SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution) B.Tech. in CIVIL ENGINEERING

COURSE STRUCTURE, II YEAR SYLLABUS

(BR22 Regulations)

Applicable from Academic Year: 2022-23 BATCH

II Year I Semester

S.	Course	Course	L	Τ	Р	Credits
No.	Code					
1.	MA303BS	Probability and Statistics	3	1	0	4
2.	CE301PC	Building Materials, Construction and Planning	3	0	0	3
3.	CE302PC	Engineering Geology	3	0	0	3
4.	CE303PC	Strength of Materials – I	3	0	0	3
5.	CE304PC	Fluid Mechanics	3	0	0	3
6.	CE305PC	Surveying Laboratory - II	0	1	2	2
7.	CE306PC	Strength of Materials Laboratory	0	0	2	1
8.	CE307PC	Computer Aided Drafting Laboratory	0	0	2	1
9.	*MC302	Constitution of India	3	0	0	0
		Total	18	2	6	20

II Year II Semester

S.	Course	Course	L	Τ	Р	Credits
No.	Code					
1.	EE401ES	Basic Electrical and Electronics Engineering	3	0	0	3
2.	CE401PC	Concrete Technology	3	0	0	3
3.	CE402PC	Strength of Materials – II	3	0	0	3
4.	CE403PC	Hydraulics and Hydraulics Machinery	3	0	0	3
5.	CE404PC	Structural Analysis - I	3	0	0	3
6.	CE405PC	Fluid Mechanics and Hydraulics Machinery Laboratory	0	0	2	1
7.	EE402ES	Basic Electrical and Electronics Engineering Laboratory	0	0	2	1
8.	CE406PC	Concrete Technology Laboratory	0	0	2	1
9.	CE407PC	Real-time Research Project/ Field-Based Project	0	0	4	2
10.	*MC401	Gender Sensitization Laboratory	0	0	2	0
		Total	15	0	12	20

*MC – Satisfactory/Unsatisfactory

PROBABILITY AND STATISTICS (Course Code: MA303BS)

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making statistical inferences

Course outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to some case studies.
- Correlate the concepts of one unit to the concepts in other units.

UNIT - I: Probability

Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions.

UNIT - II: Expectation and discrete distributions

Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem. **Discrete Probability Distributions:** Binomial Distribution, Poisson distribution.

UNIT - III: Continuous Distributions and sampling

L Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, t –Distribution, F- Distribution.

UNIT - IV: Estimation & Tests of Hypotheses

Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

SIIET

10 L

10

10L

8 L

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances.

UNIT - V: Applied Statistics

Curve fitting by the method of least squares, fitting of straight lines, second degree parabolas and more general curves, Correlation and regression, Rank correlation.

TEXT BOOKS:

- Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.

- 1. T. T. Soong, Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons, Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press.

BUILDING MATERIALS, CONSTRUCTION AND PLANNING (Course Code: CE301PC)

B.Tech. II Year I Sem.

L	Т	Р	С
3	0	0	3

Course Objectives: The objectives of the course is to

- List the construction material.
- Explain different construction techniques
- Understand the building bye-laws
- Highlight the smart building materials

Course Outcomes: After the completion of the course student should be able to

- Understand the different construction material.
- Understand the different component parts of building and their construction practices and techniques
- Understand the functional requirements to be considered for design and construction of building
- Identify the factors to be considered in planning and construction of buildings
- Plan a building based on the factors and principles of planning

UNIT - I

Stones and Bricks, Tiles: Building stones – classifications and quarrying – properties – structuralrequirements – dressing.

Bricks – Composition of Brick earth – manufacture and structural requirements, Fly ash, Ceramics. **Timber, Aluminum, Glass, Paints and Plastics:** Wood - structure – types and properties – seasoning– defects; alternate materials for Timber – GI / fiber– reinforced glass bricks, steel & aluminum, Plastics.

UNIT - II

Cement & Admixtures: Ingredients of cement – manufacture – Chemical composition – Hydration -field & lab tests.

Admixtures – mineral & chemical admixtures – uses.

UNIT - III

Building Components: Lintels, Arches, walls, vaults – stair cases – types of floors, types of roofs – flat, curved, trussed; foundations – types; Damp Proof Course; Joinery – doors – windows – materials – types.

Building Services: Plumbing Services: Water Distribution, Sanitary – Lines & Fittings; Ventilations: Functional requirements systems of ventilations. Air-conditioning - Essentials and

Types; Acoustics – characteristic – absorption – Acoustic design; Fire protection – Fire Hazards – Classification of fire- resistant materials and constructions. **UNIT - IV**

Mortars, Masonry and Finishing's Mortars: Cement Mortar, Brick masonry – types – bonds; Stonemasonry – types; Composite masonry – Brick-stone composite; Concrete, Reinforced brick.

Finishers: Plastering, Pointing, Painting, Claddings – Types – Tiles – ACP. **Form work: Types**: Requirements – Standards – Scaffolding – Design; Shoring, Underpinning.

UNIT – V

Building Planning: Classification of buildings ,functional Planning of buildings: Sustainability and concept of Green building, General aspects to consider for planning, bye-laws and regulations, Selection of site for building construction, Principles of planning, Orientation of building and its relation to outside environment

TEXT BOOKS:

- 1. Building Materials and Construction Arora & Bindra, Dhanpat Roy Publications.
- 2. Building Materials and Construction by G C Sahu, Joygopal Jena McGraw hill Pvt Ltd 2015.
- 3. Building Construction by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain LaxmiPublications (P) ltd., New Delhi.

- 1. Building Materials by Duggal, New Age International.
- 2. Building Materials by P. C. Varghese, PHI.
- 3. Building Construction by PC Varghese PHI.
- 4. Construction Technology Vol I & II by R. Chubby, Longman UK.
- 5. Alternate Building Materials and Technology, Jagadish, Venkatarama Reddy and others; New Age Publications.

ENGINEERING GEOLOGY (Course Code: CE302PC)

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Course Objectives: The objective of this Course is

- □ To give the basics knowledge of Geology that is required for constructing various Civil Engineering Structures, basic Geology, Geological Hazardous and Environmental Geology.
- □ To focus on the core activities of engineering geologists site characterization and geologic hazard identification and mitigation. Planning and construction of major Civil Engineering projects.

Course Outcomes: At the end of the course, the student will be able to:

- □ Site characterization and how to collect, analyze, and report geologic data using standards inengineering practice.
- □ The fundamentals of the engineering properties of Earth materials and fluids.
- □ Rock mass characterization and the mechanics of planar rock slides and topples.

UNIT - I

Introduction: Importance of geology from Civil Engineering point of view. Brief study of case histories of failure of some Civil Engineering constructions due to geological draw backs. Importance of Physicalgeology, Petrology and Structural geology.

Weathering of Rocks: Its effect over the properties of rocks importance of weathering with reference to dams, reservoirs and tunnels weathering of common rock like "Granite"

UNIT - II

Mineralogy: Definition of mineral, Importance of study of minerals, Different methods of study of minerals. Advantages of study of minerals by physical properties. Role of study of physical properties of minerals in the identification of minerals. Study of physical properties of following common rock forming minerals: Feldspar, Quartz, Flint, Jasper, Olivine, Augite, Hornblende, Muscovite, Biotite, Asbestos, Chlorite, Kyanite, Garnet, Talc, Calcite. Study of other common economics minerals such as Pyrite, Hematite, Magnetite, Chlorite, Galena, Pyrolusite, Graphite, Magnesite, and Bauxite.

Petrology: Definition of rock: Geological classification of rocks into igneous, Sedimentary and metamorphic rocks. Dykes and sills, common structures and textures of igneous. Sedimentary and metamorphic rocks. Their distinguishing features, Megascopic and microscopic and microscopic studyof Granite, Dolerite, Basalt, Pegmatite, Laterite, Conglomerate, Sand Stone, Shale, Limestone, Gneiss, Schist, Quartzite, Marble and Slate.

UNIT - III

Structural Geology: Out crop, strike and dip study of common geological structures associating with the rocks such as folds, faults unconformities, and joints - their important types and case studies. Their importance Insitu and drift soils, common types of soils, their origin and occurrence in India, Stabilization of soils. Ground water, Water table, common types of ground water, springs, cone of depression, geological controls of ground water movement, ground water exploration.

UNIT - IV

Earth Quakes: Causes and effects, shield areas and seismic belts. Seismic waves, Richter scale, precautions to be taken for building construction in seismic areas. Landslides, their causes and effect; measures to be taken to prevent their occurrence.

Importance of Geophysical Studies: Principles of geophysical study by Gravity methods. Magnetic methods, Electrical methods. Seismic methods, Radio metric methods and geothermal method. Special importance of Electrical resistivity methods, and seismic refraction methods. Improvement of competence of sites by grouting etc. Fundamental aspects of Rock mechanics and Environmental Geology.

UNIT - V

Geology of Dams, Reservoirs, and Tunnels: Types of dams and bearing of Geology of site in their selection, Geological Considerations in the selection of a dam site. Analysis of dam failures of the past. Factors contributing to the success of a reservoir. Geological factors influencing water Lightness and life of reservoirs - Purposes of tunneling, Effects of Tunneling on the ground Role of Geological Considerations (i.e. Tithological, structural and ground water) in tunneling over break and lining in tunnels.

TEXT BOOKS:

- 1. Engineering Geology by N. Chennakesavulu, McMillan, India Ltd. 2005
- 2. Engineering Methods by D. Venkat Reddy; Vikas Publishers 2015.
- 3. Engineering Geology by S K Duggal, H K Pandey Mc Graw Hill Education Pvt Ltd 2014
- 4. Principles of Engineering Geology by K.V.G.K. Gokhale B.S publications

- 1. F.G. Bell, Fundamental of Engineering B.S. Publications, 2005.
- 2. Krynine & Judd, Principles of Engineering Geology & Geotechnics, CBS Publishers &Distribution
- 3. Engineering Geology by Subinoy Gangopadhyay, Oxford university press.
- 4. Engineering Geology for Civil Engineers P.C. Varghese PHI

STRENGTH OF MATERIALS – I (Course Code: CE303PC)

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Pre-Requisites: Engineering Mechanics

Course Objectives: The objective of this Course is

- To understand the nature of stresses developed in simple geometries such as bars, cantileversand beams for various types of simple loads.
- To calculate the elastic deformation occurring in simple members for differenttypes of loading.
- To show the plane stress transformation with a particular coordinate system for different orientation of the plane.
- To know different failure theories adopted in designing of structural members.

Course Outcome: On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke's law relationships; and perform calculations, related to the strength of structured and mechanical components.
- Recognize various types loads applied on structural components of simple framing geometries and understand the nature of internal stresses that will develop within the components.
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading.
- Analyze various situations involving structural members subjected to plane stresses by application of Mohr's circle of stress.

UNIT – I

Simple Stresses and Strains: Concept of stress and strain- St. Venant's Principle-Stress and Strain Diagram - Elasticity and plasticity – Types of stresses and strains- Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain

- Pure shear and Complementary shear - Elastic modulii, Elastic constants and the relationship between them - Bars of varying section - composite bars - Temperature stresses.

Strain Energy – Resilience – Gradual, sudden, and impact loadings – simple applications.

UNIT – II

Shear Force and Bending Moment: Types of beams – Concept of shear force and bending moment

– S.F and B.M diagrams for cantilever, simply supported including overhanging beams subjected to point loads, uniformly distributed load, uniformly varying load, couple and combination of these loads –Point of contraflexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT – III

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation-Section Modulus Determination of flexural/bending stresses of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections. **Shear Stresses:** Derivation of formula for shear stress distribution – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle and channel sections.

$\mathbf{UNIT} - \mathbf{IV}$

Deflection of Beams: Slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L, Uniformly varying load and couple -Mohr's theorems – Moment area method – Application to simple cases.

Conjugate Beam Method: Introduction – Concept of conjugate beam method - Difference between a real beam and a conjugate beam - Deflections of determinate beams with constant and different moments of inertia.

$\mathbf{UNIT} - \mathbf{V}$

Principal Stresses: Introduction – Stresses on an oblique plane of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear –Principal stresses – Mohr's circle of stresses – ellipse of stress - Analytical and graphical solutions.

Theories of Failure: Introduction – Various theories of failure - Maximum Principal Stress Theory, Maximum Principal Strain Theory, Maximum shear stress theory- Strain Energy and Shear Strain Energy Theory (Von Mises Theory).

TEXT BOOKS:

- 1. Strength of Materials by R. K Rajput, S. Chand & Company Ltd.
- 2. Mechanics of Materials by Dr. B.C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain
- 3. Strength of Materials by R. Subramanian, Oxford University Press

- 1. Mechanics of material by R.C. Hibbeler, Prentice Hall publications
- 2. Engineering Mechanics of Solids by Egor P. Popov, Prentice Hall publications
- 3. Strength of Materials by T.D.Gunneswara Rao and M.Andal, Cambridge Publishers
- 4. Strength of Materials by R.K. Bansal, Lakshmi Publications House Pvt. Ltd.
- Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition, UniversitiesPresss

FLUID MECHANICS (Course Code: CE304PC)

B.Tech. II Year I Sem.

Course Objectives: The objectives of the course are to

- Introduce the concepts of fluid mechanics useful in Civil Engineering applications.
- Provide a first level exposure to the students to fluid statics, kinematics and dynamics.
- Learn about the application of mass, energy and momentum conservation laws for fluid flows.
- Train and analyses engineering problems involving fluids with a mechanistic perspective isessential for the civil engineering students
- To obtain the velocity and pressure variations in various types of simple flows.
- To prepare a student to build a good fundamental background useful in the application-intensive courses covering hydraulics, hydraulic machinery and hydrology.

Course Outcomes: Upon completion of this course, students should be able to:

- Understand the broad principles of fluid statics, kinematics and dynamics.
- Understand definitions of the basic terms used in fluid mechanics and characteristics of fluids and its flow.
- Understand classifications of fluid flow.
- Be able to apply the continuity, momentum and energy principles.

UNIT – I

Properties of Fluid

Distinction between a fluid and a solid; Properties of fluids – Viscosity, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics

Fluid Pressure: Pressure at a point, Pascals law, Hydrostatic law, Piezometer, U-Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micromanometers. Pressure gauges, Hydrostatic pressure and force: horizontal, vertical and inclined surfaces.

UNIT - II Fluid Kinematics

Classification of fluid flow: steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; One, two- and three-dimensional flows; Streamline, path line, streak line and stream tube; stream function, velocity potential function, flow net, One, two- and three-dimensional continuity equations in Cartesian coordinates applications.

L	Т	Р	С
3	0	0	3

Fluid Dynamics

Surface and Body forces -Euler's and Bernoulli's equation; Momentum equation. correction factors.Bernoulli's equation to real fluid flows.

UNIT - III

Flow Measurement in Pipes

Practical applications of Bernoulli's equation: venturi meter, orifice meter and pitot tube, applications of Momentum equations; Forces exerted by fluid flow on pipe bend, sudden enlargement in pipes.

Flow Over Notches & Weirs

Flow through rectangular; triangular and trapezoidal notches and weirs; End contractions; Velocity of approach. Broad crested weir.

UNIT – IV

Flow through Pipes

Reynolds experiment, Reynolds number, Loss of head through pipes, Darcy-Wiesbatch equation, minor losses, total energy line, hydraulic grade line, Pipes in series, equivalent pipes, pipes in parallel, siphon, branching of pipes, three reservoir problem, power transmission through pipes. Analysis ofpipe networks: Hardy Cross method and EPA NET, water hammer in pipes and control measures.

UNIT - V Laminar & Turbulent Flow

Laminar flow through circular pipes, and fixed parallel plates.

Boundary Layer Concepts

Prandtl contribution, Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness concepts of laminar and turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Control. Drag and Lift and types of drag, magnus effect.

TEXT BOOKS:

- 1. Fluid Mechanics by Modi and Seth, Standard Book House.
- 2. Fluid Mechanics and Hydraulic machines by Manish Kumar Goyal, PHI learning Private Limited, 2015.
- 3. Fluid Mechanics by R.C. Hibbeler, Pearson India Education Services Pvt. Ltd.

- 1. Fluid Mechanics Frank M. White 8th Edition Mc Graw Hill Education.
- 2. *Theory and Applications of Fluid Mechanics, K.Subramanya, Tata McGraw Hill
- 3. Introduction to Fluid Mechanics and Fluid Machines by SK Som, Gautam Biswas, SumanChakraborthy, Mc Graw Hill Education (India) Private Limited
- 4. Fluid Mechanics and Machinery, C.S.P. Ojha, R. Berndtsson and P. N. Chadramouli, OxfordUniversity Press, 2010
- 5. Fluid mechanics & Hydraulic Machines, Domkundwar & Domkundwar Dhanpat Rai &Co
- 6. Fluid Mechanics and Hydraulic Machines, R. K. Bansal, Laxmi Publication Pvt Ltd.

SURVEYING LABORATORY – II (Course Code: CE305PC)

B.Tech. II Year I Sem.

Course Objectives:

- 1. Student will be able to learn and understand the various basic concept and principles used insurveying like Chain Surveying, Compass Surveying, Plane Table Surveying, and Levelling Surveying.
- 2. Student will be able to learn and understand about theodolite and total station in surveying.
- 3. Student will learn and understand how to calculate Area of plot and Ground.
- 4. Student will learn and understand about Horizontal Angle, Vertical Angle, Horizontal distance and Vertical distance to study the ground profile using total station.

Course Outcomes: At the end of the course student will be able to:

- 1. Prepare Map and Plan for required site with suitable scale.
- 2. Prepare contour Map and Estimate the Quantity of earthwork required for formation level forRoad and Railway Alignment.
- 3. Judge which type of instrument to be used for carrying out survey for a Particular Area andestimate the area.
- 4. Judge the profile of ground by observing the available existing contour map.

CYCLE - I

Theodolite surveying:

- 1. Measurement of horizontal angles and vertical angles.
- 2. Distance between two inaccessible points.
- 3. Measurement of area by theodolite traversing (Gales traverse table).
- 4. Determination of tachometer constants.
- 5. Distance between two inaccessible points using the principles of tachometer surveying.
- 6. Distance between two inaccessible points using the principles of trigonometric surveying

CYCLE - II

Total Station:

- 7. Area Measurement 8. Stake Out
- 9. Remote Elevation Measurement
- 10. Missing Line Measurement
- 11. Longitudinal & Cross Section Profile
- 12. Contouring
- 13. Providing a Simple Circular Curve
- 14. Demonstration using DGPS

L T P C 0 1 2 2

STRENGTH OF MATERIALS LABORATORY (Course Code: CE306PC)

B.Tech. II Year I Sem.

Course Objectives:

- To conduct the Tension test, Compression test on various materials
- To conduct the Shear test, Bending test on determinate beams
- To conduct the Compression test on spring and Hardness test using various machines
- To conduct the Torsion test, Impact test on various materials

Course Outcomes: After the completion of the course, students should be able to

- Determine the yield stress, ultimate tensile stress, percentage elongation of steel, compressive strength of brick and concrete
- Determine the ultimate shear stress, modulus of elasticity of steel
- Determine the stiffness of the close coiled helical spring and hardness number of mild steel, brass, copper and aluminium.
- Determine the modulus of rigidity and impact strength of steel.

List of Experiments:

- 1. Tension test
- 2. Bending test on (Steel / Wood) Cantilever beam.
- 3. Bending test on simple support beam.
- 4. Torsion test
- 5. Hardness test
- 6. Spring test
- 7. Compression test on concrete.
- 8. Impact test
- 9. Shear test
- 10. Verification of Maxwell's Reciprocal theorem on beams.
- 11. Use of electrical resistance strain gauges.
- 12. Continuous beam deflection test.

SIIET

L T P C 0 0 2 1

COMPUTER AIDED DRAFTING LABORATORY (Course Code: CE307PC)

B.Tech. II Year I Sem.

Course Objectives:

- To be able to plan buildings as per NBC.
- To understand various types of conventional signs and brick bonds.
- To draw the plan section and elevation for doors, trusses and staircases.
- To use AutoCAD tools to draw building plans, sections and elevations from a given line diagram and specifications.
- To develop working drawings of residential buildings.

Course Outcomes: After completion of the course, the student should be able to

- Plan buildings as per NBC.
- Use different Commands of selected drafting software to draw Conventional signs and brickbonds, Plan, Section and Elevation of buildings.
- Draw section and elevation of panelled doors and trusses.
- Draw and detail the different components of Stair cases.
- Develop and draw single /two storey residential building and public building as per the buildingby-laws.
- Draw Electrical layout, Plumbing layout for residential buildings.

List of Experiments:

- 1. Planning Aspects of Building systems as per National Building Code (NBC).
- 2. Brick bonds: English bond & Flemish bond Odd and Even courses.
- 3. Developing plan and section of dog-legged staircase.
- 4. Developing plan of single storied residential building.
- 5. Developing section and elevation of single storied residential building.
- 6. Developing plan of single /two storied Residential building as per Building by-laws.
- 7. Developing plan of public building as per building by-laws.
- 8. Developing section and elevation of public building.
- 9. Development of working drawing of building –Electrical Layout.
- 10. Development of working drawing of building Plumbing Layout.

TEXT BOOKS:

- Computer Aided Design Laboratory by M. N. Sesha Praksh & Dr. G. S. Servesh –LaxmiPublications.
- 2. Engineering Graphics by P. J. Sha S. Chand & Co.

SIIET

LTPC

0 0 2 1

- 3. Civil Engineering Drawing-I by N. Sreenivasulu, S. Rama Rao Radiant Publishing House.
- 4. Civil Engineering Drawing-II by N. Sreenivasulu Radiant Publishing House.

- 1. Engineering Graphics by P. J. Sha S. Chand & Co
- 2. Civil Engineering Drawing-I by S. Mahaboob Basha Falcon Publishers
- 3. Building drawing by M. G. Shah Tata McGraw-Hill Education
- 4. Structural Engineering Drawing by S. Mahaboob Basha Falcon Publishers

CONSTITUTION OF INDIA (Course Code: *MC302)

B.Tech. II Year I Sem.

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rightsperspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before thearrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution- History of Drafting Committee.
Unit - 2 Philosophy of the Indian Constitution- Preamble Salient Features
Unit - 3 Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

Unit -4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

SHET

Unit -5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit -6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Course Code: EE401ES)

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:

- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

UNIT - I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation.

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three- phase balanced circuits, voltage and current relations in star and delta connections.

UNIT - II:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

UNIT - III:

Electrical Machines: Working principle of Single-phase transformer, equivalent circuit, losses in transformers, efficiency, Three-phase transformer connections. Construction and working principle of DC generators, EMF equation, working principle of DC motors, Torque equations and Speed control ofDC motors, Construction and working principle of Three-phase Induction motor,

Torques equations and Speed control of Three-phase induction motor. Construction and working principle of synchronous generators.

UNIT - IV:

P-N Junction and Zener Diode: Principle of Operation Diode equation, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Zener diode characteristics and applications.

Rectifiers and Filters: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L- section Filters, π - section Filters.

UNIT - V:

Bipolar Junction Transistor (BJT): Construction, Principle of Operation, Amplifying Action, Common Emitter, Common Base and Common Collector configurations, Comparison of CE, CB and CC configurations.

Field Effect Transistor (FET): Construction, Principle of Operation, Comparison of BJT and FET, Biasing FET.

TEXT BOOKS:

- 1. Basic Electrical and electronics Engineering –M S Sukija TK Nagasarkar Oxford University
- 2. Basic Electrical and electronics Engineering-D P Kothari. I J Nagarath, McGraw Hill Education

- Electronic Devices and Circuits R. L. Boylestad and Louis Nashelsky, PEI/PHI, 9th Ed, 2006.
- 2. Millman's Electronic Devices and Circuits J. Millman and C. C. Halkias, Satyabrata Jit, TMH, 2/e, 1998.
- 3. Engineering circuit analysis- by William Hayt and Jack E. Kemmerly, McGraw Hill Company, 6thedition.
- Linear circuit analysis (time domain phasor and Laplace transform approaches) 2nd edition by Raymond A. De Carlo and Pen-Min-Lin, Oxford University Press-2004.
- 5. Network Theory by N. C. Jagan& C. Lakshminarayana, B.S. Publications.
- 6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
- 7. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 8. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 9. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

CONCRETE TECHNOLOGY (Course Code: CE401PC)

B.Tech. II Year II Sem.

Pre-Requisites: Building Materials **Course Objectives:** The objectives of the course are to

- Know different types of cement as per their properties for different field applications.
- **Understand Design** economic concrete mix proportion for different exposure conditions and intended purposes.
- Know field and laboratory tests on concrete in plastic and hardened stage.

Course Outcomes: After the completion of the course student should be able to

- **Determine** the properties of concrete ingredients i.e., cement, sand, coarse aggregate by conducting different tests. Recognize the effects of the rheology and early age properties of concrete on its long-term behavior.
- **Apply** the use of various chemical admixtures and mineral additives to design cement-based materials with tailor-made properties
- Use advanced laboratory techniques to characterize cement-based materials.
- **Perform** mix design and engineering properties of special concretes such as highperformanceconcrete, self-compacting concrete, and fiber reinforced concrete.

UNIT I

Aggregate: Deleterious substance in aggregate – Soundness of aggregate – Alkali aggregate reaction– Thermal properties – Sieve analysis – Fineness modulus – Grading curves – Grading of fine, Manufactured sand and coarse Aggregates – Gap graded aggregate – Maximum aggregate size- Properties Recycled aggregate.

UNIT - II

Fresh Concrete: Workability – Factors affecting workability – Measurement of workability by different tests – Setting times of concrete – Effect of time and temperature on workability – Segregation & bleeding – Mixing, vibration and revibration of concrete – Steps in manufacture of concrete – Quality of mixing water.

UNIT – III

Hardened Concrete: Water / Cement ratio – Abram's Law – Gel/space ratio – Gain of strength of concrete – Maturity concept – Strength in tension and compression – Factors affecting strength – Relation between compression and tensile strength - Curing.

Testing of Hardened Concrete: Compression tests– Tension tests – Factors affecting strength – Flexure tests – Splitting tests – Pull-out test, Non-destructive testing methods – codal provisions for NDT.

SIIET

L T P C 3 0 0 3

UNIT - IV

Elasticity, Creep & Shrinkage – Modulus of elasticity – Dynamic modulus of elasticity – Poisson's ratio – Creep of concrete – Factors influencing creep – Relation between creep & time – Nature of creep – Effects of creep – Shrinkage – types of shrinkage.

$\mathbf{UNIT} - \mathbf{V}$

Admixtures: Types of admixtures – mineral and chemical admixtures.

Mix Design: Factors in the choice of mix proportions – Durability of concrete – Quality Control of concrete – Statistical methods – Acceptance criteria – Proportioning of concrete mixes by various methods – BIS method of mix design.

Special Concretes: Introduction to Light weight concrete – Cellular concrete – No-fines concrete – High density concrete – Fibre reinforced concrete – Polymer concrete – High performance concrete – Self compacting concrete, Nano silica and Nano Alumina concrete.

TEXT BOOKS:

- 1. Concrete Technology by M.S. Shetty. S. Chand & Co.; 2004
- Concrete Technology by A.R. Santhakumar, 2nd Edition, Oxford university Press, New Delhi
- Concrete Technology by M. L. Gambhir. Tata Mc. Graw Hill Publishers, 5THEdition, New Delhi

REFERENCE BOOKS:

- 1. Properties of Concrete by A. M. Neville Low priced Edition 4th edition
- 2. Concrete: Micro structure, Properties and Materials P.K. Mehta and J.M. Monteiro, Mc-Graw Hill Publishers

IS Codes: IS 383 : 2016 IS 516 : 2018 (Part -1 - 4) IS 10262 - 2019

STRENGTH OF MATERIALS – II (Course Code: CE402PC)

B.Tech. II Year II Sem.

Pre-Requisites: Strength of Materials - I **Course Objectives:** The objective of this Course is

- To understand the nature of stresses developed in simple geometries shafts, springs, columns&cylindrical and spherical shells for various types of simple loads.
- To calculate the stability and elastic deformation occurring in various simple geometries fordifferent types of loading.
- To understand the unsymmetrical bending and shear center importance for equilibriumconditions in a structural member of having different axis of symmetry.

Course Outcome: On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity, and perform calculations, relative to the strength of structures and mechanical components in particular to torsion and direct compression.
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading.
- Analyze strength and stability of structural members subjected to Direct, and Direct and Bending stresses.
- Understand and evaluate the shear center and unsymmetrical bending.

UNIT – I

Torsion of Circular Shafts: Theory of pure torsion – Derivation of Torsion equation - Assumptions made in the theory of pure torsion – Polar section modulus – Power transmitted by shafts – Combinedbending and torsion – Design of shafts according to theories of failure.

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel.

UNIT – II

Columns and Struts: Introduction – Types of columns – Short, medium and long columns – Axially loaded compression members – Crushing load – Euler's theorem for long columns-assumptions- derivation of Euler's critical load formulae for various end conditions – Equivalent length of a column – slenderness ratio – Euler's critical stress – Limitations of Euler's theory–Long columns subjected to eccentric loading – Secant formula – Empirical formulae — Rankine – Gordon formula- Straight line formula – Prof. Perry's formula.

BEAM COLUMNS: Laterally loaded struts – subjected to uniformly distributed and concentrated loads.

L T P C 3 0 0 3

UNIT - III

Direct and Bending Stresses: Stresses under the combined action of direct loading and bending moment, core of a section – determination of stresses in the case of retaining walls, chimneys and dams – conditions for stability-Overturning and sliding – stresses due to direct loading and bending moment about both axis.

UNIT – IV

Thin Cylinders: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and Volumetric strains – changes in diameter, and volumeof thin cylinders – Thin spherical shells.

Thick Cylinders: Introduction - Lame's theory for thick cylinders – Derivation of Lame's formulae – distribution of hoop and radial stresses across thickness – design of thick cylinders – compound cylinders – Necessary difference of radii for shrinkage.

$\mathbf{UNIT} - \mathbf{V}$

Unsymmetrical Bending:

Introduction – Centroidal principal axes of section –Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two rectangular axes through the centroid – Location of neutral axis.

Shear Centre: Introduction - Shear center for symmetrical and unsymmetrical (channel, I, T and L) sections.

TEXT BOOKS:

- 1. Strength of Materials by R.K Rajput, S. Chand & Company Ltd.
- 2. Mechanics of Materials by Dr. B. C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain
- 3. Strength of Materials by R. Subramanian, Oxford University Press.

- 1. Mechanics of Materials by R.C. Hibbeler, Pearson Education
- 2. Engineering Mechanics of Solids by Popov E.P. Prentice-Hall Ltd
- 3. Strength of Materials by T.D.Gunneswara Rao and M.Andal, Cambridge Publishers
- 4. Strength of Materials by R. K. Bansal, Lakshmi Publications House Pvt. Ltd.
- 5. Fundamentals of Solid Mechanics by M. L. Gambhir, PHI Learning Pvt. Ltd

HYDRAULICS AND HYDRAULIC MACHINERY (Course Code: CE403PC)

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives: The objective of the course is

- To Define the fundamental principles of water conveyance in open channels.
- To Discuss and analyze the open channels in uniform and Non-uniform flow conditions.
- To Study the characteristics of hydroelectric power plant and its components.
- To analyze and design of hydraulic machinery and its modeling.

Course Outcomes: At the end of the course the student will able to

- Apply their knowledge of fluid mechanics in addressing problems in open channels andhydraulic machinery.
- Understand and solve problems in uniform, gradually and rapidly varied flows in open channelin steady state conditions.
- Apply dimensional analysis and to differentiate the model, prototype and similitude conditions for practical problems.
- Get the knowledge on different hydraulic machinery devices and its principles that will beutilized in hydropower development and for other practical usages.

UNIT - I

Open Channel Flow – **I:** Introduction to Open channel flow-Comparison between open channel flow and pipe flow, Classification of open channel flows, Velocity distribution. Uniform flow – Characteristics of uniform flow, Chezy's, Manning's and Bazin formulae for uniform flow – Factors affecting Manning's Roughness Coefficient. Most economical sections. Computation of Uniform flow, Normal depth.

Critical Flow: Specific energy – critical depth - computation of critical depth – critical, sub critical and super critical flows-Channel transitions.

UNIT - II

Open Channel Flow – II: Non-uniform flow – Gradually Varied Flow - Dynamic equation for G.V.F; Classification of channel bottom slopes – Classification and characteristics of Surface profiles – Computation of water surface profiles by Numerical and Analytical approaches. Direct step method.

Rapidly varied flow: Elements and characteristics (Length and Height) of Hydraulic jump in rectangular channel– Types, applications and location of hydraulic jump, Energy dissipation and other uses – Positive and Negative Surges (Theory only).

UNIT - III

Dimensional Analysis and Hydraulic Similitude: Dimensional homogeneity – Rayleigh's method and Buckingham's π methods – Dimensionless groups. Similitude, Model studies, Types of models. Application of dimensional analysis and model studies to fluid flow problems. Distorted models.

Basics of Turbo Machinery: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, Jet striking centrally and at tip, Velocity triangles at inlet and outlet, expressions for workdone and efficiency – Angular.

UNIT - IV

Hydraulic Turbines – **I:** Elements of a typical Hydropower installation – Heads and efficiencies – Classification of turbines – Pelton wheel – Francis turbine – Kaplan turbine – working, working proportions, velocity diagram, work done and efficiency, hydraulic design. Draft tube – Classification, functions and efficiency.

Hydraulic Turbines – II: Governing of turbines – Surge tanks – Unit and specific turbines – Unit speed– Unit quantity – Unit power – Specific speed – Performance characteristics – Geometric similarity – Cavitation. Selection of turbines.

UNIT - V

Centrifugal Pumps: Pump installation details – classification – work done – Manometric head – minimum starting speed – losses and efficiencies – specific speed. Multistage pumps – pumps in parallel – performance of pumps – characteristic curves – NPSH – Cavitation. Reciprocating pumps – Working, discharge, slip indicator diagrams.

TEXT BOOKS:

- 1. Fluid Mechanics by Modi and Seth, Standard Book House.
- 2. Fluid Mechanics and Hydraulic machines by Manish Kumar Goyal, PHI learning Private Limited, 2015
- 3. Open channel flow by V.T. Chow (McGraw Hill Book Company).

- 1. Fluid Mechanics by R. C. Hibbeler, Pearson India Education Services Pvt. Ltd
- 2. Fluid Mechanic & Fluid Power Engineering by D. S. Kumar (Kataria & Sons Publications Pvt.Ltd.).
- 3. Introduction to Fluid Mechanics and Fluid Machines by SK Som, Gautam Biswas, SumanChakraborthy, Mc Graw Hill Education (India) Private Limited
- 4. Hydraulic Machines by Banga& Sharma (Khanna Publishers).

STRUCTURAL ANALYSIS – I (Course Code: CE404PC)

B.Tech. II Year II Sem.

Pre-Requisites: Strength of Materials – I **Course Objectives:** The objective of the course is to

- Differentiate the statically determinate and indeterminate structures.
- To understand the nature of stresses developed in perfect frames and three hinged arches forvarious types of simple loads
- Analyse the statically indeterminate members such as fixed bars, continuous beams and forvarious types of loading.
- Understand the energy methods used to derive the equations to solve engineering problems
- Evaluate the Influence on a beam for different static & moving loading positions

Course Outcomes: At the end of the course the student will able to

- An ability to apply knowledge of mathematics, science, and engineering
- Analyse the statically indeterminate bars and continuous beams
- Draw strength behaviour of members for static and dynamic loading.
- Calculate the stiffness parameters in beams and pin jointed trusses.
- Understand the indeterminacy aspects to consider for a total structural system.
- Identify, formulate, and solve engineering problems with real time loading

UNIT – I

Analysis of Perfect Frames: Types of frames- Perfect, Imperfect and Redundant pin jointed plane frames - Analysis of determinate pin jointed plane frames using method of joints, method of sections and tension coefficient method for vertical loads, horizontal loads and inclined loads.

UNIT – II

Energy Theorems: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces - Castigliano's theorem-Unit Load Method - Deflections of simple beams and pin- jointed plane frames - Deflections of statically determinate bent frames.

Three Hinged Arches – Introduction – Types of Arches – Comparison between Three hinged and Two hinged Arches - Linear Arch - Eddy's theorem - Analysis of Three hinged arches - Normal Thrust and radial shear and bending moment - Geometrical properties of parabolic and circular arches - Three hinged parabolic circular archeshaving supports at different levels.

L T P C 3 0 0 3

UNIT - III

Propped Cantilever and Fixed Beams: Determination of static and kinematic indeterminacies for beams- Analysis of Propped cantilever and fixed beams, including the beams with different moments of inertia - subjected to uniformly distributed load - point loads - uniformly varying load, couple and combination of loads - Shear force, Bending moment diagrams and elastic curve for Propped Cantilever and Fixed Beams-Deflection of Propped cantilever and fixed beams - effect of sinking of support, effectof rotation of a support.

$\mathbf{UNIT} - \mathbf{IV}$

Continuous Beams: Introduction-Continuous beams - Clapeyron's theorem of three moments-Analysis of continuous beams with constant and variable moments of inertia with one or both ends fixed-continuous beams with overhang - eeffect of sinking of supports.

Slope Deflection Method: Derivation of slope-deflection equation, application to continuous beams with and without sinking of supports -Determination of static and kinematic indeterminacies for frames

- Analysis of Single Bay, Single storey Portal Frames by Slope Deflection Method including Side Sway
- Shear force and bending moment diagrams and Elastic curve.

$\mathbf{UNIT} - \mathbf{V}$

Moving Loads and Influence Lines: Introduction maximum SF and BM at a given section and absolute maximum shear force and bending moment due to single concentrated load ,uniformly distributed load longer than the span, uniformly distributed load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed load-Focal length - Definition of influence line for shear force and bending moment - load position for maximum shear force and maximum bending Moment at a section - Point loads, uniformly distributed load longer than the span, uniformly distributed load shorter than the span.

TEXT BOOKS:

- 1. Structural Analysis Vol –I & II by V.N. Vazirani and M.M. Ratwani, Khanna Publishers.
- 2. Structural Analysis Vol I & II by G. S. Pandit and S.P. Gupta, Tata McGraw Hill Education Pvt.Ltd.
- 3. Structural analysis T. S Thandavamoorthy, Oxford university Press

- 1. Structural Analysis by R. C. Hibbeler, Pearson Education
- 2. Basic Structural Analysis by K.U. Muthu *et al.*, I.K. International Publishing House Pvt. Ltd
- 3. Mechanics of Structures Vol I and II by H.J. Shah and S.B. Junnarkar, Charotar PublishingHouse Pvt. Ltd.
- 4. Basic Structural Analysis by C. S. Reddy, Tata McGraw Hill Education Pvt. Ltd.
- 5. Fundamentals of Structural Analysis by M.L. Gamhir, PHI Learning Pvt. Ltd.

FLUID MECHANICS AND HYDRAULIC MACHINERY LABORATORY (Course Code: CE405PC)

B.Tech. II Year II Sem.

Course Objectives

- To **identify** the behavior of analytical models introduced in lecture to the actual behavior of realfluid flows.
- To explain the standard measurement techniques of fluid mechanics and their applications.
- To **illustrate** the students with the components and working principles of the Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- To **analyze** the laboratory measurements and to document the results in an appropriate format.

Course Outcomes: Students who successfully complete this course will have demonstrated ability to:

- **Describe** the basic measurement techniques of fluid mechanics and its appropriate application.
- **Interpre**t the results obtained in the laboratory for various experiments.
- **Discover** the practical working of Hydraulic machines- different types of Turbines, Pumps, andother miscellaneous hydraulics machines.
- **Compare** the results of analytical models introduced in lecture to the actual behavior of realfluid flows and draw correct and sustainable conclusions.
- Write a technical laboratory report

List of Experiments

- 1. Verification of Bernoulli's equation
- 2. Determination of Coefficient of discharge for a small orifice by a constant head method
- 3. Calibration of Venturimeter / Orifice Meter
- 4. Calibration of Triangular / Rectangular/Trapezoidal Notch
- 5. Determination of Minor losses in pipe flow
- 6. Determination of Friction factor of a pipe line
- 7. Determination of Energy loss in Hydraulic jump
- 8. Determination of Manning's and Chezy's constants for Open channel flow.
- 9. Impact of jet on vanes
- 10. Performance Characteristics of Pelton wheel turbine
- 11. Performance Characteristics of Francis turbine
- 12. Performance characteristics of Keplan Turbine
- 13. Performance Characteristics of a single stage / multi stage Centrifugal Pump

LTPC

2 1

0 0

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY (Course Code: EE402ES)

B.Tech. II Year II Sem.

L T P C 0 0 2 1

Pre-requisites: Basic Electrical and Electronics Engineering

Course Objectives:

- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:

- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

List of experiments/demonstrations:

PART A: ELECTRICAL

- 1. Verification of KVL and KCL
- 2. (i) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of aSingle-Phase Transformer
 (ii) Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star) in a Three Phase Transformer
- 3. Measurement of Active and Reactive Power in a balanced Three-phase circuit
- 4. Performance Characteristics of a Separately Excited DC Shunt Motor
- 5. Performance Characteristics of a Three-phase Induction Motor
- 6. No-Load Characteristics of a Three-phase Alternator

PART B: ELECTRONICS

- Study and operation of
 (i) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
- 2. PN Junction diode characteristics
- 3. Zener diode characteristics and Zener as voltage Regulator
- 4. Input & Output characteristics of Transistor in CB / CE configuration
- 5. Full Wave Rectifier with & without filters
- 6. Input and Output characteristics of FET in CS configuration

TEXT BOOKS:

- 1. Basic Electrical and electronics Engineering -M S Sukija TK Nagasarkar Oxford University
- 2. Basic Electrical and electronics Engineering-D P Kothari. I J Nagarath, McGraw Hill Education

- Electronic Devices and Circuits R. L. Boylestead and Louis Nashelsky, PEI/PHI, 9th Ed, 2006.
- 2. Millman's Electronic Devices and Circuits J. Millman and C. C. Halkias, Satyabrata Jit, TMH, 2/e, 1998.
- 3. Engineering circuit analysis- by William Hayt and Jack E. Kemmerly, McGraw Hill Company, 6thedition.
- Linear circuit analysis (time domain phasor and Laplace transform approaches) 2nd edition by Raymond A. De Carlo and Pen-Min-Lin, Oxford University Press-2004.
- 5. Network Theory by N. C. Jagan& C. Lakshminarayana, B.S. Publications.
- 6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
- 7. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 8. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 9. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

CONCRETE TECHNOLOGY LABORATORY (Course Code: CE406PC)

B.Tech. II Year II Sem.

Course Objectives:

- 1. To know the various procedures to determine the characteristics of cement
- 2. To understand the test procedures to evaluate the characteristics of aggregates
- 3. To know the test procedures to find the properties of fresh concrete
- 4. To understand the test procedures to find mechanical properties of hardened concrete

Course Outcomes: After completion of the course, the student should be able to

- 1. Perform various tests required to assess the characteristics of cement
- 2. Test and evaluate the properties of fine and coarse aggregates and determine its suitability for construction
- 3. Evaluate the fresh and hardened properties of concrete
- 4. Design the concrete mix for required strength and test its performance characteristics

LIST OF EXERCISES:

1. Tests on Cement:

- a) Soundness.
- b) Compressive strength.

2. Tests on Aggregates:

- a) Specific gravity of fine aggregate.
- b) Specific gravity of coarse aggregate.
- c) Bulking of fine aggregate.
- d) Grading of fine aggregate

3. IS method of mix design of normal concrete as per IS : 10262

4. Tests on Fresh Concrete:

- a) Slump cone test.
- b) Compacting factor test.
- c) Vee-Bee consistometer test.

5. Tests on Hardened Concrete:

- a) Compressive & Tensile strength tests.
- b) Modulus of elasticity of concrete.
- c) Non-destructive testing of concrete.

SIIET

L T P C 0 0 2 1

REAL TIME RESEARCH PROJECT

LTPC

B.Tech. II Year II Sem.

0 0 4 2

GENDER SENSITIZATION LABORATORY (Course Code: *MC401)

B.Tech. II Year II Sem.

L T P C 0 0 2 1

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions aboutsex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how tocounter it.
- Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.

- > Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respondto gender violence.

Unit-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Caste.

Unit – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

Unit – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work.

-Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

Unit – IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing-Coping withEveryday Harassment- Further Reading: "*Chupulu*".

Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

Unit – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

<u>Note</u>: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- > Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".
- ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%