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UNIT-I 

 

Mathematical Logic 
 
 

 

Statements and notations: 
 

A proposition or statement is a declarative sentence that is either true or false (but not both). 

For instance, the following are propositions: ―Paris is in France‖ (true), ―London is in Denmark‖ 

(false), ―2 < 4‖ (true), ―4 = 7 (false)‖. However the following are not propositions: ―what is your 

name?‖ (this is a question), ―do your homework‖ (this is a command), ―this sentence is false‖ 

(neither true nor false), ―x is an even number‖ (it depends on what x represents), 

 

―Socrates‖ (it is not even a sentence). The truth or falsehood of a proposition is called its truth 

value. 
 

Connectives: 
 

Connectives are used for making compound propositions. The main ones are the 

following (p and q represent given propositions): 
 

Name Represented Meaning 

Negation ¬p ―not p‖  

Conjunction  Q ―p and q‖ 
Disjunction p ∨ Q ―p or q (or both)‖ 

     

Exclusive Or  p ⊕ q ―either p or q, but not both‖ 
    

Implication p → q ―if p then q‖ 

Biconditional p ↔ q ―p if and only if q‖ 
 

 

Truth Tables: 
 

 

Logical identity 
 

 

Logical identity is an operation on one logical value, typically the value of a proposition that 

produces a value of true if its operand is true and a value of false if its operand is false. 

 

The truth table for the logical identity operator is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Logical Identity  
 
 

 

p 

 
 
 

p 
 
 

 

T T  
 
 
 

F F  
 
 

 

Logical negation 
 

 

Logical negation is an operation on one logical value, typically the value of a proposition that 

produces a value of true if its operand is false and a value of false if its operand is true. 

 

The truth table for NOT p (also written as ¬p or ~p) is as follows:  
 
 

 

Logical Negation  
 

 

p ¬p  
 
 

 

T F  
 

 

F T  
 

 

Binary operations 
 

 

Truth table for all binary logical operators 
 

 

Here is a truth table giving definitions of all 16 of the possible truth functions of 2 binary 

variables (P,Q are thus boolean variables): 
 
 
 
 
 
 

 
 
 
 

 



P Q  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                   

T T  F F F F F F F F T T T T T T T T 

                   

T F  F F F F T T T T F F F F T T T T 

                   

F T  F F T T F F T T F F T T F F T T 

                   

F F  F T F T F T F T F T F T F T F T 

                   

 

where T = true and F = false. 
 
 

Key: 
 

 

0, false, Contradiction 

 

1, NOR, Logical NOR 
 

 

2, Converse nonimplication 
 

3, ¬p, Negation 
 
 

4, Material nonimplication 
 

5, ¬q, Negation 
 

 

6, XOR, Exclusive disjunction 
 

7, NAND, Logical NAND 

 

8, AND, Logical conjunction 
 

 

9, XNOR, If and only if, Logical 

 

biconditional 10, q, Projection function 

 

11, if/then, Logical implication 
 

12, p, Projection function 

 

13, then/if, Converse implication 

 

14, OR, Logical disjunction 

 

15, true, Tautology 
 
 

Logical operators can also be visualized using Venn diagrams. 



 
 

Logical conjunction 
 

 
Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value 
of true if both of its operands are true. The truth table for p AND q (also written as p ∧ q, p & q, or p q) is as follows:  

 
 

 

Logical Conjunction 

 

 
p q 

p ∧ q 

  

    

 T T T 

    

 T F F 

    

 F T F 

    

 F F F 

    

 
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. 
For all other assignments of logical values to p and to q the conjunction p ∧ q is false. 
It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p. 

 

Logical disjunction 
 

Logical disjunction is an operation on two logical values, typically the values of two 

propositions, that produces a value of true if at least one of its operands is true. 
The truth table for p OR q (also written as p ∨ q, p || q, or p + q) is as follows:  

 
 

 

Logical Disjunction 

 

 
p q 

p ∨ q 
  

    

 T T T 

    

 T F T 

    

 F T T 

    

 F F F 

    



 

Logical implication 
 

 

Logical implication and the material conditional are both associated with an operation on two logical values, 

typically the values of two propositions, that produces a value of false just in the singular case the first operand is 

true and the second operand is false.The truth table associated with the material conditional if p then q 

(symbolized as p → q) and the logical implication p implies q (symbolized as p ⇒ q) is as follows: 

 
 
 

Logical Implication 

 

 p q p → q 

    

 T T T 

    

 T F F 

    

 F T T 

    

 F F T 

    
 
 

Logical equality 
 

 

Logical equality (also known as biconditional) is an operation on two logical values, typically 

the values of two propositions, that produces a value of true if both operands are false or both 

operands are true.The truth table for p XNOR q (also written as p ↔ q ,p = q, or p ≡ q) is as 

follows: 
 
 
 
 
 

 

Logical Equality 

 

 p q p ≡ q 

    

 T T T 

    

 T F F 

    

 F T F 

    

 F F T 

    



 

Exclusive disjunction 
 

 
Exclusive disjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if one but not both of its operands is 
true.The truth table for p XOR q (also written as p ⊕ q, or p ≠ q) is as follows:  

 

 

Exclusive Disjunction 

 

 
p q 

p ⊕ q 

  

  

    

 T T F 

    

 T F T 

    

 F T T 

    

 F F F 

    



 
 

Logical NAND 
 

 

The logical NAND is an operation on two logical values, typically the values of two 

propositions, that produces a value of false if both of its operands are true. In other words, it 

produces a value of true if at least one of its operands is false.The truth table for p NAND q (also 

written as p ↑ q or p | q) is as follows: 
 
 

 

Logical NAND 

 

 p q p ↑ q 

    

 T T F 

    

 T F T 

    

 F T T 

    

 F F T 

    

 

It is frequently useful to express a logical operation as a compound operation, that is, as an operation that is built 

up or composed from other operations. Many such compositions are possible, depending on the operations that are 

taken as basic or "primitive" and the operations that are taken as composite or "derivative".In the case of logical 

NAND, it is clearly expressible as a compound of NOT and AND.The negation of a conjunction: ¬(p ∧ q ), and the 

disjunction of negations: (¬p) ∨ (¬q) can be tabulated as follows: 
 

 
 
 
 

 

p q 
 
 

 
 

p ∧ q 

 

¬(p ∧ 

q) 
¬p ¬q 

(¬p

) ∨ 

(¬q

) 

    

       

T T T F F F F 

       

T F F T F T T 

       

F T F T T F T 

       

F F F T T T T 

       



 
 

Logical NOR 
 

 

The logical NOR is an operation on two logical values, typically the values of two propositions, 

that produces a value of true if both of its operands are false. In other words, it produces a value of 
false if at least one of its operands is true. ↓ is also known as the Peirce arrow after its inventor, 

Charles Sanders Peirce, and is a Sole sufficient operator. 
The truth table for p NOR q (also written as p ↓ q or p ⊥ q) is as follows:  

 
 

 

Logical NOR 

 

 p q p ↓ q 

    

 T T F 

    

 T F F 

    

 F T F 

    

 F F T 

    
 
 
 
 
 
 

 

             The negationm of a disjunction ¬(p ∨ q), and the conjunction of negations (¬p) ∧ (¬q) can be 
 

tabulated as follows: 
 
 

 

p q 
p ∨ q ¬(p ∨ q) 

¬p ¬q 
(¬p) ∧ (¬q) 

   

       

T T T F F F F 

       

T F T F F T F 

       

F T T F T F F 

       

F F F T T T T 

       

 



Inspection of the tabular derivations for NAND and NOR, under each assignment of logical values to the functional arguments p and q, produces 
the identical patterns of functional values for ¬(p ∧ q) as for (¬p) ∨ (¬q), and for ¬(p ∨ q) as for (¬p) ∧ (¬q). Thus the first and second  
expressions in each pair are logically equivalent, and may be substituted for each other in all 
contexts that pertain solely to their logical values. 

 

This equivalence is one of De Morgan's laws. 
 
 

The truth value of a compound proposition depends only on the value of its components. 
 

Writing F for ―false‖ and T for ―true‖, we can summarize the meaning of the connectives in 

the following way: 

 

  
p       q   ¬p  p ∧ q   p ∨ q  p ⊕ q  p → q    p ↔ q   

T T F T T F T T 

T F F F T T F F 

F T T F T T T F 

F F T F F F T T 
 
 
        

Note that ∨ represents a non-exclusive or, i.e., p ∨ q is true when any ofp, q is true and also when both are 
true. On the other hand ⊕ represents an exclusive or, i.e., p ⊕ q is true only when exactly one of p and q is true.  

 
 

Well formed formulas(wff): 
 

Not all strings can represent propositions of the predicate logic. Those which produce a 

proposition when their symbols are interpreted must follow the rules given below, and they are 

called wffs(well-formed formulas) of the first order predicate logic. 
 

Rules for constructing Wffs 
 

A predicate name followed by a list of variables such as P(x, y), where P ispredicate 

name, and x and y are variables, is called an atomic formula. 
 

 

A well formed formula of predicate calculus is obtained by using the following rules. 
 

1. An atomic formula is a wff. 
 

2. If A is a wff, then 7A is also a wff. 
 

3. If A and B are wffs, then (A V B), (A ٨ B), (A → B) and (A D B). 
 

4. If A is a wff and x is a any variable, then (x)A and ($x)A are wffs. 
 

5. Only those formulas obtained by using (1) to (4) are wffs. 

 

Since we will be concerned with only wffs, we shall use the term formulas for wff. We shall 

follow the same conventions regarding the use of parentheses as was done in the case of 

statement formulas. 

 

 

 

 

 

 

 



Wffs are constructed using the following rules: 
 
 

1. True and False are wffs. 
 

2. Each propositional constant (i.e. specific proposition), and each propositional 

variable (i.e. a variable representing propositions) are wffs. 
 

3. Each atomic formula (i.e. a specific predicate with variables) is a wff. 
 

4. If A, B, and C are wffs, then so are  A, (A  B), (A  B), (A  B), and (A  B). 
 

5. If x is a variable (representing objects of the universe of discourse), and A is a wff, then 

so are x A and x A . 
 
 

For example, "The capital of Virginia is Richmond." is a specific proposition. Hence it is a wff 
 

by Rule 2. Let B be a predicate name representing "being blue" and let x be a variable. Then 

B(x) is an  atomic formula meaning "x is blue". Thus it is a wff by Rule 3. above. By applying 

Rule 5. To B(x), xB(x) is a wff and so is xB(x). Then by applying Rule 4. to them x B(x) 

x B(x) is seen to be a wff. Similarly if R is a predicate name representing "being round". 

Then R(x) is an atomic formula. Hence it is a wff. By applying Rule 4 to B(x) and R(x), a wff 

B(x) R(x) is obtained. 

 

In this manner, larger and more complex wffs can be constructed following the rules given 

above. 

 

Note, however, that strings that can not be constructed by using those rules are not wffs. For 

example, xB(x)R(x), and B( x ) are NOT wffs, NOR are B( R(x) ), and B( x R(x) ) . More 

examples: To express the fact that Tom is taller than John, we can use the atomic formula 

taller(Tom, John), which is a wff. This wff can also be part of some compound statement such 
 

as taller(Tom, John) taller(John, Tom), which is also a wff. If x is a variable representing 

people in the world, then taller(x,Tom), x taller(x,Tom), x taller(x,Tom), x y taller(x,y) 
 

are all wffs among others. However, taller(  x,John) and taller(Tom Mary, Jim), for example, 

are NOT wffs. 

 

 

Tautology, Contradiction, Contingency: 
 

A proposition is said to be a tautology if its truth value is T for any assignment of truth 
values to its components. Example: The proposition p ∨ ¬p is a tautology. 

 
A proposition is said to be a contradiction if its truth value is F for any assignment of truth 
values to its components. Example: The proposition p ∧ ¬p is a contradiction. 

 
A proposition that is neither a tautology nor a contradiction is called a contingency. 

 

p ¬p p ∨ ¬p p ∧ ¬p 

T F T F 

T F T F 

F T T F 

F T T F 
 

 
 



Equivalence Implication: 
 

We say that the statements r and s are logically equivalent if their truth tables are identical.  
For example the truth table of  

 

shows that is equivalent to . It is easily shown that the statements r and s are 
 

equivalent if and only if  is a tautology. 
 

 

Normal forms: 
 

Let A(P1, P2, P3, …, Pn) be a statement formula where P1, P2, P3, …, Pn are the atomic 

variables. If A has truth value T for all possible assignments of the truth values to the 

variables P1, P2, P3, …, Pn , then A is said to be a tautology. If A has truth value F, then A is 

said to be identically false or a contradiction. 
 

Disjunctive Normal Forms 
 

A product of the variables and their negations in a formula is called an elementary product. A 
sum of the variables and their negations is called an elementary sum. That is, a sum of 
elementary products is called a disjunctive normal form of the given formula.  
Example: 

 
(1)  

 
(2)  

 
(3)  

 
(4)  

 
(5)  

 

Conjunctive Normal Forms 
 

A formula which is equivalent to a given formula and which consists of a product of elementary 
sums is called a conjunctive normal form of a given formula. 

 

Example: 

 

(1)   
(2)   
(3)   
(4)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Predicates 

 

Predicative logic: 
 

A predicate or propositional function is a statement containing variables. For instance ―x + 2 = 7‖, 

―X is American‖, ―x < y‖, ―p is a prime number‖ are predicates. The truth value of the predicate 

depends on the value assigned to its variables. For instance if we replace x with 1 in the predicate 

―x + 2 = 7‖ we obtain ―1 + 2 = 7‖, which is false, but if we replace it with 5 we get ―5 
 

+ 2 = 7‖, which is true. We represent a predicate by a letter followed by the variables enclosed 

between parenthesis: P (x), Q(x, y), etc. An example for P (x) is a value of x for which P (x) is 

true. A counterexample is a value of x for which P (x) is false. So, 5 is an example for ―x + 2 = 

7‖, while 1 is a counterexample. Each variable in a predicate is assumed to belong to a universe 

 

(or domain) of discourse, for instance in the predicate ―n is an odd integer‖ ’n’ represents an 

integer, so the universe of discourse of n is the set of all integers. In ―X is American‖ we 

may assume that X is a human being, so in this case the universe of discourse is the set of all 

human beings. 
 

Free & Bound variables: 
 

Let's now turn to a rather important topic: the distinction between free variable s and bound 
 

variables. 
 

Have a look at the following formula:  
 
 
 
 
 
 

The first occurrence of x is free, whereas the second and third occurrences of x are bound, 

namely by the first occurrence of the quantifier . The first and second occurrences of the 

variable y are also bound, namely by the second occurrence of the quantifier . 
 

Informally, the concept of a bound variable can be explained as follows: Recall that 

quantifications are generally of the form:  
or  

 
 
 
 
 
 

where may be any variable. Generally, all occurences of this variable within the quantification are 

bound. But we have to distinguish two cases. Look at the following formula to see why: 
 
 
 
 

 

1.   may occur  within another, embedded, quantification  or , such as the in 

in our example. Then we say that it  is bound by the quantifier of this 

embedded quantification (and so on, if there's another embedded quantification over 
 

within ). 
 



2.Otherwise, we say that it is bound by the top-level quantifier (like all other occurences of 
 

in our example). 
 

Here's a full formal simultaneous definition of free and bound: 

 

1.Any occurrence of any variable is free in any atomic formula. 
 

2.No occurrence of any variable is bound in any atomic formula. 
 

3.If an occurrence of any variable is free in or in , then that same occurrence is free in 
 

, , , and . 
 

4. If an occurrence of any variable is bound in  or in  , then that same occurrence is 
 

bound in  ,  ,  ,  . Moreover, that same occurrence is bound in 
 

and  as well, for any choice of variable y. 
 

5.In any formula of the form or (where y can be any variable at all in this case) 

the occurrence of y that immediately follows the initial quantifier symbol is bound. 
 

6.If an occurrence of a variable x is free in , then that same occurrence is free in and 
 

, for any variable y distinct from x. On the other hand, all occurrences of x that 
 

are free in , are bound in and in . 
 
 

If a formula contains no occurrences of free variables we call it a sentence. 
 
 
 
 
 
 
 

 

 



 
 
 
 
 

Rules of inference: 
 

The two rules of inference are called rules P and T. 

 
 

Rule P: A premise may be introduced at any point in the derivation. 
 

 

Rule T: A formula S may be introduced in a derivation if s is tautologically implied 

by any one or more of the preceding formulas in the derivation. 
 
 

Before proceeding the actual process of derivation, some important list of implications 
 

and equivalences are given in the followingtables. 

Implications       

I1 P٨Q =>P } Simplification    

I2 PQ٨ =>Q       

I3 P=>PVQ } Addition     

I4 Q =>PVQ       

I5 7P => P→ Q       

I6 Q => P→ Q       

I7 7(P→Q) =>P       

I8 7(P → Q) => 7Q       

I9 P, Q => P ٨ Q       

I10 7P, PVQ => Q  ( disjunctive syllogism)   

I11 P, P→ Q => Q  ( modus ponens )    

I12 7Q, P → Q => 7P  (modus tollens )    

I13 P → Q, Q → R => P → R ( hypothetical syllogism)   

I14 P V Q, P → Q, Q → R => R (dilemma)     

Equivalences       

E1 77P <=>P       

E2 P ٨ Q <=> Q ٨ P  } Commutative laws   

E3P V Q <=> Q V P       

E4 (P ٨ Q) ٨ R <=> P ٨ (Q ٨ R)  } Associative laws   

E5(P V Q) V R <=> PV (Q V R)      

E6 P ٨ (Q V R) <=> (P ٨ Q) V (P ٨ R) } Distributive laws   

E7P V (Q ٨ R) <=> (P V Q) ٨ (PVR)     

E8 7(P ٨ Q) <=> 7P V7Q      

E9 7(P V Q) <=>7P ٨ 7Q  } De Morgan’s laws   
 

E10P V P <=> P 
 

E11 P ٨ P <=> P 
 

E12 R V (P ٨ 7P) <=>R 

E13 R ٨ (P V 7P) <=>R 

E14 R V (P V 7P) <=>T 

E15 R ٨ (P ٨ 7P) <=>F 

E16 P → Q    <=> 7P V Q 



E17 7 (P→ Q) <=> P ٨ 7Q 

E18 P → Q<=> 7Q → 7P 

E19 P → (Q → R) <=> (P ٨ Q) → R 

E20 7(PD Q) <=> P D 7Q 

E21 PDQ <=> (P → Q) ٨ (Q → P) 

E22 (PDQ) <=> (P ٨ Q) V (7 P ٨ 7Q) 

 

Example 1.Show that R is logically derived from P → Q, Q → R, and P 
 

 

Solution. {1} (1) P → Q Rule P 

 {2} (2) P Rule P 

 {1, 2} (3) Q Rule (1), (2) and I11 

 {4} (4) Q → R Rule P 

 {1, 2, 4} (5) R Rule (3), (4) and I11. 
 
 

Example 2.Show that S V R tautologically implied by ( P V Q) ٨ ( P → R) ٨ ( Q → S ). 
 
 

Solution . {1} (1) P V Q Rule P 

 {1} (2) 7P → Q T, (1), E1 and E16 

 {3} (3) Q → S P 

 {1, 3} (4) 7P → S T, (2), (3), and I13 

 {1, 3} (5) 7S → P T, (4), E13 and E1 

 {6} (6) P → R P 

 {1, 3, 6} (7) 7S → R T, (5), (6), and I13 

 {1, 3, 6) (8) S V R T, (7), E16 and E1 

Example 3. Show that 7Q, P→ Q => 7P  

Solution . {1} (1) P → Q Rule P 

 {1} (2) 7P → 7Q T, and E  
 
 

{3} (3) 7Q P 

{1, 3} (4) 7P T, (2), (3), and I11 . 
 

 

Example 4 .Prove that R ٨ ( P V Q ) is a valid conclusion from the premises PVQ , 

Q → R, P → M and 7M. 

 

Solution . {1} (1) P → M P 

{2} (2) 7M P 

{1, 2} (3) 7P T, (1), (2), and I12 

{4} (4) P V Q P 

{1, 2 , 4} (5) Q T, (3), (4), and I10. 



{6} (6) Q → R P 

{1, 2, 4, 6} (7) R T, (5), (6) and I11 

{1, 2, 4, 6} (8) R ٨ (PVQ) T, (4), (7), and I9. 
 
 

There is a third inference rule, known as rule CP or rule of conditional proof. 

 

Rule CP: If we can derives s from R and a set of premises , then we can derive R → S from 

the set of premises alone. 
 
 

Note. 1. Rule CP follows from the equivalence E10 which states that 
 

( P ٨  R ) → S óP → (R → S). 

 

2. Let P denote the conjunction of the set of premises and let R be any formula 

The above equivalence states that if R is included as an additional premise and 
 

S is derived from P ٨ R then R → S can be derived from the premises P alone. 
 

3. Rule CP is also called the deduction theorem and is generally used if 

the conclusion is of the form R → S. In such cases, R is taken as an 

additional premise and S is derived from the given premises and R. 

 

Example 5 .Show that R → S can be derived from the premises 
 

P → (Q → S), 7R V P , and Q. 
 

Solution. {1} (1) 7R V P P 

 {2} (2) R P, assumed premise 

 {1, 2} (3) P T, (1), (2), and I10 

 {4} (4) P → (Q → S) P 

 {1, 2, 4} (5) Q → S T, (3), (4), and I11 

 {6} (6) Q P 

 {1, 2, 4, 6} (7) S T, (5), (6), and I11 

 {1, 4, 6} (8) R → S CP. 
 

 

Example 6.Show that P → S can be derived from the premises, 7P V Q, 

7Q V R, and R → S . 
 

Solution.    

{1} (1) 7P V Q P 

{2} (2) P P, assumed premise 

{1, 2} (3) Q T, (1), (2) and I11 

{4} (4) 7Q V R P 

{1, 2, 4} (5) R T, (3), (4) and I11 

{6} (6) R → S P 

{1, 2, 4, 6} (7) S T, (5), (6) and I11 

{2, 7} (8) P → S CP 



 

 

Example 7. ‖ If there was a ball game , then traveling was difficult. If they arrived on time, then 

traveling was not difficult. They arrived on time. Therefore, there was no ball game‖. Show that 

these statements constitute a valid argument. 

 

Solution. Let P: There was a ball game 
 

Q: Traveling was difficult. 
 

R: They arrived on time. 
 
 

Given premises are: P → Q, R → 7Q and R  conclusion is: 7P 
 
 

{1} (1) P → Q P 

{2} (2) R → 7Q P 

{3} (3) R P 

{2, 3} (4) 7Q T, (2), (3), and I11 

{1, 2, 3} (5) 7P T, (2), (4) and I12 
 

 

Consistency of premises: 
 

Consistency 
 

A set of formulas H1, H2, …, Hm is said to be consistent if their conjunction has the truth 

value T for some assignment of the truth values to be atomic appearing in H1, H2, …, Hm. 
 

Inconsistency 

 

If for every assignment of the truth values to the atomic variables, at least one of the 

formulas H1, H2, … Hm is false, so that their conjunction is identically false, then the formulas 
 

H1, H2, …, Hm are called inconsistent. 
 

 

A set of formulas H1, H2, …, Hm is inconsistent, if their conjunction implies 

a contradiction, that is H1٨ H2 ٨…  ٨  Hm => R ٨ 7R 

 

Where R is any formula. Note that R ٨ 7R is a contradiction and it is necessary and 

sufficient that H1, H2, …,Hm are inconsistent the formula. 
 

Indirect method of proof 
 

In order to show that a conclusion C follows logically from the premises H1, H2,…, Hm, we 

assume that C is false and consider 7C as an additional premise. If the new set of premises is 

inconsistent, so that they imply a contradiction, then the assumption that 7C is true does not hold 

simultaneously with H1٨ H2 ٨..…  ٨  Hm being true. Therefore, C is true whenever H1٨ H2٨ 
 

..… ٨ Hm is true. Thus, C follows logically from the premises H1, H2 ….., Hm. 
 

Example 8 Show that 7(P ٨ Q) follows from 7P٨ 7Q. 
 

Solution. 
 
 



 

We introduce 77 (P٨ Q) as an additional premise and show that this additional premise leads to 

a contradiction. 
 

{1} (1) 77(P٨ Q) P assumed premise 

{1} (2) P٨ Q T, (1) and E1 

{1} (3) P T, (2) and I1 

{1} {4) 7P٨7Q P 

{4} (5) 7P T, (4) and I1 

{1, 4} (6) P٨ 7P T, (3), (5) and I9 

 

Here (6) P٨ 7P is a contradiction. Thus {1, 4} viz. 77(P٨ Q) and 7P٨ 

7Q leads to a contradiction P ٨ 7P. 
 

Example 9Show that the following premises are inconsistent. 
 

1. If Jack misses many classes through illness, then he fails high school. 
 

2. If Jack fails high school, then he is uneducated. 
 

3. If Jack reads a lot of books, then he is not uneducated. 
 

4. Jack misses many classes through illness and reads a lot of books. 
 
 

Solution. 
 

P: Jack misses many classes. 
 

Q: Jack fails high school. 
 

R: Jack reads a lot of books. 
 

S: Jack is uneducated. 
 

The premises are P→ Q, Q → S, R→ 7S and P٨ R 

{1} (1) P→Q P 

{2} (2) Q→ S P 

{1, 2} (3) P → S T, (1), (2) and I13 

{4} (4) R→ 7S P 

{4} (5) S → 7R T, (4), and E18 

{1, 2, 4} (6) P→7R T, (3), (5) and I13 

{1, 2, 4} (7) 7PV7R T, (6) and E16 

{1, 2, 4} (8) 7(P٨R) T, (7) and E8 
 

{9} (9)P٨ R P 
 

{1, 2, 4, 9)  (10) (P٨ R) ٨ 7(P٨ R) T, (8), (9) and I9 

 

The rules above can be summed up in the following table. The "Tautology" column 

shows how to interpret the notation of a given rule. 
 
 

Rule of inference Tautology Name 

 

Addition  
 



 

Simplification  
 
 
 

Conjunction  
 
 
 

 

Modus ponens  
 
 
 

 

Modus tollens  
 
 
 

 

Hypothetical syllogism  
 
 
 
 
 

Disjunctive syllogism  
 
 
 
 

 

Resolution  
 
 
 
 
 

Example 1 
 

 

Let us consider the following assumptions: "If it rains today, then we will not go on a canoe 

today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore 

(Mathematical symbol for "therefore" is  ), if it rains today, we will go on a canoe trip 

tomorrow. To make use of the rules of inference in the above table we let p be the proposition 

"If it rains today", q be " We will not go on a canoe today" and let r be "We will go on a canoe 

trip tomorrow". Then this argument is of the form: 
 
 
 
 
 
 

 

Example 2  
Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than 

 

yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will 
 

have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the 
 

conclusion  "We  will  be  home  before  sunset."  Proof  by  rules  of  inference:  Let  p be  the 



 

proposition "It  is  sunny this today",  q the proposition "It  is  colder than  yesterday",  r the 
 

proposition "We will go swimming", s the proposition "We will have a barbecue", and t the 
 

proposition "We will be home by sunset". Then the hypotheses become 
 

and . Using our intuition we conjecture that the conclusion 
 

might be t. Using the Rules of Inference table we can proof the conjecture easily: 
 
 
 

Step Reason  

 

1. Hypothesis 

 

2. Simplification using Step 1  
 

3. Hypothesis 

4. Modus tollens using Step 2 and 3 

5. Hypothesis 

6. s Modus ponens using Step 4 and 5 

7. Hypothesis 

8. t Modus ponens using Step 6 and 7  

 

Proof of contradiction: 

 

The "Proof by Contradiction" is also known as reductio ad absurdum, which is 

probably Latin for "reduce it to something absurd". 
 
 

Here's the idea: 
 

1. Assume that a given proposition is untrue. 
 

2. Based on that assumption reach two conclusions that contradict each other. 
 

 

This is based on a classical formal logic construction known as Modus Tollens: If P implies Q 

and Q is false, then P is false. In this case, Q is a proposition of the form (R and not R) which is 

always false. P is the negation of the fact that we are trying to prove and if the negation is not 

true then the original proposition must have been true. If computers are not "not stupid" then 

they are stupid. (I hear that "stupid computer!" phrase a lot around here.) 

 

Example: 
 

Lets prove that there is no largest prime number (this is the idea of Euclid's original  
proof). Prime numbers are integers with no exact integer divisors except 1 and themselves. 

 

1. To prove: "There is no largest prime number" by contradiction. 
 

2. Assume: There is a largest prime number, call it p. 



 
3. Consider the number N that is one larger than the product of all of the primes smaller 

than or equal to p. N=1*2*3*5*7*11...*p + 1. Is it prime? 
 

4. N is at least as big as p+1 and so is larger than p and so, by Step 2, cannot be prime. 
 

5. On the other hand, N has no prime factors between 1 and p because they would all leave 
 
 

a remainder of 1. It has no prime factors larger than p because Step 2 says that there are 

no primes larger than p. So N has no prime factors and therefore must itself be prime (see 

note below). 

 

 

We have reached a contradiction (N is not prime by Step 4, and N is prime by Step 5) and 

therefore our original assumption that there is a largest prime must be false. 
 

 

Note: The conclusion in Step 5 makes implicit use of one other important theorem: The 

Fundamental Theorem of Arithmetic: Every integer can be uniquely represented as the product 

of primes. So if N had a composite (i.e. non-prime) factor, that factor would itself have prime 

factors which would also be factors of N. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

UNIT II 

Relations 
 

RELATIONS  

Introduction 

 

The elements of a set may be related to one another. For example, in the set of natural 

numbers there is the ‗less than‘ relation between the elements. The elements of one set may 

also be related to the elements another set. 

 

Binary Relation 

 

A binary relation between two sets A and B is a rule R which decides, for any 

elements, whether a is in relation R to b. If so, we write a R b. If a is not in relation R to b, then 

we shall write a /R b. 

 

We can also consider a R b as the ordered pair (a, b) in which case we can define a binary 
relation from A to B as a subset of A X B. This subset is denoted by the relation R. 

 

In general, any set of ordered pairs defines a binary relation. 

 

For example, the relation of father to his child is F = {(a, b) / a is the father of b} In this relation 
F, the first member is the name of the father and the second is the name of the child. 

 

The definition of relation permits any set of ordered pairs to define a relation. 

 

For example, the set S given by 
 

S = {(1, 2), (3, a), (b, a) ,(b, Joe)} 
 

Definition 
 

The domain D of a binary relation S is the set of all first elements of the ordered pairs in the 
relation.(i.e) D(S)= {a / $ b for which (a, b) Є S} 

 

The range R of a binary relation S is the set of all second elements of the 

ordered pairs in the relation.(i.e) R(S) = {b / $ a for which (a, b) Є S} 

 

For example 
 

For the relation S = {(1, 2), (3, a), (b, a) ,(b, 
Joe)} D(S) = {1, 3, b, b} and  
R(S) = {2, a, a, Joe} 

 

Let X and Y be any two sets. A subset of the Cartesian product X * Y defines a relation, say C. 

For any such relation C, we have D( C ) Í X and R( C) Í Y, and the relation C is said to from X 
 

to Y. If Y = X, then C is said to be a relation form X to X. In such case, c is called a relation in 

X. Thus any relation in X is a subset of X * X . The set X * X is called a universal relation in X, 

while the empty set which is also a subset of X * X is called a void relation in X. 

 

 

 

 



For example 
 

Let L denote the relation ―less than or equal to‖ and D denote the relation 

―divides‖ where x D y means ― x divides y‖. Both L and D are defined on the 
 

set {1, 2, 3, 4} 
 

L = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 
4)} D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 

 

L Ç D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), 
(4, 4)} = D 

 

Properties of Binary Relations: 
 
 

Definition: A binary relation R in a set X is reflexive if, for every x Є X, x 

R x, That is (x, x) Є R, or R is reflexive in X ó (x) (x Є X ® x R x). 
 

For example 
 

  The relation £ is reflexive in the set of real numbers.  

  The set inclusion is reflexive in the family of all subsets of a universal set.  

   

 

 The relation equality of set is also reflexive.    

  The relation is parallel in the set lines in a plane.  

  

The relation of similarity in the set of triangles in a plane is reflexive.    
 
 

 

Definition: A relation R in a set X is symmetric if for every x and y in X, whenever x R y, 
then y R x.(i.e) R is symmetric in X ó (x) (y) (x Є X ٨ y Є X ٨ x R y ® y R x} 

 

For example 
 

 The relation equality of set is symmetric.  
 

  The relation of similarity in the set of triangles in a plane is symmetric.   
 The relation of being a sister is not symmetric in the set of all people.  

 

 However, in the set females it is symmetric.  
 
 

 

Definition: A relation R in a set X is 
whenever x R y and y R z , then x R z. (i.e) 

 
 

 

transitive if, for every x, y, and z are in X, R is 

transitive in X ó (x) (y) (z) (x Є X٨ y Є X٨ z Є 

 
 
 
 
 
 

 



 
 
 
 

 

X ٨ x R y٨ y R z® x R z)  
For example 

 

 The relations  <, £, >, ³ and = are transitive in the set of real numbers  
 

 The relations  Í, Ì, Ê, É and equality are also transitive in the family of sets. 
 

 The relation of similarity in the set of triangles in a plane is transitive.  
 
 
 

Definition: A relation R in a set X is irreflexive if, for every x Є X , (x, x)ÏX. 

 

For example 

 

 The relation < is irreflexive in the set of all real numbers. 
 

 The relation  proper inclusion is  irreflexive in the set of all  nonempty subsets of a 
universal set.  

 

 Let X = {1, 2, 3} and S = {(1, 1), (1, 2), (3, 2), (2, 3), (3, 3)} is neither irreflexive 

nor reflexive.  

 

Definition:A relation R in a set x is  anti symmetric if ,  for every x  and yin X, 
 

whenever x R y and y R x, then x = y. 
 

Symbolically,(x) (y) (x Є X ٨ y Є X ٨ x R y ٨ y R x ® x = y) 

 

For example 

 

 The relations £ , ³ and  = are anti symmetric 

  The relation Í is anti symmetric in set of subsets.   
 The relation ―divides‖ is anti symmetric in set of real numbers.   

 

 Consider the relation ―is a son of‖ on the male children in a family.Evidently the  

 

 
 

 

 

 

 
 
 

relation is not symmetric, transitive and reflexive.    
 The relation ― is a divisor of ― is reflexive and transitive but not symmetric on the 

set  of natural numbers.  
 

 Consider the set H of all human beings. Let r be a relation ― is married to ―   

R is symmetric.   
 

 Let I be the set of integers. R on I is defined as a R b if a – b is an even number.R is an 
reflexive, symmetric and transitive.  

 
 
 
 
 
 
 
 
 
 

 

 
 
 



 
 

Equivalence Relation: 

 

Definition:A relation R in a set A is called an equivalence relation if 
 

  a R a for every i.e. R is reflexive 
 

  

 
 

a R b => b R a for every a, b Є A i.e. R is symmetric 
 

  
   

 a R b and b R c => a R c for every a, b, c Є A, i.e. R is transitive. 
 

 

For example 
 

 

  The relation equality of numbers on set of real numbers.  The relation being 

parallel on a set of lines in a plane.   

 

Problem1: Let us consider the set T of triangles in a plane.  Let us  define a relation 

R in T as R= {(a, b) / (a, b Є T and a is similar to b} 

We have to show that relation R is an equivalence relation 
 

Solution : 

 

 A triangle a is similar to itself. a R a  
 

 If the triangle a is similar to the triangle b, then triangle b is similar to the triangle a then 
a R b => b R a  

  
 If a is similar to b and b is similar to c, then a is similar to c (i.e) a R b and b R c => a R 

c.  

 

Hence R is an equivalence relation. 

 

Problem 2: Let x = {1, 2, 3, … 7} and R = {(x, y) / x – y is divisible by 3} Show that R is an 
equivalence relation. 

 

Solution: For any a Є X, a- a is divisible by  
3, Hence a R a, R is reflexive 

 

For any a, b Є X, if a – b is divisible by 3, then b – a is also 
divisible by 3, R is symmetric. 

 

For any a, b, c Є, if a R b and b R c, then a – b is divisible by 3 

and b–c is divisible by 3. So that (a – b) + (b – c) is also divisible by 

3, hence a – c is also divisible by 3. Thus R is transitive. 
 

Hence R is equivalence. 

 

Problem3 Let Z be the set of all integers.  Let m be a fixed integer. Two integers a and 
 

b are said to be congruent modulo m if and only if m divides a-b, in which case we write a º 
 
 
 
 
 

 
 
 
 

 



b (mod m). This relation is called the relation of congruence modulo m and we can show 
that is an equivalence relation. 

 

Solution : 
 

 a - a=0 and m divides a – a (i.e) a R a, (a, a) Є R, R is reflexive .  

 

 a R b = m divides a-b  

 

m divides b -  
a b º a (mod  
m) b R a  
that is R is symmetric. 

 

 a R b and b R c => a ºb (mod m) and bº c (mod m) 

O m divides a – b and m divides b-c 
 

O a – b = km and b – c = lm for some k ,l Є z 

 

O (a – b) + (b – c) = km + 

lm O a – c = (k +l) m 
 

O aº c (mod 

m) O a R c 
 

O   R is transitive 

 

Hence the congruence relation is an equivalence relation. 

 

Equivalence Classes: 

 

Let R be an equivalence relation on a set A. For any a ЄA, the equivalence class generated by a 

is the set of all elements b Є A such a R b and is denoted [a]. It is also called the R – 

equivalence class and denoted by a Є A. i.e., [a] = {b Є A / b R a} 
 
 

 

Let Z be the set of integer and R be the relation called ―congruence 
modulo 3‖ defined by R = {(x, y)/ xÎ Z Ù yÎZ Ù (x-y) is divisible by 3} 

 
Then the equivalence classes are  

[0] = {… -6, -3, 0, 3, 6, …}  
[1] = {…, -5, -2, 1, 4, 7, …}  
[2] = {…, -4, -1, 2, 5, 8, …} 

 
Composition of binary relations: 

 

Definition:Let R be a relation from X to Y and S be a relation from Y to Z. Then the relation R 
 

 S is given by R o S = {(x, z) / xÎX Ù z Î Z Ù y Î Y such that (x, y) Î R Ù (y, z) Î S)} 
is called the composite relation of R and S.  

The operation of obtaining R o S is called the composition of relations. 

 

Example: Let R = {(1, 2), (3, 4), (2, 2)} and 
S = {(4, 2), (2, 5), (3, 1),(1,3)} 

 
Then R o S = {(1, 5), (3, 2), (2, 5)} and S o R = {(4, 2), (3, 2), (1, 4)}  

It is to be noted that R o S ≠ S o R. 
 

Also Ro(S o T) = (R o S) o T = R o S o T 



 

Note: We write R o R as R2; R o R o R as R3 and so on. 

 

Definition 
 

Let R be a relation from X to Y, a relation R from Y to X is called the converse of 

R, where the ordered pairs of Ř are obtained by interchanging the numbers in each of 

the ordered pairs of R. This means for x Î X and y Î Y, that x R y ó y Ř x. 
 

Then the relation Ř is given by R = {(x, y) / (y, x) Î R} is called the converse 
of R Example: 

 
Let R = {(1, 2),(3, 4),(2, 2)}  

Then Ř = {(2, 1),(4, 3),(2, 2)} 

 

Note: If R is an equivalence relation, then Ř is also an equivalence relation. 

 

Definition Let X be any finite set and R be a relation in X. The relation R+ = 

R U R2 U R3…in X. is called the transitive closure of R in X 

 

Example: Let R = {(a, b), (b, c), (c, a)}. 
 

Now R2 = R o R = {(a, c), (b, a), (c, b)} 
 

R3 = R2 o R = {(a, a), (b, b), (c, c)} 
 

R4 = R3 o R = {(a, b), (b, c), (c, a)} = R 
 

R5= R3o R2 = R2 and so on. 

 

Thus, R+ = R U R2 U R3 U R4 U… 
 

= R U R2 U R3.  
={(a, b),(b, c),(c, a),(a, c),(b, a),(c ,b),(a, b),(b, b),(c, c)} 

 

We see that R+ is a transitive relation containing R. In fact, it is the smallest 
transitive relation containing R. 

 

Partial Ordering Relations: 

 

Definition 
 

A binary relation R in a set P is called partial order relation or partial ordering in 
P iff R is reflexive, anti symmetric, and transitive. 

 

A partial order relation is denoted by the symbol £., If £ is a partial ordering on 
P, then the ordered pair (P, £) is called a partially ordered set or a poset. 

 Let R be the set of real numbers. The relation ―less than or equal to ‖ or  
O , is a partial ordering on R.  

 

  Let X be a set and r(X) be its power set. The relation subset, Í on X is partial ordering.     
 

  Let Sn be the set of divisors of n. The relation D means ―divides‖ on Sn ,is partial  

 ordering on Sn .           

In a partially ordered set (P,  £) , an element  y Î P is said to cover an element x Î P 

if x <y and if there does not exist any element z Î P such that x £ z and z £ y; 

that is, y covers x Û (x  <  y Ù (x £ z £ y Þ x = z Ú z  = y))  

  A partial order relation £ on a set P can be represented by means of a diagram known as 
 



a Hasse diagram or partial order set diagram of (P, £). In such a diagram, each element is 

represented by a small circle or a dot. The circle for x Î P is drawn below the circle for y Î P if x 

< y, and a line is drawn between x and y if y covers x. 

 

If x < y but y does not cover x, then x and y are not connected directly by a single line.However, 
they are connected through one or more elements of P. 

 

Hasse Diagram: 

 

A Hasse diagram is a digraph for a poset which does not have loops and arcs implied by the 
transitivity. 

 

Example 10: For the relation {< a, a >, < a, b >, < a, c >, < b, b >, < b, c >, < c, c >} on set {a, 
b,c}, the Hasse diagram has the arcs {< a, b >, < b, c >} as shown below. 

 
 

Ex: Let A be a given finite set and r(A) its power set. Let Í be the subset relation on 
the elements of r(A). Draw Hasse diagram of (r(A), Í) for A = {a, b, c}  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 



Functions 

 

Introduction 
 

A function is a special type of relation. It may be considered as a relation in which each 

element of the domain belongs to only one ordered pair in the relation. Thus a function from A 
 

to B is a subset of A X B having the property that for each a ЄA, there is one and only one 

b Є B such that (a, b) Î G. 

 

Definition 
 

Let A and B be any two sets. A relation f from A to B is called a function if for every a Є A  

there is a unique b Є B such that (a, b) Є f . 

 

Note that the definition of function requires that a relation must satisfy two additional 
conditions in order to qualify as a function. 

 

The first condition is that every a Є A must be related to some b Є B, (i.e) the 

domain of f must be A and not merely subset of A. The second requirement of uniqueness 

can be expressed as (a, b) Є f ٨ (b, c) Є f => b = c 
 

Intuitively, a function from a set A to a set B is a rule which assigns to every element of A, a unique 

element of B. If a ЄA, then the unique element of B assigned to a under f is denoted by f 
 

(a).The usual notation for a function f from A to B is f: A® B defined by a ® f (a) where a Є 
A, f(a) is called the image of a under f and a is called pre image of f(a). 

 

 Let X = Y = R and f(x) = x2 + 2. Df = R and Rf Í R.  

 

 Let X be the set of all statements in logic and let Y = {True,  

 

False}. A mapping f: X®Y is a function.  
 

 

 A program written in high level language is mapped into a machine language by a 
compiler. Similarly, the output from a compiler is a function of its input.  

  
 Let X = Y = R and f(x) = x2 is a function from X ® Y,and g(x2) = x is not a function 

from X ® Y.  

 

A mapping f: A ® B is called one-to-one (injective or 1 –1) if distinct elements of A 
are mapped into distinct elements of B. (i.e) f is one-to-one if 

 
a1 = a2 => f (a1) = f(a2) or equivalently f(a1) ¹ f(a2) => a1 ¹ a2 

 

For example, f: N ® N given by f(x) = x is 1-1 where N is the set of a natural numbers. 
 

A mapping f: A® B is called onto (surjective) if for every b Є B there is an a Є A such 

that f (a) = B. i.e. if every element of B has a pre-image in A. Otherwise it is called into. 
 
 

For example, f: Z®Z given by f(x) = x + 1 is an onto 
mapping. A mapping is both 1-1 and onto is called bijective  
. 

 
For example f: R®R given by f(x) = X + 1 is bijective. 

 

Definition: A mapping f: R® b is called a constant mapping if, for all aÎA, f (a) 
= b, a fixed element.  

For example f: Z®Z given by f(x) = 0, for all x ÎZ is a constant mapping. 

 

Definition 
 



A mapping f: A®A is called the identity mapping of A if f (a) = a, for all aÎA. Usually 
it is denoted by IA or simply I. 

 

Composition of functions: 

 

If f: A®B and g: B®C are two functions, then the composition of functions f and g, denoted 
by g o f, is the function is given by g o f : A®C and is given by 

 

g o f = {(a, c) / a Є A ٨ c Є C ٨ $bÎ B ': f(a)= b ٨ g(b) 
= c} and (g of)(a) = ((f(a)) 

 

Example 1: Consider the sets A = {1, 2, 3},B={a, b} and C = {x,  
y}. Let f: A® B be defined by f (1) = a ; f(2) = b and f(3)=b  
and Let g: B® C be defined by g(a) = x and g(b) = y 

 

(i.e) f = {(1, a), (2, b), (3, b)} and g = {(a, x), 
(b, y)}. Then g o f: A®C is defined by 

 

(g of) (1) = g (f(1)) = g(a) = x  
(g o f) (2) = g (f(2)) = g(b) = y  
(g o f) (3) = g (f(3)) = g(b) = y 

 

i.e., g o f = {(1, x), (2, y),(3, y)} 

 

If f: A® A and g: A®A, where A= {1, 2, 3}, are given by 
 

f = {(1, 2), (2, 3), (3, 1)} and g = {(1, 3), (2, 2), (3, 1)} 

Then g of = {(1, 2), (2, 1), (3, 3)}, fog= {(1, 1), (2, 3), (3, 2)}  
f of = {(1, 3), (2, 1), (3, 2)} and gog= {(1, 1), (2, 2), (3, 3)} 

 

Example 2: Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of 
real numbers. 

 

Then f o f = {(x, x+4)/xÎ R} f  
o g = {(x, x)/ x Î X} g  
o f = {(x, x)/ xÎ X} 

 
g o g = {(x, x-4)/x Î X} 
h o g = {(x,3x-6)/ x Î X} h  
o f = {(x, 3x+6)/ x Î X} 

 

Inverse functions: 
 

Let f: A® B be a one-to-one and onto mapping. Then, its inverse, denoted by f -1 is given by f - 
1 = {(b, a) / (a, b) Î f} Clearly f-1: B® A is one-to-one and onto. 

 

Also we observe that f o f -1 = IB and f -1o f = IA.  
If f -1  exists then f is called invertible. 

 

For example:Let f: R ®R be defined by f(x) = x + 2 
 

Then f -1: R® R is defined by f -1(x) = x - 2 
 
 

 
 
 
 
 
 



Theorem: Let f: X ®Y and g: Y ® Z be two one to one and onto functions. Then gof is also 
one to one and onto function. 

 

Proof  
Let f:X ® Y g : Y ® Z be two one to one and onto functions. Let x1, x2 Î X 

 g o f (x1) = g o f(x2),  
 g (f(x1)) = g(f(x2)),  

 

 g(x1) = g(x2) since [f is 1-1]  

 

x1 = x2 since [ g is 1-1} 
so that gof is 1-1. 

 

By the definition of composition, gof : X ® Z is a function. 
 

We have to prove that every element of z Î Z an image element for some x Î X 
 

under gof. 
 

Since g is onto $ y ÎY ': g(y) = z  and f is onto from X to Y, 
 

$ x ÎX ': f(x) = y. 
 

Now, gof (x) = g ( f ( x)) 
 

= g(y) [since f(x) = y] 
 

= z  [since g(y) = z] 
 

which shows that gof is onto. 
 
 

Theorem (g o f) -1 = f -1 o g -1 
 

(i.e) the inverse of a composite function can be expressed in terms of 
the composition of the inverses in the reverse order. 

 

Proof.  
f: A ® B is one to one and onto.  
g: B ® C is one to one and onto. 

 

gof: A ® C is also one to one and onto. Þ 
(gof) -1: C ® A is one to one and onto. 

 
Let a Î A, then there exists an element b Î b such that f (a) = b Þ a = f-1 

 
(b). Now b Î B Þ there exists an element c Î C such that g (b) = c Þ b = g - 
1(c). Then (gof)(a) = g[f(a)] = g(b) = c Þ a = (gof) -1(c). …….(1) 

 

(f -1 o g-1) (c) = f -1(g -1 (c)) = f -1(b) = a Þ a = (f -1 o g -1)( 

c ) ….(2) Combining (1) and (2), we have 
 

(gof) -1 = f -1 o g -1 

 

Theorem: If f: A ® B is an invertible mapping , 
then f o f -1 = I B and f-1 o f = IA 

 

Proof: f is invertible, then f -1 is defined by f(a) = b ó f-1(b) 
= a where a Î A and bÎ B .  
Now we have to prove that f of -1 = IB 

 

. Let bÎ B and f -1(b) = a, a Î A 

then fof-1(b) = f(f-1(b))  
= f(a) = b 

 

therefore f o f -1 (b) = b " b Î B => f o f -1 =  
IB Now f -1 o f(a) = f -1 (f(a)) = f -1 (b) = a  



therefore f -1 o f(a) = a " a Î A => f -1 o f = IA.  
Hence the theorem. 

 

Recursive Functions: 

 

The term "recursive function" is often used informally to describe any function that is defined 

with recursion. There are several formal counterparts to this informal definition, many of which 

only differ in trivial respects. 

 

Kleene (1952) defines a "partial recursive function" of nonnegative integers to be any function that 

is defined by a noncontradictory system of equations whose left and right sides are composed from 
 

(1) function symbols (for example, , , , etc.), (2) variables for nonnegative integers (for example, 

, , , etc.), (3) the constant 0, and (4) the successor function . 

 

For example, 
 
 
 (1)  
 

(2)  
 

(3)  
 

(4)  
 

 

defines to be the function that computes the product of and . 

 

Note that the equations might not uniquely determine the value of for every possible input, and 

in that sense the definition is "partial." If the system of equations determines the value of f for 

every input, then the definition is said to be "total." When the term "recursive function" is used 

alone, it is usually implicit that "total recursive function" is intended. Note that some authors use 

the term "general recursive function to mean partial recursive function, although others use it to 

mean "total recursive function." 

 

The set of functions that can be defined recursively in this manner is known to be equivalent to 
the set of functions computed by Turing machines and by the lambda calculus. 

 

Lattice and its Properties: 

 

Introduction: 
 

A lattice is partially ordered set (L, £) in which every pair of elements a, b ÎL 
has a greatest lower bound and a least upper bound.  
The glb of a subset, {a, b} Í L will be denoted by a * b and the lub by a Å b. 

 
. 

 

Usually, for any pair a, b Î L, GLB {a, b} = a * b, is called the meet or product and LUB{a, 
b} = a Å b, is called the join or sum of a and b. 

 

Example1 Consider a non-empty set S and let P(S) be its power set. The relation 

Í ―contained in‖ is a partial ordering on P(S). For any two subsets A, BÎ P(S) 

GLB {A, B} and LUB {A, B} are evidently A Ç B and A È B respectively. 

 



Example2 Let I+ be the set of positive integers, and D denote the relation of ―division‖ in  
I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a lattice in which 

 

the join of a and b is given by the least common multiple(LCM) of a and b, that is, 
 

a Å b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common 
divisor (GCD) of a and b. 

 

A lattice can be conveniently represented by a diagram. 
 

For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the 
 

relation ―division‖ such that for any a, b Î Sn, a D b iff a divides b. 
 

Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b). 
 

Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in 
Fig(1). Take n=8. Then S8 = {1, 2, 4, 8} 

 

Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), Í ) and (S6,D) 
 

have the same diagram viz. fig(1), but the nodes are differently labeled . 

 We observe that for  any partial  ordering relation £ on a set S the 

converse relation ³ is also partial ordering relation on S. If (S, £) is a  lattice 

With meet a * b and join a Å b , then (S, ³ )  is the also a lattice with meet 

a Å b  and join a * b i.e., the GLB and LUB get interchanged . Thus we have 
 

the principle of duality of lattice as follows. 

 

Any statement about lattices involving the operations ^ and V and the relations £ and ³ 
remains true if ^, V, ³ and £ are replaced by V, ^, £ and ³ respectively. 

 
The operation ^ and V are called duals of each other as are the relations £ and ³.. Also, 

the lattice (L, £) and (L, ³) are called the duals of each other. 

 

Properties of lattices:  
Let (L, £) be a lattice with the binary operations * and Å then for any a, b, c Î L, 

 

 a * a = a a Å a = a (Idempotent) 
 

 a * b = b * a, a Å b = b Å a (Commutative) 
 

 (a * b) * c = a * (b * c) ,  (a Å ) Å c = a Å (b Å c)  
 

O (Associative)   
a * (a Å b) = a , a Å (a * b ) = a (absorption) 

 

For any a ÎL, a £ a, a £ LUB {a, b} => a £ a * (a Å b). On the other 
hand, GLB {a, a Å b} £ a i.e., (a Å b) Å a, hence a * (a Å b) = a 

 

Theorem 1 
 

Let (L, £) be a lattice with the binary operations * and Å denote the operations of meet 
and join respectively For any a, b Î L,  

a £ b ó a * b = a ó a Å b = b 
 

Proof 

 

Suppose that a £ b. we know that a £ a, a £ GLB {a, b}, i.e., a £ a * b. 
 

But from the definition of a * b, we get a * b £ a.  
Hence a £ b => a * b = a  ………………………… (1) 

 

Now we assume that a * b = a; but is possible only if a £ b, 
 



that is a * b = a => a £ b  ………………………… (2) 

From (1) and (2), we get a £ b ó a * b = a.  

Suppose a * b = a.  

then b Å (a * b) = b Å a = a Å b ……………………. (3) 

but b Å ( a * b) = b  ( by iv)…………………….. (4) 

Hence a Å b = b, from (3) => (4)  
 

Suppose aÅ b = b, i.e., LUB {a, b} = b, this is possible only if a£ b, thus(3) => (1) 
 

(1) => (2) => (3) => (1). Hence these are equivalent. 

 

Let us assume a * b = a.  

Now (a * b) Å b = a Å b  

We know that by absorption law , (a * b) Å b = b  

so that a Å b = b, therefore a * b = a Þ a Å b = b (5) 

similarly, we can prove a Å b = b Þ   a * b = a (6) 

From (5) and (6), we get  
 

a * b = a Û a Å b = b 
Hence the theorem. 

 

Theorem2 For any a, b, c Î L, where (L, £) is a lattice. b 
 

£ c => { a * b £ a * c and 
{ a Å b £ a Å c 

 

Proof Suppose b £ c. we have proved that b £ a ó b * c = b…….. (1)  

Now consider 
 

(a * b ) * (a * c) = (a * a) * (b * c) 
= a * (b * c)  
= a * b 

 

(by Idempotent) 
 
 

(by (1)) 
 

Thus (a * b) * (a * c ) = a * b which => (a * b ) £ (a * c) 
Similarly (a Å b) Å ( a Å c) = (a Å a) Å (b Å c)  

= a Å (b Å c)  
= a Å c  

which => (a Å b ) £ (a Å c ) 

 

note:These properties are known as isotonicity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

 



Algebraic structures 
 

Algebraic systems: 

 

An algebraic system, loosely speaking, is a set, together with some operations on the set. Before 

formally defining what an algebraic system is, let us recall that a n -ary operation (or operator) 

on a set A is a function whose domain is An and whose range is a subset of A . Here, n is a non-

negative integer. When n=0 , the operation is usually called a nullary operation, or a constant, 

since one element of A is singled out to be the (sole) value of this operation. A finitary operation 

on A is just an n -ary operation for some non-negative integer n . 

 

Definition. An algebraic system is an ordered pair (A  O) , where A is a set, called the 
underlying set of the algebraic system, and O is a set, called the operator set, of finitary 

operations on A . 

 

We usually write A , instead of (A O) , for brevity. 
 

 

A prototypical example of an algebraic system is a group, which consists of the underlying set G 
 

, and a set O consisting of three operators: a constant e called the multiplicative identity, a unary 

operator called the multiplicative inverse, and a binary operator called the multiplication. 

 

For a more comprehensive listing of examples, please see this entry. 

 

Remarks. 
 

 An algebraic system is also called algebra for short. Some authors require that A be non-empty.   
 

Note that A is automatically non-empty if O contains constants. A finite algebra is an algebra  

 whose underlying set is finite.   

 

 By definition, all operators in an algebraic system are finitary. If we allow O to contain infinitary 

operations, we have an infinitary algebraic system. Other generalizations are possible. For 

example, if the operations are allowed to be multivalued, the algebra is said to be a multialgebra. 

If the operations are not everywhere defined, we get a partial algebra. Finally, if more than one 

underlying set is involved, then the algebra is said to be many-sorted.  
 
 

The study of algebraic systems is called the theory of universal algebra. The first important thing 

in studying algebraic system is to compare systems that are of the same ``type''. Two algebras are 

said to have the same type if there is a one-to-one correspondence between their operator sets 

such that an n -ary operator in one algebra is mapped to an n -ary operator in the other algebra. 
 

Examples: 

 

Some recurring universes: N=natural numbers; Z=integers; Q=rational numbers; 
R=real numbers; C=complex numbers. 

 

N is a pointed unary system, and under addition and multiplication, is both 
the standard interpretation of Peano arithmetic and a commutative semiring. 

 



Boolean algebras are at once semigroups, lattices, and rings. They would even be abelian 

groups if the identity and inverse elements were identical instead of complements. 

 

Group-like structures  

  Nonzero N under addition (+) is a magma.    
  N under addition is a magma with an identity.   

 
  

    

  Z under subtraction (−) is a quasigroup.    

  Nonzero Q under division (÷) is a quasigroup.   
  

   Every group is a loop, because a * x = b if and only if x = a
−1

 * b, and y * a = b if  

 
 

and only if y = b * a
−1

.   
  2x2 matrices(of non-zero determinant) with matrix multiplication form a group. 

  Z under addition (+) is an abelian group.   
 

  

  Nonzero Q under multiplication (×) is an abelian group.   
 

  

    Every cyclic group G is abelian, because if x, y are in G, then xy = a
m

a
n

 = a
m+n

 = a
n+m

 =  

  a
n

a
m

 = yx. In particular, Z is an abelian group under addition, as is the integers modulo n    
  Z/nZ.    

 
 A monoid is a category with a single object, in which case the composition of 

 
   
 morphisms and the identity morphism interpret monoid multiplication and 

 
identity element, respectively.  

  The Boolean algebra 2 is a boundary algebra.   

 

General Properties: 

 

Property of Closure 

 

If we take two real numbers and multiply them together, we get another real number. (The real 

numbers are all the rational numbers and all the irrational numbers.) Because this is always true, 

we say that the real numbers are "closed under the operation of multiplication": there is no way 

to escape the set. When you combine any two elements of the set, the result is also included in 

theset. 
 

Real numbers are also closed under addition and subtraction. They are not closed under the 
square root operation, because the square root of -1 is not a real number. 

 

Inverse 

 

The inverse of something is that thing turned inside out or upside down. The inverse of an 
operation undoes the operation: division undoes multiplication. 

 

A number's additive inverse is another number that you can add to the original number to get the 

additive identity. For example, the additive inverse of 67 is -67, because 67 + -67 = 0, the 

additive identity. 
 
 

Similarly, if the product of two numbers is the multiplicative identity, the numbers are 

multiplicative inverses. Since 6 * 1/6 = 1 (the multiplicative identity), the multiplicative inverse 

of 6 is 1/6. 

 

Zero does not have a multiplicative inverse, since no matter what you multiply it by, the answer 
is always 0, not 1. 

 



Equality 

 

The equals sign in an equation is like a scale: both sides, left and right, must be the same in order 
for the scale to stay in balance and the equation to be true. 

 

The addition property of equality says that if a = b, then a + c = b + c: if you add the same 

number to (or subtract the same number from) both sides of an equation, the equation continues 

to be true. 

 

The multiplication property of equality says that if a = b, then a * c = b * c: if you multiply (or 
divide) by the same number on both sides of an equation, the equation continues to be true. 

 

The reflexive property of equality just says that a = a: anything is congruent to itself: the equals 
sign is like a mirror, and the image it "reflects" is the same as the original. 

 

The symmetric property of equality says that if a = b, then b = a. 

 

The transitive property of equality says that if a = b and b = c, then a = c. 
 
 

Semi groups and monoids: 

 

In the previous section, we have seen several algebraic system with binary operations. 

Here we consider an algebraic system consisting of a set and an associative binary operation on 

the set and then the algebraic system which possess an associative property with an identity 

element. These algebraic systems are called semigroups and monoids. 

 

Semi group 
 

Let S be a nonempty set and let * be a binary operation on S. The algebraic system (S, *) 
is called a semi-group if * is associative  

i.e. if a * (b*c) = (a * b) * c for all a, b, c Î S. 

 

Example The N of natural numbers is a semi-group under the operation of usual 
addition of numbers. 

 

Monoids 
 

Let M be a nonempty set with a binary operation * defined on it. Then (M, * ) is 
called a monoid if 

 

 * is associative  

 

(i.e) a * (b * c) = (a * b) * c for all a, b, c Î M and 

 

there exists an element e in M such that 

 

a * e = e * a = a for all a Î M 
 

e is called the identity element in (M,*). 

 

It is easy to prove that the identity element is unique. From the definition it follows that (M,*) is 
a semigroup with identity. 

 



Example1 Let S be a nonempty set and r(S) be its power set. The algebras (r(S),U) and (r(S), Ç ) 
are monoids with the identities f and S respectively. 

 

Example2 Let N be the set of natural numbers, then (N,+), (N, X) are monoids with the 
identities 0 and 1 respectively. 

 

Groups Sub Groups: 
 

Recalling that an algebraic system (S, *) is a semigroup if the binary operation * is associative. If 

there exists an identity element e Î S, then (S,*) is monoid. A further condition is imposed on the 

elements of the monoid, i.e., the existence of an inverse for each element of S then the algebraic 

system is called a group. 
 

Definition 
 

Let G be a nonempty set, with a binary operation * defined on it. Then the 
algebraic system (G,*) is called a group if 

 

 * is associative i.e. a * (b * c) = (a * b) * c for all a, b, c,Î G.  

 
 there exists an element e in G such that a * e = e * a = a for all a Î G  

 

 for each a Î G there is an element denoted by a-1 in G such that  

 

a * a-1 = a-1 * a = e, a-1 is called the inverse of a. 

 

From the definition it follows that (G,*) is a monoid in which each element has an inverse w.r.t. 
* in G. 

 

A group (G,*) in which * is commutative is called an abelian group or a commutative 

group. If * is not commutative then (G,*) is called a non-abelian group or non-commutative 

group. 

 

The order of a group (G,*) is the number of elements of G, when G is finite and is denoted 
by o(G) or |G| 

 

Examples 1. (Z5, +5) is an abelian group of order 5. 
 

2. G = {1, -1, i, -i} is an abelian group with the binary operation x is 
defined as 1 x 1 = 1, -1 x -1 = 1, i x i = -1 , -i x -i = 1, … 

 

Homomorphism of semigroups and monoids 
 

Semigroup homomorphism. 

 

Let (S, *) and (T, D) be any two semigroups. A mapping g: S ® T such that any 

two elements a, b Î S , g(a * b) = g(a) D g(b) is called a semigroup homomorphism. 

 

Monoid homomorphism 
 

Let (M, *,eM) and (T, D,eT) be any two monoids. A mapping g: M® T such that 
any two elements a, b Î M , 

 

g(a * b) = g(a) D g(b) 
and g(eM) = eT  

is called a monoid homomorphism. 

 

 



Theorem 1 Let (s, *) , (T, D) and (V, Å) be semigroups. A mapping g: S ® T and  
h: T ® V be semigroup homomorphisms. Then (hog): S ® V is a 

semigroup homomorphism from (S,*) to(V,Å ). 
 
 Proof. Let a, b Î S. Then  

(h o g)(a * b) = h(g(a* b))  
= h(g(a) D g(b))  
= h(g(a)) Å h(g(b))  
= (h o g)(a) Å (h o g)(b) 

 

Theorem 2 Let (s,*) be a given semigroup. There exists a homomorphism g: S ® SS, 

where (SS, o) is a semigroup of function from S to S under the operation of 

composition. 

 

Proof For any element a Î S, let g(a) = fa where f aÎ SS and f a is defined by  
f a(b) = a * b for any a, bÎ S  
g(a * b) = f a*b  

Now f a*b(c ) = (a * b) * c = a*(b * c)  
where = f a(f b(c )) = (f a o f b) (c ). 

 
Therefore, g(a * b) = f a*b = f a o f b = g(a) o g(b), this shows that g: S ® SS is 

a homomorphism. 

 

Theorem 3 For any commutative monoid (M, *),the set of idempotent elements of M forms 
a submonoid. 

 

Proof. Let S be the set of idempotent elements of M.  
Since the identity element e Î M is idempotent, e Î S. 

 
Let a, b Î S, so that a* a = a and b * b = b  
Now (a * b ) * (a * b) = (a * b) * (b * a)  

= a * (b * b) * a  
= a * b * a  
= a * a * b  
= a * b 

 

Hence a * b Î S and (S, *) is a submonoid. 

 

Isomorphism: 
 

In abstract algebra, an isomorphism is a bijective map f such that both f and its inverse f 
−1

 are 

homomorphisms, i.e., structure-preserving mappings. In the more general setting of category 
theory, an isomorphism is a morphism f: X → Y in a category for which there exists an  

"inverse" f 
−1

: Y → X, with the property that both f 
−1

f = idX and f f 
−1

 = idY. 
 

Informally, an isomorphism is a kind of mapping between objects, which shows a relationship 
between two properties or operations. If there exists an isomorphism between two structures, we 
call the two structures isomorphic. In a certain sense, isomorphic structures are structurally 

identical, if you choose to ignore finer-grained differences that may arise from how they are 

defined. 

 

 

 

 



Purpose: 

 

Isomorphisms are studied in mathematics in order to extend insights from one phenomenon to 

others: if two objects are isomorphic, then any property which is preserved by an isomorphism 

and which is true of one of the objects, is also true of the other. If an isomorphism can be found 

from a relatively unknown part of mathematics into some well studied division of mathematics, 

where many theorems are already proved, and many methods are already available to find 

answers, then the function can be used to map whole problems out of unfamiliar territory over to 

"solid ground" where the problem is easier to understand and work with. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT-III 
 

Elementary Combinatorics 
 

Basis of counting: 
 

If X is a set, let us use |X| to denote the number of elements in X. 

 

Two Basic Counting Principles 

 

Two elementary principles act as ―building blocks‖ for all counting problems. The 
first principle says that the whole is the sum of its parts; it is at once immediate and elementary. 

 

Sum Rule: The principle of disjunctive counting : 

 

If a set X is the union of disjoint nonempty subsets S1, ….., Sn, then | X | = | S1 | + | S2 | + ….. +  
| Sn |. 

 

We emphasize that the subsets S1, S2, …., Sn must have no elements in common. 

Moreover, since X = S1 U S2 U ……U Sn, each element of X is in exactly one of the 
subsets Si. In other words, S1, S2, …., Sn is a partition of X. 

 

 

If the subsets S1, S2, …., Sn were allowed to overlap, then a more 
 

profound principle will be needed--the principle of inclusion and exclusion. 
 

Frequently, instead of asking for the number of elements in a set perse, some 

problems ask for how many ways a certain event can happen. 
 

The difference is largely in semantics, for if A is an event, we can let X be the set of ways 

that A can happen and count the number of elements in X. Nevertheless, let us state the sum rule 

for counting events. 
 

If E1, ……, En are mutually exclusive events, and E1 can happen e1 ways, E2 happen e2 
 

ways,…. ,En can happen en ways, E1 or E2 or …. or En can happen e1 + e2 + …….. + en ways. 
 

Again we emphasize that mutually exclusive events E1 and E2 mean that E1 or E2 can 

happen but both cannot happen simultaneously. 
 

The sum rule can also be formulated in terms of choices: If an object can be selected 

from a reservoir in e1 ways and an object can be selected from a separate reservoir in e2 ways 

and an object can be selected from a separate reservoir in e2 ways, then the selection of one 

object from either one reservoir or the other can be made 
 

in e1 + e2 ways. 
 

 

Product Rule: The principle of sequencing counting 
 

If S1, ….., Sn are nonempty sets, then the number of elements in the Cartesian product 
 

S1 x S2 x ….. x Sn is the product ∏in=1 |S i |. That is, 
 

| S1 x S2 x . . . . . . . x Sn | = ∏in=1| S i |. 
 
 



 

 

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1 

and to each of these branches there are 3 branches in the second stage corresponding to the 3 

elements of S2 giving a total of 15 branches altogether. Moreover, the Cartesian product S1 x S2 

can be partitioned as (a1 x S2) U (a2 x S2) U (a3 x S2) U (a4 x S2) U (a5 x S2), where (ai x S2) 
 

= {( ai, b1), ( ai i, b2), ( ai, b3)}. Thus, for example, (a3 x S2) corresponds to the third branch in 

the first stage followed by each of the 3 branches in the second stage. 

 

More generally, if a1,….., an are the n distinct elements of S1 and b1,….,bm are the m 
 

distinct elements of S2, then S1 x S2 = Uin =1 (ai x S2). 
 

For if x is an arbitrary element of S1 x S2 , then x = (a, b) where a Î S1 and b Î 

S2. Thus, a = ai for some i and b = bj for some j. Thus, x = (ai, bj) Î(ai x S2) and 

therefore x Î Uni =1(ai x S2). 

 

Conversely, if x Î Uin =1(ai x S2), then x Î (ai x S2) for some i and thus x = (ai, bj) 

where bj is some element of S2. Therefore, x Î S1 x S2. 

 

Next observe that (ai x S2) and (aj x S2) are disjoint if  i ≠ j since if 
 

x Î (ai x S2) ∩ (aj x S2) then x = ( ai, bk) for some k and x = (aj, b1) for some l. 
 

But then (ai, bk) = (aj, bl) implies that ai = aj and bk = bl. But since i  ≠ j , ai ≠ a j. 
 

Thus, we conclude that S1 x S2 is the disjoint union of the sets (ai x S2). Furthermore |ai x 

S2| = |S2| since there is obviously a one-to-one correspondence between the sets ai x S2 and 
 

S2, namely, (ai, bj) → bj. 
 
 
 
 

 

    



       
 
 
 
 

 

Then by the sum rule |S1 x S2| = ∑nni=1 | ai x S2| 
 

7. (n summands) |S2| + |S2| +…….+ |S2| 
 

8. n |S2| 
 

9. nm. 
 

Therefore, we have proven the product rule for two sets. The general rule follows by 

mathematical induction. 
 

We can reformulate the product rule in terms of events. If events E1, E2 , …., En can 
 

happen e1, e2,…., and en ways, respectively, then the sequence of events E1 first, followed by 
 

E2,…., followed by En can happen e1e2 …en ways. 
 

In terms of choices, the product rule is stated thus: If a first object can be chosen 

e1 ways, a second e2 ways , …, and an nth object can be made in e1e2….en ways. 

 

Combinations & Permutations: 
 
 

Definition. 
 

 

A combination of n objects taken r at a time (called an r-combination of n objects) 
 

is an unordered selection of r of the objects. 
 

A permutation of n objects taken r at a time (also called an r-permutation of 

n objects) is an ordered selection or arrangement of r of the objects. 
 

Note that we are simply defining the terms r-combinations and r-permutations 

here and have not mentioned anything about the properties of the n objects. 
 

For example, these definitions say nothing about whether or not a given 

element may appear more than once in the list of n objects. 
 

In other words, it may be that the n objects do not constitute a set in the normal usage 

of the word. 

 

SOLVED PROBLEMS 

 

Example1. Suppose that the 5 objects from which selections are to be made are: a, a, a, b, 
c. then the 3-combinations of these 5 objects are : aaa, aab, aac, abc. The permutations are: 

 

aaa, aab, aba, baa, aac, aca, caa, 
 

abc, acb, bac, bca, cab, cba. 
 

Neither do these definitions say anything about any rules governing the selection of the r-

objects: on one extreme, objects could be chosen where all repetition is forbidden, or on the 

other extreme, each object may be chosen up to t times, or then again may be some rule of 



selection between these extremes; for instance, the rule that would allow a given object to be 

repeated up to a certain specified number of times. 
 

We will use expressions like {3 . a , 2. b ,5.c} to indicate either 
 

(1) that we have 3 + 2 + 5 =10 objects including 3a‘s , 2b‘s and 5c‘s, or (2) that we have 3 
 

objects a, b, c, where selections are constrained by the conditions that a can be selected 

at most three times, b can be selected at most twice, and c can be chosen up to five times. 
 

The numbers 3, 2 and 5 in this example will be called repetition numbers. 
 

Example 2 The 3-combinations of {3. a, 2. b, 5. c} are: 

 

aaa, aab, aac, abb, abc, 
ccc, ccb, cca, cbb. 

 

Example 3. The 3-combinations of {3 . a, 2. b, 2. c , 1. d} are: 

 

aaa, aab, aac, aad, bba, bbc, bbd, 
cca, ccb, ccd, abc, abd, acd, bcd. 

 

In order to include the case where there is no limit on the number of times an object 
can be repeated in a selection (except that imposed by the size of the selection) we use the symbol ∞ 

 
as a repetition number to mean that an object can occur an infinite number of times. 

 

Example 4. The 3-combinations of {∞. a, 2.b, ∞.c} are the same as in Example 2 
even though a and c can be repeated an infinite number of times. This is because, in 3-
combinations, 3 is the limit on the number of objects to be chosen. 

 
 

If we are considering selections where each object has ∞ as its repetition number then 
 

we designate such selections as selections with unlimited repetitions. In particular, a selection of 

r objects in this case will be called r-combinations with unlimited repetitions and any ordered 

arrangement of these r objects will be an r-permutation with unlimited repetitions. 

 

Example5 The combinations of a ,b, c, d with unlimited repetitions are the 3-
combinations of {∞ . a , ∞. b, ∞. c, ∞. d}. These are 20 such 3-combinations, namely:  

aaa, aab, aac, aad, 
bbb, bba, bbc, bbd, 
ccc, cca, ccb, ccd, 
ddd, dda, ddb, ddc, 
abc, abd, acd, bcd. 

 
Moreover, there are 43 = 64 of 3-permutations with unlimited repetitions since the first position 
can be filled 4 ways (with a, b, c, or d), the second position can be filled 4 ways, and likewise 
for the third position. 

 

The 2-permutations of {∞. a, ∞. b, ∞. c, ∞. d} do not present such a formidable 
list and so we tabulate them in the following table. 

 
 

 2-permutations 

2-combinations with Unlimited Repetitions 
 

with Unlimited  

 

  



Repetitions 

aa aa 

ab ab, ba 

ac ac, ca 

ad ad, da 

bb bb 

bc bc, cb 

bd bd, db 

cc cc 

cd cd, dc 

dd dd 

10 16 
 
 

Of  course, these  are not the only constraints that can be placed on 
 

selections; the possibilities are endless. We list some more examples just for concreteness. We 
 

might, for example, consider selections of {∞.a, ∞. b, ∞. c} where b can be chosen only even 
 

number of times. Thus, 5-combinations with these repetition numbers and this constraint would 
 

be those 5-combinations with unlimited repetitions and where b is chosen 0, 2, or 4 times. 
 
 

Example6 The 3-combinations of {∞ .a, ∞ .b, 1 .c,1 .d} where b can be chosen only an even 

number of times are the 3-combinations of a, b, c, d where a can be chosen up 3 times, b can be 

chosen 0 or 2 times, and c and d can be chosen at most once. The 3-cimbinations subject to these 

constraints are: 
 

aaa, aac, aad, bbc, bbd, acd. 
 
 

As another example, we might be interested in, selections of {∞.a, 3.b, 1.c} where a can 

 

be chosen a prime number of times. Thus, the 8-combinations subject to these constraints would 

be all those 8-combinations where a can be chosen 2, 3, 5, or 7 times, b can chosen up to 3 

times, and c can be chosen at most once. 

 

There are, as we have said, an infinite variety of constraints one could place on 

selections. You can just let your imagination go free in conjuring up different constraints 

on the selection, would constitute an r-combination according to our definition. Moreover, 

any arrangement of these r objects would constitute an r-permutation. 

 

While there may be an infinite variety of constraints, we are primarily interested in two 

major types: one we have already described—combinations and permutations with unlimited 

repetitions, the other we now describe. 

 



If the repetition numbers are all 1, then selections of r objects are called r-combinations 

without repetitions and arrangements of the r objects are r-permutations without repetitions. 

We remind you that r-combinations without repetitions are just subsets of the n elements 

containing exactly r elements. Moreover, we shall often drop the repetition number 1 when 

considering r-combinations without repetitions. For example, when considering r-combinations 

of {a, b, c, d} we will mean that each repetition number is 1 unless otherwise designated, and, 

of course, we mean that in a given selection an element need not be chosen at all, but, if it is 

chosen, then in this selection this element cannot be chosen again. 

 

Example7. Suppose selections are to be made from the four objects a, b, c, d. 
 

 

2-combinations 2-Permutations 
 

without Repetitions without Repetitions 
 

ab ab, ba 

ac ac, ca 

ad ad, da 

bc bc, cb 

bd bd, db 

cd cd, dc 

6 12 
 

 

There are six 2-combinations without repetitions and to each there are two 2-

permutations giving a total of twelve 2-permutations without repetitions. 
 

Note that total number of 2-combinations with unlimited repetitions in Example 5 

included six 2-combinations without repetitions of Example.7 and as well 4 other 2-

combinations where repetitions actually occur. Likewise, the sixteen 2-permutations with 

unlimited repetitions included the twelve 2-permutations without repetitions. 

             
 

 

3-combinations 
 

without Repetitions 

 

abc 
 
 
 

abd 
 

acd 
 

bcd 
 

                                   4                                             

 
 

 

3-Permutations 
 

without Repetitions 
 

abc, acb, bac, bca, cab, cba 
 
 
 

abd, adb, bad, bda, dab, dba 
 

acd, adc, cad, cda, dac, dca 
 

bcd, bdc, cbd, cdb, dbc, dcb 
 

                 24



Note that to each of the 3-combinations without repetitions there are 6 possible 3-permutations without 

repetitions. Momentarily, we will show that this observation can be generalized. 

 
 

Combinations And Permutations With Repetitions: 
 

General formulas for enumerating combinations and permutations will now be presented. 

At this time, we will only list formulas for combinations and permutations without repetitions or 

with unlimited repetitions. We will wait until later to use generating functions to give general 

techniques for enumerating combinations where other rules govern the selections. 
 

Let P (n, r) denote the number of r-permutations of n elements without repetitions. 
 

 

Theorem 5.3.1.( Enumerating r-permutations without repetitions). 
 
 

P(n, r) = n(n-1)……. (n – r + 1) = n! / (n-r)! 
 

Proof. Since there are n distinct objects, the first position of an r-permutation may be filled in 

n ways. This done, the second position can be filled in n-1 ways since no repetitions are 

allowed and there are n – 1 objects left to choose from. The third can be filled in n-2 ways. By 

applying the product rule, we conduct that 

 

P (n, r) = n(n-1)(n-2)……. (n – r + 1). 
 

 

From the definition of factorials, it follows that 
 
 

P (n, r) = n! / (n-r)! 
 

 

When r = n, this formula becomes 
 

P (n, n) = n! / 0! = n! 
 

When we explicit reference to r is not made, we assume that all the objects are to 

be arranged; thus we talk about the permutations of n objects we mean the case 

r=n. Corollary 1. There are n! permutations of n distinct objects. 

 
 

Example 1.
 There are 3! = 6 permutations of {a, b, c}. 

 
There are 4! = 24 permutations of (a, b, c, d). The number of 2- 

 

permutations {a, b, c, d, e} 
 

is P(5, 2) = 5! / 
 

(5 - 2)! = 5 x 4 = 20. The number of 5-letter words using the letters a, b, c, d, and e at most once 
 
 
 

is P (5, 5) = 120. 
 

 

    



       

 

Example 2 There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since each 
 

such number is just an arrangement of four of the digits 0, 1, 2, 3 , …., 9 (leading zeroes are 
 

allowed). There are P (26, 3) P(10, 4) license plates formed by 3 distinct letters 

followed by 4 distinct digits. 

 

 

Example3. In how many ways can 7 women and 3 men be arranged in a row if the 3 

men must always stand next to each other? 

 

There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each 
 

other, we treat them as a single entity, which we denote by X. Then if W1, W2, ….., W7 
 

represents the women, we next are interested in the number of ways of arranging {X, W1, W2, 
 

W3,……., W7}. There are 8! permutations these 8 objects. Hence there are (3!) (8!) 
 

permutations altogether. (of course, if there has to be a prescribed order of an arrangement on the 
 

3 men then there are only 8! total permutations). 
 

 

Example4. In how many ways can the letters of the English alphabet be arranged so that there 
 

are exactly 5 letters between the letters a and b? 

 

There are P (24, 5) ways to arrange the 5 letters between a and b, 2 ways to place a and 
b, and then 20! ways to arrange any 7-letter word treated as one unit along with the remaining 
19 letters. The total is P (24, 5) (20!) (2). 

 

permutations for the objects are being arranged in a line. If instead of arranging objects 
in a line, we arrange them in a circle, then the number of permutations decreases. 

 

Example 5. In how many ways can 5 children arrange themselves in a ring? 
 

 

Solution. Here, the 5 children are not assigned to particular places but are only arranged 
 

relative to one another. Thus, the arrangements (see Figure 2-3) are considered the same if the 

children are in the same order clockwise. Hence, the position of child C1 is immaterial and it is 

only the position of the 4 other children relative to C1 that counts. Therefore, keeping C1 fixed 

in position, there are 4! arrangements of the remaining children. 

 
 
 
 
 
 
 
 

 

    



       
 

Binomial Coefficients:In mathematics, the binomial coefficient is the coefficient of the 

x 
k

 term in the polynomial expansion of the binomial power (1 + x) 
n

. 
 

In combinatorics, is interpreted as the number of k-element subsets (the k-combinations) of an 

n-element set, that is the number of ways that k things can be "chosen" from a set of n things.  

Hence, is often read as "n choose k" and is called the choose function of n and k. The  

notation was introduced by Andreas von Ettingshausen in 182, although the numbers were 

already known centuries before that (see Pascal's triangle). Alternative notations include C(n, k),  

nCk, 
n

Ck, , in all of which the C stands for combinations or choices. 

For natural numbers (taken to include 0) n and k, the binomial coefficient can be defined as  

the coefficient of the monomial X
k

 in the expansion of (1 + X)
n

. The same coefficient also 
occurs (if k ≤ n) in the binomial formula  

 
 
 
 
 
 
 

(valid for any elements x,y of a commutative ring), which explains the name "binomial 
coefficient". 

 

Another occurrence of this number is in combinatorics, where it gives the number of ways, 
disregarding order, that a k objects can be chosen from among n objects; more formally, the number 
of k-element subsets (or k-combinations) of an n-element set. This number can be seen to be equal to 
the one of the first definition, independently of any of the formulas below to compute  

it: if in each of the n factors of the power (1 + X)
n

 one temporarily labels the term X with an index i (running 
from 1 to n), then each subset of k indices gives after expansion a contribution 

X
k

, and the coefficient of that monomial in the result will be the number of such subsets. This  

shows in particular that is a natural number for any natural numbers n and k. There are many 

other combinatorial interpretations of binomial coefficients (counting problems for which the 

answer is given by a binomial coefficient expression), for instance the number of words formed 

of n bits (digits 0 or 1) whose sum is k, but most of these are easily seen to be equivalent to 

counting k-combinations. 

 

Several methods exist to compute the value of without actually expanding a binomial power 

or counting k-combinations. 



 
 
 

Binomial Multinomial theorems: 
Binomial theorem: 
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. 

n 

involving terms of the form ax
b

y
c

, where the coefficient of each term is a positive integer, and 
the sum of the exponents of x and y in each term is n. For example,  

 
 

 
The coefficients appearing in the binomial expansion are known as binomial coefficients. They are 

the same as the entries of Pascal's triangle, and can be determined by a simple formula n−k k 
involving factorials. These numbers also arise in combinatorics, where the coefficient of x y 

is equal to the number of different combinations of k elements that can be chosen from an n-
element set. 

 

According to the theorem, it is possible to expand any power of x + y into a sum of the form  
 
 
 
 
 
 
 
 
 

 

where denotes the corresponding binomial coefficient. Using summation notation, 

the formula above can be written 
 
 
 
 
 
 

 

This formula is sometimes referred to as the Binomial Formula or the Binomial Identity. 

 

A variant of the binomial formula is obtained by substituting 1 for x and x for y, so that 
it involves only a single variable. In this form, the formula reads  

 
 
 
 
 

 

or equivalently      
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



EXAMPLE 

 

Simplify (x+v(x2-1)) + (x- v(x2-1))6 

 

Solution: let vx2-1 = a, so we have: 
(x=a)6 + (x-a)6 

 

= [x6+6C1x5.a+6C2.x4.a2 + 6C3x3a3 + 6C4x2a4 + 6C5xa5 +6C6a6] 

[x6-6C1x5a+6C2.x4.a2 – 6C3x3a3 + 6C4x2a4 – 6C5xa5 +6C6a6] 

 

2[x6+6C2x4a2+6C4x2a4+6C6a6] 

 

2[x6+15x4(x2-1)+15x2(x2-1)2+(x2-1)3] 

 

2[x6+15x6-15x4+15x6+15x2-30x4+x6-1-3x4+3x3]  
 

2[32x6-48x4+18x2-1]  
 

Multinomial theorem: 

 

In mathematics, the multinomial theorem says how to write a power of a sum in terms of powers 
of the terms in that sum. It is the generalization of the binomial theorem to polynomials. 

 

For any positive integer m and any nonnegative integer n, the multinomial formula tells us how a 
polynomial expands when raised to an arbitrary power:  

 
 
 
 
 

The summation is taken over all sequences of nonnegative integer indices k1 through km such 
the sum of all ki is n. That is, for each term in the expansion, the exponents must add up to n. 

Also, as with the binomial theorem, quantities of the form x
0

 that appear are taken to equal 1 
(even when x equals zero). Alternatively, this can be written concisely using multiindices as 

α α α α 

where α = (α1,α2,…,αm) and x = x1  1x2  2⋯xm  m.  
Example 

3 3 3 3 2
 

2
 

2
 

2
 

2
 

2 

(a + b + c) = a + b + c + 3a  b + 3a  c + 3b  a + 3b  c + 3c  a + 3c  b + 6abc. 

 

(a + b + c)
2

 = a
2

 + b 
2

 + c
2

 + 2ab + 2bc + 2ac, then self-multiplying it again to get (a + b + c)
3

 

(and then if we were raising it to higher powers, we'd multiply it by itself even some more). 



 
 
 

However this process is slow, and can be avoided by using the multinomial theorem. The multinomial 

theorem "solves" this process by giving us the closed form for any coefficient we might want. It is 
possible to "read off" the multinomial coefficients from the terms by using the multinomial 
coefficient formula. For example:  

 

a2b0c1 
 
 

 

a
1

b
1

c
1 

 
 
 

 

has the coefficient  
 
 
 
 

has the coefficient . 

 

We could have also had a 'd' variable, or even more variables—hence the multinomial theorem. 

 

The principles of Inclusion – Exclusion: 

 

Let denote the cardinality of set , then it follows immediately that 

 

(1)  
 

where denotes union, and denotes intersection. The more general statement  
 

(2) 
 
 

 

also holds, and is known as Boole's inequality. 

 

This formula can be generalized in the following beautiful manner. Let be a 

p-system of consisting of sets , ..., , then 
 

 

3 
 
 
 

where the sums are taken over k-subsets of . This formula holds for infinite sets  as well 

as finite sets. 
 

The principle of inclusion-exclusion was used by Nicholas Bernoulli to solve 

the recontres problem of finding the number of derangements. 

 

For example, for the three subsets , , and 
 

of , the following table summarizes the terms appearing 

the sum. 

 
 
 
 
 

 

    



       
 
 
 

 

# term set length 

1  2, 3, 7, 9, 10 5 

  1, 2, 3, 9 4 

  2, 4, 9, 10 4 

2  2, 3, 9 3 

  2, 9, 10 3 

  2, 9 2 

3  2, 9 2 
 

 

is therefore equal to, corresponding to the   

seven elements  . 

 

Pigeon hole principles and its application: 

 

The statement of the Pigeonhole Principle: 
 

 

If m pigeons are put into m pigeonholes, there is an empty hole iff there's a hole with more than 

one pigeon. 

 
 

If n > m pigeons are put into m pigeonholes, there's a hole with more than one pigeon. 
 
 
 

 

Example: 

 

Consider a chess board with two of the diagonally opposite corners removed. Is it possible to 
cover the board with pieces of domino whose size is exactly two board squares? 

 

Solution 

 

No, it's not possible. Two diagonally opposite squares on a chess board are of the same color. 
Therefore, when these are removed, the number of squares of one color exceeds by 2 the number 
of squares of another color. However, every piece of domino covers exactly two squares and 
these are of different colors. Every placement of domino pieces establishes a 1-1 correspondence 
between the set of white squares and the set of black squares. If the two sets have different 
number of elements, then, by the Pigeonhole Principle, no 1-1 correspondence between the two 
sets is possible. 

 
 
 
 
 
 
 
 
 
 

    



       
 
 
 
 
 

Generalizations of the pigeonhole principle 

 

A generalized version of this principle states that, if n discrete objects are to be allocated to m  

containers, then at least one container must hold no fewer than objects, where is the 

ceiling function, denoting the smallest integer larger than or equal to x. Similarly, at least one 

container must hold no more than objects, where is the floor function, denoting the 

largest integer smaller than or equal to x. 

 

A probabilistic generalization of the pigeonhole principle states that if n pigeons are randomly 
put into m pigeonholes with uniform probability 1/m, then at least one pigeonhole will hold more 
than one pigeon with probability  

 
 
 

 

where (m)n is the falling factorial m(m − 1)(m − 2)...(m − n + 1). For n = 0 and for n = 1 (and m 
 

> 0), that probability is zero; in other words, if there is just one pigeon, there cannot be a conflict. 
For n > m (more pigeons than pigeonholes) it is one, in which case it coincides with the ordinary 
pigeonhole principle. But even if the number of pigeons does not exceed the number of 
pigeonholes (n ≤ m), due to the random nature of the assignment of pigeons to pigeonholes there 
is often a substantial chance that clashes will occur. For example, if 2 pigeons are randomly 
assigned to 4 pigeonholes, there is a 25% chance that at least one pigeonhole will hold more than 
one pigeon; for 5 pigeons and 10 holes, that probability is 69.76%; and for 10 pigeons and 20 
holes it is about 93.45%. If the number of holes stays fixed, there is always a greater probability 
of a pair when you add more pigeons. This problem is treated at much greater length at birthday 
paradox. 

 

A further probabilistic generalisation is that when a real-valued random variable X has a finite 
mean E(X), then the probability is nonzero that X is greater than or equal to E(X), and similarly 
the probability is nonzero that X is less than or equal to E(X). To see that this implies the 
standard pigeonhole principle, take any fixed arrangement of n pigeons into m holes and let X be 
the number of pigeons in a hole chosen uniformly at random. The mean of X is n/m, so if there 
are more pigeons than holes the mean is greater than one. Therefore, X is sometimes at least 2. 

 

Applications: 

 

The pigeonhole principle arises in computer science. For example, collisions are inevitable in a 
hash table because the number of possible keys exceeds the number of indices in the array. No 
hashing algorithm, no matter how clever, can avoid these collisions. This principle also proves 
that any general-purpose lossless compression algorithm that makes at least one input file 
smaller will make some other input file larger. (Otherwise, two files would be compressed to the 
same smaller file and restoring them would be ambiguous.) 

 

A notable problem in mathematical analysis is, for a fixed irrational number a, to show that the 
set {[na]: n is an integer} of fractional parts is dense in [0, 1]. After a moment's thought, one 

 
 
 
 

 

    



       
 
 
 

 
finds that it is not easy to explicitly find in tegers , such that | − | < , where > 0 is a n m ∈  na m e e 

small positive number and a is some arbitrary irrational number. But if one takes M such that 

1/ M < e, by the pigeonhole principle there must be n1, n2 {1, 2, ..., M + 1} such that n1a and n2a are in 
the same integer subdivision of size 1/M (there are only M such subdivisions between consecutive  

integers) . In particular, we can find n1, n2 such that n1a is in (p + k/ M, p + (k + 1)/M), and n2a is in (q + k/M, q 
+ (k + 1)/M), for some p, q integers and k in {0, 1, ..., M − 1}. We can  
then easily verify that (n2 − n1)a is in (q − p − 1/M, q − p + 1/M). This implies that [na] < 1/M < e, where n = n2 − n1 or n = n1 − n2. 
This shows that 0 is a limit point of {[na]}. We can then use 

this fact to prove the case for p in (0, 1]: find n such that [na] < 1/M < e; then if p (0, 1/M], we 
are done. Otherwise in ( / , ( + 1)/ ], and by setting = sup{ : [ ] < / ∈  

∈  

|[(k + 1)na] − p| < 1/M < e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    



       
 
 
 
 
 

UNIT-IV 
 

Recurrence Relation 
 

Generating Functions: 
 
 

In mathematics, a generating function is a formal power series in one indeterminate, whose 

coefficients encode information about a sequence of numbers an that is indexed by the natural 

numbers. Generating functions were first introduced by Abraham de Moivre in 1730, in order to 
solve the general linear recurrence problem. One can generalize to formal power series in more 
than one indeterminate, to encode information about arrays of numbers indexed by several 
natural numbers. 

 

 

Generating functions are not functions in the formal sense of a mapping from a domain to a 
codomain; the name is merely traditional, and they are sometimes more correctly called 
generating series. 

 

Ordinary generating function  

The ordinary generating function of a sequence an is 
 
 
 
 
 
 

 

When the term generating function is used without qualification, it is usually taken to mean an 
ordinary generating function. 

 

If an is the probability mass function of a discrete random variable, then its ordinary generating 

function is called a probability-generating function. 

 

The ordinary generating function can be  generalized to arrays with multiple indices. For 

example, the ordinary generating function of a two-dimensional array am, n (where n and m are natural 
numbers) is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    



       
 
 
 
 
 

Example:  
 
 
 
 
 
 
 
 

 

Exponential generating function 

The exponential generating function of a sequence an is 
 
 
 
 

 

Example:  
 
 
 
 

 

Function of Sequences: 
 

Generating functions giving the first few powers of the nonnegative integers are given 
in the following table.  

series   
1 

 
 
 
 
 
 
 
 

 

There are many beautiful generating functions for special functions in number theory. 
A few particularly nice examples are  

 

(2)  
 

 

(3)  
 
 

(4)  
 
 
 
 
 
 
 
 
 
 
 

 

    



       
 
 
 

 

for the partition function P, where is a q-Pochhammer symbol, and  
 
 

(5)  
 

 

(6)  
 
 

(7)  
 

 

for the Fibonacci numbers . 

 

Generating functions are very useful in combinatorial enumeration problems. For example,  

the subset sum problem, which asks the number of ways to select out of given integers 

such that their sum equals , can be solved using generating functions. 

 

Calculating Coefficient of generating function: 
 
 

By using the following polynomial expansions, we can calculate the coefficient of a 
generating function. 

 
 

Polynomial Expansions: 
 

1 xm 1  
1)   1 x  x... x   

1 x 

1
 1 x  x  

2
 ... 

  

2) 1 x 
 

3) (1 x) 
n 

1 C( n,1) x C( n, 2) x 
2 

4) (1 x m ) n 1 C ( n,1) x 
m

 C ( n, 2) x 
2m 

 

  1 
1 C (1 n 1,1) x C(2    

5) 
 

(1 x) 
n 

        

6) If h(x)=f(x)g(x), where f(x)  0 1 2 

       a a x a x
2 

 h(x) a b ( a b a b ) x ( a b a b a b ) x 
2 

... 
  0 0 1 0 0 1 2 0 1 1  0 2   

 
 
 
 
 
 
 
 
 
 
 

 
 

... C( n, r) x 
r 

...  C( n, n) x 
n 

... ( 1) 
k

 C ( n, k ) x 
km 

... ( 1) 
n

 C ( n, n )x
nm 

n 1, 2) x 
2

  ... C( r n 1, r) x 
r
  ... 

and g(x) 0 1 2 , then 
... b b x b x... 

( a b a ba b ... a b ) x
r 

... 
r  0r  1 1 r  2 2 0 r    

 
 
 
 
 
 
 
 
 
 
 

 

    



        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Recurrence relations: 
 

 

Introduction :A recurrence relation is a formula that relates for any integer n ≥ 1, the n-th term 
of a sequence A = {ar}∞r=0 to one or more of the terms a0,a1,….,an-1. Example. If Sn denotes 
the sum of the first n positive integers, then 

 
 

10. Sn = n + Sn-1. Similarly if d is a real number, then the nth term of an arithmetic 
progression with common difference d satisfies the relation 

 
 

11. an = an -1 + d. Likewise if pn denotes the nth term of a geometric progression with 
common ratio r, then 

 
 
 
 

 

    



       
 
 
 
 
 

pn = r pn – 1. We list other examples  
as: an – 3an-1 + 2an-2 = 0.  
an – 3 an-1+ 2 an-2 = n2 + 1. 

 

an – (n - 1) an-1 - (n - 1) an-2 = 0.  
an – 9 an-1+ 26 an-2 – 24 an-3 = 5n.  
an – 3(an-1)2 + 2 an-2 = n. 

 

an = a0 an-1+ a1 an-2+ … + an- 
1a0. a2n + (an-1)2 = -1. 

 
 

 

Definition. Suppose n and k are nonnegative integers. A recurrence relation of the form c0(n)an  
+ c1(n)an-1 + …. + ck(n)an-k = f(n) for n ≥ k, where c0(n), c1(n),…., ck(n), and f(n) are 

functions of n is said to be a linear recurrence relation. If c0(n) and ck(n) are not identically 

zero, then it is said to be a linear recurrence relation degree k. If c0(n), c1(n),…., ck(n) are 

constants, then the recurrence relation is known as a linear relation with constant coefficients. 

If f(n) is identically zero, then the recurrence relation is said to be homogeneous; otherwise, it is 

inhomogeneous. 

 

Thus, all the examples above are linear recurrence relations except (8), (9), and (10); 
the relation (8), for instance, is not linear because of the squared term.  
The relations in (3), (4) , (5), and (7) are linear with constant coefficients. 

 
Relations (1), (2), and (3) have degree 1; (4), (5), and (6) have degree 2; (7) has degree 
3. Relations (3) , (4), and (6) are homogeneous. 

 

There are no general techniques that will enable one to solve all recurrence 
relations. There are, nevertheless, techniques that will enable us to solve linear recurrence 
relations with constant coefficients. 

 
 

SOLVING RECURRENCE RELATIONS BY 
SUSTITUTION AND GENERATING FUNCTIONS 

 
We shall consider four methods of solving recurrence relations in this and the 

next two sections:  
5. Substitution (also called iteration),  
6. Generating functions,  
7. Characteristics roots, and  
8. Undetermined coefficients. 

 

In the substitution method the recurrence relation for an is used repeatedly to solve for 
a general expression for an in terms of n. We desire that this expression involve no other 
terms of the sequence except those given by boundary conditions. 

 
The mechanics of this method are best described in terms of examples. We used 

this method in Example5.3.4. Let us also illustrate the method in the following examples. 
 
 
 
 
 
 
 

    



       
 
 
 
 
 

Example 

 

Solve the recurrence relation an = a n-1 + f(n) for n ³1 by substitution 

 

a1= a0 + f(1) 
 

a2 = a1 + f(2) = a0 + f(1) + f(2)) 

 

a3 = a2 + f(3)= a0 + f(1) + f(2) + f(3) 
. 
. 

. 
an = a0 + f(1) + f(2) +….+ 

f(n) n  
= a0 + ∑ f(k) 

 
K = 1 

 
Thus, an is just the sum of the f(k) „s plus a0. 

 

More generally, if c is a constant then we can solve an = c a n-1  + f(n) for n ³1 in the same way: 

 

a1 = c a0 + f(1) 
 

a2 = c a1 + f(2) = c (c a0 + f(1)) + 
f(2) = c2 a0 + c f(1) + f(2) 

 

a3= c a2 + f(3) = c(c 2 a0 + c f(1) + f(2)) + 
f(3) =c3 a0 + c2 f(1) + c f(2) + f(3)  
. 

 
. 

 
. 

 
an = c a n -1 + f(n) = c(c n-1 a0 + c n-2 f(1) +. . . + c n -2 + f(n-1)) 

+ f(n) =c n a0 + c n-1 f(1) + c n-2 f(2) +. . .+ c f(n-1) + f(n)  
Or 

 
an = c n a0 + ∑c n-k f(k) 

 

Solution of Linear Inhomogeneous Recurrence Relations: 
 

 

The equation + 1 −1+ 2 −2=( ), where 1and 2 are constant, and ( ) is not identically 

0, is called a second-order linear inhomogeneous recurrence relation (or difference equation) with 

constant coefficients. The homogeneous case, which we‟ve looked at already, occurs when 
 

( )≡0. The inhomogeneous case occurs more frequently. The homogeneous case is so important 
largely because it gives us the key to solving the inhomogeneous equation. If you‟ve studied 
linear differential equations with constant coefficients, you‟ll see the parallel. We will call the 

 
 
 
 
 
 
 
 

 

    



       
 
 
 
 

 

difference obtained by setting the right-hand side equal to 0, the ―associated homogeneous 

equation.‖ We know how to solve this. Say that  is a solution. Now suppose that ( ) is any 

particular solution of the inhomogeneous equation. (That is, it solves the equation, but does not 

necessarily match the initial data.) Then = +( ) is a solution to the inhomogeneous 

equation, which you can see simply by substituting  into the equation. On the other hand, every 

solution  of the inhomogeneous equation is of the form = +(  ) where  is a solution of 

the homogeneous equation, and ( ) is a particular solution of the inhomogeneous equation. 

The proof of this is straightforward. If we have two solutions to the inhomogeneous equation, 

say  1 and 2, then their difference 1− 2=  is a solution to the homogeneous equation, 

which you can check by substitution. But then  1=  +  2, and we can set  2=(  ), since by 

assumption,  2 is a particular solution. This leads to the following theorem: the general 

solution to the inhomogeneous equation is the general solution to the associated 

homogeneous equation, plus any particular solution to the inhomogeneous equation. This 

gives the following procedure for solving the inhomogeneous equation: 
 

4. Solve the associated homogeneous equation by the method we‟ve learned. This will involve 
variable (or undetermined) coefficients. 

 
5. Guess a particular solution to the inhomogeneous equation. It is because of the guess that I‟ve 
called this a procedure, not an algorithm. For simple right-hand sides , we can say how to 
compute a particular solution, and in these cases, the procedure merits the name ―algorithm.‖ 

 
6. The general solution to the inhomogeneous equation is the sum of the answers from the two 
steps above. 

 
7. Use the initial data to solve for the undetermined coefficients from step 1. 

 

To solve the equation  − 6 −1 + 8 −2 = 3. Let‟s suppose that we are also given the initial 
 

data 0 = 3, 1 = 3. The associated homogeneous equation is  − 6 −1 + 8 −2 = 0, so the 

characteristic equation is 2 − 6  + 8 = 0, which has roots 1 = 2 and 2 = 4. Thus, the general 

solution to the associated homogeneous equation is 12  + 24 . When the right-hand side is a 

polynomial, as in this case, there will always be a particular solution that is a polynomial. 
 

Usually, a polynomial of the same degree will work, so we‟ll guess in this case that there is a 
 

constant  that solves the homogeneous equation. If that is so, then  =  −1 =  −2 = , 

and substituting into the equation gives  − 6  + 8  = 3, and we find that  = 1. Now, the 

general solution to the inhomogeneous equations is 12  + 24  + 1. Reassuringly, this is the 

answer given in the back of the book. Our initial data lead to the equations 1 + 2 + 1 = 3 and 

2  1 + 4  2 + 1 = 3, whose solution is  1 = 3,  2 = −1. Finally, the solution to the 
 

inhomogeneous equation, with the initial condition given, is  = 3 ∙ 2  − 4  + 1. Sometimes, a 

polynomial of the same degree as the right-hand side doesn‟t work. This happens when the 

characteristic equation has 1 as a root. If our equation had been  − 6  −1 + 5 −2 = 3, 

when we guessed that the particular solution was a constant  , we‟d have arrived at the 

equation  − 6  + 5  = 3, or 0 = 3. The way to deal with this is to increase the degree of the 

polynomial. Instead of assuming that the solution is constant, we‟ll assume that it‟s linear. In 

fact, we‟ll guess that it is of the form 
 
 
 

 

    



       
 
 
 
 

 

= . Then we have −6 −1 +5 −2 =3, which simplifies to 6 −10 =3 so that   
=−34 . Thus,  = −3 4 . This won‟t be enough if 1 is a root of multiplicity 2, that is, if   
−1 2 is a factor of the characteristic polynomial. Then there is a particular solution of the form 

 = 2. For second-order equations, you never have to go past this. If the right-hand side is a 

polynomial of degree greater than 0, then the process works juts the same, except that you start 

with a polynomial of the same degree, increase the degree by 1, if necessary, and then once 
 

more, if need be. For example, if the right-hand side were  =2  −1, we would start by  
guessing a particular solution  = 1 + 2. If it turned out that 1 was a characteristic root, 

 
we would amend our guess to  = 1 2+ 2 + 3. If 1 is a double root, this will fail also,  
but  = 1 3+ 2 2+ 3 + 4 will work in this case. 

 

Another case where there is a simple way of guessing a particular solution is when the right-  

hand side is an exponential, say  = . In that case, we guess that a particular solution is just  

a constant multiple of , say ( )= . Again, we gave trouble when 1 is a characteristic root.  
We then guess that  = , which will fail only if 1 is a double root. In that case we must  
use  = 2 , which is as far as we ever have to go in the second-order case. These same 

ideas extend to higher-order recurrence relations, but we usually solve them numerically, rather 

than exactly. A third-order linear difference equation with constant coefficients leads to a cubic 

characteristic polynomial. There is a formula for the roots of a cubic, but it‟s very complicated. 
 

For fourth-degree polynomials, there‟s also a formula, but it‟s even worse. For fifth and higher 

degrees, no such formula exists. Even for the third-order case, the exact solution of a simple-
looking inhomogeneous linear recurrence relation with constant coefficients can take pages to 

write down. The coefficients will be complicated expressions involving square roots and cube 
 

roots. For most, if not all, purposes, a simpler answer with numerical coefficients is better, even 
though they must in the nature of things, be approximate. 

 

The procedure I‟ve suggested may strike you as silly. After all, we‟ve already solved the 

characteristic equation, so we know whether 1 is a characteristic root, and what it‟s multiplicity 

is. Why not start with a polynomial of the correct degree? This is all well and good, while 

you‟re taking the course, and remember the procedure in detail. However, if you have to use this 

procedure some years from now, you probably won‟t remember all the details. Then the method 

I‟ve suggested will be valuable. Alternatively, you can start with a general polynomial of the 

maximum possible degree This leads to a lot of extra work if you‟re solving by hand, but it‟s 

the approach I prefer for computer solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    



       
 
 
 
 
 

UNIT V 
 

Graph Theory 
 

Representation of Graphs: 
 

There are two different sequential representations of a graph. They are 

 

Adjacency Matrix representation   

Path Matrix representation  

 

Adjacency Matrix Representation 
 

Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been 
ordered and are called v1, v2, . . . , vm. Then the adjacency matrix A = (aij) of the graph G is the 
m x m matrix defined as follows: 

 

1 if vi is adjacent to Vj, that is, if there is an edge (Vi, Vj) 
aij =0 otherwise 

 
Suppose G is an undirected graph. Then the adjacency matrix A of G will be 

a symmetric matrix, i.e., one in which aij = aji; for every i and j. 

 

Drawbacks  
12. It may be difficult to insert and delete nodes in G. 

 
13. If the number of edges is 0(m) or 0(m log2 m), then the matrix A will be sparse, hence 

a great deal of space will be wasted. 

 

Path Matrix Represenation 
 

Let G be a simple directed graph with m nodes, v1,v2, . . . ,vm. The path matrix of G is 
the m-square matrix P = (pij) defined as follows:  

1 if there is a path from Vi to Vj 
Pij =0 otherwise 

 

Graphs and Multigraphs  
A graph G consists of two things:  

 
 
 

 

1.A set V of elements called nodes (or points or vertices) 

 

2.A set E of edges such that each edge e in E is identified with a unique 
 
 

(unordered) pair [u, v] of nodes in V, denoted by e = [u, v] 
 
 
 
 

 

    



       
 
 
 

 

Sometimes we indicate the parts of a graph by writing G = (V, E). 
 

Suppose e = [u, v]. Then the nodes u and v are called the endpoints of e, and u and v are said 

to be adjacent nodes or neighbors. The degree of a node u, written deg(u), is the number of 

edges containing u. If deg(u) = 0 — that is, if u does not belong to any edge—then u is called 

an isolated node. 

 

Path and Cycle 
 

A path P of length n from a node u to a node v is defined as a sequence of n + 1 nodes. P 
= (v0, v1, v2, . . . , vn) such that u = v0; vi-1 is adjacent to vi for i = 1,2, . . ., n and vn = v.  
Types of Path 

 

1. Simple Path  
2. Cycle Path 

 

(i) Simple Path  
Simple path is a path in which first and last vertex are different (V0 ≠ Vn) 

 

(ii) Cycle Path 
 

Cycle path is a path in which first and last vertex are same (V0 = Vn).It is also 
called as Closed path.  

Connected Graph  
A graph G is said to be connected if there is a path between any two of its nodes. 

 

Complete Graph  
A graph G is said to be complete if every node u in G is adjacent to every other node v in G.  

Tree  
A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree. 

 

Labeled or Weighted Graph 
 

If the weight is assigned to each edge of the graph then it is called as 
Weighted or Labeled graph. 

 

The definition of a graph may be generalized by permitting the following: 

 

Multiple edges: Distinct edges e and e' are called multiple edges if they connect the same 
endpoints, that is, if e = [u, v] and e' = [u, v].  

Loops: An edge e is called a loop if it has identical endpoints, that is, if e = [u, u]. 
 

Finite Graph:A multigraph M is said to be finite if it has a finite number of nodes and a 
finite number of edges.  

 
 
 
 
 
 
 
 
 

 

    



       
 
 
 
 
 

Directed Graphs  
 

A directed graph G, also called a digraph or graph is the same as a multigraph except that each 
edge e in G is assigned a direction, or in other words, each edge e is identified with an ordered 
pair (u, v) of nodes in G. 

 

Outdegree and Indegree  
Indegree : The indegree of a vertex is the number of edges for which v is head 

 

Example 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Indegree of 1 = 1 
Indegree pf 2 = 2  

Outdegree :The outdegree of a node or vertex is the number of edges for which v is tail. 
 

Example  
 
 
 
 

 

Outdegree of 1 =1 
 

Outdegree of 2 =2 
 

Simple Directed Graph 

 

A directed graph G is said to be simple if G has no parallel edges. A simple graph 
G may have loops, but it cannot have more than one loop at a given node. 

 

Graph Traversal 
 

 

The breadth first search (BFS) and the depth first search (DFS) are the two algorithms used for 
traversing and searching a node in a graph. They can also be used to find out whether a node is 
reachable from a given node or not. 

 

 
                
 
 
 
 
 



Breadth First Search 

Breadth First Search (BFS) starts at starting level-0 vertex XX of the graph GG. Then we visit all the 

vertices that are the neighbors of XX. After visiting, we mark the vertices as "visited," and place them into 

level-1. Then we start from the level-1 vertices and apply the same method on every level-1 vertex and so 

on. The BFS traversal terminates when every vertex of the graph has been visited. 

BFS Algorithm 

The concept is to visit all the neighbor vertices before visiting other neighbor vertices of neighbor vertices. 

 Initialize status of all nodes as “Ready”. 

 Put source vertex in a queue and change its status to “Waiting”. 

 Repeat the following two steps until queue is empty − 

o Remove the first vertex from the queue and mark it as “Visited”. 

o Add to the rear of queue all neighbors of the removed vertex whose status is “Ready”. Mark their 

status as “Waiting”. 

Problem 

Let us take a graph (Source vertex is ‘a’) and apply the BFS algorithm to find out the traversal order. 

 

Solution − 

 Initialize status of all vertices to “Ready”. 

 Put a in queue and change its status to “Waiting”. 

 Remove a from queue, mark it as “Visited”. 

 Add a’s neighbors in “Ready” state b, d and e to end of queue and mark them as “Waiting”. 

 Remove b from queue, mark it as “Visited”, put its “Ready” neighbor cat end of queue and mark c as 

“Waiting”. 

 Remove d from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 

 Remove e from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 



 Remove c from queue and mark it as “Visited”. It has no neighbor in “Ready” state. 

 Queue is empty so stop. 

So the traversal order is − 

a→b→d→e→ca→b→d→e→c 

The alternate orders of traversal are − 

a→b→e→d→ca→b→e→d→c 

Or, a→d→b→e→ca→d→b→e→c 

Or, a→e→b→d→ca→e→b→d→c 

Or, a→b→e→d→ca→b→e→d→c 

Or, a→d→e→b→ca→d→e→b→c 

Application of BFS  

 Finding the shortest path 

 Minimum spanning tree for un-weighted graph 

 GPS navigation system 

 Detecting cycles in an undirected graph 

 Finding all nodes within one connected component 

 
 

DFS Algorithm 

The concept is to visit all the neighbor vertices of a neighbor vertex before visiting the other neighbor 

vertices. 

 Initialize status of all nodes as “Ready” 

 Put source vertex in a stack and change its status to “Waiting” 

 Repeat the following two steps until stack is empty − 

o Pop the top vertex from the stack and mark it as “Visited” 

o Push onto the top of the stack all neighbors of the removed vertex whose status is “Ready”. Mark their status as 

“Waiting”. 

Problem 

Let us take a graph (Source vertex is ‘a’) and apply the DFS algorithm to find out the traversal order. 



 

Solution 

 Initialize status of all vertices to “Ready”. 

 Push a in stack and change its status to “Waiting”. 

 Pop a and mark it as “Visited”. 

 Push a’s neighbors in “Ready” state e, d and b to top of stack and mark them as “Waiting”. 

 Pop b from stack, mark it as “Visited”, push its “Ready” neighbor conto stack. 

 Pop c from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Pop d from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Pop e from stack and mark it as “Visited”. It has no “Ready” neighbor. 

 Stack is empty. So stop. 

So the traversal order is − 

a→b→c→d→ea→b→c→d→e 

The alternate orders of traversal are − 

a→e→b→c→da→e→b→c→d 

Or, a→b→e→c→da→b→e→c→d 

Or, a→d→e→b→ca→d→e→b→c 

Or, a→d→c→e→ba→d→c→e→b 

Or, a→d→c→b→e 
 

    



       
 
 
 

Spanning Trees: 
 

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G 

is a tree composed of all the vertices and some (or perhaps all) of the edges of G. Informally, a 

spanning tree of G is a selection of edges of G that form a tree spanning every vertex. That is, 

every vertex lies in the tree, but no cycles (or loops) are formed. On the other hand, every bridge 

of G must belong to T. 
 

 

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that 
contains no cycle, or as a minimal set of edges that connect all vertices.  
Example:  

 
 
 
 
 
 
 
 
 
 
 
 
 

                A spanning tree of a connected undirected graph GG is a tree that minimally includes all of the vertices 

of GG. A graph may have many spanning trees. 

Example 

 



Minimum Spanning Tree 

A spanning tree with assigned weight less than or equal to the weight of every possible spanning tree of a weighted, 

connected and undirected graph GG, it is called minimum spanning tree (MST). The weight of a spanning tree is the 

sum of all the weights assigned to each edge of the spanning tree. 

Example 

 

Kruskal's Algorithm 

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted graph. It 

finds a tree of that graph which includes every vertex and the total weight of all the edges in the tree is less than or 

equal to every possible spanning tree. 

Algorithm 

Step 1 − Arrange all the edges of the given graph G(V,E)G(V,E) in non-decreasing order as per their edge weight. 

Step 2 − Choose the smallest weighted edge from the graph and check if it forms a cycle with the spanning tree 

formed so far. 

Step 3 − If there is no cycle, include this edge to the spanning tree else discard it. 

Step 4 − Repeat Step 2 and Step 3 until (V−1)(V−1) number of edges are left in the spanning tree. 

Problem 

Suppose we want to find minimum spanning tree for the following graph G using Kruskal’s algorithm. 



 

Solution 

From the above graph we construct the following table − 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E1 (a, b) 20 

E2 (a, c) 9 

E3 (a, d) 13 

E4 (b, c) 1 

E5 (b, e) 4 

E6 (b, f) 5 

E7 (c, d) 2 

E8 (d, e) 3 

E9 (d, f) 14 

Now we will rearrange the table in ascending order with respect to Edge weight − 

Edge 

No. 

Vertex 

Pair 

Edge 

Weight 

E4 (b, c) 1 

E7 (c, d) 2 

E8 (d, e) 3 



E5 (b, e) 4 

E6 (b, f) 5 

E2 (a, c) 9 

E3 (a, d) 13 

E9 (d, f) 14 

E1 (a, b) 20 





 

Since we got all the 5 edges in the last figure, we stop the algorithm and this is the minimal spanning tree and its 

total weight is (1+2+3+5+9)=20(1+2+3+5+9)=20. 

Prim's Algorithm 

Prim's algorithm, discovered in 1930 by mathematicians, Vojtech Jarnik and Robert C. Prim, is a greedy algorithm 

that finds a minimum spanning tree for a connected weighted graph. It finds a tree of that graph which includes 

every vertex and the total weight of all the edges in the tree is less than or equal to every possible spanning tree. 

Prim’s algorithm is faster on dense graphs. 

Algorithm 

 Initialize the minimal spanning tree with a single vertex, randomly chosen from the graph. 

 Repeat steps 3 and 4 until all the vertices are included in the tree. 

 Select an edge that connects the tree with a vertex not yet in the tree, so that the weight of the edge is 

minimal and inclusion of the edge does not form a cycle. 

 Add the selected edge and the vertex that it connects to the tree. 

Problem 

Suppose we want to find minimum spanning tree for the following graph G using Prim’s algorithm. 



 

Solution 

Here we start with the vertex ‘a’ and proceed. 





 

This is the minimal spanning tree and its total weight is (1+2+3+5+9)=20(1+2+3+5+9)=20. 
 

 

A spanning tree (blue heavy edges) of a grid graph.  
Spanning forests 

 
 

A spanning forest is a type of subgraph that generalises the concept of a spanning tree. 

However, there are two definitions in common use. One is that a spanning forest is a subgraph 

that consists of a spanning tree in each connected component of a graph. (Equivalently, it is a 

maximal cycle-free subgraph.) This definition is common in computer science and optimisation. 

It is also the definition used when discussing minimum spanning forests, the generalization to 

disconnected graphs of minimum spanning trees. Another definition, common in graph theory, is 

that a spanning forest is any subgraph that is both a forest (contains no cycles) and spanning 

(includes every vertex). 

 

 

 



Counting spanning trees 
 
 

The number t(G) of spanning trees of a connected graph is an important invariant. In some cases, 
it is easy to calculate t(G) directly. It is also widely used in data structures in different computer 

languages. For example, if G is itself a tree, then t(G)=1, while if G is the cycle graph Cn with n  
vertices, then t(G)=n. For any graph G, the number t(G) can be calculated using Kirchhoff's 
matrix-tree theorem (follow the link for an explicit example using the theorem).  

Cayley's formula is a formula for the number of spanning trees in the complete graph Kn with n 

vertices. The formula states that t(Kn) = n
n

 
−

 
2

. Another way of stating Cayley's formula is that  

there are exactly n
n

 
−

 
2

 labelled trees with n vertices. Cayley's formula can be proved using 

Kirchhoff's matrix-tree theorem or via the Prüfer code. 
 

If G is the complete bipartite graph Kp,q, then t(G) = p
q

 
−

 
1

q
p

 
−

 
1

, while if G is the n-dimensional 
 
 

hypercube graph Qn, then . These formulae are also consequences 
 

of the matrix-tree theorem. 
 

 

If G is a multigraph and e is an edge of G, then the number t(G) of spanning trees of G satisfies 

the deletion-contraction recurrence t(G)=t(G-e)+t(G/e), where G-e is the multigraph obtained by 

deleting e and G/e is the contraction of G by e, where multiple edges arising from 



 

this contraction are not deleted. 

 

Uniform spanning trees 
 
 

A spanning tree chosen randomly from among all the spanning trees with equal probability is 
called a uniform spanning tree (UST). This model has been extensively researched in probability 
and mathematical physics.  
Algorithms  
The classic spanning tree algorithm, depth-first search (DFS), is due to Robert Tarjan. Another 
important algorithm is based on breadth-first search (BFS).  

Planar Graphs: 
 

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be 
drawn on the plane in such a way that its edges intersect only at their endpoints. 

 

A planar graph already drawn in the plane without edge intersections is called a plane graph or 

planar embedding of the graph. A plane graph can be defined as a planar graph with a 

mapping from every node to a point in 2D space, and from every edge to a plane curve, such that 

the extreme points of each curve are the points mapped from its end nodes, and all curves are 

disjoint except on their extreme points. Plane graphs can be encoded by combinatorial maps. 
 

It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as 
well, and vice versa. 

 

The equivalence class of topologically equivalent drawings on the sphere is called a planar 
map. Although a plane graph has an external or unbounded face, none of the faces of a planar 
map have a particular status. 

 

Applications 
 

Telecommunications – e.g. spanning trees   
Vehicle routing – e.g. planning routes on roads without underpasses VLSI 

– e.g. laying out circuits on computer chip. 
  

The puzzle game Planarity requires the player to "untangle" a planar graph so that none of 
its edges intersect. 

       
 
 
 
 
 

Example graphs 

 

planar non planar  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Graph Theory and Applications: 
 

Graphs are among the most ubiquitous models of both natural and human-made structures. They 
can be used to model many types of relations and process dynamics in physical, biological and 
social systems. Many problems of practical interest can be represented by graphs. 

 



 

In computer science, graphs are used to represent networks of communication, data organization, 

computational devices, the flow of computation, etc. One practical example: The link structure of 

a website could be represented by a directed graph. The vertices are the web pages available at 

the website and a directed edge from page A to page B exists if and only if A contains a link to B. 

A similar approach can be taken to problems in travel, biology, computer chip design, and many 

other fields. The development of algorithms to handle graphs is therefore of major interest in 

computer science. There, the transformation of graphs is often formalized and represented by 

graph rewrite systems. They are either directly used or properties of the rewrite systems (e.g. 

confluence) are studied. Complementary to graph transformation systems focussing on rule-

based in-memory manipulation of graphs are graph databases geared towards transaction-safe, 

persistent storing and querying of graph-structured data. 
 

 

Graph-theoretic methods, in various forms, have proven particularly useful in linguistics, since 

natural language often lends itself well to discrete structure. Traditionally, syntax and 

compositional semantics follow tree-based structures, whose expressive power lies in the 

Principle of Compositionality, modeled in a hierarchical graph. Within lexical semantics, 

especially as applied to computers, modeling word meaning is easier when a given word is 

understood in terms of related words; semantic networks are therefore important in 

computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which uses 

lattice graphs) and morphology (e.g. finite-state morphology, using finite-state transducers) are 

common in the analysis of language as a graph. Indeed, the usefulness of this area of 

mathematics to linguistics has borne organizations such as TextGraphs, as well as various 'Net' 

projects, such as WordNet, VerbNet, and others. 
 
 
 
 
 

 

    



       
 
 
 
 
 

Graph theory is also used to study molecules in chemistry and physics. In condensed matter 

physics, the three dimensional structure of complicated simulated atomic structures can be 

studied quantitatively by gathering statistics on graph-theoretic properties related to the topology 

of the atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a graph makes a 

natural model for a molecule, where vertices represent atoms and edges bonds. This approach is 

especially used in computer processing of molecular structures, ranging from chemical editors to 

database searching. In statistical physics, graphs can represent local connections between 

interacting parts of a system, as well as the dynamics of a physical process on such systems. 
 

 

Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige 

or to explore diffusion mechanisms, notably through the use of social network analysis 

software.Likewise, graph theory is useful in biology and conservation efforts where a vertex can 

represent regions where certain species exist (or habitats) and the edges represent migration 

paths, or movement between the regions. This information is important when looking at breeding 

patterns or tracking the spread of disease, parasites or how changes to the movement can affect 

other species. 
 
 

In mathematics, graphs are useful in geometry and certain parts of topology, e.g. Knot Theory. 
Algebraic graph theory has close links with group theory. 

 

 

A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with 

weights, or weighted graphs, are used to represent structures in which pairwise connections have 
some numerical values. For example if a graph represents a road network, the weights could 

represent the length of each road.  

Basic Concepts Isomorphism: 
 

Let G1 and G1 be two graphs and let f be a function from the vertex set of G1 to the vertex set of 
G2. Suppose that f is one-to-one and onto & f(v) is adjacent to f(w) in G2 if and only if v is 
adjacent to w in G1. 

 

 

Then we say that the function f is an isomorphism and that the two graphs G1 and G2 are 

isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence 

between vertices of G1 and those of G2 with the property that if two vertices of G1 are adjacent 

then so are their images in G2. If two graphs are isomorphic then as far as we are concerned they 

are the same graph though the location of the vertices may be different. To show you how the 

program can be used to explore isomorphism draw the graph in figure 4 with the program (first 

get the null graph on four vertices and then use the right mouse to add edges). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    



       
 
 
 
 
 
 

Save this graph as Graph 1 (you need to click Graph then Save). Now get the circuit graph with 4 
vertices. It looks like figure 5, and we shall call it C(4). 

 

Example: 

 

The two graphs shown below are isomorphic, despite their different looking drawings. 

 

Graph G Graph H An isomorphism 

  between G and H 

   

  ƒ(a) = 1 

  ƒ(b) = 6 

  ƒ(c) = 8 

  ƒ(d) = 3 

  ƒ(g) = 5 

  ƒ(h) = 2 

  ƒ(i) = 4 

  ƒ(j) = 7 
    

 

Subgraphs: 
 

 

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose 
adjacency relation is a subset of that of G restricted to this subset. In the other direction, a 

supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains 

another graph H if some subgraph of G is H or is isomorphic to H. 

 

A subgraph H is a spanning subgraph, or factor, of a graph G if it has the same vertex set as G. 
We say H spans G. 

 

 

A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of H, xy is an 

edge of H if and only if xy is an edge of G. In other words, H is an induced subgraph of G if it 

has all the edges that appear in G over the same vertex set. If the vertex set of H is the subset S of 

V(G), then H can be written as G[S] and is said to be induced by S. 
 
 
 
 
 

 

    



       
 
 
 
 
 

A graph that does not contain H as an induced subgraph is said to be H-free. 
 

A universal graph in a class K of graphs is a simple graph in which every element in K can be 
embedded as a subgraph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

K5, a complete graph. If a subgraph looks like this, the vertices in that subgraph form a clique 

of size 5. 

 

Multi graphs: 
 
 

In mathematics, a multigraph or pseudograph is a graph which is permitted to have multiple 

edges, (also called "parallel edges"), that is, edges that have the same end nodes. Thus two 

vertices may be connected by more than one edge. Formally, a multigraph G is an ordered pair 

G:=(V, E) with 

 

V a set of vertices or nodes,   
E a multiset of unordered pairs of vertices, called edges or lines.  

 
 

Multigraphs might be used to model the possible flight connections offered by an airline. In this 
case the multigraph would be a directed graph with pairs of directed parallel edges connecting 
cities to show that it is possible to fly both to and from these locations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    



       
 
 
 
 

 

A multigraph with multiple edges (red) and a loop (blue). Not all authors allow multigraphs to have 
loops. 

 

Euler circuits: 
 

 

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once. 

Similarly, an Eulerian circuit is an Eulerian trail which starts and ends on the same vertex. They 

were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg 

problem in 1736. Mathematically the problem can be stated like this: 
 
 

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting 
and ending on the same vertex) which visits each edge exactly once? 

 

 

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in 

the graph have an even degree, and stated without proof that connected graphs with all vertices 

of even degree have an Eulerian circuit. The first complete proof of this latter claim was 

published in 1873 by Carl Hierholzer. 
 

 

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph 
with an Eulerian circuit, and the other is a graph with every vertex of even degree. These 
definitions coincide for connected graphs. 

 

 

For the existence of Eulerian trails it is necessary that no more than two vertices have an odd 

degree; this means the Königsberg graph is not Eulerian. If there are no vertices of odd degree, 

all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails 

start at one of them and end at the other. Sometimes a graph that has an Eulerian trail but not an 

Eulerian circuit is called semi-Eulerian. 
 
 

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses each 
edge exactly once. If such a path exists, the graph is called traversable or semi-eulerian. 

 

 

An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that uses 
each edge exactly once. If such a cycle exists, the graph is called unicursal. While such graphs 
are Eulerian graphs, not every Eulerian graph possesses an Eulerian cycle. 

 

For directed graphs path has to be replaced with directed path and cycle with directed cycle. 
 
 

The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as 
well. 

 
 
 
 
 
 
 
 
 

 

    



        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This graph is not Eulerian, therefore, a solution does not exist.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Every vertex of this graph has an even degree, therefore this is an Eulerian graph. Following the edges in 
alphabetical order gives an Eulerian circuit/cycle. 

 

Hamiltonian graphs: 
 

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in 

an undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or 

Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex exactly once and 

also returns to the starting vertex. Determining whether such paths and cycles exist in graphs is 

the Hamiltonian path problem which is NP-complete. 
 

 

Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the 

Icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian cycle 

in the edge graph of the dodecahedron. Hamilton solved this problem using the Icosian Calculus, 

an algebraic structure based on roots of unity with many similarities to the quaternions (also 

invented by Hamilton). This solution does not generalize to arbitrary graphs. 
 

 

A Hamiltonian path or traceable path is a path that visits each vertex exactly once. A graph that 
contains a Hamiltonian path is called a traceable graph. A graph is Hamilton-connected if for 
every pair of vertices there is a Hamiltonian path between the two vertices. 

 
 
 
 

 

    



       
 
 
 
 

 

A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each 
vertex exactly once (except the vertex which is both the start and end, and so is visited twice). 
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. 

 

 

Similar notions may be defined for directed graphs, where each edge (arc) of a path or cycle can 
only be traced in a single direction (i.e., the vertices are connected with arrows and the edges 
traced "tail-to-head"). 

 

A Hamiltonian decomposition is an edge decomposition of a graph into Hamiltonian circuits. 

 

Examples 
 

a complete graph with more than two vertices is Hamiltonian 

every cycle graph is Hamiltonian 
  

every tournament has an odd number of Hamiltonian paths every 
platonic solid, considered as a graph, is Hamiltonian  

 

Chromatic Numbers: 
 

 

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels 

traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest 

form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the 

same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each 

edge so that no two adjacent edges share the same color, and a face coloring of a planar graph 

assigns a color to each face or region so that no two faces that share a boundary have the same 

color. 
 

 

Vertex coloring is the starting point of the subject, and other coloring problems can be 

transformed into a vertex version. For example, an edge coloring of a graph is just a vertex 

coloring of its line graph, and a face coloring of a planar graph is just a vertex coloring of its 

planar dual. However, non-vertex coloring problems are often stated and studied as is. That is 

partly for perspective, and partly because some problems are best studied in non-vertex form, as 

for instance is edge coloring. 
 

 

The convention of using colors originates from coloring the countries of a map, where each face 

is literally colored. This was generalized to coloring the faces of a graph embedded in the plane. 

By planar duality it became coloring the vertices, and in this form it generalizes to all graphs. In 

mathematical and computer representations it is typical to use the first few positive or 

nonnegative integers as the "colors". In general one can use any finite set as the "color set". The 

nature of the coloring problem depends on the number of colors but not on what they are. 
 
 

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the 
classical types of problems, different limitations can also be set on the graph, or on the way a 

 
 
 
 

 

    



       
 
 
 
 

 

color is assigned, or even on the color itself. It has even reached popularity with the general 
public in the form of the popular number puzzle Sudoku. Graph coloring is still a very active 
field of research.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible. 

 

Vertex coloring 
 
 

When used without any qualification, a coloring of a graph is almost always a proper vertex 

coloring, namely a labelling of the graph’s vertices with colors such that no two vertices sharing 

the same edge have the same color. Since a vertex with a loop could never be properly colored, it 

is understood that graphs in this context are loopless. 
 

 

The terminology of using colors for vertex labels goes back to map coloring. Labels like red and 
blue are only used when the number of colors is small, and normally it is understood that the 
labels are drawn from the integers {1,2,3,...}. 

 

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors 

needed to color a graph G is called its chromatic number, χ(G). A graph that can be assigned a 

(proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k. A 

subset of vertices assigned to the same color is called a color class, every such class forms an 

independent set. Thus, a k-coloring is the same as a partition of the vertex set into k independent 

sets, and the terms k-partite and k-colorable have the same meaning.  
 
 
 
 
 
 
 
 
 

 

    



       
 
 
 
 
 

This graph can be 3-colored in 12 different ways. 
 

The following table gives the chromatic number for familiar classes of graphs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

graph  complete graph  cycle graph ,  

 

star graph , 2 
 

   

wheel graph  , 

 , 2 
  
   

wheel graph  , 
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