L1 INTRODUCTION TO SOFTWARE ENGINEERING

The Evolving Role of Software:

Software can be considered in a dual role. It is a product and, a vehicle for
delivering a product.
As a product, it delivers the computing potential in material form of computer
hardware.

Ex: A network of computers accessible by local hardware, whether it resides

within a cellular phone or operates inside a mainframe computer.

As the vehicle, used to deliver the product. Software delivers the most important
product of our time—information. Software transforms personal data; 1t manages
business information to enhance competitiveness; it provides a gateway to
worldwide information networks (e.g., Internet) and provides tne means for
acquiring information in all of its forms.
Software acts as the basis for operating systems, networks, software tools and
environments,

Changing Nature of Software:

The following categories of computer software present the challenges for the
software.

System software:

System software 18 a collection of programs written to service other
programs.

Ex: Compilers, editors, and file management utilities. Operating
system components, drivers, Telecommunications processors
process argely indeterminate data.

Application Software:

Application Software consists of standalone programs that solve a
specific business need.

Ex: Point of sale transaction processing, real time manufacturing
process control.

Engineering and Scientific Software:

This is the software using “number crunching™ algorithms for different
science and applications.
System simulation, computer-aided design.

Embedded Software:

Embedded software resides in read-only memory and is vused to control
products and svstems for the consumer and industrial markets.
It has very limited and mysterious functions and control capability.

Product-line software:

It is designed to provide a specific facility for use by many different
customers.

Ex: Inventory control products, word processing, spreadsheets, graphics,
multimedia.

Web-based software:
The Web pages retrieved by a browser are software that includes

executable instructions
Ex: HTML, Perl, or Java

Artificial Intelligence (Al) Software:
Al software makes use of non numerical algornithms to solve complex

problems.
Active areas are expert systems, pattern recognition, games.

SOFTWARE MYTHS N | ‘
Software myths will circulate misinformation and confusion, they appeared to be

reasonable statements of fact (some times containing truths), but they had a sensitive feel:
They have a number of attributes that made them dangerous.

Old attitudes and habits are difficult to modify, and remnants of software myths are still
believed.

Management myths: o o
Managers with software responsibility are often under pressure o maintain

budgets, keep schedules, and maintain quality.
Myths:
« We already have a book that's full of standards and procedures for
building software; won't that provide many people with everything they

need to know? _
= Many people have state-of-the-art software development tools; after all,

we buy them the newest computers.
[fwe get behind schedule, we can add more programmers and catch up.
* If I decide to outsource the software project to a third party, 1 can just
relax and let that firm puild it.

Customer mvths:
Customers may be defined as follows;
= An outside company that has requested sottware under contract

* a person next to vour desk
= atechnical group

= a marketing or sales group
Customer myths lead to false expectations by the customer and ultimately there will be

dissatisfaction with the developer.

Myths:
o A general statement of objectives i1s sufficient to begin writing programs

and we can fill in the details later.
o Project requirements continually change, but change can be casily
accommodated because software 1s flexible.

Practitioner's myths:
A Practitioner may be Planning group, Development group Verification group

Support group, Marketing/sales.

Myths:

Once we write the program and get it to work, our job is done.

Until T get the program "running"” | have no way of assessing its quality.
The only deliverable work product for a successful project is the
working program.

The major task of a software engineer is to write a pre.gram.

Schedule and requirements are the only importar ¢ things we should
concern when we write programs.

1.3 A GENERIC VIEW OF PROCESS
What is software Engineering?

There are many definitions for software Engineering, a definition proposed by

Fritz Bauer is;
“Software engineering is the establishment and wse of sound engineevin

principles in order to obtain economically software that is reliable and work
efficiently on real machines™

The IEEE definition for software Engineering 1s;
*Software Engineering:

(1) The application of a svstematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software; that is, the application of engineering 1o software

(2) The studyv of approaches as in the above statement™

Software Engineering: A lavered technology:

Software engineering is a layered technology. It is divided into layers of different

responsibilities. The layers present in software engineering are shown in the following
diagram.

1.4 A PROCESS FRAMEWORK

A common process framework is established by defining a small number of framework
activities that are applicable to all software projects, regardless of their size or
complexity. Umbrella activities are independent of any one framework activity and occur

throughout the process.

Frame work activities:

A common process framework is established by defining a small number of
framework activities.

Software process framework can be used to all software projects. It consists
of a number of rask sets—each a collection of software engineering work
tasks, project milestones, work products, and quality assurance points—
which enable the framework activities to be adapted to the characteristics of
the software project and the requirements of the project team.

Umbrella aetivities:

Umbrella activities are such as software quality assurance, software
configuration management, and measurement.

Umbrella activities are independent of any one framework activity and
occur throughout the process.

There has been a significant emphasis on “process maturity.”

1.5 THE CAPABILITY MATURITY MODEL INTEGRATION (CMM)

e The CMMI defines each process area n terms of “specific goals” and the
“specific practices” required to achieve these goals.
s Specific goals: establish the characteristics that must exist if the activities
implied by a process area are to be effective.
e Specific practices: refine a goal into a set of process related
e Software Engineering Institute (SEI) has developed a comprehensive model.
To determine an organization’s current state of process maturity,

* The SEI uses an assessment that results in a five point grading scheme. The
grading scheme determines agreement with a ‘capability matunity model
(CMM)" that defines key activities required at different levels of process
maturity.

Levels are defined in the following manner:

Level (1: Incomplete:

e The process area is either not performed or does note achieve all
goals and objectives defined by the CMMI for level 1 capability

Level 1: Performed:
* A]l of the specific goals of the process area have been satisfied.

o Work tasks required to produce defined work products are being
conducted.

Level 2: Managed:

o All level | criteria have been satisfied in addition all work
associated with the process area conforms to an orgamzationally
defined policy;

* All people doing the work have access to adequate resources to get
the job done.

Level 3: Defined:

e Alllevel 2 criteria have been achieved.
e In addition, the process is tailored from the organization’s set of
standard processes and contributes work products measures,

Level 4: Quantitativelv managed:
* Alllevel 3 criteria have been achieved;
In addition, The process area is controlled and improved usin
measurement and quantitative assessment

Level 5: Optimized:

« All capability level 4 criteria have been achieved:

s In addition, the process area is adapted and optimized using
quantitative means to meet changing customer needs and to

continually improve the efficacy of the process area under
consideration.

PROCESS PATTERNS
A project's process specification defines the tasks the project should perform, and the
order in which they should be done. Process patterns define a set of activities, actions,
work tasks, work products and related behaviors that must be done to complete the
project.

» A template is used to define a pattern
Typical examples are:

Customer communication (a process activity)
Analysis (an action)
Requirements gathering (a process task)
Reviewing a work product (a process task)
Design model (a work prod
1.6 PROCESS MODELS
A process model specifies a general process, usfally as a set of stages in which a
project should be divided, the order in which the stages should be executed, and any other
constraints and conditions on the execution ef stazes.

Select a process model is chosen based on:
e the nature et the project and application
e the methods and tools to be used
* the eomtrods and deliverables

All software deVelopment can be characterized as a problem solving loop in which four
distine® stages are encountered:

I Status quo

2. Problem definition

3. Technical development

4, Solation integration
I. Status gquo:

[t represents the cmrent state of affairs

2. Problem definition;
Idensities the specific problem to be solved and defines
them

3. Technical development:
Solves the problem through the application of some
technology

4 Solution integration:
It applies the solution and delivers the results
e.p documents, programs, data, new business function,
new product

Evolutionary process models:

Business and product requirements often change as development proceeds,
Classic process models are not designed to deliver a production system

Due to their assumptions on:
« A complete system will be delivered after the linear sequence is completed.
* Customer knows what they want at the early stage.

The realty i a software production process
= A lot of requirements changes during the production course
* A lot of iterative activities and work because of the evolutionary nature of
software production

The several evolution process models proposed are:
* The incremental model
e The spiral model
* The component assembly model
* The concurrent development model

The Unified process:

s Unified process 1s an attempt to drasw on #he best features and characteristics
of conventional software process.sagdels.

e It recognizes the importance @ customer communication and makes more
efficient methods for describing thg customer’s view of a system.

e The Unified process canbe characterized as phases, they are
The phases of the unified pracess are

k. Imeeption
2. Elaboration
3. Construction
4. Transition
5. production

2.1 THE WATERFALL MODEL

This waterfall model 1s also termed as linear sequential model. Linear ordering of
activities has some important consequences. First, to clearly identify the end of a phase
and the beginning of the next, some certification mechanism has to be employed at the
end of each phase. This is usually done by some verification and validation means that
will ensure that the output of a phase is consistent with its input {which is the output of
the previous phase), and that the output of the phase 1s consistent with the overall
requirements of the system.

Waterfall model suggests a systematic, sequential approach to software development that
begins at the system level and progresses through different phases like:

Analysis

Design

Coding

Testing

Support

“hop e B

Analysis:

The requirements analysis 1s focused to understand the nature of the
programs to be built.

* The software engineer ("analyst") nmst understand the mformation
domain for the software, as well as required function, behavior,
performance, and interface.

* In Requirement analysis the requirements for both the system and the
software are documented and reviewed with the customer.

b

o Software design is actually a multi step process that focuses on data
structure, software architecture, interface representations, and procedural
detail.

o The design process translates requirements into a representation of the
software that can be assessed for quality before coding begins.

* Like requirements, the design is documented and becomes part of the
software configuration management.

3. Coding:

s The code generation step performs translation of design into a machine-
readable form.

e If design is performed in a detailed manner, code generation can be
accomplished mechanistically.

* The outputs of the earlier phases are often called work products and are
usually in the form of documents like the requirements document or
design document. For the coding phase, the output 1s the code.

4. Testing:

o Once code has been generated, program testing begins.

* The testing process focuses on the logical internals of the software

e It conducts tests for uncovered errors and ensures that defined input will
produce actual results that agree with required results.

5. Support:

« Software will undergo change afier it is delivered to the customer.

= Change will oceur because errors have been encountered

e.g., a change required because of a new operating system

* Software support/maintenance reapplies each of the preceding phases to
an existing program rather than a new one.

Advantages:

® [tis simple, step-by-step, focused, and casy to follow.

® i 1s straightforward and divides the large task of building a software
system into a series of cleanly divided phases, each phase dealing with a
separate logical concern.

® [t is also easy to administer in a contractual setup—as each phase is
completed and its work product produced, some amount of money 1s given
by the customer to the developing organization.

Disadvantages:

e [t assumes that the requirements of a system can be frozen (i.e., baselined) before
the design begins. This is not possible for all systems,

o It follows the "big bang" approach—the entire software is delivered in one shot at
the end. That is, it has the "all or nothing" value proposition.

® It is a document-driven process that requires formal documents at the end of each
phase.

* Inflexible because real projects rarely follow tle sequential flow that the model

Design:

proposes.

* Itis often difficult for the customers to state all 1equirements explicitly.

* The customer must have patience to wait to validate the software product in the
late phases

2.2 INCREMENTAL PROCESS MODELS

There are two types of incremental models. These models develop the product in step by

step incremental model. The product is developed to a little detail in first part and that is

claborated in the next phase. The popular incremental models are:

I. Prototyping Model:
2. The RAD Model:

Prototyping Model:

e The goal of a prototvping-based development process is to counter the
limitations of the waterfall model. The basic idea here is that instead of
freezing the requirements before any design or coding can proceed, a throw-
away prototype is built to help understand the requirements. This prototype is
developed based on the currently known requirements.

* A prototyping model may offer a best approach. It assists the software
engineer and the customer to better understanding,.

* It begins with communication Developer and customer meets and defines the
overall objectives for the software

« A "gquick design" then occurs. The quick design focuses on a representation
of those aspects of the software that will be visible to the customer/user

s The guick scan leads to the construction of a prototype. The prototype is
deployed and then evaluated by the customer/user.

= Ttcration occurs as the prototype is tuncd to satisfy the noeds of the customer,
while at the same time enabling the developer to better understand what
needs to be done.

So totally we see the steps involved in prototype is

Step 1: Requirements gathering

Step 2: A “quick design™ focuses on visible functions and behaviors of the
product

Step 3: Prototype construction

Step 4: Customer evaluation of the prototype loop back

Advantages:

o Prototyping 1s well suited for projects where requirements are hard to determine
and the confidence in the stated requirements 1s low,

* Prototyping is an attractive idea for complicated and large systems for which there
1s no manual process or existing system to help determine the requirements.

o It is also an effective method of demonstrating the feasibility of a certain
approach.

e Owerall, in projects where requirements are not properly understood m the
beginning, using the prototyping process model can be the most effective method
for developing the software.

Disadvantages:

* Prototype can be problematic for the following reasons:

The prototype can serve as “the first system”. Brooks recommends
we throw away.

Developers usually attempt to develop the product based on the
prototype.

Developers often make implementation compromises in order to
get a prototyping working quickly.

Customers may be unaware that the prototype 1s not a product,
which is held with.
® Prototyping 1s often not used, as it 1s feared that development costs may
become large.
The RAIDD Model:
o Rapid application development (BRAD) is an incremental software
development process model that highlights an extremely short development
cvcle.

e The RAD model is a “high-speed™ adaptation of waterfall model. in which
rapid development is achieved by using component based construction
s Communication works 1s needed to understand the business problem and the
information characteristics
* Planning is essential because multiple software teams work in parallel on
different system functions
« Modehng includes five major phases
1) Business modeling: Business modeling answers the questions like
what information drives the business process? What information 1s
generated? Who generates 117 Where does the information go? Who
processes it?

2) Data modeling: The information flow defined as part of the business
modeling phase is refined into a set of data objects that are needed to
support the business. The characteristics (called arributes) of each
object are identified and the relationships between these ohjects
defined.

3} Process modeling: The data objects defined in the data modeling phase
are transformed to achieve the information flow necessary to implement
a business function. Processing descriptions are created for adding,
modifying, deleting, or retrieving a data object.

4) Application generation: RAD assumes the use of fourth generation
techniques. Rather than creating software using conventional third
generation programming languages the RAD process works to reuse
existing program components or create reusable components. In all
cases, automated tools are used to facilitate construction of the
software.

5) Testing and turnover: Since the RAD process emphasizes reuse,
many of the program components have already been tested. This
reduces overall testing time. However, new components must be tested
and all interfaces must be fully exercised.

Through above phases it provides the design representations which are basics for

RAD.
Like all process models, the RAD approach has drawbacks

1) For large but scalable projects, RAD requires sufficient human resources to
create the right number of RAD teams.

2) RAD requires developers and customers who are committed to the rapid-
fire activities necessary to get a system complete in a much abbreviated time
frame. If commitment is lacking from either constituency, RAD projects
will fail.

3} If a system cannot be modularized, building the components necessary for
RAD will be problematic.

4y If high performance is an issue and performance is to be achieved through
funing the interfaces to system components, the RAD approach may not
work.

5) RAD is not appropriate when technical risks are high.

23EVOLUTIONARY PROCESS MODELS
Evolutionary models are iterative; they are characterized as follows:

a. Incremental Model:
h. The Spiral Model:
c. The WINWIN Spiral Model

d. The Concurrent Development Model

Incremental model;

The incremental model combines elements of the waterfall model (applied
repetitively) with the iterative fashion,

Each linear sequence produces a deliverable “increment” of the software

For example, word-processing software developed using the mcremental
paradigm will gives in the,

First increment = file management, editing,

Second increment =>more sophisticated editing and document
production

Third mcrement = spelling and grammar checking

Fourth increment — advanced page lavout capability
When an incremental model 15 used, the first increment 15 often a ‘core
product” (basic requirements). Supplementary features remain undelivered

The core product is used by the customer. As a result of use, a plan is
developed for the next increment

This process 1s repeated for each increment, until the complete product is

produced

* Incremental development is particularly useful when staffing is unavailable
for a complete implementation by the business deadline that has been
established for the project

The Spiral Model:
The spiral is a model that couples the iterative nature of prototyping with the controlled
and systematic aspects of the linear sequential model.
The spiral model is divided into a number of framework activities:
I. Customer communication:
These are required establishing effective communication
between developer and customer.

2. Planning:

These are required to define resources, timelines, and
other project related mformation

3. Risk analysis
These are required to assess both technical and
management risks.

4. Engineering
These are required to build one or more representations of
the application.

5. Construction & release:

These are required to construct, test, install, and provide
user support (e.g., documentation and training).
6. Customer evaluation:
These are required to obtain customer feedback based on
evaluation

= FEach region 1s populated by a series of work tasks these called a “task set’.

[Lach cycle in the spiral begins with the identification of objectives for that
cvcle, the different alternatives that are possible for achieving the objectives,
and the constraints that exist.

* Inthis evolutionary process, the software engineering team moves around the
spiral n a clockwise direction, beginning at the center. Each pass through the
planning region results in adjustments to the project plan.

o The first circuit around the spiral might result in the development of a
product specification.

* Subsequent passes around the spiral might be used to develop a prototype
and then progressively more sophisticated versions of the software.

* The spiral model is a realistic approach to the development of large-scale
systems and software.

e It may be difficult to convince customers that the evolutionary approach is
controllable.

The WINWIN Spiral Model:

* The objective of this activity is to bring out project requirements from the
customer.

s In ideal context the developer simplv asks the customer what is required and
the customer provides sufficient detail.

s In reality, the customer and the developer enter into a process of negotiation
(give and take).

e The best negotiations attempt is a “win-win” result i.e the customer wins by
getting product and the developer wins by working to realistic and achievable
budgets and goals

The WINWIN spiral model defines the following activities
I. Identification of the svstem or subsystem’s key “stakeholders.”
2. Determination of the stakeholders” “*Win conditions.”

3. Negotiation of the stakeholders® Win conditions to reconcile them
into a set of win-win conditions

e Successful completion of these initial steps achieves a win-win result.
* In addition to the win-win the model proposes three milestones called
anchor points, which are used to complete the cycle. The anchor points

are.
o Life cycle objectives: defines set of objectives for each major

activity.
o Life evele architecture: establishes activities that must be met as
system and software architecture is defined.
o Initial operational capabhility: represents objectives associated
with software installation.
The Concarrent Development Model:
e The concurrent development model called concurrent engineering. This
provides an accurate state of the current state of a project.

* Focus on concurrent engineering activities in a software engineering process
such as prototyping, analysis modeling, requirements specification and
design.

s Represented schematically as a series of major technical activities, tasks, and
their associated states.

* Defined as a series of events that trigger transitions from state to state for
each of the software engineering activities.

Two ways to achieve the concurrency:

e System and component activities occur simultaneously and can be
modeling using the state-oriented approach

s A typical client/server application is implemented with many components;
each can be designed and realized concurrently.

e This is applicable to all types of software development and provides an
accurate picture of the current state of a project

2.4 THE UNIFIED PROCESS

¢ Unified process is an attempt to draw on the best features and
characteristics of conventional software process models.

e It recognizes the importance of customer communication and makes more
efficient methods for deseribing the customer’s view of a system.

Phases of the unified process:

The phases of the unified process are

Inception

Elaboration

construction

Transition

3. production

Inception:

e The inception phase of the unified process includes both customer
communication and planning activities.

e By working together with the customer and end users, the business
requirements for the software are identified, a rough architecture for the
system is proposed

B W R

Elaboration:

* Elaboration encompasses the customer communication and modeling
activities.

s This will refines and expands the preliminary use cases that were developed as
part of the inception phase and expands the architectural representation to
include five different views of the software they are:

Use case model, analysis model, design model, implementation model,
and deployment model
Construction phase:
* The construction phase develops the software components,
* As components are being implemented, unit tests are designed and executed
for each component.
Transition phase:

e Transition phase encompasses the latter stages of construction activity and the
first part of the deplovment activity.

s At the conclusion of the transition phase the software increment becomes a
usable software release.

Production phase:

s [t coincides with the deployment activity. In this phase the on going use of the
software 15 monitored,

s Support for the infrastructure 1s provided, and defect reports and request for
changes are submitted and evaluated.

2.5 SOFTWARE REQUIREMENTS

Functional Requirements:

¢ Functional requirements specify which outputs should be produced from the
given mputs.

e They describe the relationship between the input and output of the system.

o Functional requirements describe functionality or system services.

« It depends on the type of software, expected users and the type of system
where the software is used.

« ‘TFunctional user requirements’ may be high-level statements of what the
system should do

e Burt ‘functional system requirements’ should describe the system services in
detail

Here we have a few Examples of functional requirements:

o The user shall be able to search either all of the mnitial set of databases or
select a subset from it

* The system shall provide appropriate viewers for the user to read documents
in the document store.
* LEvery order shall be allocated a unique identifier (ORDER_1D)} which the user
shall be able to copy to the account’s permanent storage area.
Nonfunctional requirements:

= Non functional requirements define system properties and constramts

E.g. Reliability, response time and storage requirements.
Constraimts are 1/Q) device capability, system representations,

e Process requirements may also be specified permitting a particular CASE
system, programming language or development method.

« Non-functional requirements may be more critical than functional
requirements. If these are not met, the svstem is useless
We can classify the non functional requirements, as fallows

Product requirements

These are the requirements which specify that the delivered product must
behave mn a particular way
E.g. execution speed, reliability, etc.

External requirements

s Requirements which arise from factors which are external to the system
and its development process

E.g. Interoperability requirements, legislative requirements, etc.
User requirements:
s User requirements are high-level statements of what the system should do

» User requirements should describe functional and non-functional requirements
in such a way that they are understandable by system users who don’t have
detailed technical knowledge.

* User requirements are defined using natural language, tables and diagrams as
these can be understood by all users
« But some problems will arise due the usage of natural language, they are as

fallows
Lack of clarity:
Precision is difficult without making the document difficult to read.
Requirements confusion:
Functional and non-functional requirements tend to be mixed-up.

Requirements amalgamation:
Several different requirements may be expressed together.

System requirements:
* System requirements are intended to communicate the functions that the system
should provide

¢ They are intended to be a basis for designing the system.
¢ They may be incorporated into the system contract.

e System requirements may be defined or illustrated using system models.

Interface specification:) o
s Most systems must operate with other systems and the operating interfaces must

be specified as part of the requirements.
e Three types of interface may have to be defined
1. Procedural interfaces:
Procedural interfaces access to services through calling procedures
(APT)

2. Data structures that are exchanged:
Data structures are to be passed from one sub-system to another

sub system. They can be described with graphical data models.

3. Data representations.
Representations of data will be in bitwise fashion.

e [ormal notations are an effective techmique for interface specification.

2.6 THE SOFTWARE REQUIREMENT DOCUMENT
Requirements document states ‘what the software will do”. It does not state
‘how the software will do it’.

* HReguirements document is a wriffen statement.

e The main purpose of a requirements document 15 to serve as an agreement
between the developers and the customers on what the application will do.

General Principles in Writing a Requirements Document are:
* Avoid Unnecessary Work by not doing the things that costs more than it worth.

s There should be a detailed document for:

= Jarge application {many interfaces, screens, lots of features)
= application with many users or many user workgroups
= application that is critical to the business
= Use Iterations: Iterative approach to writing software 1s widely accepted but it
applies to writing the requirements document.
* Verily Information: When collecting requirements 1t 1s very mmportant to
verify all of the facts by interviewing customers with differing points of view
users and management

e Write to Read: Write simply and Partition the requirements document into
several when necessary.

4.1 DESIGN ENGINEERING

s Software design is an iterative process through which requirements are
translated into a “blueprint™ for the software
+ Software design is the first one among the three technical activities,
design, code generation and test;
* TFour design models are required for a complete specification of design
I. Data design
2. Architectural design,
3. Interface design
4. Component design
Data design
o This will transforms the information domain model that
was created during analvsis into the data structures
* The data objects and relationships and the data dictionary
provide the basis for the data design.
Architectural design
s The architectural design defines the relationship between
major structural elements of the software
Intertace design
* The interface design describes how the software
communicates
= Within itself,
= With systems that inter operate with it,
* With humans who use it.
* An interface implies a flow of information, therefore, data
and control flow diagrams provide information required for

interface design
Component design

* The component-level design transforms structural elements
of the software architecture into a procedural description of
software components

4.2 DESIGN PROCESS AND DESIGN OUALITY
Through design process the quality of the software can be assessed.
* The fallowing are the characteristics, that a good design process should
have,

1. The design must implement all of the explicit requirements containec
in the analysis model, and it should contain all of the implicit
reauirements desired bv the customer.

2. The design must be a readable, understandable for those who generate
code and for those who test the software.

3. The design should provide a complete picture of the software, and
functional, and behavioral domains from an implementation point of
view

» We can achieve a good quality for design process by using the
fallowing guide lines,
I. A design should be created using recognizable design patterns. Tt
should make up of components that exhibit good design characteristics

2. A design should be modular; that is, the software should be logically
partitioned into elements that perform specific functions and sub
functions

3. A design should contain distinct representations of data, architecture,
interfaces, and components which we call modules

4. A design should lead to data structures that are appropriate for the
objects to be implemented

5. A design should lead to components that exhibit independent
functional characteristics.

6. A design should lead to interfaces that reduce the complexity of
connections between modules and with the external environment.

7. A design should be derived using a repeatable method

4.3 DESIGN CONCEPTS
These design concepts will give the foundation from which more
sophisticated design methods can be applied.
Abstraction:
e Each step in the software process is a refinement in the level of
ahstraction of the software solution,
« At different levels of abstraction we will wark to create procedural
abstraction, data abstraction,
Procedural abstraction:
* [s anamed sequence of instructions that has a specific and
limited function
* Anexample of a procedural abstraction would be the word

*Open” for a door

Open 2 walk to the door, reach out and grasp knob, turn
knob and pull door, step away from moving door.

Data abstraction:
* Data abstraction is a named collection of data that describes
a data object
» Example for data abstraction is

Data abstraction for door = door type, swing direction,
opening
mechanism, weight,
dimensions

® The procedural abstraction ‘open’ would make use of
information contained in the attributes of the data
abstraction ‘door’

Control abstraction:

» Control abstraction is the third form of abstraction used in
software design.

» Like procedural and data abstraction, control abstraction
implies a program control mechanism without specifyving
internal details.

* Anexample of a control abstraction is the synchronization
semaphore used to coordimate activities in an operating
system.

Refinement:

e Refinement is actually a process of ‘elaboration’.

* The architecture of a program is developed by successively
refining levels of procedural detail.

* The process of program refinement is equivalent to the
process refinement and. The major difference is in the
level of implementation detail, instead of the approach

s Abstraction and refinement are complementary concepts.
Abstraction enables a designer to specify procedure.
Refinement helps the designer to reveal low-level details

Modularity:

» Software 1s divided into separately named and addressable
components, called modules and these modules are
integrated to satisfy requirements.

* Modularity is the smgle attribute of software that allows a
program to be intellectually manageable

e Monolithic software i.e. a large program composed of a
single module cannot be easily grasped by a reader, to
illustrate that consider the fallowing observations

Let,
C(x) = complexity of a problem
E(x) = effort required to solve problem
If C(x1) = C(x2) it will implies E(x1)=E(x2)
Another interesting characteristic 1s,
Cix1+x2)=c(x1) + c{x2) that implies E(x1+x2)=E(x1)+ E(x2)

This leads to a "divide and conguer” conclusion
“It's easier to solve a complex problem when you break it
into manageable pieces™
In the above figure the effort to develop an individual
software module does decrease as the total number of
modules increases,

s However as the number of modules grows, the effort
associated with integrating the modules also grows.
Control Hierarchy:

» [talso called a program structure represents the
organization of program components or modules and
implies a hierarchy of control

= Different notations are used to represent control hierarchy

Depth and width: these will provide the indication of the
number of levels of control
Fan-out: It 15 a measure of the number of modules that are
directly controlled by another module

Fan-in: It indicates how many modules directly control a
given
module

Super ordmate: A module that controls another module
Subordinate: A module controlled by another

= Control hierarchy also represents the characteristics of
software architecture,

WVisibility: this will indicates the set of program components
that may be invoked or used as data by a given component

Connectivity: this will indicates the set of components that
are directly invoked or used as data by a given component

Structural Partitioning:
e The program structure should be partitioned both
horizontally and vertically.
Horizontal partitioning:
e Horizontal partitioning defines separate branches of the
modular hierarchy for each maijor program function.
The simplest approach to horizontal partitioning defines
three partitions
Input,
Data transformation (processing)
Cutput

* Advantages of horizontal partition:

* Easy to test, maintain, and extend
= Fewer side effects in change propagation or error
propagation
e Disadvantage:

More data to passing across module interfaces
will complicate the overall control of program
flow

Wertical partitioning

* This suggests the control and work should be distributed
top down in program structure.

e Advantages:

* Good at dealing with changes:
= [Easy to maintain the changes
= Reduce the change impact and propagation

Patterns:

* The design pattern provides a description that enables a designer
to determine
» Whether the pattern is applicable to the current work
®= Whether the pattern can be reused
* Whether the pattern can serve as guide for developing a
similar , but functionally or structurally different pattern

Information hiding:

s [Information hiding suggests that the modules should be designed
s0 that mformation contained within a module 1s inaccessible to
other modules

« Hiding implies that effective modularity can be achieved by
defining a set of independent modules that communicate with
one another only that information necessary to achieve software
function

o Major benefits: Reduce the change impacts in testing and
maintenance
Functional Independence

e« TFunctional independence is achieved by developing modules,
which addresses a specific sub function of requirements

e Software with independent modules. is easier to develop because

function may be classified and mterfaces are simplified

e Independence 1s measured using two qualitative criteria:
cohesion and coupling.

¢ ‘Cohesion’ is a measure of the relative functional strength of a
module.

o ‘“Coupling” is a measure of the relative interdependence among
modules.

Refactoring:

Refactoring is a reorganization technique that simplifies the design
of component without changing its function or behavior

In other words we can say that refactoring is process of changing a
software system 1n such a way that it does not alter the external
behavior of the code
When software is refactored, the existing design is examined for
= redundancy
= unused design elements
= nefficient or unnecessary algorithms
* poorly constructed or inappropriate data structures

Design Classes:
e There are five different types of design classes; each representing a
different layer of the design architecture is suggested.

User interface classes: these will define all abstractions that are
necessary for human computer interaction.

Business domain classes: these will identify the attributes and
services that are required to implement some element of the
business domain.

Process classes: lower level business abstraction is implemented by
these classes.

Persistent classes: These represent the data stores which persist
beyond the execution

Svystem classes: these classes implement software management and
control functions

4.4

THE DESIGN MODEL

Data elements
Architectural elements

Application domain
Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizations
Patterns and “styles”

Architectural elements
« Application domain
* Analysis classes, their relationships, collaborations and behaviors
are transformed into design realizations
+ DPatterns and “styles”
Interface elements
There are three important elements of interface design,

* The user interface (Ul)
s External interfaces to other systems, devices, networks or other
producers or consumers of information
* Internal interfaces between various designs components.
Component elements
* The component level design for software describes the internal
detail of each software component.

TFor this the component level design defines data structures for all
local data objects and algorithmic details. r
Deployment elements

s Deployment elements indicate how software functionality and
subsystems will be allocated within the physical computing
environment that will support the software.

4.5 CREATING AN ARCHITECTURAL DESIGN
SOFTWARE ARCHITECTURE
+ 5Software architecture refers to “the overall structure of the software
and the ways in which that structure provides conceptual integrity for a
system”
* [t 1s the hierarchical structure of program components and their
interactions

[t is a representation that enables a software engineer to

I. Analyze the effectiveness of the design in meeting its
requirements

2. Consider architectural alteriatives at a stage when making
design
changes is still relatively casy

3. Reducing the risks associated with the construction of the
software.

* Reasons that why software architecture 1s important

= For communication between all parties (stakeholders) who
interested in the development of a computer based system
we need representations of software architecture are an
enabler

* The architecture design decisions have a deep impact on all
software engineering work

= Architecture “constitutes a relatively small, mtellectually
graspable model of how the svstem is structured and how
its components work together™

s A set of properties that should be specified as part of an architectural
design
Structural properties: The architecture design defines the svstem
components and their interactions.

Extra-functional properties: The architecture design should
address how the design architecture achieves requirements for
performance, capacity, reliability, adaptability, security.

Families of related systems: The architecture design should
draw upon repeatable patterns in the design of families of
similar systems

® The architectural design can be represented using different
models

Structural models: Represent architecture as an organized
collection of program components.

Framework models: Increase the level of design abstraction by
attempting to identify repeatable architectural design
framewaorks

Dvnamic models: Address the behavioral aspects of the
program architecture

Process models: Focus on the design of the business or
technical process that the system must accommodate

Functional models: Functional models can be used to represent
the functional hierarchy of a svstem.

4.6 DATA DESIGN

o Data design translates data objects defined as part of the
analysis model into data structures.

Data design at the architectural level:

Data architecture was generally limited to data structures at
the program level and databases at the application level

In other words the challenges of today’s businesses is,
maintaining databases serving many applications include
the hundreds of gigabvtes of data

To solve this challenge, the business I'T community has
developed ‘data mining” techniques, also called
‘knowledge discovery in databases (KDD)*

The existence of multiple databases, their different
structures, and many other factors make data mining
difficult

An alternative is “data warehouse” which adds additional
lavers to the data architectures.

« An alternative is ‘data warehouse” which adds additional
lavers to the data architectures.

« A data warehouse is a large, independent database that
encompasses some, but not all, of the data that are stored in
databases that serve the set of applications required by a
business

Data Design at the Component Level

3.

Data design at the component level focuses on the representation
of data structures that are directly accessed by one or more
software components

The fallowing are the set of principles that may be used to specify
and design data structures.

1. The systematic analysis principles which applied to a function
and behavior should also be applied to data

2. All data structures and the operations to be performed on each
should be dentified.

A data dictionary should be established and used to define both

data and program design

Owerall data organization mayv be defined during requirements
analysis, refined during data design work, and specified during
component level design.

The representation of data structure should be known only to
those modules that must make direct use of the data contained
within the structure

6. Data structures and operations should be viewed as a resource
for software design. Data structures can be designed for
reusability.

7. A software design and programming language should support
the specification and realization of abstract data types (ADT)

4.7 ARCHITECTURAL STYLES
An architecture style is a transformation that 1s imposed on the
design of an entire system.
o The intention of architecture styles is to establish a structure
for all components.
A brief categorization of architectural styles:

Data-centered architectures:

o A data store like a file or database resides at the center of this
architecture and is accessed frequently by other components
Data-flow architectures:

» This architecture is applied when input data are to be
transformed through a series of computational or
manipulative components into output data.

s A pipe and filter pattern has a set of components, called
filters, connected by pipes that transmit data from one
component to the next.

« Each filter works independently. They take data input of a
certain form, and produces data output of a specified form.

= [fthe data flow degenerates into a single line of transforms, it
is termed batch sequential
Call and return architectire:

This architecture style enables a sottware designer to
achieve a program structure that is relatively easy to modify and
scale.

Main program or subprogram architecture:

* This will decomposes function into a control hierarchy.
Where a main program invokes a number of program
components.

Remote procedure calls architecture:

* The components of main or sub program architecture are

distributed across multiple computers on a network.

Object-oriented architectures:
* The components of a system encapsulate data and the
operations that must be applied to manipulate the data.

* Communication and coordination between components is
accomplished via message passing.
Lavered architecture:

s In this architecture number of different layers is defined, as
inner layers, outer layers, intermediate layers.
= At the outer layer, components service user interface
operations.
« At the mner layer, components perform operating system
interfacing.
* Intermediate layers provide utility services and application
software functions
4.8 ARCHITECTURAL PATTERNS
s An architectural pattern imposes a transform on the design

of architecture.
A pattern differs from style in number of ways:

I. The scope of pattern is less broad,
2. A pattern describes how a software will handle some
aspects of its functionality
We have different architectural pattern domains,
Concurrency:
= Many applications must handle multiple tasks in a manner
that simulates parallelism,

= [or example we can consider operating system
management pattern, which allows execution of
components concurrently.

Persistence:

e Data persists if it survives past the execution of
the process that created it.

e Persistent data are stored in a database of file and
may be read or modified by other processes at
later time.

» For example word processing software that
manages its own document structure.

Distribution:

e The distribution problem addresses the manner in
which system or components within the systems
communicate with one another in distributed
environment

¢ There are two elements to this problem

I. The way in which entities connect to one

another
2. The nature of the communication that
QCCUrs.
e The pattern that address this problem is broker

pattern

e The broker acts as middle man, between client
and server, the chient sends the message to the
broker, broker will complete the connection.

4.9 ARCHITECTURAL DESIGN

* The architecture design begins with representing the svstem
in context i.e. defining the external entities,
= Once all external software interfaces have been described,
the designer specifies the structure of the system by
defining and refining software components.
Representing the system in context:
The software architect uses an architectural context diagram
{ACD), to model the manner in which software interacts with
entities to its boundaries.

Super ordinate systems: These systems use the target system as
part of some higher level processing scheme

Subordinate Systems: These systems that are used by the target
system provide data or processing that is necessary to complete
target system functionality.

Peer level systems: these systems that interact on a peer to peer
basis. That is information is either produced or consumed by the
peers and target

Actors: these entities that interact with the target system by
producing or consuming information that is necessary for requisite
processing.

Each of these entities that mteract with the target systems trough
an interface

superoritimate systems

.

- 1 1

Target svstem

=~ e

actors TmEelr —

i 2l

depends on

subordinate systems

The architecture context diagram

Defining Archetypes:
= An ‘archetype’ is a class or pattern that represents a core
abstraction which is eritical to the design of architecture for
target system,
* For example we can define the fallowing archetypes for a
‘safe home security’

MNode: Represents the interconnected input output components.

Detector: It encompasses the logic that provides information
into the target system.

Indicator: Represents all mechanisms {like alarm siren, flash
light, bells), for indicating that an alarm condition is occurring.

Controller: This shows the mechanism that allows the
supporting non supporting node. If controller resides on a
network, they have the ability to communicate with one
another.

<&

Refining the architecture into components:

* As the architecture 15 refined into components, the structure
of the system begins to come out.

o The application domain 1s one source for the derivation and
refinement of components.

s Another source is infrastructure domain

» LExample, the memory management components,
communication components, database components, and
task management components are often integrated nto the
software architecture,

Deseribing instantiation of the system:

* The architectural design that has been modeled to this point
15 still relatively high level.

= At this level, the overall structure of the system is apparent,
and major software components have been identified.

* Inthe final stage the instantiation of the architecture is

developed.

