

DIGITAL NOTES

ON

DESIGN AND ANALYSIS OF ALGORITHMS

B.TECH II YEAR - II SEM

(2017-18)

DEPARTMENT OF computer science and engineering

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. CSE – I Sem

CS302ES –DESIGN AND ANALYSIS OF ALGORITHMS(C311)

UNIT - I

Introduction-Algorithm definition, Algorithm Specification, Performance Analysis-Space

complexity, Time complexity, Randomized Algorithms.

Divide and conquer- General method, applications – Binary search, Merge sort, Quick sort,

Strassen’s Matrix Multiplication.

UNIT - II

Disjoint set operations, union and find algorithms, AND/OR graphs, Connected Components

and Spanning trees, Bi-connected components

Backtracking-General method, applications The 8-queen problem, sum of subsets problem,

graph coloring, Hamiltonian cycles.

UNIT - III

Greedy method- General method, applications- Knapsack problem, Job sequencing with

deadlines, Minimum cost spanning trees, Single source shortest path problem.

UNIT - IV

Dynamic Programming- General Method, applications- Chained matrix multiplication, All

pairs shortest path problem, Optimal binary search trees, 0/1 knapsack problem, Reliability

design, Traveling sales person problem.

UNIT - V

Branch and Bound- General Method, applications-0/1 Knapsack problem, LC Branch and

Bound solution, FIFO Branch and Bound solution, Traveling sales person problem. NP-Hard

and NP-Complete problems- Basic concepts, Non-deterministic algorithms, NP – Hard and NP-

Complete classes, Cook’s theorem.

TEXT BOOKS:

1. Fundamentals of computer Algorithms,2nd Edition,EllisHorowitz,Sartajsahani and

S.Rajasekharan,Universities Press

2. Design and Analysis of Algorithms,P.H.Dave 2nd edition,Pearson education

REFERENCE BOOKS:

1. Design and Analysis of Algorithms,Aho,Ullman and Hopcroft,Pearson education

2. Foundations of Alorithms,S.Sridhar,OxfordUniv ,press

3. Algorithm Design: Foundations, Analysis and Internet examples, M. T. Goodrich and R.

Tomassia, John Wiley and sons

L T P C

4 0 0 4

INDEX

S. No
Unit

Topic

1 I
Introduction to Algorithms

2 I
Divide and Conquer

3 II Searching and Traversal Techniques

4 III Greedy Method

5 III Dynamic Programming

6 IV Back Tracking

7 V Branch and Bound

8 V NP-Hard and NP-Complete Problems

UNIT - I

Introduction-Algorithm definition, Algorithm Specification, Performance Analysis-Space

complexity, Time complexity, Randomized Algorithms.

Divide and conquer- General method, applications – Binary search, Merge sort, Quick sort,

Strassen’s Matrix Multiplication.

INTRODUCTION TO ALGORITHM

History of Algorithm

• The word algorithm comes from the name of a Persian author, Abu Ja’far Mohammed
ibnMusa al Khowarizmi (c. 825 A.D.), who wrote a textbook on mathematics.

• He is credited with providing the step-by-step rules for adding, subtracting, multiplying,
and dividing ordinary decimal numbers.

• When written in Latin, the name became Algorismus, from which algorithm is but a
smallstep

• This word has taken on a special significance in computer science, where “algorithm” has
come to refer to a method that can be used by a computer for the solution of a problem

• Between 400 and 300 B.C., the great Greek mathematician Euclid invented an algorithm
• Finding the greatest common divisor (gcd) of two positive integers.

• The gcd of X and Y is the largest integer that exactly divides both X and Y .

• Eg.,the gcd of 80 and 32 is 16.
• The Euclidian algorithm, as it is called, is considered to be the first non-trivial

algorithmever devised.

What is an Algorithm?

Algorithmis a set of steps to complete a task.

For example,

Task: to make a cup of tea.

Algorithm:
· add water and milk to the kettle,

· boil it, add tea leaves,

· Add sugar, and then serve it in cup.

‘’a set of steps to accomplish or complete a task that is described precisely enough that a

computer can run it’’.

Described precisely: very difficult for a machine to know how much water, milk to beadded
etc. in the above tea making algorithm.
These algorithms run on computers or computational devices..For example, GPS in our
smartphones, Google hangouts.

GPS usesshortest path algorithm.. Online shopping uses cryptography which
usesRSAalgorithm.

• Algorithm Definition1:

• An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.
In addition, all algorithms must satisfy the following criteria:

• Input. Zero or more quantities are externally supplied.

• Output. At least one quantity is produced.
• Definiteness. Each instruction is clear and unambiguous.

• Finiteness. The algorithm terminates after a finite number of steps.
• Effectiveness. Every instruction must be very basic enough and must be

feasible.

• Algorithm Definition2:
• An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for

obtaining a required output for any legitimate input in a finite amount of time.

• Algorithms that are definite and effective are also called computational procedures.

• A program is the expression of an algorithm in a programming language

• Algorithms for Problem Solving

The main steps for Problem Solving are:

1. Problem definition

2. Algorithm design / Algorithm specification

3. Algorithm analysis

4. Implementation

5. Testing

6. [Maintenance]

• Step1. Problem Definition

What is the task to be accomplished?
Ex: Calculate the average of the grades for a given student

• Step2.Algorithm Design / Specifications:

Describe: in natural language / pseudo-code / diagrams / etc

• Step3. Algorithm analysis

Space complexity - How much space is required
Time complexity - How much time does it take to run the algorithm
Computer Algorithm
An algorithm is a procedure (a finite set of well-defined instructions) for accomplishing some

tasks which, given an initial state terminate in a defined end-state
The computational complexity and efficient implementation of the algorithm are important in

computing, and this depends on suitable data structures.
• Steps 4,5,6: Implementation, Testing, Maintainance

• Implementation:

Decide on the programming language to use C, C++, Lisp, Java, Perl, Prolog, assembly, etc.

Write clean, well documented code
• Test, test, test

Integrate feedback from users, fix bugs, ensure compatibility across different versions
• Maintenance.

Release Updates,fix bugs

Keeping illegal inputs separate is the responsibility of the algorithmic problem, while
treating special classes of unusual or undesirable inputs is the responsibility of the algorithm
itself.

4 Distinct areas of study of algorithms:

• How to devise algorithms. Techniques–Divide & Conquer, Branch and Bound ,Dynamic

Programming
• How to validate algorithms.
• Check for Algorithm that it computes the correct answer for all possible legal inputs.

algorithm validation. First Phase
• Second phase Algorithm to Program Program Proving or Program

Verification Solution be stated in two forms:
• First Form: Program which is annotated by a set of assertions about the input and output

variables of the program predicate calculus
• Second form: is called a specification
• 4 Distinct areas of study of algorithms (..Contd)

• How to analyze algorithms.
• Analysis of Algorithms or performance analysis refer to the task of determining how much

computing time & storage an algorithm requires
• How to test a program 2 phases
• Debugging - Debugging is the process of executing programs on sample data sets to

determine whether faulty results occur and, if so, to correct them.
• Profiling or performance measurement is the process of executing a correct program on

data sets and measuring the time and space it takes to compute the results

PSEUDOCODE:

• Algorithm can be represented in Text mode and Graphic mode
• Graphical representation is called Flowchart
• Text mode most often represented in close to any High level language such as C,

Pascal Pseudocode

• Pseudocode: High-level description of an algorithm.

• More structured than plain English.

• Less detailed than a program.

• Preferred notation for describing algorithms.

• Hides program design issues.

• Example of Pseudocode:

• To find the max element of an array

Algorithm arrayMax(A,n)

Input array A of n integers
Output maximum element of A
currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then
currentMax A[i]

return currentMax

• Control flow

• if … then … [else …]
• while … do …

• repeat … until …
• for … do …

• Indentation replaces braces
• Method declaration

• Algorithm method (arg [, arg…])

• Input …
• Output …

• Method call
• var.method (arg [, arg…])

• Return value

• return expression

• Expressions

• Assignment (equivalent to)
• Equality testing (equivalent to)

• n
2
Superscripts and other mathematical formatting allowed

PERFORMANCE ANALYSIS:

• What are the Criteria for judging algorithms that have a more direct relationship to
performance?

• computing time and storage requirements.

• Performance evaluationcan be loosely divided into two major phases:

• a priori estimates and
• a posteriori testing.

• refer as performance analysis and performance measurement respectively

• The space complexity of an algorithm is the amount of memory it needs to run to
completion.

• The time complexity of an algorithm is the amount of computer time it needs to run to
completion.

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to completion.

The space need by a program has the following components:

Instruction space: Instruction space is the space needed to store the compiled version of

the program instructions.

Data space: Data space is the space needed to store all constant and variablevalues.

Data space has two components:

1. Space needed by constants and simple variables in program.
2. Space needed by dynamically allocated objects such as ar ays and c ass instances.

Environment stack space: The environment stack is used to save inf mati nneeded to

resume execution of partially completed functi ns.

Instruction Space: The amount of instructions space that is needed depends onfactors such

as:

1. The compiler used to complete the program into machine code.

2. The compiler options in effect at the time of compilation

3. The target computer.

• Space Complexity Example:
• Algorithm abc(a,b,c)

{
return a+b++*c+(a+b-c)/(a+b) +4.0;

}

The Space needed by each of these algorithms is seen to be the sum of the following component.

1. A fixed part that is independent of the characteristics (eg:number,size)of the inputs and
outputs.
The part typically includes the instruction space (ie. Space for the code), space for simple

variable and fixed-size component variables (also called aggregate) space for constants, and
so on.

2. A variable part that consists of the space needed by component variables whose size is

dependent on the particular problem instance being solved, the space needed by referenced
variables (to the extent that is depends on instance characteristics), and the recursion stack

space.
The space requirement s(p) of any algorithm p may therefore be written as,
S(P) = c+ Sp(Instance characteristics)
Where ‘c’ is a constant.

Example 2:

Algorithm sum(a,n)
{

s=0.0;

for I=1 to n do

s= s+a[I];

return s;

}
The problem instances for this algorithm are characterized by n,the number of elements to

be summed. The space needed d by ‘n’ is one word, since it is of type integer.
The space needed by ‘a’a is the space needed by variables of tyepe array of floating point

numbers.
This is atleast ‘n’ words, since ‘a’ must be large enough to hold the ‘n’ elements to be

summed.
So,we obtain Ssum(n)>=(n+s)

• [n for a[],one each for n,I a& s]

Time Complexity:

• The time T(p) taken by a program P is the sum of the compile time and the run
time(execution time)

• The compile time does not depend on the instance characteristics. Also we may assume
that a compiled program will be run several times without recompilation .This rum time is
denoted by tp(instance characteristics).

• The number of steps in any problem statement is assigned depends on the kind of
statement.

• For example, comments à 0 steps.

Assignment statement is 1 steps.

[Which does not involve any calls to other algorithms]

Interactive statement such as for, while & repeat-untilà Control part of the statement.

We introduce a variable, count into the program statement to increment count with initial
value 0.Statement to increment count by the appropriate amount are introduced into the
program.

This is done so that each time a statement in the original program is executes count is
incremented by the step count of that statement.

Algorithm:

Algorithm sum(a,n)
{

s= 0.0;
count = count+1;

for I=1 to n do

{

count =count+1;

s=s+a[I];

count=count+1;

}

count=count+1;

count=count+1;

return s;

}

If the count is zero to start with, then it will be 2n+3 on termination. So each invocation of sum
execute a total of 2n+3 steps.

2. The second method to determine the step count of an algorithm is to build a table in which we

list the total number of steps contributes by each statement.

First determine the number of steps per execution (s/e) of the statement and the total number of times (ie.,
frequency) each statement is executed.

By combining these two quantities, the total contribution of all statements, the step count for the entire
algorithm is obtained.

Statement Steps per Frequency Total

 execution

1. Algorithm Sum(a,n) 0 - 0

2.{ 0 - 0

3. S=0.0; 1 1 1

4. for I=1 to n do 1 n+1 n+1

5. s=s+a[I]; 1 n n

6. return s; 1 1 1

7. } 0 - 0

Total 2n+3

How to analyse an Algorithm?

Let us form an algorithm for Insertion sort (which sort a sequence of numbers).The pseudo code
for the algorithm is give below.

Pseudo code for insertion Algorithm:

Identify each line of the pseudo code with symbols such as C1, C2 ..

PSeudocode for Insertion Algorithm Line Identification

for j=2 to A length C1

key=A[j] C2

//Insert A[j] into sorted Array A[1.....j-1] C3

i=j-1 C4

while i>0 & A[j]>key C5

A[i+1]=A[i] C6

i=i-1 C7

A[i+1]=key C8

Let Ci be the cost of ith line. Since comment lines will not incur any cost C3=0.

Cost No. Of times

 Executed

C1 N

C2 n-1

C3=0 n-1

C4 n-1

C5

C6

C7

C8 n-1

 Running time of the algorithm is:

 T(n)=C1n+C2(n-1)+0(n-1)+C4(n-1)+C5(n-1)+C6(n-1)+C7(n-1)+

 C8(n-1)

T(n)=C1n+C2(n-1)+0 (n-1)+C4(n-1)+C5() +C6()+C7()+ C8(n-1)

=C1n+C2 (n-1) +0 (n-1) +C4 (n-1) +C5 + C8 (n-1)

= (C1+C2+C4+C5+ C8) n-(C2+C4+C5+

C8) · Which is of the form an+b.

· Linear function of n.

So, linear growth.

Worst case:

It occurs when Array is reverse sorted, and tj =j

T(n)=C1n + C2(n-1)+0 (n-1)+C4(n-1)+C5() +C6()+C7() +

C8(n-1)

=C1n+C2(n-1)+C4(n-1)+C5(

) +C6(

)+C7(

)+ C8(n-1)

which is of the form an
2
+bn+c

Quadratic function. So in worst case insertion set grows in n2.

Why we concentrate on worst-case running time?

· The worst-case running time gives a guaranteed upper bound on the running time for any input.

· For some algorithms, the worst case occurs often. For example, when searching, the worst
case often occurs when the item being searched for is not present, and searches for absent items
may be frequent.

· Why not analyze the average case? Because it’s often about as bad as the worst case.
Order of growth:

It is described by the highest degree term of the formula for running time. (Drop lower-order terms.
Ignore the constant coefficient in the leading term.)

Example: We found out that for insertion sort the worst-case running time is of the form an
2
 + bn

+ c.

Drop lower-order terms. What remains is an2.Ignore constant coefficient. It results in n
2
.But we cannot

say that the worst-case running time T(n) equals n
2
 .Rather It grows like n

2
 . But it doesn’t equal n

2
.We

say that the running time is Θ (n
2
) to capture the notion that the order of growth is n

2
.

We usually consider one algorithm to be more efficient than another if its worst-case running time has a
smaller order of growth.

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space
requirement of the algorithm in terms of the size ‘n’ of the input data. Mostly, the storage space required
by an algorithm is simply a multiple of the data size ‘n’.

Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of the input
data but also on the particular data. The complexity function f(n) for certain cases are:

1. Best Case: The minimum possible value of f(n) is called the best case.

2. Average Case: The expected value of f(n).

3. Worst Case: The maximum value of f(n) for any key possible input.

ASYMPTOTIC NOTATION

 Formal way notation to speak about functions and classify them

The following notations are commonly use notations in performance analysis and used to
characterize the complexity of an algorithm:

1. Big–OH (O) ,
2. Big–OMEGA (Ω),
3. Big–THETA (Θ) and
4. Little–OH (o)

Asymptotic Analysis of Algorithms:

Our approach is based on the asymptotic complexity measure. This means that we don’t try to count the

exact number of steps of a program, but how that number grows with the size of the input to the
program. That gives us a measure that will work for different operating systems, compilers and CPUs.

The asymptotic complexity is written using big-O notation.

· It is a way to describe the characteristics of a function in the limit.

· It describes the rate of growth of functions.

· Focus on what’s important by abstracting away low-order terms and constant factors.

· It is a way to compare “sizes” of functions:

O≈ ≤

Ω≈ ≥

Θ ≈ =

o ≈ <

ω ≈ >

Time complexity Name Example

O(1) Constant Adding an element to the

 front of a linked list

O(logn) Logarithmic Finding an element in a

 sorted array

O (n) Linear Finding an element in an

 unsorted array

O(nlog n) Linear Logarithmic Sorting n items

 by ‘divide-and-conquer’- Mergesort

O(n
2
) Quadratic Shortest path between two

 nodes in a graph

O(n
3
) Cubic Matrix Multiplication

O(2
n
) Exponential The Towers of Hanoi problem

Big ‘oh’: the function f(n)=O(g(n)) iff there exist positive constants c and no such
thatf(n)<=c*g(n) for all n, n>= no.
Omega: the function f(n)=(g(n)) iff there exist positive constants c and no such thatf(n) >=
c*g(n) for all n, n >= no.
Theta: the function f(n)=(g(n)) iff there exist positive constants c1,c2 and no such that c1g(n) <=
f(n) <= c2 g(n) for all n, n >= no

Big-O Notation

This notation gives the tight upper bound of the given function. Generally we represent it as f(n) =

O(g (11)). That means, at larger values of n, the upper bound off(n) is g(n). For example, if f(n) = n
4
 +

100n
2
 + 10n + 50 is the given algorithm, then n

4
 is g(n). That means g(n) gives the maximum rate of

growth for f(n) at larger values of n.

O—notationdefined as O(g(n)) ={f(n): there exist positive constants c and nosuch that0 <= f(n) <=

cg(n) for all n >= no}. g(n) is an asymptotic tight upper bound for f(n). Our objective is to give some
rate of growth g(n) which is greater than given algorithms rate of growth f(n).

In general, we do not consider lower values of n. That means the rate of growth at lower values of n is

not important. In the below figure, no is the point from which we consider the rate of growths for a

given algorithm. Below no the rate of growths may be different.

Note Analyze the algorithms at larger values of n only What this means is, below no we do not care for
rates of growth.

Omega— Ω notation

Similar to above discussion, this notation gives the tighter lower bound of the given algorithm and we
represent it as f(n) = Ω (g(n)). That means, at larger values of n, the tighter lower bound of f(n) is g

For example, if f(n) = 100n
2
 + 10n + 50, g(n) is Ω (n

2
).

The . Ω. notation as be defined as Ω (g (n)) = {f(n): there exist positive constants c and no such that 0 <=

cg (n) <= f(n) for all n >= n o}. g(n) is an asymptotic lower bound for f(n). Ω (g (n)) is the set of
functions with smaller or same order of growth as f(n).

Theta- Θ notation

T his notation decides whether the upper and lower bounds of a given function are same or not.
The average running time of algorithm is always between lower bound and upper bound.

If the upper bound (O) and lower bound (Ω) gives the same result then Θ notation will also have
the same rate of growth. As an example, let us assume that f(n) = 10n + n is the expression. Then, its

tight upper bound g(n) is O(n). The rate of growth in best case is g (n) = 0(n). In this case, rate of
growths in best case and worst are same. As a result, the average case will also be same.

None: For a given function (algorithm), if the rate of growths (bounds) for O and Ω are not same
then the rate of growth Θ case may not be same.

Now consider the definition of Θ notation It is defined as Θ (g(n)) = {f(71): there exist positive constants

C1, C2 and no such that O<=5 c1g(n) <= f(n) <= c2g(n) for all n >= no}. g(n) is an asymptotic tight
bound for f(n). Θ (g(n)) is the set of functions with the same order of growth as g(n).

Important Notes

For analysis (best case, worst case and average) we try to give upper bound (O) and lower bound (Ω)

and average running time (Θ). From the above examples, it should also be clear that, for a given function

(algorithm) getting upper bound (O) and lower bound (Ω) and average running time (Θ) may not be
possible always.
For example, if we are discussing the best case of an algorithm, then we try to give upper bound (O) and
lower bound (Ω) and average running time (Θ).
In the remaining chapters we generally concentrate on upper bound (O) because knowing lower bound
(Ω) of an algorithm is of no practical importance and we use 9 notation if upper bound (O) and lower
bound (Ω) are same.

Little Oh Notation

The little Oh is denoted as o. It is defined as : Let, f(n} and g(n} be the non negative functions then

such that f(n}= o(g{n)} i.e f of n is little Oh of g of n.

f(n) = o(g(n)) if and only if f'(n) = o(g(n)) and f(n) != Θ {g(n))

PROBABILISTIC ANALYSIS

Probabilistic analysis is the use of probability in the analysis of problems.

In order to perform a probabilistic analysis, we must use knowledge of, or make assumptions about, the
distribution of the inputs. Then we analyze our algorithm, computing an average-case running time,
where we take the average over the distribution of the possible inputs.

Basics of Probability Theory

Probability theory has the goal of characterizing the outcomes of natural or conceptual “experiments.”
Examples of such experiments include tossing a coin ten times, rolling a die three times, playing a

lottery, gambling, picking a ball from an urn containing white and red balls, and so on

Each possible outcome of an experiment is called a sample point and the set of all possible outcomes is
known as the sample space S. In this text we assume that S is finite (such a sample space is called a
discrete sample space). An event E is a subset of the sample space S. If the sample space consists of n

sample points, then there are 2
n
 possible events.

Definition- Probability: The probability of an event E is defined to be where S is thesample space.

Then the indicator random variable I {A} associated with event A is defined as

I {A} = 1 if A occurs ;

0 if A does not occur

The probability of event E is denoted as Prob. [E] The complement of E, denoted E, is defined to be S -
E. If E1 and E2 are two events, the probability of E1 or E2 or both happening is denoted as Prob.[E1 U

E2]. The probability of both E1 and E2 occurring at the same time is denoted as Prob.[E1 0 E2]. The
corresponding event is E1 0 E2.

Theorem 1.5

1. Prob.[E] = 1 - Prob.[E].
2. Prob.[E1 U E2] = Prob.[E1] + Prob.[E2] - Prob.[E1 ∩ E2] <=

Prob.[E1] + Prob.[E2]

Expected value of a random variable

The simplest and most useful summary of the distribution of a random variable is the average” of
the values it takes on. The expected value (or, synonymously, expectation or mean) of a discrete
random variable X is

E[X] =

which is well defined if the sum is finite or converges absolutely.

Consider a game in which you flip two fair coins. You earn $3 for each head but lose $2 for each tail.
The expected value of the random variable X representing

your earnings is

E[X] = 6.Pr{2H’s} + 1.Pr{1H,1T} – 4 Pr{2T’s}

= 6(1/4)+1(1/2)-4(1/4) =1

Any one of these first i candidates is equally likely to be the best-qualified so far. Candidate i has a
probability of 1/i of being better qualified than candidates 1 through i -1 and thus a probability of 1/i of
being hired.

E[Xi]= 1/i
AMORTIZED ANALYSIS

In an amortized analysis, we average the time required to perform a sequence of datastructure

operations over all the operations performed. With amortized analysis, we can show that the average

cost of an operation is small, if we average over a sequence of operations, even though a single

operation within the sequence might be expensive. Amortized analysis differs from average-case

analysis in that probability is not involved; an amortized analysis guarantees the average performance of

each operation in the worst case.

Three most common techniques used in amortized analysis:
1. Aggregate Analysis - in which we determine an upper bound T(n) on the total costof a

sequence of n operations. The average cost per operation is then T(n)/n. We take the average
cost as the amortized cost of each operation

2. Accounting method –When there is more than one type of operation, each type ofoperation may

have a different amortized cost. The accounting method overcharges some operations early in the
sequence, storing the overcharge as “prepaid credit” on specific objects in the data structure.

Later in the sequence, the credit pays for operations that are charged less than they actually cost.

3. Potential method -The potential method maintains the credit as the “potentialenergy” of the
data structure as a whole instead of associating the credit with individual objects within the

data structure. The potential method, which is like the accounting method in that we

determine the amortized cost of each operation and may overcharge operations early on to
compensate for undercharges later

DIVIDE AND CONQUER

General Method

In divide and conquer method, a given problem is,

i) Divided into smaller subproblems.

ii) These subproblems are solved independently.

iii) Combining all the solutions of subproblems into a solution of the whole.

If the subproblems are large enough then divide and conquer is reapplied.

The generated subproblems are usually of some type as the original problem.

Hence recurssive algorithms are used in divide and conquer strategy.

Problem of size N

Subprogram of size Subprogram of size

 Solution to

Solution to

Solution to the original problem of

Pseudo code Representation of Divide and conquer rule for problem “P”

Algorithm DAndC(P)

{

if small(P) then return S(P)

else{

divide P into smaller instances P1,P2,P3…Pk;

apply DAndC to each of these subprograms; // means DAndC(P1), DAndC(P2)…..

DAndC(Pk)

return combine(DAndC(P1), DAndC(P2)….. DAndC(Pk));

}

}
//PProblem

//Here small(P) Boolean value function. If it is true, then the function S is //invoked

Time Complexity of DAndC algorithm:

T(n) = T(1) if n=1

aT(n/b)+f(n) if n>1

a,b contants.

This is called the general divide and-conquer recurrence.

Example for GENERAL METHOD:

As an example, let us consider the problem of computing the sum of n numbers a0, ... an-1.
If n > 1, we can divide the problem into two instances of the same problem. They are sum of the first |
n/2|numbers

Compute the sum of the 1
st

 [n/2] numbers, and then compute the sum of another n/2 numbers.
Combine the answers of two n/2 numbers sum.
i.e.,

a0 + . . . + an-1 =(a0 ++ an/2) + (a n/2 + + an-1)

Assuming that size n is a power of b, to simplify our analysis, we get the following
recurrence for the running time T(n).
T(n)=aT(n/b)+f(n)

This is called the general divide and-conquer recurrence.

f(n) is a function that accounts for the time spent on dividing the problem into smaller ones and on combining their
solutions. (For the summation example, a = b = 2 and f (n) = 1.

Advantages of DAndC:

The time spent on executing the problem using DAndC is smaller than other method.

This technique is ideally suited for parallel computation.

This approach provides an efficient algorithm in computer science.

Master Theorem for Divide and Conquer
In all efficient divide and conquer algorithms we will divide the problem into subproblems, each of

which is some part of the original problem, and then perform some additional work to compute the final
answer. As an example, if we consider merge sort [for details, refer Sorting chapter], it operates on two

problems, each of which is half the size of the original, and then uses O(n) additional work for merging.
This gives the running time equation:

T(n) = 2T()+ O(n)
The following theorem can be used to determine the running time of divide and conquer
algorithms. For a given program or algorithm, first we try to find the recurrence relation

for the problem. If the recurrence is of below form then we directly give the answer
without fully solving it.

If the reccurrence is of the form T(n) = aT() + Θ (nklog
p
n), where a >= 1, b > 1, k >= O

and p is a real number, then we can directly give the answer as:

1) If a > bk, then T(n) = Θ (

)

2) If a = bk

a. If p > -1, then T(n) = Θ (

)

b. If p = -1, then T(n) = Θ (

)

c. If p < -1, then T(n) = Θ (

s)

3) If a < b
k

a. If p >= 0, then T(n) = Θ (n
k
logp

n
)

b. If p < 0, then T(n) = 0(n
k
)

Applications of Divide and conquer rule or algorithm:

 Binary search,

 Quick sort,

 Merge sort,

 Strassen’s matrix multiplication.

Binary search or Half-interval search algorithm:

3. This algorithm finds the position of a specified input value (the search

"key") within an array sorted by key value.
4. In each step, the algorithm compares the search key value with the key

value of the middle element of the array.
5. If the keys match, then a matching element has been found and its index,

or position, is returned.
6. Otherwise, if the search key is less than the middle element's key, then

the algorithm repeats its action on the sub-array to the left of the middle

element or, if the search key is greater, then the algorithm repeats on sub

array to the right of the middle element.
7. If the search element is less than the minimum position element or

greater than the maximum position element then this algorithm returns

not found.

Binary search algorithm by using recursive methodology:

 Program for binary search (recursive) Algorithm for binary search (recursive)

 int binary_search(int A[], int key, int imin, int imax) Algorithm binary_search(A, key, imin, imax)

 { {

 if (imax < imin) if (imax < imin) then

 return array is empty; return “array is empty”;

 if(key<imin || K>imax) if(key<imin || K>imax) then

 return element not in array list return “element not in array list”

 else else

 { {

 int imid = (imin +imax)/2; imid = (imin +imax)/2;

 if (A[imid] > key) if (A[imid] > key) then

 return binary_search(A, key, imin, imid-1); return binary_search(A, key, imin, imid-1);

 else if (A[imid] < key) else if (A[imid] < key) then

 return binary_search(A, key, imid+1, imax); return binary_search(A, key, imid+1, imax);

 else else

 return imid; return imid;

 } }

 } }

http://en.wikipedia.org/wiki/Sorted_array

Time Complexity:

 Data structure:- Array

 For successful search Unsuccessful search

 Worst case O(log n) or θ(log n) θ(log n):- for all cases.

 Average case O(log n) or θ(log n)

 Best case O(1) or θ(1)

 Binary search algorithm by using iterative methodology:

 Binary search program by using iterative Binary search algorithm by using iterative

 methodology: methodology:

 int binary_search(int A[], int key, int imin, int Algorithm binary_search(A, key, imin, imax)

 imax) {

 { While < (imax >= imin)> do

 while (imax >= imin) {

 { int imid = midpoint(imin, imax);

 int imid = midpoint(imin, imax); if(A[imid] == key)

 if(A[imid] == key) return imid;

 return imid; else if (A[imid] < key)

 else if (A[imid] < key) imin = imid + 1;

 imin = imid + 1; else

 else imax = imid - 1;

 imax = imid - 1; }

 } }

 }

Merge Sort:
The merge sort splits the list to be sorted into two equal halves, and places them in
separate arrays. This sorting method is an example of the DIVIDE-AND-CONQUER

paradigm i.e. it breaks the data into two halves and then sorts the two half data sets
recursively, and finally merges them to obtain the complete sorted list. The merge sort
is a comparison sort and has an algorithmic complexity of O (n log n). Elementary

implementations of the merge sort make use of two arrays - one for each half of the
data set. The following image depicts the complete procedure of merge sort.

Advantages of Merge Sort:

4. Marginally faster than the heap sort for larger sets
5. Merge Sort always does lesser number of comparisons than Quick Sort. Worst case for

merge sort does about 39% less comparisons against quick sort’s average case.
6. Merge sort is often the best choice for sorting a linked list because the slow random-

access performance of a linked list makes some other algorithms (such as quick sort)

perform poorly, and others (such as heap sort) completely impossible.

Program for Merge sort:
#include<stdio.h>

#include<conio.h>

int n;

void main(){

int i,low,high,z,y;

int a[10];

void mergesort(int a[10],int low,int high);

void display(int a[10]);

clrscr();

printf("\n \t\t mergesort \n");

printf("\n enter the length of the list:");

scanf("%d",&n);

printf("\n enter the list elements");
for(i=0;i<n;i++)

scanf("%d",&a[i]);

low=0;

high=n-1;

mergesort(a,low,high);

display(a);

getch();

}

void mergesort(int a[10],int low, int high)

{

int mid;

void combine(int a[10],int low, int mid, int high);

if(low<high)

{

mid=(low+high)/2;

mergesort(a,low,mid);

mergesort(a,mid+1,high);

combine(a,low,mid,high);

}

}
void combine(int a[10], int low, int mid, int
high){ int i,j,k;
int temp[10];
k=low;

i=low;

j=mid+1;

while(i<=mid&&j<=high){

if(a[i]<=a[j])

{

temp[k]=a[i];

i++;

k++;

}

else

{

temp[k]=a[j];

j++;

k++;

}

}

while(i<=mid){

temp[k]=a[i];

i++;

k++;

}

while(j<=high){

temp[k]=a[j];

j++;
k++;

}

for(k=low;k<=high;k++)

a[k]=temp[k];

}

void display(int a[10]){

int i;

printf("\n \n the sorted array is \n");

for(i=0;i<n;i++)

printf("%d \t",a[i]);}

Algorithm for Merge sort:
Algorithm mergesort(low, high)

{

if(low<high) then
{

mid=(low+high)/2;

mergesort(low,mid);
mergesort(mid+1,high); //Solve the sub-
problems Merge(low,mid,high); // Combine the
solution }
}

void Merge(low, mid,high){
k=low;

i=low;

j=mid+1;

while(i<=mid&&j<=high) do{

if(a[i]<=a[j]) then
{

temp[k]=a[i];

i++;

k++;

}

else

{

temp[k]=a[j];

j++;

k++;

}

}

while(i<=mid) do{

temp[k]=a[i];

i++;

k++;

}

while(j<=high) do{

temp[k]=a[j];

j++;
k++;

}

For k=low to high do

a[k]=temp[k];

}

For k:=low to high do a[k]=temp[k];

}

DESIGN AND ANALYSIS OF ALGORITHMS Page 26

// Dividing Problem into Sub-problems and this
“mid” is for finding where to split the set.

Tree call of Merge sort

Consider a example: (From text book)

A[1:10]={310,285,179,652,351,423,861,254,450,520}

1, 10

 1, 5 6, 10

 1, 3 4, 5 6, 8 9, 10

 1, 2 3 , 3 4, 4 5, 5
6, 7

8, 8

9,9

10, 10

 Tree call of Merge sort (1, 10)

1, 1 call
2, 2

 Merge Sort Represents the sequence 6, 6 7, 7 that are produced by

merge sort.

“Once observe the explained notes in class room”

Computing Time for Merge sort:

The time for the merging operation in proportional to n, then computing time for
merge sort is described by using recurrence relation.

T(n)= a if n=1;

2T(n/2)+ cn if n>1

Here c, a Constants.

If n is power of 2, n=2
k

Form recurrence relation

T(n)= 2T(n/2) + cn

2[2T(n/4)+cn/2] + cn

4T(n/4)+2cn

2
2
 T(n/4)+2cn

2
3
 T(n/8)+3cn

2
4
 T(n/16)+4cn

2
k
 T(1)+kcn

an+cn(log n)

By representing it by in the form of Asymptotic notation O is

T(n)=O(nlog n)

Quick Sort

Quick Sort is an algorithm based on the DIVIDE-AND-CONQUER paradigm that selects a pivot
element and reorders the given list in such a way that all elements smaller to it are on one side
and those bigger than it are on the other. Then the sub lists are recursively sorted until the list
gets completely sorted. The time complexity of this algorithm is O (n log n).

 Auxiliary space used in the average case for implementing recursive function calls is
O (log n) and hence proves to be a bit space costly, especially when it comes to large
data sets.

2

 Its worst case has a time complexity of O (n) which can prove very fatal for large
data sets. Competitive sorting algorithms

Quick sort program
#include<stdio.h>

#include<conio.h>

int n,j,i;

void main(){

int i,low,high,z,y;
int a[10],kk;

void quick(int a[10],int low,int high);

int n;

clrscr();
printf("\n \t\t mergesort \n");
printf("\n enter the length of the list:");

scanf("%d",&n);

printf("\n enter the list elements");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

low=0;
high=n-1;

quick(a,low,high);

printf("\n sorted array is:");

for(i=0;i<n;i++)
printf(" %d",a[i]);
getch();

}

int partition(int a[10], int low, int high){

int i=low,j=high;
int temp;

int mid=(low+high)/2;

int pivot=a[mid];

while(i<=j)
{
while(a[i]<=pivot)

i++;

while(a[j]>pivot)

j--;
if(i<=j){

temp=a[i];

a[i]=a[j];

a[j]=temp;
i++;
j--;

}}

return j;

}

void quick(int a[10],int low, int high)
{

int m=partition(a,low,high);

if(low<m)

quick(a,low,m);

if(m+1<high)
quick(a,m+1,high);

}

Algorithm for Quick sort
Algorithm quickSort (a, low, high) {

If(high>low) then{

m=partition(a,low,high);

if(low<m) then quick(a,low,m);
if(m+1<high) then quick(a,m+1,high);

}}

Algorithm partition(a, low, high){

i=low,j=high;
mid=(low+high)/2;

pivot=a[mid];

while(i<=j) do { while(a[i]<=pivot)

i++;
while(a[j]>pivot)

j--;

if(i<=j){ temp=a[i];

a[i]=a[j];

a[j]=temp;
i++;

j--;

}}

return j;

}

 Time Complexity

Space

 Name Best case Average Worst

 Case Case Complexity

 Bubble O(n) - O(n
2
) O(n)

 Insertion O(n) O(n
2
) O(n

2
) O(n)

 Selection O(n
2
) O(n

2
) O(n

2
) O(n)

Quick O(log n) O(n log n) O(n
2
) O(n + log n)

Merge O(n log n) O(n log n) O(n log n) O(2n)

Heap O(n log n) O(n log n) O(n log n) O(n)

Comparison between Merge and Quick Sort:

 Both follows Divide and Conquer rule.

 Statistically both merge sort and quick sort have the same average case time i.e., O(n
log n).

 Merge Sort Requires additional memory. The pros of merge sort are: it is a stable
sort, and there is no worst case (means average case and worst case time complexity
is same).

 Quick sort is often implemented in place thus saving the performance and memory by
not creating extra storage space.

 But in Quick sort, the performance falls on already sorted/almost sorted list if the
pivot is not randomized. Thus why the worst case time is O(n

2
).

Randomized Sorting Algorithm: (Random quick sort)

 While sorting the array a[p:q] instead of picking a[m], pick a random element (from
among a[p], a[p+1], a[p+2]---a[q]) as the partition elements.

 The resultant randomized algorithm works on any input and runs in an expected O(n
log n) times.

Algorithm for Random Quick sort
Algorithm RquickSort (a, p, q) {

If(high>low) then{
If((q-p)>5) then

Interchange(a, Random() mod (q-p+1)+p, p);

m=partition(a,p, q+1);

quick(a, p, m-1);
quick(a,m+1,q);
}}

Strassen’s Matrix Multiplication:

Let A and B be two n×n Matrices. The product matrix C=AB is also a n×n matrix whose i,

j
th

 element is formed by taking elements in the i
th

 row of A and j
th

 column of B and
multiplying them to get
C(i, j)=

Here 1≤ i & j ≤ n means i and j are in between 1 and n.

To compute C(i, j) using this formula, we need n multiplications.

The divide and conquer strategy suggests another way to compute the product of two n×n
matrices.
For Simplicity assume n is a power of 2 that is

n=2
k
 Here k any nonnegative integer.

If n is not power of two then enough rows and columns of zeros can be added to both A
and B, so that resulting dimensions are a power of two.

Let A and B be two n×n Matrices. Imagine that A & B are each partitioned into four square
sub matrices. Each sub matrix having dimensions n/2×n/2.
The product of AB can be computed by using previous formula.

If AB is product of 2×2 matrices then

C11=A11B11+A12B21
C12=A11B12+A12B22

C21=A21B11+A22B21

C22= A21B12+A22B22

Here 8 multiplications and 4 additions are performed.

Note that Matrix Multiplication are more Expensive than matrix addition and subtraction.

T(n)= b
8T(n/2)+ cn2

if n≤2;

if n>2

Volker strassen has discovered a way to compute the Ci,j of above using 7 multiplications

and 18 additions or subtractions.
For this first compute 7 n/2×n/2 matrices P, Q, R, S, T, U & V

P=(A11+A22)(B11+B22)

Q=(A21+A22)B11

R=A11(B12-B22)

S=A22(B21-B11)

T=(A11+A12)B22

U=(A21-A11)(B11+B12)

V=(A12-A22)(B21+B22)

C11=P+S-T+V

T(n)= b if n≤2;

C12=R+T

C21=Q+S 7T(n/2)+ cn
2

 if n>2

C22=P+R-Q+U

What is a Randomized Algorithm?
An algorithm that uses random numbers to decide what to do next anywhere in its logic is

called Randomized Algorithm.. For example, in Randomized Quick Sort, we use random

number to pick the next pivot (or we randomly shuffle the array). And in Karger’s algorithm,

we randomly pick an edge.

How to analyse Randomized Algorithms?
Some randomized algorithms have deterministic time complexity. For

example, thisimplementation of Karger’s algorithm has time complexity as O(E). Such

algorithms are called Monte Carlo Algorithms and are easier to analyse for worst case.

On the other hand, time complexity of other randomized algorithms (other than Las Vegas) is

dependent on value of random variable. Such Randomized algorithms are called Las Vegas

Algorithms. These algorithms are typically analysed for expected worst case. To compute

expected time taken in worst case, all possible values of the used random variable needs to be

considered in worst case and time taken by every possible value needs to be evaluated.

Average of all evaluated times is the expected worst case time complexity. Below facts are

generally helpful in analysis os such algorithms.

Linearity of Expectation

Expected Number of Trials until Success.

For example consider below a randomized version of QuickSort.

A Central Pivot is a pivot that divides the array in such a way that one side has at-least 1/4

elements.

// Sorts an array arr[low..high]

randQuickSort(arr[], low, high)

1. If low >= high, then EXIT.

2. While pivot 'x' is not a Central Pivot.

 (i) Choose uniformly at random a number from [low..high].

 Let the randomly picked number number be x.

 (ii) Count elements in arr[low..high] that are smaller

 than arr[x]. Let this count be sc.

 (iii) Count elements in arr[low..high] that are greater

 than arr[x]. Let this count be gc.

 (iv) Let n = (high-low+1). If sc >= n/4 and

 gc >= n/4, then x is a central pivot.

https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/randomized-algorithms-set-2-classification-and-applications/
https://www.geeksforgeeks.org/linearity-of-expectation/
https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

3. Partition arr[low..high] around the pivot x.

4. // Recur for smaller elements

 randQuickSort(arr, low, sc-1)

5. // Recur for greater elements

 randQuickSort(arr, high-gc+1, high)

The important thing in our analysis is, time taken by step 2 is O(n).

How many times while loop runs before finding a central pivot?

The probability that the randomly chosen element is central pivot is 1/2.

Therefore, expected number of times the while loop runs is 2 (See this for details)

Thus, the expected time complexity of step 2 is O(n).

What is overall Time Complexity in Worst Case?

In worst case, each partition divides array such that one side has n/4 elements and other side

has 3n/4 elements. The worst case height of recursion tree is Log 3/4 n which is O(Log n).

T(n) < T(n/4) + T(3n/4) + O(n)

T(n) < 2T(3n/4) + O(n)

Solution of above recurrence is O(n Log n)

Note that the above randomized algorithm is not the best way to implement randomized

Quick Sort. The idea here is to simplify the analysis as it is simple to analyse.

Typically, randomized Quick Sort is implemented by randomly picking a pivot (no loop). Or

by shuffling array elements.

.

https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

UNIT - II

Disjoint set operations, union and find algorithms, AND/OR graphs, Connected Components

and Spanning trees, Bi-connected components

Backtracking-General method, applications The 8-queen problem, sum of subsets problem,

graph coloring, Hamiltonian cycles.

Efficient non recursive tree traversal algorithms

in-order: (left, root, right)
3,5,6,7,10,12,13
15, 16, 18, 20, 23

post-order: (left, right, root)
3, 7, 6, 10, 13, 12, 5,
18, 23,20,16, 65

pre-order: (root, left, right)
15, 5, 3, 12, 10, 6, 7,
13, 16, 20, 18, 23

Non recursive Inorder traversal algorithm

1. Start fiom the root. let's it is current.

2. Ifcurrent is not NULL. push the node on to stack.

3. Move to left child of current and go to step 2.

4. Ifcurrent is NULL, and stack is not empty, pop node from the stack.

5. Print the node value and change current to right child of current.

6. Go to step 2.

So we go on traversing all left node. as we visit the node. we will put that node into

stack.remember need to visit parent after the child and as We will encounter parent first when
start from root. it's case for LIFO :) and hence the stack). Once we reach NULL node. we will

take the node at the top of the stack. last node which we visited. Print it.
Check if there is right child to that node. If yes. move right child to stack and again start
traversing left child node and put them on to stack. Once we have traversed all node. our
stack will be empty.

Non recursive postorder traversal algorithm

Left node. right node and last parent node.

1.1 Create an empty stack

2.1 Do Following while root is not NULL

a) Push root's right child and then root to stack.

b) Set root as root's left child.

2.2 Pop an item from stack and set it as root.
a) If the popped item has a right child and the right child
is at top of stack, then remove the right child from stack,
push the root back and set root as root's right child.
Ia) Else print root's data and set root as NULL.

2.3 Repeat steps 2.1 and 2.2 while stack is not empty.

Disjoint Sets: If Siand Sj,i≠j are two sets, then there is no element that is in both Siand Sj..

For example: n=10 elements can be partitioned into three disjoint sets,

S1= {1, 7, 8, 9}

S2= {2, 5, 10}

S3= {3, 4, 6}

Tree representation of sets:

 1
 5

 3

7 8 9 2 10 4 6

 S1 S2 S3

Disjoint set Operations:

 Disjoint set Union

 Find(i)

Disjoint set Union: Means Combination of two disjoint sets elements. Form above example

S1 U S2 ={1,7,8,9,5,2,10 }

For S1 U S2 tree representation, simply make one of the tree is a
subtree of the other.

 1 1

7 8 9
5

5 7 8 9

 2 10 2 10

 S1 U S2 S2 U S1

Find: Given element i, find the set containing i.

Form above example:

Find(4) S3

Find(1) S1

Find(10) S2

Data representation of sets:

Tress can be accomplished easily if, with each set name, we keep a pointer to the root of the
tree representing that set.

For presenting the union and find algorithms, we ignore the set names and identify sets just
by the roots of the trees representing them.
For example: if we determine that element ‘i’ is in a tree with root ‘j’ has a pointer to
entry‘k’ in the set name table, then the set name is just name[k]

For unite (adding or combine) to a particular set we use FindPointer function.

Example: If you wish to unite to Siand Sjthen we wish to unite the tree with roots

FindPointer (Si) and FindPointer (Sj)

FindPointer is a function that takes a set name and determines the root of the tree that represents it.

For determining operations:

Find(i) 1
St

 determine the root of the tree and find its pointer to entry in setname table.

Union(i, j) Means union of two trees whose roots are i and j.

If set contains numbers 1 through n, we represents tree node
P[1:n].

n Maximum number of elements.

Each node represent in array

 i 1 2 3 4 5 6 7 8 9 10

 P -1 5 -1 3 -1 3 1 1 1 5

Find(i)

-1.

Example: Find(6) start at 6 and then moves to 6’s parent. Since P[3] is negative, we reached
the root.

Algorithm for finding Union(i, j): Algorithm for find(i)

Algorithm Simple union(i, j) Algorithm SimpleFind(i)

{ {

P[i]:=j; // Accomplishes the union While(P[i]≥0) do i:=P[i];

} return i;

 }

If n numbers of roots are there then the above algorithms are not useful for union and find.

For union of n trees Union(1,2), Union(2,3), Union(3,4),…..Union(n-1,n).

For Find i in n trees Find(1), Find(2),….Find(n).

Time taken for the union (simple union) is O(1) (constant).

For the n-1 unions O(n).

Time taken for the find for an element at level i of a tree
is For n finds

 O(i).

 O(n

To improve the performance of our union and find algorithms by avoiding the creation of
degenerate trees. For this we use a weighting rule for union(i, j)

Weighting rule for Union(i, j):
If the number of nodes in the tree with root ‘i’ is less than the tree with root ‘j’, then make ‘j’
the parent of ‘i’; otherwise make ‘i’ the parent of ‘j’.

Algorithm for weightedUnion(i, j)

Algorithm WeightedUnion(i,j)

//Union sets with roots i and j, i≠j

// The weighting rule, p[i]= -count[i] and p[j]= -count[j].

{
temp := p[i]+p[j];
if (p[i]>p[j]) then
{ // i has fewer
nodes. P[i]:=j;
P[j]:=temp;
}
else
{ // j has fewer or equal
nodes. P[j] := i;
P[i] := temp;

}

}

For implementing the weighting rule, we need to know how many nodes there are
in every tree.
For this we maintain a count field in the root of every tree.

i root node

count[i] number of nodes in the tree.

Time required for this above algorithm is O(1) + time for remaining unchanged is
determined by using Lemma.

Lemma:-

Let T be a tree with m nodes created as a result of a sequence of unions each
performed using WeightedUnion. The height of T is no greater than

|log2 m|+1.
Collapsing rule: If ‘j’ is a node on the path from ‘i’ to its root and p[i]≠root[i], then set
p[j] to root[i].

Algorithm for Collapsing find.
Algorithm CollapsingFind(i)

//Find the root of the tree containing element i.

//collapsing rule to collapse all nodes form i to the root.

{

r;=i;

while(p[r]>0) do r := p[r]; //Find the root.

While(i ≠ r) do // Collapse nodes from i to root r.

{

s:=p[i];

p[i]:=r;

i:=s;
}

return r;

}

Collapsing find algorithm is used to perform find operation on the tree created by
WeightedUnion.

For example: Tree created by using WeightedUnion

Now process the following eight finds: Find(8), Find(8),……….Find(8)
If SimpleFind is used, each Find(8) requires going up three parent link fields for a total of 24
moves to process all eight finds.

When CollapsingFind is uised the first Find(8) requires going up three links and then
resetting two links. Total 13 movies requies for process all eight finds.

AND/OR GRAPH:

And/or graph is a specialization of hypergraph which connects nodes by sets of arcs rather than by a

single arcs. A hypergraph is defined as follows:

hypergraph consists of:

N, a set of nodes,

H, a set of hyperarcs defined by ordered pairs, in which the first implement of the pair is a node

of N and the second implement is the subset of N.

An ordinary graph is a special case of hypergraph in which all the sets of decendent nodes have a

cardinality of 1.Hyperarcs also known as K-connectors, where K is the cardinality of the set of

decendent nodes. If K = 1, the descendent may be thought of as an OR nodes. If K > 1, the elements of

the set of decendents may be thought of as AND nodes. In this case the connector is drawn with

individual edges from the parent node to each of the decendent nodes; these individual edges are then

joined with a curved link.

R
N1

 N2

PQ

 N

Nk

E xpre s s io n f or P a n d Q - > R A K- C n n ec t

 World

The K-connector is represented as a fan of arrows with a single tie is sh wn above.

The and/or graphs consists of nodes labelled by global databases. Nodes labelled by compound

databases have sets of successor nodes. These successor nodes are called AND nodes, in order to

process the compound database to termination, all the compound databases must be processed to

termination.

For example consider, consider a boy who collects stamps (M). He has for the purpose of exchange a

winning conker (C), a bat (B) and a small toy animal (A). In his class there are friends who are also

keen collectors of different items and will make the following exchanges.

1. 1 winning conker (C) for a comic (D) and a bag of sweets (S).

2. 1 winning conker (C) for a bat (B) and a stamp (M).

3. 1 bat (B) for two stamps (M, M).

4. 1 small toy animal (A) for two bats (B, B) and a stamp (M).

The problem is how to carry out the exchanges so that all his exchangable items are converted into

stamps (M). This task can be expressed more briefly as:

1. Initial state = (C, B, A)

2. Transformation rules:

a. If C then (D, S)

b. If C then (B, M)

c. If B then (M, M)

3. If A then (B, B, M)The goal state is to left with only stamps (M, , M)

 (C, B, A)

(D S B A) (B M B A) (C M M A) (C B B B M)

(D S M M A) (M M M B A) (B M M M A) (B M B B B M)

(D S M M B B M) (M M M M M A) (M M M M M A) (M M M B B B M)

(D S M M M M B M) (M M M M M B B M)

(D S M M M M M M M) (M M M M M M M B M)

M M) GOAL

 (M M M M M M M M

 Expansion for the exchange problem using OR connect rs nly

The figure shows that, a lot of extra work is done by redoing many of the transformations. This repetition can
be avoided by decomposing the problem into subproblems. There are two major ways to order the

components:

1. The components can either be arranged in some fixed order at the time they are generated
(or).

2. They can be dynamically reordered during processing.

The more flexible system is to reorder dynamically as the processing unfolds. It can be represented by and/or

graph. The solution to the exchange problem will be:

Swap conker for a bat and a stamp, then exchange this bat for two stamps. Swap his own bat for two

more stamps, and finally swap the small toy animal for two bats and a stamp. he two bats can be

exchanged for two stamps.

The previous exchange problem, when implemented as an and/or graph looks as follows:

 (C B A)

 (C) (B) (A)

 (D S) (B M) (M M) (B B M)

(D) (S) (B) ((M)) ((M)) ((M)) (B) (B) ((M))

 (M M) (M M) (M M)

 ((M)) ((M)) ((M)) ((M)) ((M)) ((M))

 The exchange problem as an AND/OR graph

159

Example 1:

Draw an And/Or graph for the following prepositions:

1. A

2. B
3. C

4. A ^ B -> D

5. A ^ C -> E

6. B ^ D -> F

7. F -> G
8. A ^ E -> H

C A B

E D

H F

G

Spanning Tree:-

Let G=(V<E) be an undirected connected graph. A sub graph t=(V,E
1
) of G is a spanning tree

of G iff t is a tree.

Spanning Trees have many applications.

Example:-

It can be used to obtain an independent set of circuit equations for an electric network.
Any connected graph with n vertices must have at least n-1 edges and all connected graphs
with n-1 edges are trees. If nodes of G represent cities and the edges represent possible

communication links connecting two cities, then the minimum number of links needed to

connect the n cities is n-1.

There are two basic algorithms for finding minimum-cost spanning trees, and both are greedy
algorithms

Prim’s Algorithm

Kruskal’s Algorithm

Prim’s Algorithm: Start with anyone nodein the spanning tree, and repeatedly add
thecheapest edge, and the node it leads to, for which the node is not already in the spanning
tree.

Kruskal’s Algorithm: Start withnonodes or edges in the spanning tree, and repeatedly
addthe cheapest edge that does not create a cycle.

Connected Component:
Connected component of a graph can be obtained by using BFST (Breadth first search and
traversal) and DFST (Dept first search and traversal). It is also called the spanning tree.
BFST (Breadth first search and traversal):

 In BFS we start at a vertex V mark it as reached (visited).

 The vertex V is at this time said to be unexplored (not yet discovered).

 A vertex is said to been explored (discovered) by visiting all vertices adjacent from it.

 All unvisited vertices adjacent from V are visited next.

 The first vertex on this list is the next to be explored.

 Exploration continues until no unexplored vertex is left.

 These operations can be performed by using Queue.

This is also called connected graph or spanning tree.

Spanning trees obtained using BFS then it called breadth first spanning trees.
Algorithm for BFS to convert undirected graph G to Connected component or spanning

tree.

Algorithm BFS(v)

// a bfs of G is begin at vertex v

// for any node I, visited[i]=1 if I has already been visited.

// the graph G, and array visited[] are global

{

U:=v; // q is a queue of unexplored vertices.

Visited[v]:=1;

Repeat{

For all vertices w adjacent from U do

If (visited[w]=0) then

{

Add w to q; // w is unexplored

Visited[w]:=1;

}

If q is empty then return; // No unexplored vertex.

Delete U from q; //Get 1
st

 unexplored vertex.
} Until(false)
}

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency list.

T(n, e)=θ(n+e)

S(n, e)=θ(n)

If nodes are in adjacency matrix then

T(n, e)=θ(n
2
)

S(n, e)=θ(n)

DFST(Dept first search and traversal).:

 Dfs different from bfs

 The exploration of a vertex v is suspended (stopped) as soon as a new vertex is reached.

 In this the exploration of the new vertex (example v) begins; this new vertex has been
explored, the exploration of v continues.

 Note: exploration start at the new vertex which is not visited in other vertex exploring and
choose nearest path for exploring next or adjacent vertex.

Algorithm for DFS to convert undirected graph G to Connected component or spanning
tree.

Algorithm dFS(v)

// a Dfs of G is begin at vertex v

// initially an array visited[] is set to zero.

//this algorithm visits all vertices reachable from v.

// the graph G, and array visited[] are global

{

Visited[v]:=1;

For each vertex w adjacent from v do

{

If (visited[w]=0) then DFS(w);

{
Add w to q; // w is
unexplored Visited[w]:=1;
}
}

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency list.

T(n, e)=θ(n+e)

S(n, e)=θ(n)

If nodes are in adjacency matrix then

T(n, e)=θ(n
2
)

S(n, e)=θ(n)
Bi-connected Components:A graph G is biconnected, iff (if and only if) it contains no

articulation point (joint or junction).
A vertex v in a connected graph G is an articulation point, if and only if (iff) the deletion of
vertex v together with all edges incident to v disconnects the graph into two or more none
empty components.

The presence of articulation points in a connected graph can be an undesirable(un wanted)

feature in many cases.

For example

if G1 Communication network with

Vertex communication stations.

Edges Communication lines.

Then the failure of a communication station I that is an articulation point, then we loss the

communication in between other stations. F

Form graph G1

(Here 2 is articulation point)

If the graph is bi-connected graph (means no articulation point) then if any station i
fails, we can still communicate between every two stations not including station i.

From Graph Gb

There is an efficient algorithm to test whether a connected graph is biconnected. If the case of
graphs that are not biconnected, this algorithm will identify all the articulation points.
Once it has been determined that a connected graph G is not biconnected, it may be desirable
(suitable) to determine a set of edges whose inclusion makes the graph biconnected.

Articu ation Points and Biconnected Components:

Let G = (V, E) be a connected undirected graph. Consider the following definitions:

rticu ation Point (or Cut Vertex): An articulation point in a connected graph is avertex (together with the

removal of any incident edges) that, if deleted, would break the graph into two or more pieces..

Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph is biconnected if it contains no articulation points. In abiconnected graph, two distinct

paths connect each pair of vertices. A graph that is not biconnected divides into biconnected components.

This is illustrated in the following figure:

Biconnected

Components

Articulation Point

Bridge

Articulation Points and Bridges

Biconnected graphs and articulation points are of great interest in the design of network algorithms, because

these are the “critical" points, wh se failure will result in the network becoming disconnected.

Let us consider the typical case of vertex v, where v is not a leaf and v is not the root. Let w1, w2, wk

be the children of v. For each child there is a subtree of the DFS tree rooted at this child. If for some child,
there is no back edge going to a proper ancestor of v, then if we remove v, this subtree becomes disconnected
from the rest of the graph, and hence v is an articulation point.

On the other hand, if every one of the subtree rooted at the children of v have back edges to proper ancestors

of v, then if v is removed, the graph remains connected (the back edges hold everything together). This leads

to the following:

Observation 1: An internal vertex v of the DFS tree (other than the root) isan articulation point if

and only if there is a subtree rooted at a child of v such that there is no back edge from any vertex in

this subtree to a proper ancestor of v.

Observation 2: A leaf of the DFS tree is never an articulation point, since aleaf will not have any

subtrees in the DFS tree.

Thus, after deletion of a leaf from a tree, the rest of the tree remains connected, thus even ignoring

the back edges, the graph is connected after the deletion of a leaf from the DFS tree.

Observation 3: The root of the DFS is an articulation point if and only if it hastwo or more

children. If the root has only a single child, then (as in the case of eaves) its removal does not

disconnect the DFS tree, and hence cannot disconnect the graph in general.Articulation Points by

Depth First Search:

Determining the articulation turns out to be a simple extension of depth first search.

Consider a depth first spanning tree for this graph.

A H I

B C

G World

D

E

 J K

F
L

 M

Observations 1, 2, and 3 provide us with a structural characterizati n f which

vertices in the DFS tree are articulation points.

Deleting node E does not disconnect the graph because G and D b th have dotted links (back edges)

that point above E, giving alternate paths from them to F. On the other hand, deleting G does

disconnect the graph because there are no such alternate paths from L or H to E (G’s parent).

A vertex ‘x’ is not an articulation point if every child ‘y’ has some node lower in the tree connect (via

a dotted link) to a node higher in the tree than ‘x’, thus providing an alternate connection from ‘x’ to

‘y’. This rule will not work for the root node since there are no nodes higher in the tree. The root is an

articulation point if it has two more children.

Depth First Spanning ree for the above graph is:

By using the above observations the articulation points of this graph are:

A : because it connects B to the rest of the graph.

H : because it connects I to the rest of the graph.

J : because it connects K to the rest of the graph.
G : because the graph would fall into three pieces if G is deleted. Biconnected components

are: {A, C, G, D, E, F}, {G, J, L, M}, B, H, I and KThis observation leads to a simple rule to identify

articulation points. For each is define L (u) as follows:

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) (u, w) is a back

edge}}.

L (u) is the lowest depth first number that can be reached from ‘u’ using a path of descendents followed by at

most one back edge. It follows that, If ‘u’ is not the root then ‘u’ is an articulation point iff ‘u’ has a child ‘w’

such that:

L (w) ≥ DFN (u)
Algorithm for finding the Articulation points:

Pseudocode to compute DFN and L.

Algorithm Art (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first
// spanning tree. It is assumed that the global array dfn is initialized to zero and that // the global variable num is

initialized to 1. n is the number of vertices in G.
{

dfn [u] := num; L [u] := num; num := num + 1; for each
vertex w adjacent from u do
{

if (dfn [w] = 0) then
{

Art (w, u);
L [u] := min (L [u], L [w]);

// w is unvisited.

}
else if (w v) then L [u] := min (L [u], dfn [w]);
}

}

 Algorithm for finding the Biconnected

Components:

Algorithm BiComp (u, v)

// u is a start vertex for depth first search. V is its parent if any in the

depth first
// spanning tree. It is assumed that the global array dfn is initially zero

and that the
// global variable num is initialized to 1. n is the number of vertices

in G.

{
dfn [u] := num; L [u] := num; num := num + 1;
for each vertex w adjacent from u do
{

if ((v w) and (dfn [w] < dfn [u])) then
add (u, w) to the top of a stack s;

if (dfn [w] = 0) then
{

if (L [w] > dfn [u]) then
{

write (“New bicomponent”);
repeat
{

Delete an edge

from the top of

stack s;
Let this edge be (x,

y);
Write (x, y);

} until (((x, y) = (u, w)) or

((x, y) = (w, u)));
}

BiComp (w, u);
L [u] := min (L [u], L [w]);

// w is unvisited.

}
else if (w v) then L [u] : = min (L [u], dfn [w]);

}
}

Example:

For the following graph identify the articulation points and Biconnected components:

 8 6

1 1

 1 1 5 7
2 4

2 4 6 2 7 9
3 3

 3 3 8 1 0

 4 1 0 5 9 6 2

4 1 0 9 5

 7 5

 Grap h

 8 6 7 9

 8 1 0

Dept h Fi rst Sp an ni ng Tree

To identify the articulation points, we use:

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex to which there is

back edge from u}}

L (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1 L (4) = min {DFN

(4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1

L (3) = min {DFN (3), min {L (10), L (9), L (2)}} =

= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1

L (10) = min {DFN (10)} = 4

L (9) = min {DFN (9)} = 5

L (2) = min {DFN (2), min {L (5)}, min {DFN (1)}}

= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1

L (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6 L (6) = min

{DFN (6)} = 8

L (7) = min {DFN (7), min {L (8}, min {DFN (2)}}

= min {9, L (8) , 6} = min {9, 6, 6} = 6

L (8) = min {DFN (8), min {DFN (5), DFN (2)}}
= min {10, min (7, 6)} = min {10, 6} = 6 Therefore, L

(1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4)

Finding the Articulation Points:

Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an articulation point if it has two or

more child nodes.

Vertex 2: is an articulation point as child 5 has L (5) = 6 and DFN (2) = 6, So, the condition

L (5) = DFN (2) is true.

Vertex 3: is an articulation point as child 10 has L (10) = 4 and DFN (3) = 3, So, the condition L

(10) > DFN (3) is true.

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and DFN (4) = 2, So, the condition L

(3) > DFN (4) is false.

Vertex 5: is an articulation point as child 6 has L (6) = 8, and DFN (5) = 7, So, the condition L

(6) > DFN (5) is true.

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and DFN (7) = 9, So, the condition L

(8) > DFN (7) is false.

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes.

Therefore, the articulation points are {2, 3, 5}.

Example:

For the following graph identify the articulation points and Biconnected components:

1 4 1 1

2 3 7 8 2 2 3 3

5 6 4 5 5 6 4 6

G ra p h

7 7

8 8

D F S s p a n ni n g T re e

V ert e x

1
 2

2 1 3

3
2

5

6

4

4 3 7 8

5 3

6 3

7 4 8

8 4 7

Adj ac enc y List

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex to which there is

back edge from u}}

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1 L (2) = min {DFN (2),

min {L (3)}} = min {2, L (3)} = min {2, 3} = 2

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6

L (5) = min {DFN (5)} = 4

L (6) = min {DFN (6)} = 5

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6

Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any child of u.

Vertex 1: Vertex 1 is not an articulation point.

It is a root node. Root is an articulation point if it has two or more child nodes.

Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2.

So, the condition is true

Vertex 3: is an articulation Point as:

I. L (5) = 4 and DFN (3) = 3
II. L (6) = 5 and DFN (3) = 3 and
III. L (4) = 6 and DFN (3) = 3 So, the

condition true in above cases

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6.

So, the condition is true

Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7.
So, the condition is False

Vertex 5, Vertex 6 and Vertex 8 are leaf nodes.

Therefore, the articulation points are {2, 3, 4}.

Example:

For the following graph identify the articulation points and Biconnected components:

 1 1

 5
2 2

1

6 3 3

2 4

 4 4

 8

 3
5 5 7 8

7

 Graph 6 6 Depth First

Spanning Tree

 7 8

DFN (1: 8) = {1, 2, 3, 4, 5, 6, 8, 7}

V ert e x

1 2 4 5

2 1 3

3 2 4 7

4

 1

3

5

6

7

 8

5 1 4 6

6
4

5
8

7 3 4

8 4 6

Adj ac enc y List

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w is a vertex to which there is

back edge from u}}

L (1) = min {DFN (1), min {L (2)}}
= min {1, L (2)} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min{2, 1}= 11

L (3) = min {DFN (3), min {L (4)}} = min {3, L (4)} = min {3, L (4)} = min {3, 1} = 1

L (4) = min {DFN (4), min {L (5), L (7)}, min {DFN (1)}}

= min {4, min {L (5), L (7)}, 1} = min {4, min {1, 3}, 1}
= min {4, 1, 1} = 1

L (5) = min {DFN (5), min {L (6)}, min {DFN (1)}}World=min{5,L(6),1}

= min {5, 4, 1} = 1

L (6) = min {DFN (6), min {L (8)}, min {DFN (4)}} = min(6, L (8), 4} = min(6, 4, 4} =

4

L (7) = min {DFN (7), min {DFN (3)}} = min {8, 3} = 3 L (8) = min

{DFN (8), min {DFN (4)}} = min {7, 4} = 4

Check for the condition if L (w) > DFN (u) is true, where w is any

child of u.

Vertex 1: is not an articulation point.
It is a root node. Root is an articulation point if it has two more child nodes.

Vertex 2: is not an articulation point. As L (3) = 1 and DFN (2) = 2.
So, the condition is False.

Vertex 3: is not an articulation Point as L (4) = 1 and DFN (3) = 3.
So, the condition is False.

Vertex 4: is not an articulation Point as:

L (3) = 1 and DFN (2) = 2 and
L (7) = 3 and DFN (4) = 4

So, the condition fails in both cases.

Vertex 5: is not an Articulation Point as L (6) = 4 and DFN (5) = 6.
So, the condition is False

Vertex 6: is not an Articulation Point as L (8) = 4 and DFN (6) = 7.
So, the condition is False

Vertex 7: is a leaf node.

Vertex 8: is a leaf node.

So they are no articulation points.

What is Backtracking Programming??

Recursion is the key in backtracking programming. As the name suggests we backtrack

to find the solution. We start with one possible move out of many available moves and

try to solve the problem if we are able to solve the problem with the selected move then

we will print the solution else we will backtrack and select some other move and try to

solve it. If none if the moves work out we will claim that there is no solution for the

problem.

Finding the Articulation Points:

Therefore, L (1: 8) = {1, 1, 1, 1, 1, 4, 3, 4}

Generalized Algorithm:
Pick a starting point.

while(Problem is not solved)

For each path from the starting point.

 check if selected path is safe, if yes select it

 and make recursive call to rest of the problem

If recursive calls returns true,

 then returntrue.

else

 undo the current move and returnfalse.

EndFor

If none of the move works out, returnfalse, NOSOLUTON

The solution is based on finding one or more vectors that maximize, minimize, satisfy a criterion function P
(x1, , xn). Form a soluti n and check at every step if this has any chance of success. If the solution at

any p int seems n t pr mising, ignore it. All solutions requires a set of constraints divided into two categ ries:
explicit and implicit constraints.

Definition 1: Explicit constraints are rules that restrict each xi to take on values only from a given set.

Explicit constraints depend on the particular instance I of problem being solved. All tuples

that satisfy the explicit constraints define a possible solution space for I.

Definition 2: Implicit constraints are rules that determine which of the tuples in the solution space of I satisfy

the criterion function. Thus, implicit constraints describe the way in which the x i’s must

relate to each other.

 For 8-queens problem:

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 4, 5, 6, 7, 8}.

The implicit constraints for this problem are that no two queens can be the same (i.e., all queens

must be on different columns) and no two queens can be on the same diagonal.

Backtracking is a modified depth first search of a tree. Backtracking algorithms determine problem solutions

by systematically searching the solution space for the given prob em instance. This search is facilitated by

using a tree organization for the so ution space.

Backtracking is the procedure where by, after determining that a node can lead to nothing but dead end, we

go back (backtrack) to the nodes parent and proceed with the search on the next child.

backtracking algorithm need not actually create a tree. Rather, it only needs to keep track of the values in

the current branch being investigated. This is the way we implement backtracking algorithm. We say that the

state space tree exists implicitly in the algorithm because it is not actually constructed.

Terminology:

Problem state is each node in the depth first search tree.

Solution states are the problem states ‘S’ for which the path from the root node to

‘S’ defines a tuple in the solution space.

State space is the set of paths from root node to other nodes.State spacetree is thetree organization of the

solution space. The state space trees are called static t ees. This terminology follows from the observation

that the tree o ganizations a e

Answer states are those solution states for Worldwhichthepathfromrootnoetosdefines a tuple that is a member of

the set of solutions.
independent of the problem instance being solved. For some p ob ems it is
advantageous to use different tree organizations for different p oblem instance. In this case the tree

organization is determined dynamically as the s luti n space is being searched. Tree organizations that are

problem instance dependent a e called dynamic trees.

Live node is a node that has been generated but whose children have n t yet beengenerated.

E-node is a live node whose children are currently being explored. In other words, anE-node is a node

currently being expanded.

Dead node is a generated node that is not to be expanded explored any further.
All children of a dead node have already been expanded.

Branch and Bound refers to all state space search methods in which all children ofan E-node are

generated before any other live node can become the E-node.

Depth first node generation with bounding functions is called backtracking. State generation methods in

which the E-node remains the E-node until it is dead, lead to branch and bound methods.

Planar Graphs:

When drawing a graph on a piece of a paper, we often find it convenient to permit edges to intersect at

points other than at vertices of the graph. These points of interactions are called crossovers.

A graph G is said to be planar if it can be drawn on a plane without any crossovers; otherwise G is said to

be non-planar i.e., A graph is said to be planar iff it can be drawn in a plane in such a way that no two

edges cross each other.

Examp e:

 a

a

e b
e b

 the following graph can be redrawn without

 crossovers as follows:

d c
d c

Bipartite Graph:

A bipartite graph is a non-directed graph whose set of vertices can be portioned into two sets V1 and V2(i.e.
V1U V2= V and V1∩ V2=ø) so that every edge has one end in V1 and the other in V2. That is, vertices in V1

are only adjacent to those in V2 and vice- versa.

Example:

a b c a c e

The graph

is bipartite. We can redraw it as

d e f b f

The vertex set V = {a, b, c, d, e, f} has been partitioned into V1 = {a, c, e} and

V2 = {b, d, f}. The complete bipartite graph for which V1 = n and V2 = m is denoted

Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 chessboard so that no

two “attack”, that is, no two of them are on the same row, column, or diagonal.

All solutions to the 8-queens problem can be represented as 8-tuples (x1, , x8), where xi is the column of

the i
th

 row where the i
th

 queen is placed.

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i < 8. Therefore the

solution space consists of 8
8
 8-tuples.

The implicit constraints for this problem are that no two xi’s can be the same (i.e., all queens must be on

different columns) and no two queens can be on the same diagonal.

This realization reduces the size of the solution space from 8
8
 tuples to 8! Tuples.

The promising function must check whether two queens are in the same column or diagonal:

Suppose two queens are placed at positions (i, j) and (k, l) Then:

 Co umn Conflicts: Two queens conflict if their xi values are identical.

 Diag 45 conflict: Two queens i and j are on the same 45
0
 diagonal if:

i – j = k – l.

This implies, j – l = i – k

 Diag 135 conflict:
i + j = k + l.

This implies, j – l = k – i

herefore, two queens lie on the same diagonal if and only if:

j - l = i – k

Where, j be the column of object in row i for the i
th

 queen and l be the column of object in row ‘k’

for the k
th

 queen.
 World

 *
In this example, we have:

*

 *

*

i 1 2

3

4 5

6

7

8

*

xi 2 5 1 8 4 7 3 6

*

Let us c nsider for the

*

case whether the queens on

3rd

w and 8
th

 row

*

 are conflicting or not. In this

 case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore:

 j - l = i – k 1 - 6 = 3 – 8

 5 = 5

In the above example we have, j - l = i – k , so the two queens are attacking.

This is not a solution.

Example:

Suppose we start with the feasible sequence 7, 5, 3, 1.

 *

 *

 *

*

Step 1:
Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet used.

Step 2:
If this new sequence is feasible and has length 8 then STOP with a solution. If the new sequence is

feasible and has length less then 8, repeat Step 1.

Step 3:
If the sequence is not feasible, then backtrack through the sequence until we find the most recent

place at which we can exchange a value. Go back to Step 1.

1 2 3 4 5 6 7 8
Remarks

7 5 3 1

7 5 3 1* 2*
 j - l = 1 – 2 = 1

i – k = 4 – 5 = 1

7 5 3 1 4

7 5 3* 1 6 4 2 8* World

7* 5 3 1 4 2*
 j - l = 7 – 2 = 5

i – k = 1 – 6 = 5

7 5 3* 1 4 6*
 j - l = 3 – 6 = 3

i – k = 3 – 6 = 3

7 5 3 1 4 8

7 5 3 1 4* 8 2*
 j - l = 4 – 2 = 2

i – k = 5 – 7 = 2

7 5 3 1 4* 8 6*
 j - l = 4 – 6 = 2

i – k = 5 – 7 = 2

7 5 3 1 4 8 Backtrack

7 5 3 1 4 Backtrack

7 5 3 1 6

7* 5 3 1 6 2*
 j - = 1 – 2 = 1

i – k = 7 – 6 = 1

7 5 3 1 6 4

7 5 3 1 6 4 2

 j - = 3 – 8 = 5

 i – k = 3 – 8 = 5

7 5 3 1 6 4 2 Backtrack

7 5 3 1 6 4 Backtrack

7 5 3 1 6 8

7 5 3 1 6 8 2

7 5 3 1 6 8 2 4 SOLUTION

* indicates conflicting queens.

On a chessboard, the solution will look like:

 *

 *

 *

*

*

*

*

 *

4 – Queens Problem:

Let us see how backtracking works on the 4-queens problem. We start with the root node as the only live

node. This becomes the E-node. We generate one child. Let us assume that the children are generated in

ascending order. Let us assume that the children are generated in ascending order. Thus node number 2 of

figure is generated and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2

becomes the E-node. Node 3 is generated and immediately killed. The next no e generated is node 8 and the

path becomes (1, 3). Node 8 becomes the E-no e. However, it gets killed as all its children represent board

configurations that cannot lead to an answer node. We backtrack to node 2 and generate another chi d, no e

13. The path is now (1, 4). The board configurations as backtracking p ocee s is as follows:

1 1 1 1

 . . 2 2 2

 3

 (a) (b) (c) (d)

1 1 1 1

 2 . . . 2 2

 3 3

. 4

 (e) (f) (g) (h)

The above figure shows graphically the steps that the backtracking algorithm goes through as it tries to find

a solution. he dots indicate placements of a queen, which were tried and rejected because another queen was

attacking.

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on column 3. In figure (c) the

algorithm tries all four columns and is unable to place the next queen on a square. Backtracking now takes

place. In figure (d) the second queen is moved to the next possible column, column 4 and the third queen is

placed on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that the algorithm

goes through until a solution is found.

Complexity Analysis:

1 n n
2

n
3

 n
n nn 1 1

n 1

For the instance in which n = 8, the state space tree contains:
88 1 1

 = 19, 173, 961 nodes
8 1

Program for N-Queens Problem:

include <stdio.h>
include <conio.h>
include <stdlib.h>

int x[10] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5};

place (int k)
{

int i;
for (i=1; i < k; i++)
{

if ((x [i] == x [k]) || (abs (x [i] – x [k]) == abs (i - k)))
return (0);

}
return (1);

}
nqueen (int n)
{

int m, k, i = 0;
x [1] = 0;
k = 1;
while (k > 0)
{

x [k] = x [k] + 1;
while ((x [k] <= n) && (!place (k)))

x [k] = x [k] +1;
if(x [k] <= n)
{

if (k == n)
{

i++;
printf (“\ncombination; %d\n”,i);
for (m=1;m<=n; m++)
printf(“row = %3d\t column=%3d\n”, m, x[m]);
getch();

}
else
{

k++;
x [k]=0;

}
}

else

k--;
}
return (0);

}
main ()
{

int n;
clrscr ();
printf (“enter value for N: “);
scanf (“%d”, &n);
nqueen (n);

}

Output:

Enter the value for N: 4

Combination: 1 Combination: 2

Row = 1 column = 2 3

Row = 2 column = 4 1

Row = 3 column = 1 4

Row = 4 column = 3 2

For N = 8, there will be 92 combinations.

Sum of Subsets:

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets of w i whose sums are

‘m’.

All solutions are k-tuples, 1 ≤ k ≤ n.

Explicit constraints:

 xiЄ {j | j is an integer and 1 ≤ j ≤ n}.

Implicit constraints:

Allbetter formulation of the

problem is where

the solution subset is represented by an n-tup e (x1, , xn) such that xiЄ {0, 1}.

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1).

For both the above formulations, the solution space is 2
n
 distinct tuples.

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are (11, 13, 7) and (24, 7).

xi< xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple instances of the same
subset (for example, (1, 2, 4) and (1, 4, 2) represent the same subset).

The sum of the corresponding wi’s be m.

o two xi can be the same.

The following figure shows a possible tree organization for two possible formulations of the

solution space for the case n = 4.

The tree corresponds to the variable tuple size formulati n. The edges are labeled such that an edge

from a level i node to a level i+1 node represents a value for xi. At each node, the solution space is
partitioned into sub - soluti n spaces. All paths from the root node to any node in the tree define the
solution space, since any such path corresponds to a subset satisfying the explicit constraints.

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2, 3), and so on. Thus,

the left mot sub-tree defines all subsets containing w1, the next sub-tree defines all subsets containing

w2 but not w1, and so on.

Let G be a graph and m be a given positive integer. We want to discover whether the nodes of G can

be colored in such a way that no two adjacent nodes have the same color, yet only m colors are used.

his is termed the m-colorabiltiy decision problem. The m-colorability optimization problem asks for

the smallest integer m for which the graph G can be colored.

Given any map, if the regions are to be colored in such a way that no two adjacent regions have the

same color, only four colors are needed.

For many years it was known that five colors were sufficient to color any map, but no map that

required more than four colors had ever been found. After several hundred years, this problem was

solved by a group of mathematicians with the help of a computer. They showed that in fact four colors

are sufficient for planar graphs.

The function m-coloring will begin by first assigning the graph to its adjacency matrix, setting the
array x [] to zero. The colors are represented by the integers 1, 2, . . . , m and the so utions are given by
the n-tuple (x1, x2, . . ., xn), where xi is the color of node i.

recursive backtracking algorithm for graph coloring is carried out by invoking the statement

mcoloring(1);

Algorithm mcoloring (k)
// This algorithm was formed using the recursive backtracking schema. The graph is
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of
// 1, 2, , m to the vertices of the graph such that adjacent vertices are assigned
// distinct integers are printed. k is the index of the next vertex to color.
{

repeat
{

// Generate all legal assignments for x[k]. NextValue

(k); // Assign to x [k] a legal color. If (x [k] = 0) then return; // No new color possible If (k =

n) then // at most m colors have been
// used to color the n vertices.

write (x [1: n]);
else mcoloring (k+1);

} until (false);
}

Algorithm NextValue (k)
// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that

// adjacent vertices have distinct integers. A value for x [k] is determined in the range

// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness
// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.

{
repeat
{

x [k]: = (x [k] +1) mod (m+1) // Next highest color.
If (x [k] = 0) then return; // All colors have been used
for j := 1 to n do
{// check if this color is distinct from adjacent colors if ((G [k, j] 0) and

(x [k] = x [j]))
// If (k, j) is and edge and if adj. vertices have the same color.

then break;

} until

}
if (j = n+1)
(false);

then return;

// New color found
// Otherwise try to find another color

}

Example:

Color the graph given below with minimum number of colors by backtracking using state space tree.

1

3

 x 1

2

1 2 2 3 1 3 1 2 x 2

4 3 1 3 1 2 2 31 2 2 3 1 3 x 3

 Gra p h
x 4

2 3 2 2 3 3

1 3 1 3 1 3 1 1 2 2 1 2

 A 4- n o d e gra p h a n d a l l p o s s ib le 3-c o lorin g s

Hamiltonian Cycles:

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested by William Hamilton)
is a round-trip path along n edges of G that visits every vertex once and returns to its starting position. In
other vertices of G are visited in the order
v1, v2, , vn+1, then the edges (vi, vi+1) are in E, 1 < i < n, and the vi are distinct expect for v1 and v n+1,
which are equal. The graph G1 contains the Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. The graph G2 contains
no Hamiltonian
cycle.

1

2 3
4 1

2 3

8 7 6 5 5 4

 Graph G1 Graph G2

Two graphs to illustrate Hamiltonian cycle

The backtracking solution vector (x1, x n) is defined so that x i represents the i
th

 visited vertex of the
proposed cycle. If k = 1, then x 1 can be any of the n vertices. To avoid printing the same cycle n times, we
require that x1 = 1. If 1 < k < n, then xk can be any vertex v that is distinct from x 1, x 2, . . . , xk–1 and v is
connected by an edge to kx-1. The vertex xn can only be one remaining vertex and it must be connected to
both xn-1 and x1.

Using NextValue algorithm we can particularize the recursive backtracking schema to find all Hamiltonian

cycles. This algorithm is started by first initializing the adjacency matrix G[1: n, 1: n], then setting x[2: n] to

zero and x[1] to 1, and then executing Hamiltonian(2).

The traveling salesperson problem using dynamic programming asked for a tour that has minimum cost. his

tour is a Hamiltonian cycles. For the simple case of a graph all of whose edge costs are identical,

Hamiltonian will find a minimum-cost tour if a tour exists.

Algorithm extValue (k)
// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has as yet been

// assigned to x [k]. After execution, x[k] is assigned to the next highest numbered vertex

// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k – 1].

// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1].

{

repeat
{

x [k] := (x [k] +1) mod (n+1); // Next vertex.
If (x [k] = 0) then return;
If (G [x [k – 1], x [k]] 0) then
{ // Is there an edge?

for j := 1 to k – 1 do if (x [j] = x [k]) then break;
// check for distinctness.

If (j = k) then // If true, then the vertex is distinct.
If ((k < n) or ((k = n) and G [x [n], x [1]] 0))
then return;

}
} until (false);

}

Algorithm Hamiltonian (k)
// This algorithm uses the recursive formulation of backtracking to find all the Hamiltonian
// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles begin
// at node 1.

Given n positive weights wi, n positive profits pi, and a positive number m that is the knapsack capacity,

the problem calls for choosing a subset f the weights such that:

{

repeat

{ // Generate values for x [k].

NextValue (k); //Assign a legal Next value to x [k].

if (x [k] = 0) then return;

World

if (k = n) then write (x [1: n]);

else Hamiltonian (k + 1)

} until (false);

}

xi m and xi is maximized.

The solution space for this problem consists of the 2
n
 distinct ways to assign zero one values to the

xi’s.

Bounding functions are needed to kill some live nodes without expanding them. A good bounding function

for this problem is obtained by using an upper bound on the value of the best feasible solution obtainable

by expanding the given live node and any of its descendants. If this upper bound is not higher than the

value of the best solution determined so far, than that live node can be killed.

The xi’s constitute a zero–one-valued vector.

w
i

1 i n

p
i

1 i n

0/1 Knapsack:

We continue the discussion using the fixed tuple size formulation. If at node Z the values of x i, 1 < i < k,

have already been determined, then an upper bound for Z can be obtained by relaxing the requirements x i =

0 or 1.

(Knapsack problem using backtracking is solved in branch and bound chapter)

7.8 Traveling Sale Person (TSP) using Backtracking:

We have solved TSP problem using dynamic programming. In this section we shall so ve the same

problem using backtracking.

Consider the graph shown below with 4 vertices.

30
1 2

5
6 10

4

3 4
20

A graph for TSP

The solution space tree, similar to the n-queens problem is as follows:

 1

 2 7 12

3 5 8 10 13 15

4 6 9 11 14 16

We will assume that the starting node is 1 and the ending node is obvious y 1. Then 1, {2, … ,4}, 1 forms a tour

with some cost which should be minimum. The ve tices shown as {2, 3, …. ,4} forms a permutation of vertices

which c nstitutes a tour. We can also start from any vertex, but the tour should end with the same ve tex.

Since, the starting vertex is 1, the tree has a root node R and the remaining nodes are numbered as depth-first

order. As per the tree, from n de 1, which is the live node, we generate 3 braches node 2, 7 and 12. We simply

come down to the left most leaf node 4, which is a valid tour {1, 2, 3, 4, 1} with cost 30 + 5 + 20 + 4 = 59.

Currently this is the best tour found so far and we backtrack to node 3 and to 2, because we do not have any

children from node 3. hen node 2 becomes the E-node, we generate node 5 and then node 6. This forms the tour

{1, 2, 4, 3, 1} with cost 30 + 10 + 20 + 6 = 66 and is discarded, as the best tour so far is 59.

Similarly, all the paths from node 1 to every leaf node in the tree is searched in a depth first manner and the best

tour is saved. In our example, the tour costs are shown adjacent to each leaf nodes. The optimal tour cost is

therefore 25.

UNIT - III

Greedy method- General method, applications- Knapsack problem, Job sequencing with

deadlines, Minimum cost spanning trees, Single source shortest path problem.

Greedy Method:
The greedy method is perhaps (maybe or possible) the most straight forward design

technique, used to determine a feasible solution that may or may not be optimal.

Feasible solution:- Most problems have n inputs and its solution contains a subset of

inputsthat satisfies a given constraint(condition). Any subset that satisfies the constraint is
called feasible solution.

Optimal solution: To find a feasible solution that either maximizes or minimizes a
givenobjective function. A feasible solution that does this is called optimal solution.

The greedy method suggests that an algorithm works in stages, considering one input at a time.
At each stage, a decision is made regarding whether a particular input is in an optimal solution.

Greedy algorithms neither postpone nor revise the decisions (ie., no back tracking). Example:
Kruskal’s minimal spanning tree. Select an edge from a sorted list, check, decide,and never
visit it again.
Application of Greedy Method:

 Job sequencing with deadline

 knapsack problem

 Minimum cost spanning trees

 Single source shortest path problem.

Algorithm for Greedy method
Algorithm Greedy(a,n)

//a[1:n] contains the n inputs.

{

Solution :=0;

For i=1 to n do

{

X:=select(a);

If Feasible(solution, x) then
Solution :=Union(solution,x);

}

Return solution;

}

Selection Function, that selects an input from a[] and removes it. The selected input’s value is
assigned to x.

Feasible Boolean-valued function that determines whether x can be included into the solution vector.

Union function that combines x with solution and updates the objective function.

Knapsack problem

The knapsack problem or rucksack (bag) problem is a problem in combinatorial optimization: Given a set of

items, each with a mass and a value, determine the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is as large as possible

http://en.wikipedia.org/wiki/Combinatorial_optimization

There are two versions of the problems

1. 0/1 knapsack problem

2. Fractional Knapsack problem

a. Bounded Knapsack problem.

b. Unbounded Knapsack problem.

Solutions to knapsack problems

 Brute-force approach:-Solve the problem with a straight farward algorithm

 Greedy Algorithm:- Keep taking most valuable items until maximum weight isreached or taking the
largest value of eac item by calculating vi=valuei/Sizei

 Dynamic Programming:- Solve each sub problem once and store their solutions inan array.

0/1 knapsack problem:

Let there be items, to where has a value and weight . The maximum weight
that we can carry in the bag is W. It is common to assume that all values and weights are

nonnegative. To simplify the representation, we also assume that the items are listed in
increasing order of weight.

Maximize subject to

Maximize the sum of the values of the items in the knapsack so that the sum of the weights must be less

than the knapsack's capacity.

Greedy algorithm for knapsack

Algorithm GreedyKnapsack(m,n)

// p[i:n] and [1:n] contain the profits and weights respectively

// if the n-objects ordered such that p[i]/w[i]>=p[i+1]/w[i+1], m size of knapsack and x[1:n]
the solution vector
{
For i:=1 to n do x[i]:=0.0
U:=m;
For i:=1 to n do

{

if(w[i]>U) then

break; x[i]:=1.0;
U:=U-w[i];
}

If(i<=n) then x[i]:=U/w[i];

}

Ex: - Consider 3 objects whose profits and weights are defined as

(P1, P2, P3) = (25, 24, 15)

W1, W2, W3) = (18, 15, 10)

n=3 number of objects

m=20 Bag capacity

Consider a knapsack of capacity 20. Determine the optimum strategy for placing the objects in to the knapsack.

The problem can be solved by the greedy approach where in the inputs are arranged according to selection

process (greedy strategy) and solve the problem in stages. The various greedy strategies for the problem could

be as follows.

 (x1, x2, x3) ∑ xiwi ∑ xipi

 (1, 2/15, 0)

18x1+

2

x15 = 20 25x1+
 2

x 24 = 28.2

15 15

 (0, 2/3, 1)
2

x15+10x1= 20

2

x 24 +15x1 = 31

3 3

(0, 1, ½)

1x15+ 1 x10 = 20 1x24+ 1 x15 = 31.5

2

 2

(½, ⅓, ¼) ½ x 18+⅓ x15+ ¼ x10 = 16. 5 ½ x 25+⅓ x24+ ¼ x15 =

 12.5+8+3.75 = 24.25

Analysis: - If we do not consider the time considered for sorting the inputs then all of thethree greedy

strategies complexity will be O(n).

Job Sequence with Deadline:

There is set of n-jobs. For any job i, is a integer deadling di≥0 and profit Pi>0, the profit
Pi is earned iff the job completed by its deadline.

To complete a job one had to process the job on a machine for one unit of time. Only one
machine is available for processing jobs.

A feasible solution for this problem is a subset J of jobs such that each job in this subset
can be completed by its deadline.

The value of a feasible solution J is the sum of the profits of the jobs in J, i.e., ∑i∈jPi

An optimal solution is a feasible solution with maximum value.

The problem involves identification of a subset of jobs which can be completed by its deadline. Therefore

the problem suites the subset methodology and can be solved by the greedy method.
Ex: - Obtain the optimal sequence for the following jobs.

j1 j2 j3 j4

(P1, P2, P3, P4) = (100, 10, 15, 27)

(d1, d2, d3, d4) = (2, 1, 2, 1)

 n =4

 Feasible Processing Value

 solution sequence

 j1 j2 (2,1) 100+10=110

(1, 2)

 (1,3) (1,3) or (3,1) 100+15=115

 (1,4) (4,1) 100+27=127

 (2,3) (2,3) 10+15=25

 (3,4) (4,3) 15+27=42

 (1) (1) 100

 (2) (2) 10

 (3) (3) 15

 (4) (4) 27

In the example solution ‘3’ is the optimal. In this solution only jobs 1&4 are processed and

the value is 127. These jobs must be processed in the order j4 followed by j1. the process of

job 4 begins at time 0 and ends at time 1. And the processing of job 1 begins at time 1 and

ends at time2. Therefore both the jobs are completed within their deadlines. The optimization

measure for determining the next job to be selected in to the solution is according to the

profit. The next job to include is that which increases ∑pi the most, subject to the constraint

that the resulting “j” is the feasible solution. Therefore the greedy strategy is to consider the

jobs in decreasing order of profits.
The greedy algorithm is used to obtain an optimal solution.

We must formulate an optimization measure to determine how the next job is chosen.

algorithm js(d, j, n)

//d dead line, j subset of jobs ,n total number of jobs

// d[i]≥1 1 ≤ i ≤ n are the dead lines,
// the jobs are ordered such that p[1]≥p[2]≥---≥p[n]

//j[i] is the ith job in the optimal solution 1 ≤ i ≤ k, k subset range

{
d[0]=j[0]=0;

j[1]=1;

k=1;
for i=2 to n do{

r=k;

while((d[j[r]]>d[i]) and [d[j[r]]≠r)) do

r=r-1;

if((d[j[r]]≤d[i]) and (d[i]> r)) then

{

for q:=k to (r+1) setp-1 do j[q+1]= j[q];
j[r+1]=i;

k=k+1;

}

return k;

}

Note: The size of sub set j must be less than equal to maximum deadline in given list.

Single Source Shortest Paths:

 Graphs can be used to represent the highway structure of a state or country with vertices
representing cities and edges representing sections of highway.

 The edges have assigned weights which may be either the distance between the 2
cities connected by the edge or the average time to drive along that section of
highway.

 For example if A motorist wishing to drive from city A to B then we must answer the
following questions

o Is there a path from A to B

o If there is more than one path from A to B which is the shortest path

 The length of a path is defined to be the sum of the weights of the edges on that path.

Given a directed graph G(V,E) with weight edge w(u,v). e have to find a shortest path from

source vertex S∈v to every other vertex v1∈v-s. To find SSSP for directed graphs G(V,E)

there are two different algorithms.

 Bellman-Ford Algorithm

 Dijkstra’s algorithm

 Bellman-Ford Algorithm:- allow –ve weight edges in input graph. This algorithm
either finds a shortest path form source vertex S∈V to other vertex v∈V or detect a –
ve weight cycles in G, hence no solution. If there is no negative weight cycles are
reachable form source vertex S∈V to every other vertex v∈V

 Dijkstra’s algorithm:- allows only +ve weight edges in the input graph and finds a
shortest path from source vertex S∈V to every other vertex v∈V.

 Consider the above directed graph, if node 1 is the source vertex, then shortest path from 1 to
2 is 1,4,5,2. The length is 10+15+20=45.

 To formulate a greedy based algorithm to generate the shortest paths, we must conceive of a
multistage solution to the problem and also of an optimization measure.

 This is possible by building the shortest paths one by one.

 As an optimization measure we can use the sum of the lengths of all paths so far generated.

 If we have already constructed ‘i’ shortest paths, then using this optimization measure, the
next path to be constructed should be the next shortest minimum length path.

 The greedy way to generate the shortest paths from Vo to the remaining vertices is to generate
these paths in non-decreasing order of path length.

 For this 1
st

, a shortest path of the nearest vertex is generated. Then a shortest path to the

2
nd

 nearest vertex is generated and so on.

Algorithm for finding Shortest Path

Algorithm ShortestPath(v, cost, dist, n)
//dist[j], 1≤j≤n, is set to the length of the shortest path from vertex v to vertex j in graph g
with n-vertices.
// dist[v] is zero

{
for i=1 to n do{
s[i]=false;
dist[i]=cost[v,i];
}

s[v]=true;

dist[v]:=0.0; // put v in s
for num=2 to n do{
// determine n-1 paths from v

choose u form among those vertices not in s such that dist[u] is minimum.

s[u]=true; // put u in s

for (each w adjacent to u with s[w]=false) do

if(dist[w]>(dist[u]+cost[u, w])) then

dist[w]=dist[u]+cost[u, w];

}

}

Minimum Cost Spanning Tree:

SPANNING TREE: - A Sub graph ‘n’ of o graph ‘G’ is called as a spanning tree if

(i) It includes all the vertices of ‘G’

(ii) It is a tree

Minimum cost spanning tree:For a given graph ‘G’ there can be more than one
spanningtree. If weights are assigned to the edges of ‘G’ then the spanning tree which has the
minimum cost of edges is called as minimal spanning tree.

The greedy method suggests that a minimum cost spanning tree can be obtained by contacting
the tree edge by edge. The next edge to be included in the tree is the edge that results in a
minimum increase in the some of the costs of the edges included so far.

There are two basic algorithms for finding minimum-cost spanning trees, and both are greedy
algorithms

Prim’s Algorithm

Kruskal’s Algorithm
Prim’s Algorithm: Start with anyone nodein the spanning tree, and repeatedly add
thecheapest edge, and the node it leads to, for which the node is not already in the spanning
tree.

PRIM’S ALGORITHM: -
i) Select an edge with minimum cost and include in to the spanning tree.
ii) Among all the edges which are adjacent with the selected edge, select the one with minimum cost.
iii) Repeat step 2 until ‘n’ vertices and (n-1) edges are been included. And the sub graph obtained does

not contain any cycles.

Notes: - At every state a decision is made about an edge of minimum cost to be includedinto the spanning tree.

From the edges which are adjacent to the last edge included in the spanning tree i.e. at every stage the sub-graph

obtained is a tree

Prim's minimum spanning tree algorithm
Algorithm Prim (E, cost, n,t)

// E is the set of edges in G. Cost (1:n, 1:n) is the

// Cost adjacency matrix of an n vertex graph such that
// Cost (i,j) is either a positive real no. or ∞ if no edge (i,j) exists.
//A minimum spanning tree is computed and //Stored in

the array T(1:n-1, 2).

//(t (i, 1), + t(i,2)) is an edge in the minimum cost spanning tree. The final cost is returned
{
Let (k, l) be an edge with min cost in E Min
cost: = Cost (x,l);
T(1,1):= k; + (1,2):= l; for

i:= 1 to n do//initialize near
if (cost (i,l)<cost (i,k) then n east (i): l;

else near (i): = k;
near (k): = near (l): = 0;

for i: = 2 to n-1 do

{//find n-2 additional edges for t
let j be an index such that near (i) 0 & cost (j, near (i)) is minimum; t (i,1): = j +

(i,2): = near (j);
min cost: = Min cost + cost (j, near (j));

near (j): = 0;

for k:=1 to n do // update near ()
if ((near (k) 0) and (cost {k, near (k)) > cost (k,j))) then
near Z(k): = ji
}

return mincost;

}

The algorithm takes four arguments E: set of edges, cost is nxn adjacency matrix cost of (i,j)= +ve integer, if an

edge exists between i&j otherwise infinity. ‘n’ is no/: of vertices. ‘t’ is a (n-1):2matrix which consists of the

edges of spanning tree.

E = { (1,2), (1,6), (2,3), (3,4), (4,5), (4,7), (5,6), (5,7), (2,7) } n =
{1,2,3,4,5,6,7)

i) The algorithm will start with a tree that includes only minimum cost edge of G. Then edges

are added to this tree one by one.
ii) The next edge (i,j) to be added is such that i is a vertex which is already included in the treed

and j is a vertex not yet included in the tree and cost of i,j is minimum among all edges

adjacent to ‘i’.
iii) With each vertex ‘j’ next yet included in the tree, we assign a value near ‘j’. The value near ‘j’

represents a vertex in the tree such that cost (j, near (j)) is minimum among all choices for near

(j)
iv) We define near (j):= 0 for all the vertices ‘j’ that are already in the tree.
v) The next edge to include is defined by the vertex ‘j’ such that (near (j)) 0 and cost of (j, near

(j)) is minimum.
Analysis: -
The time required by the prince algorithm is directly proportional to the no/: of vertices. If a graph ‘G’ has ‘n’

vertices then the time required by prim’s algorithm is 0(n
2
)

Kruskal’s Algorithm: Start withnonodes or edges in the spanning tree, and
repeatedlyadd the cheapest edge that does not create a cycle.
In Kruskals algorithm for determining the spanning tree we arrange the edges in the increasing order of cost.

i) All the edges are considered one by one in that order and deleted from the graph and are included
in to the spanning tree.

ii) At every stage an edge is included; the sub-graph at a stage need not be a tree. Infect it is a forest.
iii) At the end if we include ‘n’ vertices and n-1 edges without forming cycles then we get a single

connected component without any cycles i.e. a tree with minimum cost.
At every stage, as we include an edge in to the spanning tree, we get disconnected trees represented by various

sets. While including an edge in to the spanning tree we need to check it does not form cycle. Inclusion of an

edge (i,j) will form a cycle if i,j both are in same set. Otherwise the edge can be included into the spanning tree.
Kruskal minimum spanning tree algorithm

Algorithm Kruskal (E, cost, n,t)

//E is the set of edges in G. ‘G’ has ‘n’ vertices

//Cost {u,v} is the cost of edge (u,v) t is the set

//of edges in the minimum cost spanning tree
//The final cost is returned
{ construct a heap out of the edge costs using heapify;

for i:= 1 to n do parent (i):= -1 // place in different sets

//each vertex is in different set {1} {1} {3}

i: = 0; min cost: = 0.0;

While (i<n-1) and (heap not empty))do
{
Delete a minimum cost edge (u,v) from the heaps; and reheapify using
adjust; j:= find (u); k:=find (v);
if (j k) then

{ i: = 1+1;
+ (i,1)=u; + (i, 2)=v;
mincost: = mincost+cost(u,v);

Union (j,k);
}

}

if (i n-1) then write (“No spanning tree”);
else return mincost;

}

Consider the above graph of , Using Kruskal's method the edges of this graph are considered

for inclusion in the minimum cost spanning tree in the order (1, 2), (3, 6), (4, 6), (2, 6), (1, 4),

(3, 5), (2, 5), (1, 5), (2, 3), and (5, 6). This corresponds to the cost sequence 10, 15, 20, 25,

30, 35, 40, 45, 50, 55. The first four edges are included in T. The next edge to be considered

is (I, 4). This edge connects two vertices already connected in T and so it is rejected. Next,

the edge (3, 5) is selected and that completes the spanning tree.

Analysis: - If the no/: of edges in the graph is given by /E/ then the time for Kruskalsalgorithm is given by 0 (|E|

log |E|).

UNIT - IV

Dynamic Programming- General Method, applications- Chained matrix multiplication, All

pairs shortest path problem, Optimal binary search trees, 0/1 knapsack problem, Reliability

design, Traveling sales person problem.

Dynamic Programming

Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic

programming, as greedy method, is a powerful algorithm design technique that can be used

when the solution to the problem may be viewed as the result of a sequence of decisions. In

the greedy method we make irrevocable decisions one at a time, using a greedy criterion.

However, in dynamic programming we examine the decision sequence to see whether an

optimal decision sequence contains optimal decision subsequence.

When optimal decision sequences contain optimal decision subsequences, we can establish
recurrence equations, called dynamic-programming recurrence equations, that enable us to
solve the problem in an efficient way.

Dynamic programming is based on the principle of optimality (also coined by Bellman). The

principle of optimality states that no matter whatever the initial state and initial decision are,

the remaining decision sequence must constitute an optimal decision sequence with regard to

the state resulting from the first decision. The principle implies that an optimal decision

sequence is comprised of optimal decision subsequences. Since the principle of optimality

may not hold for some formulations of some problems, it is necessary to verify that it does

hold for the problem being solved. Dynamic programming cannot be applied when this

principle does not hold.

The steps in a dynamic programming solution are:

 Verify that the principle of optimality holds

 Set up the dynamic-programming recurrence equations

 Solve the dynamic-programming recurrence equations for the value of the
optimal solution.

 Perform a trace back step in which the solution itself is constructed.

pairs shortest paths

In the all pairs shortest path problem, we are to find a shortest path between every pair of

vertices in a directed graph G. That is, for every pair of vertices (i, j), we are to find a
shortest path from i to j as well as one from j to i. These two paths are the same when G

is undirected.

When no edge has a negative length, the all-pairs shortest path problem may be solved by
using Dijkstra’s greedy single source algorithm n times, once with each of the n vertices as
the source vertex.

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the length of

a shortest path from i to j. The matrix A can be obtained by solving n single-source

problems using the algorithm shortest Paths. Since each application of this procedure

requires O (n
2
) time, the matrix A can be obtained in O (n

3
) time.

The dynamic programming solution, called Floyd’s algorithm, runs in O (n
3
) time. Floyd’s

algorithm works even when the graph has negative length edges (provided there are no
negative length cycles).

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some intermediate

vertices (possibly none) and terminates at vertex j. If k is an intermediate vertex on this

shortest path, then the subpaths from i to k and from k to j must be shortest paths from i to

k and k to j, respectively. Otherwise, the i to j path is not of minimum length. So, the

principle of optimality holds. Let A
k
 (i, j) represent the length of a shortest path from i to j

going through no vertex of index greater than k, we obtain:

Ak (i, j) = {min {min {A
k-1

 (i, k) + A
k-1

 (k, j)}, c
(i, j)} 1<k<n

Algorithm All Paths (Cost, A, n)

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which

// n vertices; A [I, j] is the cost of a shortest path from vertex

// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.
{

for i := 1 to n do

for j:= 1 to n do

A [i, j] := cost [i, j]; // copy cost into A. for k := 1 to n do

for i := 1 to n do

for j := 1 to n do
A [i, j] := min (A [i, j], A [i, k] + A [k, j]);

}

Complexity Analysis: A Dynamic programming algorithm based on this
recurrenceinvolves in calculating n+1 matrices, each of size n x n. Therefore, the

algorithm has a complexity of O (n
3
).

Example 1:

Given a weighted digraph G = (V, E) with weight. Determine the length of the shortest
path between all pairs of vertices in G. Here we assume that there are no cycles with
zero or negative cost.

 6
0 ~ 0 2~

1
4

2 r0
4

11

Cost adjacency matrix (A) = ~6 ~

 ~

3 1 1 2 ~L3 0 ~]

 3

General formula: min {A
k-1

 (i, k) + A
k-1

 (k, j)}, c (i,
j)} 1<k<n

Solve the problem for different values of k = 1, 2

and 3 Step 1: Solving the equation for, k = 1;

A1 (1, 1) = min {(A
o
 (1, 1) + A

o
 (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0 A1 (1,

2) = min {(A
o
 (1, 1) + A

o
 (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4

A1 (1, 3) = min {(A
o
 (1, 1) + A

o
 (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11 A1 (2,

1) = min {(A
o
 (2, 1) + A

o
 (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6

A1 (2, 2) = min {(A
o
 (2, 1) + A

o
 (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0 A1 (2,

3) = min {(A
o
 (2, 1) + A

o
 (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2 A1 (3, 1)

= min {(A
o
 (3, 1) + A

o
 (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3 A1 (3, 2) =

min {(A
o
 (3, 1) + A

o
 (1, 2)), c (3, 2)} = min {(3 + 4), oc} = 7 A1 (3, 3) =

min {(A
o
 (3, 1) + A

o
 (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0

A(1) = ~0 4 11

 ~
0

~

 ~6 2 ~

 ~L3 7 0 ~U

Step 2: Solving the equation for, K = 2;

A2 (1,

A2 (1,

A2 (1,

A2 (2,

A2 (2,

A2 (2,

A2 (3,

A2 (3,

A2 (3,

1) = min {(A
1
(1, 2) + A

1
 (2, 1), c (1, 1)} = min {(4 + 6), 0} + A

1
 = 0

2) = min {(A
1
(1, 2) (2, 2), c (1, 2)} = min {(4 + 0), 4} + A

1
 (2, = 4

3) = min {(A
1
(1, 2) 3), c (1, 3)} = min {(4 + 2), 11} = 6

1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6

2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0

3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2

1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3

2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7

3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0

A(2) = ~0 4 6 1

 ~ 2~

 ~6
0 ~

 ~L3

Step 3: Solving the equation for, k = 3;

A3 (1, 1) = min {A
2
 (1, 3) + A

2
 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0

A3 (1, 2) = min {A
2
 (1, 3) + A

2
 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4

A3 (1, 3) = min {A
2
 (1, 3) + A

2
 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6

A3 (2, 1) = min {A
2
 (2, 3) + A

2
 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5

A3 (2, 2) = min {A
2
 (2, 3) + A

2
 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0

A3 (2, 3) = min {A
2
 (2, 3) + A

2
 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2

A3 (3, 1) = min {A
2
 (3, 3) + A

2
 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3

A3 (3, 2) = min {A
2
 (3, 3) + A

2
 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7

TRAVELLING SALESPERSON PROBLEM

Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined such that

cij > 0 for all I and j and cij = a if < i, j> o E. Let |V| = n and assume n > 1. A tour of G is a

directed simple cycle that includes every vertex in V. The cost of a tour is the sum of the
cost of the edges on the tour. The traveling sales person problem is to find a tour of
minimum cost. The tour is to be a simple path that starts and ends at vertex 1.

Let g (i, S) be the length of shortest path starting at vertex i, going through all vertices in S,
and terminating at vertex 1. The function g (1, V – {1}) is the length of an optimal

salesperson tour. From the principal of optimality it follows that:

-- 1

g(1, V - {1 }) = 2 ~ k ~ n ~c1k ~ g ~ k, V ~ ~ 1, k ~~

~

min

Generalizing equation 1, we obtain (for i o S)
-- 2

g (i, S) = min{ci j
j ES

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k})
for all choices of k.

Complexity Analysis:

For each value of |S| there
+g

(

i,S-
{

j
}) } are n – 1 choices for i. The number of distinct sets S of
~n -2 ~

size k not including 1 and i is I k~~ . ~

~ ~
Hence, the total number of g (i, S)’s to be computed before computing g (1, V – {1}) is:

~n -2 ~
~ ~ n

~ 1 ~
~ ~ k

~

k ~ 0

~ ~

To calculate this sum, we use the binominal theorem:

 [((n - 2) ((n - 2) ((n - 2) ((n - 2)1

 n -1 (n – 1) 111 11+ii iI+ ii iI+ ----~ ~~ ~

 ~~ 0) ~ 1) ~ 2) ~(n ~
2
)~~

According to the binominal theorem:

 [((n - 2) ((n - 2) ((n - 2 ((n - 2)1

 il 11+ii iI+ii ~~~~~~~~~~ ~~~ = 2n - 2

 ~~ 0 ~ ~ 1 ~ ~ 2 ~ ~(n - 2))]

Therefore,

n - 1
~ (n

~ n _ 2'

 _ 1 ~ ~

 ~k = (n - 1) 2n ~ 2

 ~

This is Φ (n 2
n-2

), so there are exponential number of calculate. Calculating one g (i, S)
require finding the minimum of at most n quantities. Therefore, the entire algorithm is Φ

(n
2
 2

n-2
). This is better than enumerating all n! different tours to find the best one. So, we

have traded on exponential growth for a much smaller exponential growth.

The most serious drawback of this dynamic programming solution is the space needed,

which is O (n 2
n
). This is too large even for modest values of n.

Example 1:

For the following graph find minimum cost tour for the traveling
salesperson problem:

1 2 r0

10 15
20

The cost adjacency matrix =

~ 10 ~

 ~ 0 9 ~

 5 13 0 12~

3 4
~6

8 9 01]

~

Let us start the tour from vertex 1:

 g (1, V – {1}) = min {c1k + g (k, V – {1, K})} - (1)

 2<k<n

More generally writing:

g (i, s) = min {cij + g (J, s – {J})} - (2)

Clearly, g (i, T) = ci1 , 1 ≤ i ≤ n. So,

g (2, T) = C21 = 5

g (3, T) = C31 = 6

g (4, ~) = C41 = 8

Using equation – (2) we obtain:

g (1, {2, 3, 4}) = min {c12 + g (2, {3,
 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})}

 = min {9 + g (3, {4}), 10 + g (4, {3})}

g (3, {4}) = min {c34 + g (4, T)} = 12 + 8 = 20

g (4, {3}) = min {c43 + g (3, ~)} = 9 + 6 = 15

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4, {2})}

g (2, {4}) = min {c24 + g (4, T)} = 10 + 8 = 18

g (4, {2}) = min {c42 + g (2, ~)} = 8 + 5 = 13

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} =

25 g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})}

g (2, {3}) = min {c23 + g (3, ~} = 9 + 6 = 15

g (3, {2}) = min {c32 + g (2, T} = 13+ 5 = 18

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} = 23

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})} = min
{10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35

The optimal tour for the graph has length = 35 The

optimal tour is: 1, 2, 4, 3, 1.

OPTIMAL BINARY SEARCH TREE

Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < < an.

Let p (i) be the probability with which we search for ai. Let q (i) be the probability that the
identifier x being searched for is such that ai < x < ai+1, 0 < i < n (assume a0 = - ~ and

an+1 = +oc). We have to arrange the identifiers in a binary search tree in a way that
minimizes the expected total access time.
In a binary search tree, the number of comparisons needed to access an element at depth 'd'
is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize:

n

~ Pi (1 + di) . i

~1

Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the
probability of an un-successful search. Every internal node represents a point where a

successful search may terminate. Every external node represents a point where an
unsuccessful search may terminate.

The expected cost contribution for the internal node for 'ai' is:

P (i) * level (ai) .

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the
cost contribution for this node is:

Q (i) * level ((Ei) - 1)

The expected cost of binary search tree is:

~ P(i) * level (ai) + ~ Q (i) * level ((Ei) - 1)

Given a fixed set of identifiers, we wish to create a binary search tree
organization. We may expect different binary search trees for the same
identifier set to have different performance characteristics.

The computation of each of these c(i, j)’s requires us to find the minimum of
m quantities. Hence, each such c(i, j) can be computed in time O(m). The

total time for all c(i, j)’s with j – i = m is therefore O(nm – m
2
).

The total time to evaluate all the c(i, j)’s and r(i, j)’s is therefore:

~ (nm -

m
2
) = O

(n
3
) 1

<m<n

Example 1: The possible binary search trees for the identifier set (a1, a2, a3) = (do, if,

stop) are as follows. Given the equal

probabilities p (i) = Q (i) = 1/7 for all i,

we have:

st o p

if

Tree 1

do

Tree 2

do

if

st
o

p

Tree 3

(1x1 + 1x2 + 1x3~ (1x1

Cost (tree # 1) = ~ + ~

~ 7 7 7) ~ 7

1 + 2 + 3 1 + 2 + 3 + 3 6 + 9 15

Cost (tree # 3) = ~ 1 x 1+1 x 2+1 x 3~ ~ +
(1x1 + 1

x 2+1

x 3+1 x 3~ ~ ~

~

7

7

)

~ 7 7

7
7)

~ 7

1 + 2 + 3 1 + 2 + 3 + 3 6 + 9 15

= 7 + 7 ~ (1 x
~

1+1

Cost (tree # 4) = ~ 1 x 1+1 x 2~1 x 3~ ~ ~ ~
7
 x 2+1 x 3+1 x 3~ ~

~

7
 7

)
 ~ 7

7 7)

~ 7

= 1 + 2 + 3 1 + 2 + 3 + 3 6 + 9 15

 7

7

(1x1 + 1 1 x 2~ (1x2 + 1x2 + 1
x 2

1 x 2~

Cost (tree # 2) = ~
x 2+

 + ~

7

7)

~ 7 7 7) ~ 7 7

= 1+2+2

+

 2 + 2 + 2 + 2

~

 5 + 8

~

13

7

7 7

7

Huffman coding tree solved by a greedy algorithm has a limitation of having the data only

at the leaves and it must not preserve the property that all nodes to the left of the root have

keys, which are less etc. Construction of an optimal binary search tree is harder, because

the data is not constrained to appear only at the leaves, and also because the tree must

satisfy the binary search tree property and it must preserve the property that all nodes to

the left of the root have keys, which are less.
A dynamic programming solution to the problem of obtaining an optimal binary search

tree can be viewed by constructing a tree as a result of sequence of decisions by holding
the principle of optimality. A possible approach to this is to make a decision as which of

the ai's be arraigned to the root node at 'T'. If we choose 'ak' then is clear that the internal

nodes for a1, a2, ak-1 as well as the external nodes for the classes Eo, E1,
. Ek-1 will lie in the left sub tree, L, of the root. The remaining nodes will be in the
right subtree, ft. The structure of an optimal binary search tree is:

 ak

 L ft

K K

~
P(i)* level (ai) + ~ Q(i)*(level (Ei)-1)

Cost (L) =

i ~ 1 i ~0

n n

~
P(i)* level (ai) + ~ Q(i)*(level (Ei)-1)

Cost (ft) =

i ~ K i ~ K

The C (i, J) can be computed as:

C (i, J) = min {C (i, k-1) + C (k, J) + P (K) + w (i, K-1) + w (K, J)}
i<k<J

= min {C (i, K-1) + C (K, J)} + w (i, J) -- (1)

i<k<J

Where W (i, J) = P (J) + Q (J) + w (i, J-1) -- (2)

Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 < i < n.

Equation (1) may be solved for C (0, n) by first computing all C (i, J) such that J - i = 1
Next, we can compute all C (i, J) such that J - i = 2, Then all C (i, J) with J - i = 3 and
so on.
C (i, J) is the cost of the optimal binary search tree 'Tij' during computation we record
the root R (i, J) of each tree 'Tij'. Then an optimal binary search tree may be constructed
from these R (i, J). R (i, J) is the value of 'K' that minimizes equation (1).

We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i,
i+1), 0 ≤ i < 4;

Knowing W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating until W (0, n), C
(0, n) and R (0, n) are obtained.

The results are tabulated to recover the actual tree.

Example 1:

Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q (0:

4) = (2, 3, 1, 1, 1)

Solution:

Table for recording W (i, j), C (i, j) and R (i, j):

Column 0 1 2 3 4
Row

0 2, 0, 0 3, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 8, 8, 1 7, 7, 2 3, 3, 3 3, 3, 4

2 12, 19, 1 9, 12, 2 5, 8, 3

3 14, 25, 2 11, 19, 2

4 16, 32, 2

This computation is carried out row-wise from row 0 to row 4. Initially, W (i, i) = Q
(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i <

4. Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0<i < 4; i = 0, 1, 2 and3; i
< k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7

C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7

R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

ft (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} =3 + [(0 + 0)] = 3

ft (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0<i < 3; i = 0, 1, 2; i <k ≤
J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12

C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))} = 12
+ min {(0 + 7, 8 + 0)} =

19 ft (0, 2) = 1
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.
W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9

C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 3) 2) + C (3, 3)]}

= W (1, + min {(0 + 3), (7 + 0)} = 9 + 3 =

12

ft (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =

8 ft (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0<i < 2; i = 0, 1; i < k≤
J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 =
+ 12 = 14

C (0, 3) W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,
3)],

 [C (0, 2) + C (3, = 3)]}
+ 11 = 25

14 + min {(0 + 12), (8 + 3), (19 = 2

+ 0)} = 14

ft (0, 3)

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11 = W 2)

4)],

C (1, 4) (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, + C (3,

 [C (1, 3) + C (4, 4)]} + 8
 = 19

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 = 2

ft (1, 4)

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0<i < 1; i = 0;i < k
≤J.

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16

C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],
 [C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

 = 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32 ft (0,

4) = 2

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree
for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and
the root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null

The root of T34 is a4.
 a2

if

 T 04

a1
T 01 T 24

a3
do read

T 00 T 11 T 22 T 34
a4

while

Example 2:

Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 = 1/16
and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree. Solving for
C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0<i < 4; i = 0, 1, 2 and 3; i
< k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for k = 1 W

(0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 = 9

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] = 9 ft
(0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 = 6
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] = 6 ft
(1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1

+ 1 = 3

3)} = 3 + [(0 + 0)] = 3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3,

ft (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3

C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} =3 + [(0 + 0)] = 3

ft (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0<i < 3; i = 0, 1, 2; i
<k ≤ J

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))} = 12

+ min {(0 + 6, 9 + 0)} = 12 + 6 = 18
ft (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 = 8

C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 =

 11

ft (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =
8 ft (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0<i < 2; i = 0, 1;i < k ≤J.
Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14

C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)], [C (0,

2) + C (3, 3)]}

= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 = 25 ft (0,3) = 1

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 = 10 = W 2)

4)],

C (1, 4) (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, + C (3,

 [C (1, 3) + C (4, 4)]} + 8
 = 18

= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 = 2

ft (1, 4)

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0<i < 1; i = 0;

i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and

4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16

C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],
 [C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 = 33 R (0, 4)

= 2

Table for recording W (i, j), C (i, j) and R (i, j)

Column
0

1

2

3

4

Row

0 2, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 9, 9, 1 6, 6, 2 3, 3, 3 3, 3, 4

2 12, 18, 1 8, 11, 2 5, 8, 3

3 14, 25, 2 11, 18, 2

4 16, 33, 2

From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree
for (a1, a2, a3, a4)

The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and
the root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null.

The root of T34 is a4.
 a2

 T 04 a2

a1
T 01 T 24

a3
a1 a3

T 00 T 11 T 22 T 34
a4

a4

0/1 – KNAPSACK

We are given n objects and a knapsack. Each object i has a positive weight wi and a
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack so
that the value of objects in the knapsack is optimized.

A solution to the knapsack problem can be obtained by making a sequence of decisions on
the variables x1, x2, , xn. A decision on variable xi involves determining which of the
values 0 or 1 is to be assigned to it. Let us assume that

decisions on the xi are made in the order xn, xn-1,x1. Following a decision on xn, we

may be in one of two possible states: the capacity remaining in m – wn and a profit of pn
has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be optimal with

respect to the problem state resulting from the decision on xn. Otherwise, xn,. . . . , x1 will
not be optimal. Hence, the principal of optimality holds.

Fn (m) = max {fn-1 (m), fn-1 (m - wn) + pn} -- 1

For arbitrary fi (y), i > 0, this equation generalizes to:

Fi (y) = max {fi-1 (y), fi-1 (y - wi) + pi} -- 2

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all y

and fi (y) = - ~, y < 0. Then f1, f2, . . . fn can be successively computed using equation–2.

When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi (y)
= - ~ for y < 0, these function values need not be computed explicitly. Since each fi can be

computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute fn. When the wi’s are

real numbers, fi (y) is needed for real numbers y such that 0 < y < m. So, fi cannot be

explicitly computed for all y in this range. Even when the wi’s are integer, the explicit Θ

(m n) computation of fn may not be the most efficient computation. So, we explore an

alternative method for both cases.

The fi (y) is an ascending step function; i.e., there are a finite number of y’s, 0 = y1 < y2
< < yk, such that fi (y1) < fi (y2) < < fi (yk); fi (y) = - ~ , y < y1; fi (y) = f (yk),
y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi (yj), 1 < j
< k. We use the ordered set S

i
 = {(f (yj), yj) | 1 < j < k} to represent fi (y). Each number of

S
i
 is a pair (P, W), where P = fi (yj) and W = yj. Notice that S

0
 = {(0, 0)}. We can compute

S
i+1

 from Si by first computing:

Si 1 = {(P, W) | (P – pi, W – wi) e S
i
}

Now, S
i+1

 can be computed by merging the pairs in S
i
 and Si 1 together. Note that if Si+1

contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj > Wk, then
the pair (Pj, Wj) can be discarded because of equation-2. Discarding or purging rules such
as this one are also known as dominance rules. Dominated tuples get purged. In the above,
(Pk, Wk) dominates (Pj, Wj).

Reliability Design

The problem is to design a system that is composed of several devices connected in series.

Let ri be the reliability of device Di (that is ri is the probability that device i will function

properly) then the reliability of the entire system is fT ri. Even if the individual devices are

very reliable (the ri’s are very close to one), the reliability of the system may not be very

good. For example, if n = 10 and ri = 0.99, i < i < 10, then fT ri = .904. Hence, it is

desirable to duplicate devices. Multiply copies of the same device type are connected in

parallel.

If stage i contains mi copies of device Di. Then the probability that all mi have a

malfunction is (1 - ri) mi. Hence the reliability of stage i becomes 1 – (1 - r)
mi

.

i

The reliability of stage ‘i’ is given by a function ~i (mi).

Our problem is to use device duplication. This maximization is to be carried out under a
cost constraint. Let ci be the cost of each unit of device i and let c be the maximum
allowable cost of the system being designed.

We wish to solve:

Max i m iz e ~ qi (mi ~

1 <i<n
Subject to ~ Ci mi<C

1 <i<n

mi > 1 and interger, 1 < i < n

Assume each Ci > 0, each mi must be in the range 1 < mi < ui, where
~ ~

+Ci
n ~

~

ui ~ ~ ~C ~ C ~

IL k

~
J Ci ~

U

 ~

 1 ~

The upper bound ui follows from the observation that mj > 1

An optimal solution m1, m2 mn is
the result of a sequence of decisions, one

decision for each mi.

Let fi (x) represent the maximum value of

Subject to the constrains:

~ q$ (mJ)
1 <j<i

~ CJmJ ~ xand 1<mj<uJ, 1<j<i
1 <j<i

The last decision made requires one to choose mn from {1, 2, 3, un}

Once a value of mn has been chosen, the remaining decisions must be such as to use the
remaining funds C – Cn mn in an optimal way.

The principle of optimality holds on

fn~C ~ ~max { On (mn) fn _ 1 (C - Cn

mn) } 1 < mn< un

for any fi (xi), i > 1, this equation generalizes to

f n(x) = m a x { c i (m i) f i - 1 (x - C i

m i) } 1 < mi < ui

clearly, f0 (x) = 1 for all x, 0 < x < C and f (x) = -oo for all x < 0. Let

S
i
 consist of tuples of the form (f, x), where f = fi (x).

There is atmost one tuple for each different ‘x’, that result from a sequence of decisions on
m1, m2, mn. The dominance rule (f1, x1) dominate (f2, x2) if f1 ≥ f2 and x1 ≤ x2. Hence,

dominated tuples can be discarded from S
i
.

Example 1:

Design a three stage system with device types D1, D2 and D3. The costs are $30, $15 and
$20 respectively. The Cost of the system is to be no more than $105. The reliability of each
device is 0.9, 0.8 and 0.5 respectively.

Solution:

We assume that if if stage I has mi devices of type i in parallel, then 0 i (mi) =1 – (1- ri)
mi

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:

Using the above equation compute u1, u2 and u3.

u1 =

105+ 30- (30+15 + 20) 70

= 2

30 =

30

 105+15- (30+15 + 20) 55
= 3

u2 =

15 =

 15

(30+15 + 20)

u3 =
105+ 20- 60

= 3

20 =

 20

We useS -* i:stage number and J: no. of devices in stage i = mi S
°

= {fo (x), x}initially fo(x) = 1 and x = 0, so, S
o
= {1, 0}

Compute S
1
, S

2
 and S

3
 as follows:

S1 = depends on u1 value, as u1 = 2, so

S1 = { S1, S
1
}

1 2

S2 = depends on u2 value, as u2 = 3, so

S 2 = { S
2
 , S

2
 , S

2
 }

1 2 3

S3 = depends on u3 value, as u3 = 3, so

S3 = { S
3
, S

3
, S

3
}

1 2 3

Now find
, 1

 (x), x

S

f1 (x) = {01 (1) fo~ ~, 01 (2) f 0 ()} With devices m1 = 1 and m2 = 2 Compute Ø1

(1)and Ø1 (2) using the formula: Øi (mi)) = 1 - (1 - ri) mi

~~1~ ~ 1~~1 ~ r ~m 1 = 1 – (1 – 0.9)
1

 = 0.9

11 1 ~(2) = 1- (1- 0.9) 2

S
 =0.99

~ ~1f1 ~x~, x ~ ~

 1 ~ ~ 0.9 ,
30

S 2

 1 = 10.99 , 30 + 30 } = (0.99, 60

 Therefore, S
1
 = {(0.9, 30), (0.99, 60)}

Next find 2 ~ ~~ f

 S 1 2 (x), x ~~

f2 (x) = {02 (1) * f1 (), 02 (2) * f1 (), 02 (3) * f1 ()}

~2 ~1~ ~ 1 ~ ~1 ~ rI ~ = 1–(1–0.8) = 1–0.2 = 0.8

mi 1

~ ~2~ ~ 1 ~ ~1 ~ 0.8~ 2 = 0.962

02(3) = 1 - (1 - 0.8) 3 = 0.992

= {(0.8(0.9),30 + 15), (0.8(0.99),60 + 15)} = {(0.72, 45), (0.792, 75)} =
{(0.96(0.9),30 + 15 +15) , (0.96(0.99),60 + 15 + 15)}

= {(0.864, 60), (0.9504, 90)}

= {(0.992(0.9),30 + 15 +15+15) , (0.992(0.99),60 + 15 + 15+15)}
= {(0.8928, 75), (0.98208, 105)}
S2 = {S

2
, S

2
, S

2
}

1 2 3

By applying Dominance rule to S
2
:

Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)} Dominance Rule:

If S
i
 contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2, then

(f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded. Discarding or

pruning rules such as the one above is known as dominance rule. Dominating tuples will be

present in S
i
 and Dominated tuples has to be discarded from Si.

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1)

Case 2: if f1 > f2 and x1 < x2 the discard (f2, x2)

Case 3: otherwise simply write (f1, x1)

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

Ø 3 (1) = 1 ~ ~1 _ rI ~ mi = 1 – (1 – 0.5)
1
 = 1 – 0.5 = 0.5

Ø 2 ~2~ ~ 1 ~ ~1 =0.75
~ S0.5~ 2
3 = 0.875

 2

Ø
S

 2 ~3~ ~ 1 ~ ~1

~ 0.5~ 3

3
3
2

S 13 = {(0.5 (0.72), 45 + 20), (0.5 (0.864), 60 + 20), (0.5 (0.8928), 75 + 20)}

S 13 = {(0.36, 65), (0.437, 80), (0.4464, 95)}

(0.75 (0.8928), 75 + 20 + 20)}

=

{(0.54

, 85),

(0.648

, 100),

(0.669

6,

115)}

S 0.875 (0.72), 45 + 20 + 20 + 20), 0.875 (0.864),60+20+20+20),

0.875 (0.8928), 75 + 20 + 20 + 20

S 3

3 = {(0.63, 105), (1.756, 120), (0.7812, 135)} If
cost exceeds 105, remove that tuples

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and a cost of 100. Tracing back for the

solution through S
i
 ‘s we can determine that m3 = 2, m2 = 2 and m1 = 1.

Other Solution:

According to the principle of optimality:

fn(C) = max {~n (mn). fn-1 (C - Cn mn) with fo (x) = 1 and 0 ≤ x ≤ C; 1 ~
mn < un

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:
~ (n ~ ~

S2 ={(0.75 (0.72), 45 + 20 + 20), (0.75 (0.864), 60 + u

= ~ iC + Ci _ ~CJ r / Ci I ~
~ i ~ ~~
~ ~

Using the above equation compute u1, u2 and u3.

u1 =

105 3 0 +
70

 = 2

~

30 30

u2 =

105 15 3 0 + 55 ~ 3

 15 ~

15 = 3

105

3 0
+ 20

u3 =
1 5

60

20 =

 20

f3 (105) = max {~3 (m3). f2 (105 - 20m3)} 1 <m3 ! u3

 = max {3(1) f2(105 - 20), 63(2) f2(105 - 20x2), ~3(3) f2(105 -20x3)} = max {0.5

 f2(85), 0.75 f2(65), 0.875 f2(45)}

 = max {0.5 x 0.8928, 0.75 x 0.864, 0.875 x 0.72} = 0.648.

 = max {2 (m2). f1 (85 -15m2)}

 1 ! m2 ! u2

f2 (85) = max {2(1).f1(85 - 15), ~2(2).f1(85 - 15x2), ~2(3).f1(85 - 15x3)} =

 max {0.8 f1(70), 0.96 f1(55), 0.992 f1(40)}

 = max {0.8 x 0.99, 0.96 x 0.9, 0.99 x 0.9} = 0.8928

f1 (70) = max {~1(m1). f0(70 - 30m1)}

1 ! m1 ! u1

= max {~1(1) f0(70 - 30), t1(2) f0 (70 - 30x2)}= max {~1(1) x 1, t1(2) x 1} = max

{0.9, 0.99} = 0.99

f1 (55) = max {t1(m1). f0(55 - 30m1)}

1 ! m1 ! u1

= max {~1(1) f0(50 - 30), t1(2) f0(50 - 30x2)}

= max {~1(1) x 1, t1(2) x -oo} = max {0.9, -oo} = 0.9

f1 (40) = max {~1(m1). f0 (40 - 30m1)}

1 ! m1 ! u1

= max {~1(1) f0(40 - 30), t1(2) f0(40 - 30x2)}

= max {~1(1) x 1, t1(2) x -oo} = max{0.9, -oo} = 0.9

f2 (65) = max {2(m2). f1(65 -15m2)}

1 ! m2 ! u2

= max {2(1) f1(65 - 15), 62(2) f1(65 - 15x2), ~2(3) f1(65 - 15x3)} = max {0.8 f1(50),

0.96 f1(35), 0.992 f1(20)}

= max {0.8 x 0.9, 0.96 x 0.9, -oo} = 0.864

f1 (50) = max {~1(m1). f0(50 - 30m1)}

1 ! m1 ! u1

= max {~1(1) f0(50 - 30), t1(2) f0(50 - 30x2)}

= max {~1(1) x 1, t1(2) x -oo} = max{0.9, -oo} = 0.9 f1 (35) =

max ~1(m1). f0(35 - 30m1)}

1 ! m1 ! u1

= max {~1(1).f0(35-30), ~1(2).f0(35-30x2)}

= max {~1(1) x 1, t1(2) x -oo} = max{0.9, -oo} = 0.9

f1 (20) = max {~1(m1). f0(20 - 30m1)}
1 ! m1 ! u1

= max {~1(1) f0(20 - 30), t1(2) f0(20 - 30x2)}

= max {~1(1) x -, ~1(2) x -oo} = max{-oo, -oo} = -oo

f2 (45) = max {2(m2). f1(45 -15m2)}
1 ! m2 ! u2

= max {2(1) f1(45 - 15), ~2(2) f1(45 - 15x2), ~2(3) f1(45 - 15x3)} = max {0.8 f1(30),

0.96 f1(15), 0.992 f1(0)}

= max {0.8 x 0.9, 0.96 x -, 0.99 x -oo} = 0.72f1 (30) = max {~1(m1). f0(30 - 30m1)} 1

<m1 ~ u1

= max {~1(1) f0(30 - 30), t1(2) f0(30 - 30x2)}

= max {~1(1) x 1, t1(2) x -oo} = max{0.9, -oo} = 0.9 Similarly, f1 (15) = -,

f1 (0) = -.

The best design has a reliability = 0.648 and

Cost = 30 x 1 + 15 x 2 + 20 x 2 = 100.

Tracing back for the solution through S
i
 ‘s we can determine that: m3 = 2, m2 = 2

and m1 = 1.

UNIT - V

Branch and Bound- General Method, applications-0/1 Knapsack problem, LC Branch and

Bound solution, FIFO Branch and Bound solution, Traveling sales person problem. NP-Hard and

NP-Complete problems- Basic concepts, Non-deterministic algorithms, NP – Hard and NP-

Complete classes, Cook’s theorem.

Backtracking (General method)
Many problems are difficult to solve algorithmically. Backtracking makes it possible to solve at
least some large instances of difficult combinatorial problems.
Suppose you have to make a series of decisions among various choices, where

 You don’t have enough information to know what to choose

 Each decision leads to a new set of choices.

 Some sequence of choices (more than one choices) may be a solution to your problem.

Backtracking is a methodical (Logical) way of trying out various sequences of decisions, until
you find one that “works”
Example@1 (net example) : Maze (a tour puzzle)

Given a maze, find a path from start to finish.

 In maze, at each intersection, you have to decide between 3 or fewer choices:

 Go straight

 Go left

 Go right

 You don’t have enough information to choose correctly

 Each choice leads to another set of choices.

 One or more sequences of choices may or may not lead to a solution.

 Many types of maze problem can be solved with backtracking.

Example@ 2 (text book):

Sorting the array of integers in a[1:n] is a problem whose solution is expressible by an n-tuple xi is the

index in ‘a’ of the ith smallest element.

The criterion function ‘P’ is the inequality a[xi]≤ a[xi+1] for 1≤ i ≤ n

Si is finite and includes the integers 1 through n. mi size of set S i

m=m1m2m3---mn n tuples that possible candidates for satisfying the function P.
With brute force approach would be to form all these n-tuples, evaluate (judge) each one with
P and save those which yield the optimum.
By using backtrack algorithm; yield the same answer with far fewer than ‘m’ trails.
Many of the problems we solve using backtracking requires that all the solutions satisfy a

complex set of constraints.
For any problem these constraints can be divided into two categories: Explicit constraints.

 Implicit constraints.

Explicit constraints: Explicit constraints are rules that restrict each xito take on values
onlyfrom a given set.

Example: xi≥ 0 or si={all non negative real numbers}

Xi=0 or 1 or Si={0, 1}

li ≤ xi ≤ ui or si={a: li ≤ a ≤ ui }
The explicit constraint depends on the particular instance I of the problem being solved.
All tuples that satisfy the explicit constraints define a possible solution space for I.
Implicit Constraints:
The implicit constraints are rules that determine which of the tuples in the solution space of I

satisfy the criterion function. Thus implicit constraints describe the way in which the Xi
must relate to each other.
Applications of Backtracking:

 N Queens Problem

 Sum of subsets problem

 Graph coloring

 Hamiltonian cycles.

N-Queens Problem:
It is a classic combinatorial problem. The eight queen’s puzzle is the problem of placing

eight queens puzzle is the problem of placing eight queens on an 8×8 chessboard so that no
two queens attack each other. That is so that no two of them are on the same row, column, or

diagonal.
The 8-queens puzzle is an example of the more general n-queens problem of placing n queens on
an n×n chessboard.

Here queens can also be numbered 1 through 8

Each queen must be on a different row
Assume queen ‘i’ is to be placed on row ‘i’

All solutions to the 8-queens problem can therefore be represented a s s-tuples(x1, x2, x3—x8) xi
the column on which queen ‘i’ is placed

si {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤ i ≤8

Therefore the solution space consists of 8
8
 s-tuples.

The implicit constraints for this problem are that no two xi’s can be the same column and no
two queens can be on the same diagonal.
By these two constraints the size of solution pace reduces from 88 tuples to 8!

Tuples. Form example si(4,6,8,2,7,1,3,5)

In the same way for n-queens are to be placed on an n×n chessboard, the solution space consists
of all n! Permutations of n-tuples (1,2,----n).

Some solution to the 8-Queens problem

Algorithm for new queen be placed All solutions to the n·queens problem

Algorithm Place(k,i) Algorithm NQueens(k, n)

//Return true if a queen can be placed in kth // its prints all possible placements of n-

row & ith column queens on an n×n chessboard.

//Other wise return false {

{ for i:=1 to n do{

for j:=1 to k-1 do if Place(k,i) then

if(x[j]=i or Abs(x[j]-i)=Abs(j-k))) {

then return false X[k]:=I;

return true if(k==n) then write (x[1:n]);

} else NQueens(k+1, n);

 }

 }}

Sum of Subsets Problem:

Given positive numbers wi 1 ≤ i ≤ n, & m, here sum of subsets problem is finding all subsets of

wi whose sums are m.
Definition: Given n distinct +ve numbers (usually called weights), desire (want) to find
allcombinations of these numbers whose sums are m. this is called sum of subsets problem.
To formulate this problem by using either fixed sized tuples or variable sized tuples.
Backtracking solution uses the fixed size tuple strategy.

For example:

If n=4 (w1, w2, w3, w4)=(11,13,24,7) and m=31.
Then desired subsets are (11, 13, 7) & (24, 7).
The two solutions are described by the vectors (1, 2, 4) and (3, 4).

In general all solution are k-tuples (x1, x2, x3---xk) 1 ≤ k ≤ n, different solutions may have

different sized tuples.

 Explicit constraints requires xi∈ {j / j is an integer 1 ≤ j ≤ n }

 Implicit constraints requires:

No two be the same & that the sum of the corresponding wi’s be m

i.e., (1, 2, 4) & (1, 4, 2) represents the same. Another constraint is xi<xi+1 1 ≤ i ≤ k Capacity
of bag (subset)

Xi the element of the solution vector is either one or zero.

Xi value depending on whether the weight wi is included or not.

If Xi=1 then wi is chosen.

If Xi=0 then wi is not chosen.

The above equation specify that x1, x2, x3, --- xk cannot lead to an answer node if this condition is

not satisfied.

The equation cannot lead to solution.

Recursive backtracking algorithm for sum of subsets problem

Algorithm SumOfSub(s, k, r)

{

X[k]=1

If(S+w[k]=m) then write(x[1:]); // subset found.

Else if (S+w[k] + w{k+1] ≤ M)

Then SumOfSub(S+w[k], k+1, r-w[k]);
if ((S+r - w{k] ≥ M) and (S+w[k+1] ≤M)) then

{

X[k]=0;

SumOfSub(S, k+1, r-w[k]);

}

}

Graph Coloring:
Let G be a undirected graph and ‘m’ be a given +ve integer. The graph coloring problem is
assigning colors to the vertices of an undirected graph with the restriction that no two adjacent
vertices are assigned the same color yet only ‘m’ colors are used.
The optimization version calls for coloring a graph using the minimum number of coloring. The
decision version, known as K-coloring asks whether a graph is colourable using at most k-colors.
Note that, if ‘d’ is the degree of the given graph then it can be colored with ‘d+1’ colors.
The m- colorability optimization problem asks for the smallest integer ‘m’ for which the graph G
can be colored. This integer is referred as “Chromatic number” of the graph.
Example

 Above graph can be colored with 3 colors 1, 2, & 3.

 The color of each node is indicated next to it.

 3-colors are needed to color this graph and hence this graph’ Chromatic Number is 3.

 A graph is said to be planar iff it can be drawn in a plane (flat) in such a way that no two edges
cross each other.

 M-Colorability decision problem is the 4-color problem for planar graphs.

 Given any map, can the regions be colored in such a way that no two adjacent regions have
the same color yet only 4-colors are needed?

 To solve this problem, graphs are very useful, because a map can easily be transformed into a
graph.

 Each region of the map becomes a node, and if two regions are adjacent, then the
corresponding nodes are joined by an edge.

o Example:

o The

above map requires 4 colors.

 Many years, it was known that 5-colors were required to color this map. After several hundred years, this
problem was solved by a group of mathematicians with

the help of a computer. They show that 4-colors are sufficient.

Suppose we represent a graph by its adjacency matrix G[1:n, 1:n]

Ex:

Here G[i, j]=1 if (i, j) is an edge of G, and G[i, j]=0 otherwise.
Colors are represented by the integers 1, 2,---m and the solutions are given by the n-tuple (x1,
x2,---xn)

xi Color of node i.

State Space Tree for

n=3 nodes

m=3 colors

1
st

 node coloured in 3-ways

2
nd

 node coloured in 3-ways

3
rd

 node coloured in 3-ways

So we can colour in the graph in 27 possibilities of colouring.

Finding all m-coloring of a graph Getting next color

Algorithm mColoring(k){ Algorithm NextValue(k){

// g(1:n, 1:n) boolean adjacency matrix. //x[1],x[2],---x[k-1] have been assigned

// k index (node) of the next vertex to integer values in the range [1, m]

color. repeat {

repeat{ x[k]=(x[k]+1)mod (m+1); //next highest

nextvalue(k); // assign to x[k] a legal color. color

if(x[k]=0) then return; // no new color if(x[k]=0) then return; // all colors have

possible been used.

if(k=n) then write(x[1: n]; for j=1 to n do

else mcoloring(k+1); {

} if ((g[k,j]≠0) and (x[k]=x[j]))

until(false) then break;

} }

 if(j=n+1) then return; //new color found

 } until(false)

 }

Previous paper example:

Adjacency matrix is

Hamiltonian Cycles:

 Def: Let G=(V, E) be a connected graph with n vertices. A Hamiltonian cycle is a roundtrip
path along n-edges of G that visits every vertex once & returns to its starting position.

 It is also called the Hamiltonian circuit.

 Hamiltonian circuit is a graph cycle (i.e., closed loop) through a graph that visits each node
exactly once.

 A graph possessing a Hamiltonian cycle is said to be Hamiltonian graph.
Example:

 In graph G, Hamiltonian cycle begins at some vertiex v1 ∈Gand the verticesof G

are visited in the order v1,v2,---vn+1, then the edges (vi, vi+1) are in E, 1 ≤ i ≤ n.

g1

The above graph contains Hamiltonian cycle: 1,2,8,7,6,5,4,3,1

The above graph contains no Hamiltonian cycles.

 There is no known easy way to determine whether a given graph contains a
Hamiltonian cycle.

 By using backtracking method, it can be possible

 Backtracking algorithm, that finds all the Hamiltonian cycles in a graph.

 The graph may be directed or undirected. Only distinct cycles are output.

 From graph g1 backtracking solution vector= {1, 2, 8, 7, 6, 5, 4, 3, 1}

 The backtracking solution vector (x1, x2, --- xn)

xi i
th

 visited vertex of proposed cycle. By using
backtracking we need to determine how to compute
the set of possible vertices for xk if x1,x2,x3---xk-1
have already been chosen.

If k=1 then x1 can be any of the n-vertices.
By using “NextValue” algorithm the recursive backtracking scheme to find all Hamiltoman

cycles.

This algorithm is started by 1
st

 initializing the adjacency matrix G[1:n, 1:n] then setting x[2:n]
to zero & x[1] to 1, and then executing Hamiltonian (2)

Generating Next Vertex Finding all Hamiltonian Cycles

Algorithm NextValue(k) Algorithm Hamiltonian(k)

{ {

// x[1: k-1] is path of k-1 distinct vertices. Repeat{

// if x[k]=0, then no vertex has yet been NextValue(k); //assign a legal next value to

assigned to x[k] x[k]

Repeat{ If(x[k]=0) then return;

X[k]=(x[k]+1) mod (n+1); //Next vertex If(k=n) then write(x[1:n]);

If(x[k]=0) then return; Else Hamiltonian(k+1);

If(G[x[k-1], x[k]]≠0) then } until(false)

{ }

For j:=1 to k-1 do if(x[j]=x[k]) then break;

//Check for distinctness

If(j=k) then //if true , then vertex is distinct

If((k<n) or (k=n) and G[x[n], x[1]]≠0))

Then return ;

}

}

Until (false);

}

Introduction:

Branch and Bound refers to all state space search methods in which all children of the E-

Node are generated before any other live node becomes the E-Node.
Branch and Bound is the generalization of both graph search strategies, BFS and D-search.

• A BFS like state space search is called as FIFO (First in first out) search as the list of

live nodes in a first in firstout.

• A D-search like state space search is called as LIFO (last in first out) search as the list of
live nodes in a last in first outlist.

Live nodeis a node that has been generated but whose children have not yet been generated.

E-nodeis a live node whose children are currently being explored. In other words, an E-node is

a node currently being expanded.

Dead nodeis a generated anode that is not be expanded or explored any further. All children of a

dead node have already been expanded.
Here we will use 3 types of search strategies:

1. FIFO (First In FirstOut)

2. LIFO (Last In FirstOut)

3. LC (Least Cost)Search

FIFO Branch and Bound Search:

For this we will use a data structure called Queue. Initially Queue is empty.

Example:

Assume the node 12 is an answer node (solution)

In FIFO search, first we will take E-node as a node 1.

Next we generate the children of node 1. We will place all these live nodes in a queue.

Now we will delete an element from queue, i.e. node 2, next generate children of node 2

and place in this queue.

Next, delete an element from queue and take it as E-node, generate the children of node

3, 7, 8 are children of 3 and these live nodes are killed by bounding functions. So we will not

include in thequeue.

Again delete an element an from queue. Take it as E-node, generate the children of 4.

Node 9 is generated and killed by boundary function.

Next, delete an element from queue. Generate children of nodes 5, i.e., nodes 10 and 11

are generated and by boundary function, last node in queue is 6. The child of node 6 is 12 and it

satisfies the conditions of the problem, which is the answer node, so search terminates.

LIFO Branch and Bound Search

For this we will use a data structure called stack. Initially stack is empty.

Example:

Generate children of node 1 and place these live nodes into stack.

Remove element from stack and generate the children of it, place those nodes into stack.

2 is removed from stack. The children of 2 are 5, 6. The content of stack is,

 Again remove an element from stack, i.,e node 5

is removed and nodes generated by 5 are 10, 11 which are killed by bounded function, so we will not place

10, 11 intostack.

Delete an element from stack, i.,e node 6. Generate child of node 6, i.,e 12, which is the

answer node, so search process terminates.

LC (Least Cost) Branch and Bound Search

In both FIFO and LIFO Branch and Bound the selection rules for the next E-node in rigid

and blind. The selection rule for the next E-node does not give any preferences to a node that has

a very good chance of getting the search to an answer node quickly.

In this we will use ranking function or cost function. We generate the children of E-node, among

these live nodes; we select a node which has minimum cost. By using ranking function we will

calculate the cost of each node.

Initially we will take node 1 as E-node. Generate children of node 1, the children are 2, 3,

4. By using ranking function we will calculate the cost of 2, 3, 4 nodes is ĉ =2, ĉ =3, ĉ =4

respectively. Now we will select a node which has minimum cost i.,e node 2. For node 2, the

children are 5, 6. Between 5 and 6 we will select the node 6 since its cost minimum. Generate

children of node 6 i.,e 12 and 13. We will select node 12 since its cost (ĉ =1) is minimum. More

over 12 is the answer node. So, we terminate searchprocess.

Control Abstraction for LC-search

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in t, then

c(x) is the minimum cost of any answer node in the sub tree with root x. Thus, c(t) is the cost of a

minimum-cost answer node in t.

LC search uses ĉ to find an answer node. The algorithm uses two functions

1. Least-cost()

2. Add_node().

Least-cost() finds a live node with least c(). This node is deleted from the list of live nodes and

returned.

Add_node() to delete and add a live node from or to the list of live nodes.

Add_node(x)adds the new live node x to the list of live nodes. The list of live nodes be

implemented as a min-heap.

BOUNDING

➢ A branch and bound method searches a state space tree using any search mechanism in

which all the children of the E-node are generated before another node becomes the E-

node.

➢ A good bounding helps to prune (reduce) efficiently the tree, leading to a faster

exploration of the solution space. Each time a new answer node is found, the value of

upper can beupdated.

➢ Branch and bound algorithms are used for optimization problem where we deal directly

only with minimization problems. A maximization problem is easily converted to a

minimization problem by changing the sign of the objectivefunction.

APPLICATION: 0/1 KNAPSACK

There are n objects given and capacity of knapsack is M. Select some objects to fill the

knapsack in such a way that it should not exceed the capacity of Knapsack and maximum profit

can be earned. The Knapsack problem is maximization problem. It means we will always seek

for maximum p1x1 (where p1 represents profit of objectx1).

A branch bound technique is used to find solution to the knapsack problem. But we

cannot directly apply the branch and bound technique to the knapsack problem. Because the

branch bound deals only the minimization problems. We modify the knapsack problem to the

minimization problem. The modifies problemis,

Algorithm: KNAPSACK PROBLEM

Example: Consider the instance M=15, n=4, (p1, p2, p3, p4) = 10, 10, 12, 18 and (w1, w2, w3,

w4)=(2, 4, 6, 9).

Solution: knapsack problem can be solved by using branch and bound technique. In this problem

we will calculate lower bound and upper bound for each node.

Arrange the item profits and weights with respect of profit by weight ratio. After that,

place the first item in the knapsack. Remaining weight of knapsack is 15-2=13. Place next item

w2in knapsack and the remaining weight of knapsack is 13-4=9. Place next item w3, in knapsack

then the remaining weight of knapsack is 9-6=3. No fraction are allowed in calculation of upper

bound so w4, cannot be placed inknapsack.

Profit= p1+p2+ p3,=10+10+12
So, Upper bound=32

To calculate Lower bound we can place w4 in knapsack since fractions are allowed in

calculation of lower bound.

Lower bound=10+10+12+ (3/9*18)=32+6=38

Knapsack is maximization problem but branch bound technique is applicable for only

minimization problems. In order to convert maximization problem into minimization problem we

have to take negative sign for upper bound and lower bound.

Therefore, upper bound (U) =-32
Lower bound (L)=-38

We choose the path, which has minimized difference of upper bound and lower bound. If

the difference is equal then we choose the path by comparing upper bounds and we discard node

with maximum upper bound.
Now we will calculate upper bound and lower bound for nodes 2, 3

For node 2, x1=1, means we should place first item in the knapsack.

U=10+10+12=32, make it as -32

L=10+10+12+ (3/9*18) = 32+6=38, we make it as -38

For node 3, x1=0, means we should not place first item in the knapsack.

U=10+12=22, make it as -22

L=10+12+ (5/9*18) = 10+12+10=32, we make it as -32

Next we will calculate difference of upper bound and lower bound for nodes 2, 3

For node 2, U-L=-32+38=6
For node 3, U-L=-22+32=10

Choose node 2, since it has minimum difference value of 6.

Now we will calculate lower bound and upper bound of node 4 and 5. Calculate difference of
lower and upper bound of nodes 4 and 5.

For node 4, U-L=-32+38=6

For node 5, U-L=-22+36=14

Choose node 4, since it has minimum difference value of 6

Now we will calculate lower bound and upper bound of node 6 and 7. Calculate difference of

lower and upper bound of nodes 6 and 7.

For node 6, U-L=-32+38=6

For node 7, U-L=-38+38=0
Choose node 7, since it has minimum difference value of 0.

Now we will calculate lower bound and upper bound of node 8 and 9. Calculate difference of

lower and upper bound of nodes 8 and 9.

For node 8, U-L=-38+38=0

For node 9, U-L=-20+20=0

Here, the difference is same, so compare upper bounds of nodes 8 and 9. Discard the

node, which has maximum upper bound. Choose node 8, discard node 9 since, it has maximum

upper bound.
Consider thepathfrom 1 2 4 7 8

X1=1

X2=1

X3=0

X4=1

The solution for 0/1 knapsack problem is (x1, x2, x3, x4)=(1, 1, 0, 1)

Maximum profit is:

∑pixi=10*1+10*1+12*0+18*1

10+10+18=38.

FIFO Branch-and-Bound Solution

Now, let us trace through the FIFOBB algorithm using the same knapsack instance as in

above Example. Initially the root node, node 1 of following Figure, is the E-node and the queue

of live nodes is empty. Since this is not a solution node, upper is initialized to u(l) = -32. We

assume the children of a node are generated left to right. Nodes 2 and 3 are generated and added

to the queue (in that order). The value of upper remains unchanged. Node 2 becomes the next E-

node. Its children, nodes 4 and 5, are generated and added to the queue.

Node 3, the next-node, is expanded. Its children nodes are generated; Node 6 gets added

to the queue. Node 7 is immediately killed as L (7) > upper. Node 4 is expanded next. Nodes 8

and 9 are generated and added to the queue. Then Upper is updated to u(9) = -38, Nodes 5 and 6

are the next two nodes to become B-nodes. Neither is expanded as for each, L > upper. Node 8 is

the next E-node. Nodes 10 and 11 are generated; Node 10 is infeasible and so killed. Node 11

has L (11) > upper and so is also killed. Node 9 is expandednext.

When node 12 is generated, 'Upper and ans are updated to -38 and 12 respectively. Node

12 joins the queue of live nodes. Node 13 is killed before it can get onto the queue of live nodes

as L (13) > upper. The only remaining live node is node 12. It has no children and the search

terminates. The value of upper and the path from node 12 to the root is output. So solution is

X1=1, X2=1, X3=0, X4=1.

APPLICATON: TRAVELLING SALES PERSON PROBLEM

Let G = (V', E) be a directed graph defining an instance of the traveling salesperson

problem. Let Cij equal the cost of edge (i, j), Cij = ∞ if (i, j) != E, and let IVI = n, without loss of

generality, we can assume that every tour starts and ends at vertex 1.

Procedure for solving travelling sales person problem

1. Reduce the given cost matrix. A matrix is reduced if every row and column is reduced. This

can be done asfollows:

Row Reduction:

a) Take the minimum element from first row, subtract it from all elements of first row, next

take minimum element from the second row and subtract it from second row. Similarly

apply the same procedure for allrows.

b) Find the sum of elements, which were subtracted fromrows.

c) Apply column reductions for the matrix obtained after rowreduction.

Column Reduction:

d) Take the minimum element from first column, subtract it from all elements of first

column, next take minimum element from the second column and subtract it from second

column. Similarly apply the same procedure for allcolumns.

e) Find the sum of elements, which were subtracted fromcolumns.

f) Obtain the cumulative sum of row wise reduction and column wise reduction.

Cumulative reduced sum=Row wise reduction sum + Column wise reductionsum.

Associate the cumulative reduced sum to the starting state as lower bound and α as upper

bound.

2. Calculate the reduced cost matrix for everynode.

a) If path (i,j) is considered then change all entries in row i and column j of A toα.

b) Set A(j,1) toα.

c) Apply row reduction and column reduction except for rows and columns containing

only α. Let r is the total amount subtracted to reduce thematrix.

d) Find ĉ(S)= ĉ(R)+A(i,j)+r.

Repeat step 2 until all nodes arevisited.

Example:Find the LC branch and bound solution for the travelling sales person problem whose

cost matrix is as follows.
 ∞ 20 30 10 11

15 ∞ 16 4 2

The cost matrix is 3 5 ∞ 2 4
 19 6 18 ∞ 3
 16 4 7 16 ∞

Step 1: Find the reduced cost matrix

Apply now reduction method:

Deduct 10 (which is the minimum) from all values in the 1st row.

Deduct 2 (which is the minimum) from all values in the 2nd row.

Deduct 2 (which is the minimum) from all values in the 3rdt row.

Deduct 3 (which is the minimum) from all values in the 4th row.

Deduct 4 (which is the minimum) from all values in the 5th row.
∞ 10 20 0 1

13 ∞ 14 2 0

The resulting row wise reduced costmatrix= 1 3 ∞ 0 2

16 3 15 ∞ 0
12 0 3 12 ∞

Row wise reduction sum = 10+2+2+3+4=21.

Now apply column reduction for the above matrix:

Deduct 1 (which is the minimum) from all values in the 1st column.

Deduct 3 (which is the minimum) from all values in the 2nd column.

The resulting column wise reduced cost matrix (A) =

Column wise reduction sum = 1+0+3+0+0=4.

Cumulative reduced sum = row wise reduction + column wise reduction sum.

=21+ 4 =25.

∞ 10 17 0 1

12 ∞ 11 2 0

0 3 ∞ 0 2

15 3 12 ∞ 0

11 0 3 12 ∞

This is the cost of a root i.e. node 1, because this is the initially reduced cost matrix.

The lower bound for node is 25 and upper bound is ∞.

Starting from node 1, we can next visit 2, 3, 4 and 5 vertices. So, consider to explore the paths (1,

2), (1,3), (1, 4), (1,5).

The tree organization up to this as follows;

Variable i indicate the next node to visit.

Step 2:

Now consider the path (1, 2)
Change all entries of row 1 and column 2 of A to ∞ and also set A (2, 1) to ∞.

∞ ∞ ∞ ∞ ∞

∞ ∞ 11 2 0

0 ∞ ∞ 0 2

15 ∞ 12 ∞ 0

11 ∞ 0 12 ∞

Apply row and column reduction for the rows and columns whose rows and column are not
completely ∞. Then the resultant matrix is

Row reduction sum = 0 + 0 + 0 + 0 = 0

Column reduction sum = 0 + 0 + 0 + 0= 0

Cumulative reduction(r) = 0 + 0=0

Therefore, as ĉ(S)= ĉ(R)+A(1,2)+r ĉ(S)= 25 + 10 + 0 =35.

Now consider the path (1, 3)
Change all entries of row 1 and column 3 of A to ∞ and also set A (3, 1) to ∞.

∞ ∞ ∞ ∞ ∞

12 ∞ ∞ 2 0

∞ 3 ∞ 0 2

15 3 ∞ ∞ 0

11 0 ∞ 12 ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞
∞ ∞ ∞ ∞ ∞

1 ∞ ∞ 2 0

Then the resultant matrixis= ∞ 3 ∞ 0 2

4 3 ∞ ∞ 0

0 0 ∞ 12 ∞

Row reduction sum = 0

Column reduction sum = 11

Cumulative reduction(r) = 0 +11=11

Therefore, as ĉ(S)= ĉ(R)+A(1,3)+r

ĉ(S)= 25 + 17 +11 = 53.

Now consider the path (1, 4)

Change all entries of row 1 and column 4 of A to ∞ and also set A(4,1) to ∞.

∞ ∞ ∞ ∞ ∞

12 ∞ 11 ∞ 0
0 3 ∞ ∞ 2

∞ 3 12 ∞ 0

11 0 0 ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞

∞ ∞ ∞ ∞ ∞
12 ∞ 11 ∞ 0

Then the resultant matrix is = 0 3 ∞ ∞ 2

∞ 3 12 ∞ 0
11 0 0 ∞ ∞

Row reduction sum = 0

Column reduction sum = 0

Cumulative reduction(r) = 0 +0=0

Therefore, as ĉ(S)= ĉ(R)+A(1,4)+r
ĉ(S)= 25 + 0 +0 = 25.

Now Consider the path (1, 5)
Change all entries of row 1 and column 5 of A to ∞ and also set A(5,1) to ∞.

∞ ∞ ∞ ∞ ∞

12 ∞ 11 2 ∞
0 3 ∞ 0 ∞

15 3 12 ∞ ∞

∞ 0 0 12 ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞
 ∞ ∞ ∞ ∞ ∞

10 ∞ 9 0 ∞

Then the resultant matrix is = 0 3 ∞ 0 ∞
 12 0 9 ∞ ∞
 ∞ 0 0 12 ∞

Row reduction sum = 5

Column reduction sum = 0

Cumulative reduction(r) = 5 +0=0
Therefore, as ĉ(S)= ĉ(R)+A(1,5)+r

ĉ(S)= 25 + 1 +5 = 31.

The tree organization up to this as follows:

The cost of the between (1, 2) = 35, (1, 3) = 53, (1, 4) = 25, (1, 5) = 31. The cost of the

path between (1, 4) is minimum. Hence the matrix obtained for path (1, 4) is considered as

reduced cost matrix.
∞ ∞ ∞ ∞ ∞

12 ∞ 11 ∞ 0

A= 0 3 ∞ ∞ 2

∞ 3 12 ∞ 0
11 0 0 ∞ ∞

The new possible paths are (4, 2), (4, 3) and (4, 5).

Now consider the path (4, 2)
Change all entries of row 4 and column 2 of A to ∞ and also set A(2,1) to∞.

∞ ∞ ∞ ∞ ∞

∞ ∞ 11 ∞ 0

0 ∞ ∞ ∞ 2

∞ ∞ ∞ ∞ ∞

11 ∞ 0 ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not
completely ∞

Then the resultant matrix is =

11 ∞ 0 ∞ ∞

Row reduction sum = 0

Column reduction sum = 0

Cumulative reduction(r) = 0 +0=0

Therefore, as ĉ(S)= ĉ(R)+A(4,2)+r
ĉ(S)= 25 + 3 +0 = 28.

Now consider the path (4, 3)
Change all entries of row 4 and column 3 of A to ∞ and also set A(3,1) to ∞.

∞ ∞ ∞ ∞ ∞

12 ∞ ∞ ∞ 0
∞ 3 ∞ ∞ 2

∞ ∞ ∞ ∞ ∞

11 0 ∞ ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not
completely ∞
 ∞ ∞ ∞ ∞ ∞

1 ∞ ∞ ∞ 0

Then the resultant matrix is = ∞ 1 ∞ ∞ 0

∞ ∞ ∞ ∞ ∞

∞ ∞ 11 ∞ 0

0 ∞ ∞ ∞ 2
∞ ∞ ∞ ∞ ∞

 ∞ ∞ ∞ ∞ ∞
 0 0 ∞ ∞ ∞

Row reduction sum = 2

Column reduction sum = 11

Cumulative reduction(r) = 2 +11=13

Therefore, as ĉ(S)= ĉ(R)+A(4,3)+r

ĉ(S)= 25 + 12 +13 = 50.

.Now consider the path (4, 5)
Change all entries of row 4 and column 5 of A to ∞ and also set A(5,1) to ∞.

∞ ∞ ∞ ∞ ∞
12 ∞ 11 ∞ ∞

0 3 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ 0 0 ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞

Then the resultant matrix is =

Row reduction sum =11

Column reduction sum = 0
Cumulative reduction(r) = 11 +0=11

Therefore, as ĉ(S)= ĉ(R)+A(4,5)+r

ĉ(S)= 25 + 0 +11 = 36.

The tree organization up to this as follows:

The cost of the between (4, 2) = 28, (4, 3) = 50, (4, 5) = 36. The cost of the path between

(4, 2) is minimum. Hence the matrix obtained for path (4, 2) is considered as reduced cost

matrix.

∞ ∞ ∞ ∞ ∞

∞ ∞ 11 ∞ 0

A= 0 ∞ ∞ ∞ 2

∞ ∞ ∞ ∞ ∞

1 ∞ 0 ∞ ∞

0 3 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞
∞ 0 0 ∞ ∞

∞ ∞ ∞ ∞ ∞

11 ∞ 0 ∞ ∞
The new possible paths are (2, 3) and (2, 5).

Now Consider the path (2, 3):
Change all entries of row 2 and column 3 of A to ∞ and also set A(3,1) to ∞.

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ 2

∞ ∞ ∞ ∞ ∞

11 ∞ ∞ ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞
∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

Then the resultant matrix is = ∞ ∞ ∞ ∞ 0

∞ ∞ ∞ ∞ ∞

0 ∞ ∞ ∞ ∞

Row reduction sum =13

Column reduction sum = 0

Cumulative reduction(r) = 13 +0=13

Therefore, as ĉ(S)= ĉ(R)+A(2,3)+r

ĉ(S)= 28 + 11 +13 = 52.

Now Consider the path (2, 5):
Change all entries of row 2 and column 5 of A to ∞ and also set A(5,1) to ∞.

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

0 ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ 0 ∞ ∞

Apply row and column reduction for the rows and columns whose rows and column are not

completely ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

Then the resultant matrixis = 0 ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ 0 ∞ ∞

Row reduction sum =0

Column reduction sum = 0
Cumulative reduction(r) = 0 +0=0

Therefore, as ĉ(S)=ĉ(R)+A(2,5)+r ĉ(S)= 28 + 0 +0 = 28.

The tree organization up to this as follows:

The cost of the between (2, 3) = 52 and (2, 5) = 28. The cost of the path between (2, 5) is

minimum. Hence the matrix obtained for path (2, 5) is considered as reduced cost matrix.
 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

A = 0 ∞ ∞ ∞ ∞
 ∞ ∞ ∞ ∞ ∞
 ∞ ∞ 0 ∞ ∞
The new possible path is (5, 3).

Now consider the path (5, 3):
Change all entries of row 5 and column 3 of A to ∞ and also set A(3,1) to ∞. Apply row and

column reduction for the rows and columns whose rows and column are not completely ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

Then the resultant matrix is = ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

Row reduction sum =0

Column reduction sum = 0

Cumulative reduction(r) = 0 +0=0

Therefore, as ĉ(S)= ĉ(R)+A(5,3)+r
ĉ(S)= 28 + 0 +0 = 28.

The path travelling sales person problem is:

1 4 2 5 3 1:

The minimum cost of the path is: 10+2+6+7+3=28.

Basic concepts:

NP-)Nondeterministic Polynomial time

The problems has best algorithms for their solutions have “Computing times”, that cluster

into two groups

 Group 1 Group 2

> Problems with solution time bound by > Problems with solution times not

 a polynomial of a small degree. bound by polynomial (simply non

 polynomial)

>It also called “Tractable Algorithms”

> These are hard or intractable

 problems

> Most Searching & Sorting algorithms

 are polynomial time algorithms

 >
None of the problems in this group

 has been solved by any polynomial

> Ex: time algorithm

 Ordered Search (O (log n)),

 Polynomial evaluation O(n) >Ex:

Sorting O(n.log n)

 Traveling Sales Person O(n
2
2

n
)

Knapsack O(2
n/2

)

No one has been able to develop a polynomial time algorithm for any problem in the

2nd group (i.e., group 2)

So, it is compulsory and finding algorithms whose computing times are greater than

polynomial very quickly because such vast amounts of time to execute that even

moderate size problems cannot be solved.

Theory of NP-Completeness:

Show that may of the problems with no polynomial time algorithms are computational

time algorithms are computationally related.

There are two classes of non-polynomial time problems

1. NP-Hard

3. NP-Complete

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time

ifand only if (iff) all other NP-Complete problems can also be solved in polynomial time.

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can

besolved in polynomial time.

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be

NP-Complete.

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is uniquely defined are termed

as deterministic algorithms. Such algorithms agree with the way programs are executed on a

computer.

Algorithms which contain operations whose outcomes are not uniquely defined but

are limited to specified set of possibilities. Such algorithms are called

nondeterministic algorithms.

The machine executing such operations is allowed to choose any one of these

outcomes subject to a termination condition to be defined later.

To specify nondeterministic algorithms, there are 3 new functions.

Choice(S)-) arbitrarily chooses one of the elements of sets S

Failure ()-) Signals an Unsuccessful completion

Success ()-) Signals a successful completion.

Example for Non Deterministic algorithms:

 Algorithm Search(x){ Whenever there is a set of choices

 //Problem is to search an element x that leads to a successful completion

//output J, such that A[J]=x; or J=0 if x is not in A

then one such set of choices is

always made and the algorithm

J:=Choice(1,n);

 terminates.

 if(A[J]:=x) then {
A Nondeterministic algorithm

Write(J);

terminates unsuccessfully if and

 Success(); only if (iff) there exists no set of

 } choices leading to a successful

else{

signal.

 write(0);

 failure();

 }

Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, x){ p-) given Profits

W:=0; w-) given Weights

P:=0; n-) Number of elements (number of

for i:=1 to n do{ p or w)

x[i]:=choice(0, 1); m-) Weight of bag limit

W:=W+x[i]*w[i]; P-) Final Profit

P:=P+x[i]*p[i]; W-) Final weight

}

if((W>m) or (P<r)) then Failure();

else Success();

}

The Classes NP-Hard & NP-Complete:
For measuring the complexity of an algorithm, we use the input length as the parameter. For

example, An algorithm A is of polynomial complexity p() such that the computing time of A

is O(p(n)) for every input of size n.

Decision problem/ Decision algorithm: Any problem for which the answer is either zero

orone is decision problem. Any algorithm for a decision problem is termed a decision

algorithm.

Optimization problem/ Optimization algorithm: Any problem that involves

theidentification of an optimal (either minimum or maximum) value of a given cost

function is known as an optimization problem. An optimization algorithm is used to

solve an optimization problem.

P-)is the set of all decision problems solvable by deterministic algorithms in

polynomialtime.

NP-)is the set of all decision problems solvable by nondeterministic algorithms

inpolynomial time.

Since deterministic algorithms are just a special case of nondeterministic, by this
we concluded that P⊆NP

Commonly believed relationship between P &

The most famous unsolvable problems in Computer Science is Whether P=NP or

P≠NP In considering this problem, s.cook formulated the following question.

If there any single problem in NP, such that if we showed it to be in ‘P’ then that

would imply that P=NP.

Cook answered this question with

Theorem: Satisfiability is in P if and only if (iff)

P=NP-)Notation of Reducibility

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1α L2) iff there is a way to

solve L1 by a deterministic polynomial time algorithm using a deterministic algorithm that

solves L2 in polynomial time

This implies that, if we have a polynomial time algorithm for L2, Then we can solve

L1 in polynomial time.

Here α-) is a transitive relation i.e., L1α L2 and L2α L3 then L1α L3

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and LЄNP

Commonly believed relationship among P, NP, NP-Complete and NP-Hard

Examples of NP-complete problems:

> Packing problems: SET-PACKING, INDEPENDENT-SET.
> Covering problems: SET-COVER, VERTEX-COVER.
> Sequencing problems: HAMILTONIAN-CYCLE, TSP.
> Partitioning problems: 3-COLOR, CLIQUE.
> Constraint satisfaction problems: SAT, 3-SAT.
> Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Cook’s Theorem: States that satisfiability is in P if and only if P=NP
IfP=NP then satisfiability is in P
If satisfiability is in P, then P=NP
To do this

> A-) Any polynomial time nondeterministic decision algorithm.

I-)Input of that algorithm

Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successful

termination with Input I.

> If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some polynomial
p() then length of Q is O(p

3
(n) log n)=O(p

4
(n))

The time needed to construct Q is also O(p
3
(n) log n).

> A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on any input ‘I’

Algorithm Z computes ‘Q’ and then uses a deterministic algorithm for the

satisfiability problem to determine whether ‘Q’ is satisfiable.

> If O(q(m)) is the time needed to determine whether a formula of length ‘m’ is

satisfiable then the complexity of ‘Z’ is O(p
3
(n) log n + q(p

3
(n)log n)).

> If satisfiability is ‘p’, then ‘q(m)’ is a polynomial function of ‘m’ and the
complexity of ‘Z’ becomes ‘O(r(n))’ for some polynomial ‘r()’.

> Hence, if satisfiability is in p, then for every nondeterministic algorithm A in NP, we

can obtain a deterministic Z in p.

By this we shows that satisfiability is in p then P=NP

