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Abstract: At present, many anomaly detection researches focus on two problems: one is that the anomaly on pixels cannot be 

accurately located; the other is that the training data cannot include the anomalies. We introduce the “Stereotype Deepening” algorithm 

to solve the challenging problems, which uses transitive learning in the process of training the tree-like teacher-student network 

structure to deepen the “Stereotype”. Therefore, in the abnormal area, the descriptors given by the student will deviate from  the 

descriptors given by the teacher. Additionally, peer bias is also taken into account as an abnormal score item. Experiments have been 

conducted on different types of datasets to prove the effectiveness of this algorithm for anomaly detection and anomaly localization. By 

comparison, the method proposed in this paper has significant advantages in textures data type. 
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1 Introduction 

In the real world, a common requirement is to determine 

which instances are different from other instances, and 

such a process is called anomaly detection [1]. Up to now, 

anomaly detection is still a challenging task. To solve 

various problems in anomaly detection, different anomaly 
detection algorithms have appeared one after another. 

Deep neural networks (DNN) have developed rapidly in 

recent years, and anomaly detection algorithms based on 

deep learning have shown excellent performance. Because 

many data used for anomaly detection are difficult to be 

labeled, anomaly detection methods based on unsupervised 

learning have been widely studied. Most of the initial work 

focuses on image reconstruction, and the common method 

is to use general models such as generative adversarial 

networks (GANs) [2] and autoencoders [3, 4]. Some 

researchers have found that the pre-trained DNN has 
powerful functions. They used a tiny stack of autoencoders 

and a convolutional neural network (CNN) to form a 

cascade classifier to cooperate in cubic-patch anomaly 

detection [5]. In [6], they applied the student-teacher 

structure to unsupervised anomaly detection using a pre- 

trained residual neural network (ResNet) and completed 

anomaly detection and anomaly localization through 

multiscale anomaly segmentation. Afterward, Salehi et al. 

[7] used a visual geometry group (VGG) as a pre-training 

network to distill the knowledge into a cloning network. 

They used the distance between activation values and the 

directional similarity of activation vectors between several 

key layers to complete anomaly detection and used the 

gradient of overall loss to find anomaly regions that caused 

their values to increase to complete anomaly location. 

Compared with [6], Salehi et al. [7] completed anomaly 
detection and anomaly localization from different angles. 

 

Inspired by the previous work, this paper proposed an 

anomaly detection method based on “Stereotype 

Deepening”. In this paper, a tree-like teacher-student 

network with transitive learning characteristics is 

introduced to complete regional anomaly detection and 

localization. Figure 1 shows the detection results 

represented by anomaly maps. It has been confirmed in [6] 

that there will be a cognitive bias between students and 
teachers, which is called “Stereotype”. As shown in Figure 

2, our intuition is that the network will deepen this 

cognitive bias in the process of transitive learning, and 

abnormal areas can be distinguished by deepening 

“Stereotype”. 

 

The main contributions are as follows: 

 
• We presented a tree-like teacher-student anomaly 

detection structure based on “stereotype deepening”, 
which associating anomalies with pixels and locating 
anomaly areas. 

 
Figure 1: Comprehensive assessment results. The 

evaluation types include textures and objects. There are 

apparent color differences between the abnormal area and 

the surrounding area. 



 

• We proposed two loss functions: one is a new 
compactness loss, which is not affected by batch size, 
and the other is the regression error between descriptors. 

• We integrated inference bias, delivery bias and peer bias 
to evaluate the performance of anomaly detection and 

localization, so that the result was more obvious. 
Anomaly maps are used to intuitively express the results 
of anomaly localization. 

• Experiments on three datasets have proved the 
effectiveness of the method proposed in this paper. Our 
algorithm shows satisfactory results on all datasets, 
especially in the category of textures. 

 

2 Related Work 

2.1 Supervised Anomaly Detection 

 

Many supervised anomaly detection methods are in the 

form of binary classification. Because of the use of labels, 

they can produce highly accurate results. Some studies [8, 
9, 10] try to use the method based on active learning. 

Gaddam et al. [11] proposed a novel anomaly detection 

method. 

 

Figure 2: Prior distribution. Coordinate system (1) shows 

the cognitive deviation between one doctor and two 
masters, and coordinate system (2) shows the cognitive 

deviation between one master and two bachelors. Their 

distributions are relatively similar in normal areas, but 

their distributions will be quite different in abnormal areas 

due to deepened cognitive bias. 

 

Based on K-Means and ID3, which first obtained k 

different clusters and then constructed an ID3 decision tree 

in each cluster. This approach avoids both the forced 

assignment and class dominance. Jumutc and Suykens [12] 

extended the supervised novelty detection. They 

introduced a new coupling term between classes which 

took advantage of finding a reasonable decision boundary. 
 

Although supervised anomaly detection has high accuracy, 

it has poor generality due to the uncertainty of anomalies 

and the lack of data labels. Some previous works have 

tried to solve these problems from various aspects, but 

supervised anomaly detection still has limitations. 

2.2 Semi-supervised Anomaly Detection 

 

Labels for normal data are more accessible to obtain than 

labels for abnormal data. Therefore, many researchers 

chose to use semi-supervised methods to complete 

anomaly detection. Gu et al. [13] proposed a corrupted 

GAN (CorGAN) for outlier detection. Assuming that the 

generator generates outliers of negative classes, the 

discriminator was trained to distinguish the training dataset 

from the data generated by the generator. To avoid 

reaching Nash equilibrium in the training process, they 

also proposed several techniques to break the fusion and 

establish robust outlier identifiers. Similarly, influenced by 
GANs, Sabokrou et al. [14] took the lead in adding one- 

class classification to the end-to-end architecture and 

introduced an anomaly detection network structure of R+D, 

in which R consists of encoder and decoder, while D is a 

CNN network, which was used to classify the data 

regenerated by R. Perera and Patel [15] proposed deep one-

class classification (DOC) to solve the one-class 

classification problem and introduced the joint loss based 

on compactness loss and descriptive loss to train the 

network. Finally, it was verified by experiments on 

anomaly detection, novelty detection, and mobile active 
authentication datasets. Unsupervised anomaly detection 

has also been widely studied in many application areas. In 

detecting abnormal climate, Racah et al. [16] proposed a 

multi-channel spatial-temporal CNN architecture for semi- 

supervised bounding box prediction and exploratory data 

analysis to address the challenge of incomplete extreme 

weather labeling data. This method can apply time 

information and unlabeled data to improve the positioning 

of extreme weather events. In addition, in remote sensing 

applications, there is also a challenge of collecting labeled 

data. Wu and Prasad [17] provide a semi-supervised 
anomaly detection method for hyperspectral image 

classification, which used unlabeled data with pseudo- 

labels generated by the C-DPMM-based clustering 

algorithm to train the neural network. 

 

Semi-supervised anomaly detection can carry out end-to- 

end learning and improve the situation of insufficient data 

labels. However, it takes a long time in the training process, 

and the effect of feature extraction is not good. 

 

2.3 Unsupervised Anomaly Detection 

 

Compared with supervised and semi-supervised anomaly 

detection, an obvious advantage of unsupervised anomaly 

detection is that it can distinguish normal from 

abnormality by learning unlabeled dataset. Zong et al. [18] 
proposed a deep auto-encoded gaussian mixture model 

(DAGMM), which is easy to carry out end-to-end training 

for anomaly detection. DAGMM model consists of a 

compression network and an estimation network. A deep 

automatic encoder was used to generate low-dimensional 

representation and reconstruction errors for each input data. 

Further, low-dimensional representation and reconstruction 

errors have been fed into the gaussian mixture model. The 

problem of continuous anomaly detection in application 

fields such as image analysis and video surveillance is a 

challenge that needs to be solved. Lu et al. [19] used an 
autoencoder model to capture the inherent difference in 
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density between outliers and normal instances and 

integrated the model into a recurrent neural network 

(RNN). It was convenient to capture the context 

information and finally updated the network through 

hierarchical training. Unlike [19], Leveau and Joly [20] 

used an adversarial autoencoder for anomaly detection and 

further improved its performance by introducing explicit 

rejection classes in the prior distribution and adding 

random input images to the autoencoder. Some scholars 
have proposed a deep structured energy-based model 

(DSEBM), which extended the energy-based model to a 

deep architecture with three types of structures and solved 

the anomaly detection problem by directly modeling the 

data distribution using the deep architecture [21]. 

Moreover, they also provided two decision criteria for 

training, namely energy score and reconstruction error. 

Mishra et al. [22] used CVAEs to solve the anomaly 

detection problem under the zero-shot learning. They treat 

it as a missing data problem, generate samples from a 

given attribute, and use the generated samples to classify 
invisible classes. Some people introduced an anomaly 

detection method for a mobile autonomous robot based on 

GAN, which builds a GAN to collect images by remotely 

operating the robot in a given environment [23]. The 

shifted grid divides all images into patches for training 

GAN. It compared the bottleneck feature of the generated 

patch with that of the actual patch. 

 

Although many unsupervised anomaly detection methods 

have been proposed, many existing methods are based on 

data reconstruction, and the results of anomaly detection 

will be affected by reconstruction errors. Considering this 

problem, this paper utilized a tree-like teacher-student 

structure to deepen the “Stereotype” generated in the 
process of transitive learning and used the compactness 

loss with irrelevant batches and regression error to 

optimize the network. Finally, inference bias, delivery bias, 

and peer bias were used as anomaly evaluation indicators. 

 

3 Preliminary Work 

3.1 Knowledge Distillation 

 

For better training effect, many models were trained from 

one or more large neural networks. However, this method consumes lots of computing resources and is difficult to 

information carried by the negative labels is ignored 

frequently. To avoid this problem, the distillation method 

changed outputs of the softmax by controlling the 

temperature T so that the output probability distribution 

was smoother, and the result was recorded as soft targets. 

The smoother probability distribution of outputs can 

amplify information carried by the negative labels. The 

softmax function is defined as follows: 

 

𝑞𝑖 = 𝑒𝑥𝑝 𝑎𝑖 /𝑇 /Σ𝑛    𝑒𝑥𝑝𝑎𝑖 /𝑇 (1) 

where T represents the distillation temperature. When 

training the teacher network, the temperature T was set to 

1, and the training was achieved by minimizing the cross- 

entropy between the softmax layer output and the target. 
After the teacher network was trained, a higher 

temperature T greater than 1 was set, and it is used to train 

the student network. The difference between the output of 

the student network and the soft target was regarded as the 

distillation loss. When temperature T in the student 

network was set to 1, the difference between output and 

ground truth was taken as another loss. Both losses are 

used to evaluate the performance of student network. Its 

results showed that the distilled student network had 

comparable performance to the teacher network, which 

was easier to deploy. 

 

3.2 Descriptor Compactness 

 

The neural network model is prone to over-fitting due to 
excessive sample noise interference, high model 

complexity, and too much iteration. Over-fitting can easily 

lead to deviations in the results, so it is also essential to 

solve the model over-fitting. In addition to the common 

causes of overfitting, Tian et al. [25] found that the 

severity of overfitting is directly related to the correlation 

between the descriptor dimensions. Therefore, in their 

experiment, an error term was introduced to illustrate the 

compactness of descriptors, and the redundancy between 

descriptors of different dimensions was reduced through 

training so that each dimension carried as much 

information as possible. The correlation coefficients of 
different dimensions are expressed as: 

 
 

 

𝑟𝑖𝑗   = (𝑏𝑖  − �̅�)  (𝑏𝑗  − �̅�)/√(𝑏𝑖  − �̅�)  (𝑏𝑖  − �̅�)√(𝑏𝑗  − �̅�)  (𝑏𝑗  − �̅�) 

deploy. To solve this problem, Hinton et al.[24] tried to use 

knowledge distillation to transfer knowledge from bulky 

𝑖 𝑗 𝑖 𝑖 𝑗 𝑗  

(2) 

models to small models, which is more suitable for Among  them,  �̅�  and  �̅� respectively  represent  the  mean 
𝑖 𝑗 

deployment to a large number of users. The knowledge 

distillation model consists of two parts: teacher network 

and student network. The teacher network has a 

complicated structure and numerous parameters, while the 

student network has a simple structure and few parameters. 

During training, the student network learns the knowledge 

extracted by the teacher network. 
 

The teacher network generated classification results 

through the softmax layer. The results contain probability 

information of each category, but only one category 

belongs to positive labels, and the rest belongs to negative 

labels. The probability of each negative label is usually 

much smaller than that of the positive label, so the 

value of the 𝑖𝑡ℎcolumn and the𝑗𝑡ℎ column. 

The correlation matrix[𝑟𝑖𝑗 ]is denoted as R. 

4 Algorithm 

In this section, the proposed “Stereotype Deepening” 

algorithm is described in detail. In process of the training 

network, transitive learning was used to deepen the 

“Stereotype”, so that the discrepancy between the 
descriptors was enlarged. The student networks were 

updated by minimizing the mixed loss. In the evaluation, 



 

inference bias, delivery bias, and peer bias were used to 

measure the effect of anomaly detection and localization. 

 

4.1 Network Structure 

 

As shown in Figure 3, masters and bachelors were set up 

as students in the tree-like teacher-student structure, and it 

completed the training of the network one by one through 

transitive learning. For convenience, we gave students 

different names for each layer. The students who were 
obtained after completing the first transitive learning are 

called masters, and then the network carried out the second 

round of transfer study, at which time bachelors were got. 

Bachelors were obtained by studying the knowledge of 

masters. We divided the bachelors into different classes 

according to which master is its teacher. Masters act as 

teachers and students. We trained all the students on the 

given training data U = {u1,u2,...,un} that only contains 

anomaly-free images. Each network except doctor takes 

the descriptor of the previous network as the regression 

target. For example, the regression targets for bachelors 

are the feature descriptors output by masters. After training, 
we used both abnormal and non-abnormal images as test 

data, and inference bias, delivery bias, and peer bias 

caused by “Stereotype” were used as indicators for 

abnormal evaluation. 

 

 
Figure 3: Bachelor1 and Bachelor2 belong to Class1, Bachelor3 and Bachelor4 belong to Class2. Among them, CostInference 

represents the inference bias, CostDelivery represents the delivery bias, and CostPeer represents the peer bias 
 

4.2 The Process of Training 

 

This section will introduce network training in detail. The 

process is divided into three stages. The training structure 

is shown in Figure 4. 

 

4.2.1 Training of Doctor Network 
 

The input image G was randomly cut into patch-sized 

image regions I, and the doctor network D outputs a d- 

dimensional descriptor for each patch I. Because the pre- 
trained deep neural network has a strong representation 

ability, it performs well in classification. Therefore, we 

used the pre-trained network D as the basic network of the 

classification network T, and the loss of the classification 

network can be expressed as: 

 

Lk = −Σylog(T(I)) (3) 

 

where T is the classification network, and y is the 

classification label. 

 

4.2.2 Training of Masters and Bachelors 
 

In this part, we used the mean square error and the 

improved descriptor compactness loss as the mixed loss. 

The network trained to get masters first and then to get 
bachelors through masters. We always let the current 

network fit the description of the previous network. 

Specifically, D first extracted patch-based descriptors for 

each image on the dataset U, and masters were trained by 

regressing the descriptors output by D. After masters 

trained on the dataset U, using the same method to train 

bachelors with outputs of masters. In particular, before 

training the next layer of students, we all Normalized the 

output provided by this layer. Masters have dual identities 

in the whole network structure. They are students for the 

front layer and teachers for the back layer. 

 

Mean Square Error Similar to the training of the doctor 
network, it also needs to extract the knowledge of the 

previous network into the current network when training 

the student network. Meanwhile, the distance is used to 

measure the difference between M(I) and D(I). M(I) is the 

d-dimension descriptor given by the master network: 

 

Ld= ||M(I) − D(I)||2 (4) 

Descriptor Compactness Error For a set of I inputs, to 

eliminate redundancy and minimize correlation between 
descriptors, we have made some improvements based on 

the method used in [25]. The improved method can ensure 

the accuracy of the calculation. Each patch I passing 

through the network will be transformed into a d- 

dimensional descriptor in a batch, and we have calculated 

the correlation between any two descriptors. After 

calculation, it was found that simply summing these 

correlation coefficients cannot accurately express the 

overall correlation, and it would be affected by the batch 

size when minimizing the descriptor correlation. The batch 

size was determined by the number of patches, which 

could reflect the number of random combinations of 
different descriptors, 



 

𝐶𝑜𝑠𝑡 ∑ √ ( ) ( 
)= 

 

 
Figure 4: b denotes batch size, and D(I), M(I) and B(I) are descriptors. From right to left are the three stages of training. The 

masters are trained according to the doctor, and then the masters are used to train the bachelors. 
 

and further affected the sum of correlation coefficients. 

Therefore, to eliminate the influence of batch size on 

descriptor compactness, the improved method can be 

expressed as: 

 

Lp= n(n − 1)/2 (5) 
 

n is the batch size. 

 

Mixed Loss The training losses of masters and bachelors 

are obtained by summing these two weights and are finally 

expressed as follows: 

information. Bachelors would be affected by this one-sided 

factor when training according to the masters, and there 

would be delivery bias when bachelors learned descriptors 

of masters. Additionally, there would be peer biases 
between masters and peer biases among bachelors. Figure 

3 clearly identifies three types of biases. 

 

We take the deviation degree between the descriptors 

given by the master and the descriptors given by the doctor 

as the first score. D(x) represents the descriptor of the 

doctor, and Mi(x) is the descriptor given by the ith master. 

The first anomaly score is expressed as: 
 

Lt = µLd+ (1 − µ)Lp (6) 

 

in this formula, µ represents the weighting factor. 

 
 

2 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖   (𝐷 𝑥 − 𝑀𝑖   𝑥 ) 

 
(7) 

 

4.3 Anomaly Evaluation 
 

For the test set W = {w1,w2,...,wn} that contains both 

normal data and abnormal data, it determines the abnormal 

area by the degree of difference between the descriptors 

As mentioned before, it can be known that bachelors are 

distilled by masters, so the difference between bachelors 

and masters is taken as the second score, which is 

expressed as: 

 
2 

output by each network. Since doctor module has been 

trained with abnormal data, when abnormal data was input 

to doctor, the descriptor output by doctor would conform 

to the features’ distribution of the abnormal area. However, 

𝐶𝑜𝑠𝑡𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦    = ∑𝑖 ∑𝑗 √(𝑀𝑖(𝑥) − 𝐵𝑗 (𝑥)) 

 
Bj(x) is the descriptor given by the jth bachelor. 

(8) 

masters only learned the distribution of normal data during 

training, so their descriptors would deviate from the 

description of doctor when they encounter abnormal areas, 

resulting in inference bias. Because it only used normal 

data to train masters, the weight obtained after completing 

masters training will lack the induction of comprehensive 

The deviations between students of the same level are 

combined as the third abnormal score, which is 

represented by CostPeer. 



 

𝐶𝑜𝑠𝑡𝑃𝑒𝑒𝑟 = 
 

 

2 ∑ ∑ √(𝑀 (𝑥) − 𝑀    ( ) 

 
 

2 ∑ ∑    √ ( ) ( ) 

them, 50,000 images are used for training, and the 

remaining 10,000 are used as the test set [27]. 
𝑖     𝑘𝑀 𝑖 𝑘𝑀    𝑥 )   +    𝑗 𝑘𝐵 (𝐵𝑗 𝑥 − 𝐵𝑘𝐵   𝑥 )  

(9) 
 

MVTec: It consists of more than 5,000 high-resolution 
MkM represents any other masters except the ith master. 

BkB(x) represents the descriptor given by any other 

bachelors except the jth bachelors. The total anomaly score 

is expressed as: 
 

CostTotal= CostInference+ CostTransitivity+ CostPeer (10) 

 

5 Experiment 

In this part, the “Stereotype Deepening” algorithm 

proposed in this paper will be verified from two aspects: 

anomaly detection and anomaly localization. All 

experiments were conducted under the environment of 

Intel(R) Core(TM) i7-8700 CPU and NVIDIA GeForce 

GTX 1660. The code has been released at: 

https://github.com/zhmhbest/StudentTeacherAnomalyDete 

ction. 

 

5.1 Datasets 

 

We tested the proposed method on three datasets: MNIST, 

CIFAR-10, and MVTec. 

 

MNIST: It contains 70,000 handwritten digits, of which 
60,000 belong to the training set, and the rest belong to the 

test set [26]. 

 

CIFAR-10: This data set consists of 10 categories of color 

images. Each category contains 6,000 images. Among 

images, including 10 different object categories and 5 

different texture categories. The images in the training set 

are non-anomalous, and the testing set contain part of the 

abnormal images [28]. 

 

5.2 Experimental Results 

 

The network structure used to train doctor, master and 

bachelor is given in Table 1. 

 

5.2.1 Comparisons based on the MNIST and CIFAR-10 

Datasets 

 

The experiment first verifies the performance of the entire 

network. Only one category in the dataset is regarded as 

normal data, and all other categories are regarded as 

abnormal. For example, if 0 is regarded as normal data on 

the MNIST dataset, the remaining numbers are considered 

abnormal for testing network performance. We use the area 

under the AUROC curve to evaluate the performance of 
our method and other related works. 

 

The “Stereotype Deepening” algorithm shows high 

accuracy on both MNIST and CIFAR-10 data sets, 

especially on CIFAR-10 our average accuracy rate is 

0.1805 higher than the LSA algorithm. Table 2 shows the 

comparison results. 

 

Table 1: The network structure when the patch size is 64. Leaky rectified linear units with slope 5 × 10−3 are applied as 

activation functions after each convolution layer 
  Parameters 

Layer Output Size Kernel Stride 

Input 64×64×3 - - 

Conv2d 61×61×64 4×4 1 

MaxPool2d 30×30×64 2×2 2 

Conv2d 27×27×32 4×4 1 

MaxPool2d 13×13×32 2×2 2 

Conv2d 10×10×16 4×4 1 

MaxPool2d 5×5×16 2×2 2 

Conv2d 2×2×8 4×4 1 

Conv2d 1×1×4 2×2 1 

Linear 1×1×1 - - 

Flatten 1×1 - - 

Linear 1×512 - - 

 

Table 2: Anomaly detection results. The table gives the anomaly detection accuracy of different algorithms in one-class 

classification, and the mean values are reflected in their overall performance 
Dataset Method 0 1 2 3 4 5 6 7 8 9 Mean 

 DSVDD[29] 0.98 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.948 

 OCGAN[30] 0.998 0.999 0.942 0.963 0.975 0.98 0.991 0.981 0.939 0.981 0.975 

 CAVGA Du[31] 0.994 0.997 0.989 0.983 0.997 0.968 0.988 0.986 0.988 0.991 0.986 

MINST LSA[32] 0.993 0.999 0.959 0.966 0.956 0.964 0.994 0.98 0.953 0.981 0.975 

 Ours 0.991 0.995 0.994 0.996 0.995 0.995 0.994 0.991 0.992 0.989 0.9932 

 DSVDD[29] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.648 

 OCGAN[30] 0.757 0.531 0.64 0.62 0.723 0.62 0.723 0.575 0.82 0.554 0.6566 

 CAVGA Du[31] 0.653 0.784 0.761 0.747 0.775 0.552 0.813 0.745 0.801 0.741 0.737 

CIFAR-10 LSA[32] 0.735 0.58 0.69 0.542 0.761 0.546 0.751 0.535 0.717 0.548 0.641 

 Ours 0.834 0.852 0.748 0.761 0.801 0.762 0.901 0.841 0.887 0.828 0.8215 

https://github.com/zhmhbest/StudentTeacherAnomalyDetection
https://github.com/zhmhbest/StudentTeacherAnomalyDetection


 

5.2.2 Comparisons based on MVTec Dataset 

 

The MVTec dataset provides anomalies based on different 

entities. In addition to verifying the anomaly detection 

capabilities of the network, we also verified the effect of 

anomaly localization through experiments. 

 

Table 3: Anomaly localization results in terms of AUROC. The table shows the average AUROC on Textures and Objects 

expressed as Textures mean and Objects mean, respectively 
  Textures  Objects  

 Carpet Grid Leather Tile Wood 
Textures 

mean 
Bottle Cable Capsule Hazelnut 

Metal 

nut 
Pill Screw Toothbrush Transistor Zipper 

Objects 

mean 
Mean 

STAD[6] 0.695 0.819 0.819 0.921 0.725 0.7958 0.918 0.865 0.916 0.937 0.895 0.935 0.928 0.863 0.701 0.933 0.889 0.858 

CAVGA 

Du[31] 
0.73 0.75 0.71 0.7 0.85 0.748 0.89 0.63 0.83 0.84 0.67 0.88 0.77 0.91 0.73 0.87 0.802 0.784 

CAVGA 

Ru[31] 
0.78 0.78 0.75 0.72 0.88 0.782 0.91 0.67 0.87 0.87 0.71 0.91 0.78 0.97 0.75 0.94 0.838 0.819 

CAVGA 

Dw[31] 
0.8 0.79 0.8 0.81 0.89 0.818 0.93 0.86 0.89 0.9 0.81 0.93 0.79 0.96 0.8 0.95 0.882 0.861 

Ours 0.958 0.955 0.9633 0.922 0.925 0.9447 0.9533 0.876 0.906 0.972 0.842 0.8086 0.906 0.74 0.67 0.8714 0.8731 0.885 

 

We considered the inferred bias of each module in the 

anomaly region. Excepting the inference bias, we also 

considered the delivery bias between masters and 

bachelors, which would make the descriptors given by the 

masters and bachelors different in the same abnormal area. 
Students of the same grade got different initial settings of 

the networks and did not use abnormal images for training. 

Therefore, different students’ expressions in abnormal 

areas would also have significant differences when 

encountering abnormal areas. Figure 5 shows anomaly 

maps, in which anomaly maps given by comprehensive 

evaluation are included, and the difference of color reflects 

anomaly degree. According to Figure 5, the performance 

of the three biases in abnormal areas is different, and the 

comprehensive evaluation result is more obvious. As 
shown in Figure 5, the result of anomaly detection and 

localization using only the delivery bias is more effective 

than that of inference bias, which shows that the 

“Stereotype” is reasonable and available for anomaly 

detection and localization. 

 

 

Figure 5: Anomaly map and anomaly score at all levels. The various bias produced in the process of transitive learning is 
evident in the abnormal areas 

 

Table 3 shows the anomaly localization results on the 

MVTec dataset. Experiments showed that our method has 

outstanding advantages in the category of textures. The 

single AUROC on textures is above 0.92. For Textures, 

“Stereotype Deepening” is superior to other baselines. The 

average results in the category of Objects can reach a level 

comparable to other methods. In general, this method is 

better than most of the algorithms we compared. 

 

6 Conclusion 

In this paper, an algorithm based on a tree-like teacher- 

student structure was proposed for anomaly detection and 

location, called “Stereotype Deepening”. A descriptor 

compactness loss that is irrelevant to batch size was used 

in the training of the teacher network, and transitive 

learning is applied to train the student networks. During 

the experiment, the anomaly detection performance of the 

network was tested on the MNIST and CIFAR-10 datasets. 

Afterward, the “Stereotype” generated by the network 

during the training process was used to complete the 

anomaly localization. Peer bias and delivery bias verified 

the effectiveness of “Stereotype” from two dimensions. 

The experiment proved that our method has a significant 

effect on the textures type. 
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