree theorem (follow the link for an explicit example using the theorem).

Cayley's formula is a formula for the number of spanning trees in the complete graph Kn with n

vertices. The formula states that t(Kn) = n
n

−

2

. Another way of stating Cayley's formula is that

there are exactly n
n

−

2

 labelled trees with n vertices. Cayley's formula can be proved using

Kirchhoff's matrix-tree theorem or via the Prüfer code.

If G is the complete bipartite graph Kp,q, then t(G) = p
q

−

1

q
p

−

1

, while if G is the n-dimensional

hypercube graph Qn, then . These formulae are also consequences

of the matrix-tree theorem.

If G is a multigraph and e is an edge of G, then the number t(G) of spanning trees of G satisfies

the deletion-contraction recurrence t(G)=t(G-e)+t(G/e), where G-e is the multigraph obtained by

deleting e and G/e is the contraction of G by e, where multiple edges arising from

this contraction are not deleted.

Uniform spanning trees

A spanning tree chosen randomly from among all the spanning trees with equal probability is
called a uniform spanning tree (UST). This model has been extensively researched in probability
and mathematical physics.
Algorithms
The classic spanning tree algorithm, depth-first search (DFS), is due to Robert Tarjan. Another
important algorithm is based on breadth-first search (BFS).

Planar Graphs:

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be
drawn on the plane in such a way that its edges intersect only at their endpoints.

A planar graph already drawn in the plane without edge intersections is called a plane graph or

planar embedding of the graph. A plane graph can be defined as a planar graph with a

mapping from every node to a point in 2D space, and from every edge to a plane curve, such that

the extreme points of each curve are the points mapped from its end nodes, and all curves are

disjoint except on their extreme points. Plane graphs can be encoded by combinatorial maps.

It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as
well, and vice versa.

The equivalence class of topologically equivalent drawings on the sphere is called a planar
map. Although a plane graph has an external or unbounded face, none of the faces of a planar
map have a particular status.

Applications

Telecommunications – e.g. spanning trees
Vehicle routing – e.g. planning routes on roads without underpasses VLSI

– e.g. laying out circuits on computer chip.

The puzzle game Planarity requires the player to "untangle" a planar graph so that none of
its edges intersect.

Example graphs

planar non planar

Graph Theory and Applications:

Graphs are among the most ubiquitous models of both natural and human-made structures. They
can be used to model many types of relations and process dynamics in physical, biological and
social systems. Many problems of practical interest can be represented by graphs.

In computer science, graphs are used to represent networks of communication, data organization,

computational devices, the flow of computation, etc. One practical example: The link structure of

a website could be represented by a directed graph. The vertices are the web pages available at

the website and a directed edge from page A to page B exists if and only if A contains a link to B.

A similar approach can be taken to problems in travel, biology, computer chip design, and many

other fields. The development of algorithms to handle graphs is therefore of major interest in

computer science. There, the transformation of graphs is often formalized and represented by

graph rewrite systems. They are either directly used or properties of the rewrite systems (e.g.

confluence) are studied. Complementary to graph transformation systems focussing on rule-

based in-memory manipulation of graphs are graph databases geared towards transaction-safe,

persistent storing and querying of graph-structured data.

Graph-theoretic methods, in various forms, have proven particularly useful in linguistics, since

natural language often lends itself well to discrete structure. Traditionally, syntax and

compositional semantics follow tree-based structures, whose expressive power lies in the

Principle of Compositionality, modeled in a hierarchical graph. Within lexical semantics,

especially as applied to computers, modeling word meaning is easier when a given word is

understood in terms of related words; semantic networks are therefore important in

computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which uses

lattice graphs) and morphology (e.g. finite-state morphology, using finite-state transducers) are

common in the analysis of language as a graph. Indeed, the usefulness of this area of

mathematics to linguistics has borne organizations such as TextGraphs, as well as various 'Net'

projects, such as WordNet, VerbNet, and others.

Graph theory is also used to study molecules in chemistry and physics. In condensed matter

physics, the three dimensional structure of complicated simulated atomic structures can be

studied quantitatively by gathering statistics on graph-theoretic properties related to the topology

of the atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a graph makes a

natural model for a molecule, where vertices represent atoms and edges bonds. This approach is

especially used in computer processing of molecular structures, ranging from chemical editors to

database searching. In statistical physics, graphs can represent local connections between

interacting parts of a system, as well as the dynamics of a physical process on such systems.

Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige

or to explore diffusion mechanisms, notably through the use of social network analysis

software.Likewise, graph theory is useful in biology and conservation efforts where a vertex can

represent regions where certain species exist (or habitats) and the edges represent migration

paths, or movement between the regions. This information is important when looking at breeding

patterns or tracking the spread of disease, parasites or how changes to the movement can affect

other species.

In mathematics, graphs are useful in geometry and certain parts of topology, e.g. Knot Theory.
Algebraic graph theory has close links with group theory.

A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with

weights, or weighted graphs, are used to represent structures in which pairwise connections have
some numerical values. For example if a graph represents a road network, the weights could

represent the length of each road.

Basic Concepts Isomorphism:

Let G1 and G1 be two graphs and let f be a function from the vertex set of G1 to the vertex set of
G2. Suppose that f is one-to-one and onto & f(v) is adjacent to f(w) in G2 if and only if v is
adjacent to w in G1.

Then we say that the function f is an isomorphism and that the two graphs G1 and G2 are

isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence

between vertices of G1 and those of G2 with the property that if two vertices of G1 are adjacent

then so are their images in G2. If two graphs are isomorphic then as far as we are concerned they

are the same graph though the location of the vertices may be different. To show you how the

program can be used to explore isomorphism draw the graph in figure 4 with the program (first

get the null graph on four vertices and then use the right mouse to add edges).

Save this graph as Graph 1 (you need to click Graph then Save). Now get the circuit graph with 4
vertices. It looks like figure 5, and we shall call it C(4).

Example:

The two graphs shown below are isomorphic, despite their different looking drawings.

Graph G Graph H An isomorphism

 between G and H

 ƒ(a) = 1

 ƒ(b) = 6

 ƒ(c) = 8

 ƒ(d) = 3

 ƒ(g) = 5

 ƒ(h) = 2

 ƒ(i) = 4

 ƒ(j) = 7

Subgraphs:

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose
adjacency relation is a subset of that of G restricted to this subset. In the other direction, a

supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains

another graph H if some subgraph of G is H or is isomorphic to H.

A subgraph H is a spanning subgraph, or factor, of a graph G if it has the same vertex set as G.
We say H spans G.

A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of H, xy is an

edge of H if and only if xy is an edge of G. In other words, H is an induced subgraph of G if it

has all the edges that appear in G over the same vertex set. If the vertex set of H is the subset S of

V(G), then H can be written as G[S] and is said to be induced by S.

A graph that does not contain H as an induced subgraph is said to be H-free.

A universal graph in a class K of graphs is a simple graph in which every element in K can be
embedded as a subgraph.

K5, a complete graph. If a subgraph looks like this, the vertices in that subgraph form a clique

of size 5.

Multi graphs:

In mathematics, a multigraph or pseudograph is a graph which is permitted to have multiple

edges, (also called "parallel edges"), that is, edges that have the same end nodes. Thus two

vertices may be connected by more than one edge. Formally, a multigraph G is an ordered pair

G:=(V, E) with

V a set of vertices or nodes,
E a multiset of unordered pairs of vertices, called edges or lines.

Multigraphs might be used to model the possible flight connections offered by an airline. In this
case the multigraph would be a directed graph with pairs of directed parallel edges connecting
cities to show that it is possible to fly both to and from these locations.

A multigraph with multiple edges (red) and a loop (blue). Not all authors allow multigraphs to have
loops.

Euler circuits:

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once.

Similarly, an Eulerian circuit is an Eulerian trail which starts and ends on the same vertex. They

were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg

problem in 1736. Mathematically the problem can be stated like this:

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting
and ending on the same vertex) which visits each edge exactly once?

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in

the graph have an even degree, and stated without proof that connected graphs with all vertices

of even degree have an Eulerian circuit. The first complete proof of this latter claim was

published in 1873 by Carl Hierholzer.

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph
with an Eulerian circuit, and the other is a graph with every vertex of even degree. These
definitions coincide for connected graphs.

For the existence of Eulerian trails it is necessary that no more than two vertices have an odd

degree; this means the Königsberg graph is not Eulerian. If there are no vertices of odd degree,

all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails

start at one of them and end at the other. Sometimes a graph that has an Eulerian trail but not an

Eulerian circuit is called semi-Eulerian.

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses each
edge exactly once. If such a path exists, the graph is called traversable or semi-eulerian.

An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that uses
each edge exactly once. If such a cycle exists, the graph is called unicursal. While such graphs
are Eulerian graphs, not every Eulerian graph possesses an Eulerian cycle.

For directed graphs path has to be replaced with directed path and cycle with directed cycle.

The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as
well.

This graph is not Eulerian, therefore, a solution does not exist.

Every vertex of this graph has an even degree, therefore this is an Eulerian graph. Following the edges in
alphabetical order gives an Eulerian circuit/cycle.

Hamiltonian graphs:

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in

an undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or

Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex exactly once and

also returns to the starting vertex. Determining whether such paths and cycles exist in graphs is

the Hamiltonian path problem which is NP-complete.

Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the

Icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian cycle

in the edge graph of the dodecahedron. Hamilton solved this problem using the Icosian Calculus,

an algebraic structure based on roots of unity with many similarities to the quaternions (also

invented by Hamilton). This solution does not generalize to arbitrary graphs.

A Hamiltonian path or traceable path is a path that visits each vertex exactly once. A graph that
contains a Hamiltonian path is called a traceable graph. A graph is Hamilton-connected if for
every pair of vertices there is a Hamiltonian path between the two vertices.

A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each
vertex exactly once (except the vertex which is both the start and end, and so is visited twice).
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Similar notions may be defined for directed graphs, where each edge (arc) of a path or cycle can
only be traced in a single direction (i.e., the vertices are connected with arrows and the edges
traced "tail-to-head").

A Hamiltonian decomposition is an edge decomposition of a graph into Hamiltonian circuits.

Examples

a complete graph with more than two vertices is Hamiltonian

every cycle graph is Hamiltonian

every tournament has an odd number of Hamiltonian paths every
platonic solid, considered as a graph, is Hamiltonian

Chromatic Numbers:

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels

traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest

form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the

same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each

edge so that no two adjacent edges share the same color, and a face coloring of a planar graph

assigns a color to each face or region so that no two faces that share a boundary have the same

color.

Vertex coloring is the starting point of the subject, and other coloring problems can be

transformed into a vertex version. For example, an edge coloring of a graph is just a vertex

coloring of its line graph, and a face coloring of a planar graph is just a vertex coloring of its

planar dual. However, non-vertex coloring problems are often stated and studied as is. That is

partly for perspective, and partly because some problems are best studied in non-vertex form, as

for instance is edge coloring.

The convention of using colors originates from coloring the countries of a map, where each face

is literally colored. This was generalized to coloring the faces of a graph embedded in the plane.

By planar duality it became coloring the vertices, and in this form it generalizes to all graphs. In

mathematical and computer representations it is typical to use the first few positive or

nonnegative integers as the "colors". In general one can use any finite set as the "color set". The

nature of the coloring problem depends on the number of colors but not on what they are.

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the
classical types of problems, different limitations can also be set on the graph, or on the way a

color is assigned, or even on the color itself. It has even reached popularity with the general
public in the form of the popular number puzzle Sudoku. Graph coloring is still a very active
field of research.

A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible.

Vertex coloring

When used without any qualification, a coloring of a graph is almost always a proper vertex

coloring, namely a labelling of the graph’s vertices with colors such that no two vertices sharing

the same edge have the same color. Since a vertex with a loop could never be properly colored, it

is understood that graphs in this context are loopless.

The terminology of using colors for vertex labels goes back to map coloring. Labels like red and
blue are only used when the number of colors is small, and normally it is understood that the
labels are drawn from the integers {1,2,3,...}.

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors

needed to color a graph G is called its chromatic number, χ(G). A graph that can be assigned a

(proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k. A

subset of vertices assigned to the same color is called a color class, every such class forms an

independent set. Thus, a k-coloring is the same as a partition of the vertex set into k independent

sets, and the terms k-partite and k-colorable have the same meaning.

This graph can be 3-colored in 12 different ways.

The following table gives the chromatic number for familiar classes of graphs.

graph complete graph cycle graph ,

star graph , 2

wheel graph ,

 , 2

wheel graph ,

	Breadth First Search
	Example
	Minimum Spanning Tree
	Example

	Kruskal's Algorithm
	Algorithm

	Prim's Algorithm
	Algorithm

