SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution)

B.Tech. in ARTIFICIAL INTELLIGENCE AND DATA SCIENCE COURSE STRUCTURE, II YEAR SYLLABUS

(BR22 Regulations)

Applicable from Academic Year: 2022-23 BATCH

II Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA305BS	Mathematical and Statistical Foundations	3	1	0	4
2	EC301PC	Digital Electronics	3	0	0	3
3	CS301PC	Data Structures	3	0	0	3
4	CS303PC	Object Oriented Programming through Java	3	0	0	3
5	CS302PC	Computer Organization and Architecture	3	0	0	3
6	EC311PC	Digital Electronics Lab	0	0	2	1
7	CS311PC	Introduction to Data Structures Lab	0	0	2	1
8	CS315PC	Java Programming Lab	0	0	2	1
9	CS316PC	Data visualization- R Programming/ Power BI	0	0	2	1
10	*MC302	Constitution of India	3	0	0	0
		Total	18	1	8	20

II Year II Semester

S. No.	Course Code	Course itle	L	Т	Р	Credits
1	MA402BS	Discrete Mathematics	3	0	0	3
2	CS406PC	Introduction to Artificial Intelligence	3	0	0	3
3	CS402PC	Database Management Systems	3	0	0	3
4	CS401PC	Operating Systems	3	0	0	3
5	CS403PC	Software Engineering	3	0	0	3
6	CS411PC	Operating Systems Lab	0	0	2	1
7	CS412PC	Database Management Systems Lab	0	0	2	1
8	CS416PC	Real-time Research Project/Field Based Research Project	0	0	4	2
9	CS417PC	Node JS/ React JS/ Django)	0	0	2	1
10	*MC401	Gender Sensitization Lab	0	0	2	0
		Total	15	0	12	20

MATHEMATICAL AND STATISTICAL FOUNDATIONS

(Course Code: MA305BS)

B.Tech. II Year I Sem.	LTPC
	3 1 0 4

Prerequisites: Mathematics courses of first year of study.

Course Objectives:

- The Number Theory basic concepts useful for cryptography etc
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this course, the student must be able to

- Apply the number theory concepts to cryptography domain
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers

Congruences: Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences

UNIT - II

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction, Simple Linear Regression Case Study

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curv
Applications of the Normal Distribution, Normal Approximation to the Binomial
Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, Sampling
Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, tDistribution, f-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, nstep transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Addison-Wesley, ISBN 978 0-321-50031-1
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

REFERENCE BOOK:

- 1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications
- T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 3. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

DIGITAL ELECTRONICS

(Course Code: EC301PC)

B.Tech. II Year I Sem.

LTPC

3 0 0 3

Course Objectives: This course aims at through understanding of binary number system, logic gates, combination logic and synchronous and asynchronous logic. **UNIT - I:**

BOOLEAN ALGEBRA AND LOGIC GATES: Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes, Binary Storage and Registers, Binary logic.

Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, other logic operations, Digital logic gates.

UNIT - II:

GATE – LEVEL MINIMIZATION: The map method, Four-variable map, Five-Variable map, product of sums simplification Don't-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function.

UNIT - III:

COMBINATIONAL LOGIC: Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits.

UNIT - IV:

SEQUENTIAL LOGIC: Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, state Reduction and Assignment, Design Procedure. Registers, shift Registers, Ripple counters, synchronous counters, other counters.

UNIT - V

MEMORIES AND ASYNCHRONOUS SEQUENTIAL LOGIC: Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices. Introduction, Analysis Procedure, Circuits with Latches, Design Procedure, Reduction of state and FlowTables, Race-Free state Assignment Hazards, Design Example.

TEXT BOOKS:

- 1. Digital Design Third Edition, M. Morris Mano, Pearson Education/PHI.
- Digital Principles and Applications Albert Paul Malvino Donald P. Leach TATA McGraw HillEdition.
- 3. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

REFERENCE BOOKS:

- 1. Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill.
- 2. Switching and Logic Design, C.V.S. Rao, Pearson Education
- 3. Digital Principles and Design Donald D.Givone, Tata McGraw Hill, Edition.
- Fundamentals of Digital Logic and Microcomputer Design, 5TH Edition, M. Rafiquzzaman JohnWiley.

DATA STRUCTURES (Course Code: CS301PC)

B.Tech. II Year I Sem

L T P C 3 0 0 3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
- Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

 Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

(Course Code: CS303PC)

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Course Objectives

- •To understand the basic object-oriented programming concepts and apply them in problem solving.
- To Illustrate inheritance concepts for reusing the program.
- •To Demonstrate multitasking by using multiple threads and event handling
- •To Develop data-centric applications using JDBC.
- To understand the basics of java console and GUI based programming

Course Outcomes

•Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.

•Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords

- •Use multithreading concepts to develop inter process communication.
- •Understand the process of graphical user interface design and implementation using AWT or swings.
- •Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices,

lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border,grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

REFERENCE BOOKS:

- An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley& sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- An introduction to Java programming and object-oriented application development, R.A.Johnson- Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
- 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
- Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach'sBeginning Java2 JDK 5, SPD.

COMPUTER ORGANIZATION AND ARCHITECTURE

(Course Code: CS302PC)

B.Tech. II Year I Sem.

LT P C 3003

Co-requisite: A Course on "Digital Electronics"

Course Objectives

•The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.

•It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.

•Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors.

Course Outcomes

•Understand the basics of instruction sets and their impact on processor design.

•Demonstrate an understanding of the design of the functional units of a digital computer system.

•Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.

•Design a pipeline for consistent execution of instructions with minimum hazards.

• Recognize and manipulate representations of numbers stored in digital computers.

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

SIIET

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating

- point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization - Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill.

2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.

3. Structured Computer Organization – Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

DIGITAL ELECTRONICS LABORATORY (Course Code: EC311PC)

B.Tech. II Year I Sem.

L T P C 0 0 2 1

Course Outcomes: Upon Completing This Course, the students will be able to:

- Acquire the knowledge on numerical information in different forms and Boolean Algebra Theorems.
- Define Postulates of Boolean algebra and to minimize combinational functions, and design the combinational circuits.
- Design and Analyze Sequential Circuits for various cyclic functions.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2	1	-	-	1	-	-	2
CO2	3	2	2	1	2	1	-	-	1	-	-	2
CO3	2	3	3	2	2	1	-	-	1	-	-	1
CO4	3	2	1	1	1	-	-	-	-	-	-	-

• Characterize logic families analyze them for the purpose of AC and DC parameters.

LIST OF EXPERIMENTS:

- 1. Realization of Logic circuit to generate r's Complement using Logic Gates.
- 2. Realization of given Boolean function using universal gates and minimizing the same.

Compare the gate count before and after minimization.

3. Design and realize Full Adder circuit using gates/universal gates. Implement Full Subtractor using full adder.

4. Designing a 2 – bit Comparator using AND, OR and NOT gates. Realize 4 – bit Comparator using 2 – bit Comparators.

- 5. Realize 2:1 MUX using the given gates and Design 8:1 using 2:1 MUX.
- 6. Implement the given Boolean function using the given MUX(ex: code converters).
- 7. Realize a 2x4 Decoder using logic gates and implement 3x8 Decoder using 2x4 Decoder.
- 8. Implement the given Boolean function using given Decoders.
- 9. Convert Demultiplexer to Decoder and vice versa.

10. Verification of truth tables of flip flops using different clocks (level triggering, positive and negative edge triggering) also converts the given flip flop from one type to another.

11. Designing of Universal n-bit shift register using flip flops and Multiplexers. Draw the timing diagram of the Shift Register.

- 12. Design a Synchronous binary counter using D-flipflop /given flip flop.
- 13. Design Asynchronous counter for the given sequence using given flip flops.
- 14. Designing of MOD 8 Counter using JK flip flops.

Major Equipment required for Laboratories:

- 1. 5 V Fixed Regulated Power Supply/ 0-5V or more Regulated Power Supply.
- 2. 20 MHz Oscilloscope with Dual Channel.
- 3. Bread board and components/ Trainer Kit.
- 4. Multimeter.

INTRODUCTION TO DATA STRUCTURES LAB

(Course Code: CS311PC)

B.Tech. II Year I Sem.

L	Т	Р	С
0	0	2	1

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:

- 1. Write a program that uses functions to perform the following operations on singly linked list.:
- i) Creation ii) Insertion iii) Deletion iv) Traversal
- 2. Write a program that uses functions to perform the following operations on doubly linked list.:
- i) Creation ii) Insertion iii) Deletion iv) Traversal
- 3. Write a program that uses functions to perform the following operations on circular linked list.:
- i) Creation ii) Insertion iii) Deletion iv) Traversal
- 4. Write a program that implement stack (its operations) using
- i) Arrays ii) Pointers
- 5. Write a program that implement Queue (its operations) using
- i) Arrays ii) Pointers
- 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Quick sort ii) Heap sort iii) Merge sort
- 7. Write a program to implement the tree traversal methods(Recursive and Non Recursive).
- 8. Write a program to implement
- i) Binary Search tree ii) B Trees iii) B+ Trees iv) AVL trees v) Red Black trees
- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

JAVA PROGRAMMING LAB

(Course	Code:	CS315PC)
---------	-------	----------

B.Tech. II Year I Sem.

LTPC

0 0 2 1

Course Objectives:

- To understand OOP principles.
- To understand the Exception Handling mechanism.
- To understand Java collection framework.
- To understand multithreaded programming.
- To understand swing controls in Java.

Course Outcomes:

- Able to write the programs for solving real world problems using Java OOP principles.
- Able to write programs using Exceptional Handling approach.
- Able to write multithreaded applications.
- Able to write GUI programs using swing controls in Java.

List of Experiments:

- Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else conditionand a for loop.
- 2. Write a Java program to demonstrate the OOP principles. [i.e., Encapsulation, Inheritance, Polymorphism and Abstraction]
- 3. Write a Java program to handle checked and unchecked exceptions. Also, demonstrate the usage of custom exceptions in real time scenario.
- 4. Write a Java program on Random Access File class to perform different read and write operations.

- 5. Write a Java program to demonstrate the working of different collection classes. [Use package structure to store multiple classes].
- 6. Write a program to synchronize the threads acting on the same object. [Consider the example of any reservations like railway, bus, movie ticket booking, etc.]
- 7. Write a program to perform CRUD operations on the student table in a database using JDBC.
- 8. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 9. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. [Use Adapter classes]

REFERENCE BOOKS:

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

DATA VISUALIZATION - R PROGRAMMING/ POWER BI

(Course Code: CS316PC)

B.Tech. II Year I Sem.

Course Objectives:

- Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization
- To discern patterns and relationships in the data.
- To build Dashboard applications.
- To communicate the results clearly and concisely.
- To be able to work with different formats of data sets.

Course Outcomes: At the end of the course a student should be able to

- Understand How to import data into Tableau.
- Understand Tableau concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real world
- problems.

Lab Problems:

1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization?

2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau, creating basic charts(line, bar charts, Tree maps),Using the Show me panel.

3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields.

4. Applying new data calculations to your visualizations, Formatting Visualizations,

SIIET

LTPC

 $0 \ 0 \ 2 \ 1$

Formatting Tools and Menus, Formatting specific parts of the view.

- 5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data.
- 6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.

7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.

8. Creating Dashboards & amp; Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & amp; Publishing your Visualization.

- 9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.
- 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

REFERENCE BOOKS:

- 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
- 2. R Programming for Data Science by Roger D. Peng (References)
- 3. The Art of R Programming by Norman Matloff Cengage Learning India.

CONSTITUTION OF INDIA

(Course Code: *MC302)

B.Tech. II Year I Sem.

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rightsperspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutionalrole and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before thearrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution- History of Drafting Committee.

Unit - 2 Philosophy of the Indian Constitution- Preamble Salient Features

Unit - 3 Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation

SIIET

LTPC

3 0 0 0

- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

Unit - 4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit - 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit - 6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

DISCRETE MATHEMATICS

(Course Code: MA402BS)

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as PartiallyOrdered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and

Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- Discrete Mathematics for Computer Scientists & Mathematicians: Joe l. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

- Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearsoneducation, 5th edition.
- 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

(Course Code: CS406PC)

B.Tech. II Year II Sem.

LTPC 3003

Prerequisite: Knowledge on Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning.
- To understand the concepts of state space representation, exhaustive search, heuristic
- search together with the time and space complexities.
- To learn different knowledge representation techniques.

• To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Learn the distinction between optimal reasoning Vs human like reasoning and formulate an efficient problem space for a problem expressed in natural language. Also select a search algorithm for a problem and estimate its time and space complexities.
- Apply AI techniques to solve problems of game playing, theorem proving, and machine learning.
- Learn different knowledge representation techniques.
- Understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- Comprehend the applications of Probabilistic Reasoning and Bayesian Networks.
- Analyze Supervised Learning Vs. Learning Decision Trees.

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT-II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents, **Logic**-

Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT-III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events.

UNIT-IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, PlanningGraphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT-V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First- Order Probability.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

DATABASE MANAGEMENT SYSTEMS

(Course Code: CS402PC)

B.Tech. II Year II Sem.	L T P C
	3003

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS
Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Mode.

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.

- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

OPERATING SYSTEMS

(Course Code: CS401PC)

B.Tech. II Year II Sem.	LTPC
	3003
Prerequisites:	

1. A course on "Computer Programming and Data Structures".

2. A course on "Computer Organization and Architecture".

Course Objectives:

• Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)

• Introduce the issues to be considered in the design and development of operating system

• Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix.

Course Outcomes:

• Will be able to control access to a computer and the files that may be shared

- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.

• Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls.

Process - Process concepts and processes, Cooperating Processes, Threads

UNIT – II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple - Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks- System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock.

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations –Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, creates, read, write, close, lseek, stat, ioctl system calls.

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.

2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition-2005,

Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.

3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI

4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Educatio

5. UNIX Internals - The New Frontiers, U. Vahalia, Pearson Education.

SOFTWARE ENGINEERING

(Course Code: CS403PC)

B.Tech. II Year II Sem.

L T P C 300 3

Course Objectives

• The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.

• Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

• Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).

• Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.

• Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach-Roger S. Pressman, 6th edition, McGraw Hill International Edition.

2. Software Engineering- Sommerville, 7th edition, Pearson Education.

REFERENCE BOOKS:

1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.

3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.

4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

OPERATING SYSTEMS LAB

(Course Code: CS411PC)

B.Tech. II Year II Sem.

LTPC

 $0\ 0\ 2\ 1$

Prerequisites: A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture".

Co-requisite: A course on "Operating Systems".

Course Objectives:

• To provide an understanding of the design aspects of operating system concepts through simulation

• Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

• Simulate and implement operating system concepts such as scheduling, deadlockmanagement, file management and memory management.

• Able to implement C programs using Unix system calls

List of Experiments:

1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority

2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)

3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.

4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.

5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queuesd) Shared Memory

6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation

7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley

2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems – Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI

- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

DATABASE MANAGEMENT SYSTEMS LAB

(Course Code: CS412PC)

B.Tech. II Year II Sem.	LTPC
	0 0 2 1
Co-requisites: "Database Management Systems"	

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
- B. Nested, Correlated subqueries
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill,
 3rd Edition

2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

SIIET

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.

- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

NODE JS/ REACT JS/ DJANGO

(Course Code: CS417PC)

B.Tech. II Year II Sem.	LTPC
	0021

Prerequisites: Object Oriented Programming through Java, HTML Basics

Course Objectives:

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

Course Outcomes: At the end of the course, the student will be able to,

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server side implementation using Java technologies like
- Develop the server side implementation using Node JS.
- Design a Single Page Application using React.

Exercises:

1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.

2. Make the above web application responsive web application using Bootstrap framework.

3. Use JavaScript for doing client – side validation of the pages implemented in experiment 1 and experiment 2.

4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.

5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.

6. Create an xml for the bookstore. Validate the same using both DTD and XSD.

7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.

8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)

9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.

10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)

11. For the above application create authorized end points using JWT (JSON Web Token).

12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.

13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js

14. Create a TODO application in react with necessary components and deploy it into github.

REFERENCE BOOKS:

1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010

2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.

3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

GENDER SENSITIZATION LAB

(Course Code: *MC401)

B.Tech. II Year II Sem.

L T P C 0 0 2 0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary.

It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

• Students will have developed a better understanding of important issues related to gender in contemporary India.

• Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from

research, facts, everyday life, literature and film.

• Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.

• Students will acquire insight into the gendered division of labor and its relation to politics and economics.

- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men- Preparing for Womanhood.

Unit – II: GENDER ROLES AND RELATIONS

Growing up Male. First lessons in CasteTwo or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary.

Unit – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Sharethe Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work.-Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming.

Unit – IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "*Chupulu*".Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Live.Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

The Brave Heart.

Unit – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".
- ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook onGender" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%