

Network Packet Management: Addressing Loss and

Congestion through Utility Function Optimization
A.Vijay Kumar1, D.Nagaraju2, Dr.D.Rajeshwari3

1 Assistant Professor, Department of CSE, Sri Indu Institute of Engineering & Technology, Hyderabad

2 Assistant Professor, Department of CSE, Sri Indu Institute of Engineering & Technology, Hyderabad

3 Assistant Professor, Department of CSE, Sri Indu Institute of Engineering & Technology, Hyderabad

Abstract: To solve the congestion control algorithm of a dynamic network difficult to determine the appropriate size of the congestion

window problem. To improve the traditional congestion control algorithm of the UDP black-box model, the packet loss behavior that is

not congested or caused by congestion is distinguished. Optimizing the traditional PCC black-box model based on utility function, and

improved PCC-DRL optimization algorithm based on the PCC method were proposed. Compared with the existing mainstream

congestion control algorithm, the comparison results show that the application of THE PCC-DRL optimization algorithm improves the

dynamic network bandwidth utilization rate 9.67%, reduces the packet loss rate 0.24%, reduces the delay 5.69ms, and improves the

queue concurrency 6.73%. These results indicate that THE PCC-DRL algorithm has a good effect on distinguishing the packet loss

behaviors caused by non-congestion or congestion in dynamic networks, and has good adaptability and robustness to dynamic

conditions and congestion forms.

Keywords: Utility functions, Deep reinforcement learning, PCC, Congestion control

1. Introduction

With the continuous and rapid growth of the Internet,

network performance directly affects the quality of service of

data transmission. Once the total demand for resources

exceeds the maximum available amount, network congestion

will occur. Typical effects include slow transmission speeds,

high latency, high loss rates and, in severe cases, network

crashes. The goal of congestion control is to dynamically

adjust the transmission rate to make full use of network

resources under dynamic and complex network conditions.

A qualified congestion control algorithm should first sense

the network state, then consider the influence of the factors

including throughput, congestion window, packet loss rate,

delay, fairness, and finally make a fast choice of the optimal

transmission rate. Usually, the design of the congestion

control algorithm is based on prior knowledge and

experience one kind of network environment, but the actual

network environment changing, based on the rules and the

model of traditional congestion control algorithm can not

well adapt to environmental changes, so we need the new

breed of dynamic adaptive congestion control algorithm to

meet the needs of the guarantee network transmission [1].

The popularity of smart phones has driven the development

of mobile cellular networks, and with the rapid development

of big data technology, data center network has become a

research hotspot. Therefore, many congestion control

algorithms for these two networks have emerged. For

example, M-TCP [2] and Verus [3] are designed specifically

for mobile cellular networks. TCP variants DCTCP [4] and

ICTCP [5] are intended to serve data center networks. At the

same time, with the rapid development of intelligent

algorithms such as deep learning and reinforcement learning,

the learning-based network congestion control scheme

emerges at the right moment. The characteristics of

autonomous learning mode enable the congestion control

scheme to be automatically adjusted with the changes of the

network environment.

According to different control methods, the congestion

control algorithm can be divided into the additive increase

multiplicative decrease (AIMD) class represented by

NewReno [6], the functional type represented by TCP-Cubic

[7] algorithm, the rule aggregation type represented by

TCP-compound [8] algorithm and the congestion control

algorithm based on reinforcement learning. Through the

analysis of the congestion control algorithm mentioned

above, we find that the core of the congestion control

algorithm lies in the real-time perception of the environment

state and the dynamic adjustment of the congestion window

(CWND). The traditional congestion control algorithm is

usually defined by human experts using prior knowledge, so

it cannot be adjusted dynamically. The congestion control

algorithm based on reinforcement learning can learn the

mapping of historical feedback behavior from the

environment without manual adjustment to adapt it to special

scenarios. Famous congestion control algorithms based on

reinforcement learning proposed at present include Remy

[9], PCC [10], BBR [11] and Indigo [12].

The congestion control algorithm Indigo based on imitation

learning sets the network scene information as expert

knowledge, and the decision network is a single-layer LSTM

network, so as to realize the congestion control in the current

training scene. However, the performance of the algorithm

can only play a superior performance in trained scenarios, so

the practical application is limited. In contrast, we find that

the congestion control algorithm based on DRL only needs a

simple neural network and can achieve better performance

than the traditional algorithm according to the historical

information of the state combination of multiple time slices

before the current time. Therefore, we propose a congestion

control algorithm based on DRL called PCC-DRL.

Based on PCC algorithm can't distinguish between the

congestion and the loss caused by congestion and quickly

adapt to the change of network conditions, the system of

sending rate mapping for depth of intensive study, and

through the balance of throughput, delay, packet loss rate set

a reward function, the use of the depth of the simple neural

network for the final strategy approach, Thus, the congestion

control algorithm based on deep reinforcement learning is

realized. Compared with the traditional TCP CUBIC

protocol, the experimental results show that the PCC-DRL

algorithm can not only solve the problem that the traditional

congestion control algorithm is difficult to adapt to network

changes and cannot distinguish packet loss, but also has

better congestion control effect and robustness.

2. Overview of PCC Algorithm

Compared with most Congestion Control protocols based on

TCP, PCC (Performanc-oriented Congestion Control)

protocol [4] is based on UDP, so the algorithm can jump out

of various RULES of TCP. After all, in today's complex

network environment, TCP can no longer preset enough

network events. The congestion control is carried out

through the model network, and the PCC algorithm can

realize the end-to-end transmission rate control without the

need for congestion window size adjustment to complete the

congestion control. It is a black box model, and its sender can

be decomposed into four parts: data transmission, SACK

collection, effect value calculation and transmission rate

adjustment. The specific operation process is shown as

follows:

1) Start

In the process of congestion control, PCC algorithm divides

time into a series of monitor intervals (MI), and each MI has

1 to 2 RTT. After each MI, the sending rate is doubled, and

then the current effect value is calculated according to the

current sending rate. When the effect value decreases, PCC

will exit the initial stage, but will not directly reduce the

sending rate to extremely low like other traditional

algorithms, but will look for a higher sending rate of the

previous effect value to set.

2) Decision making

As an intelligent congestion control algorithm, its decision

strategy is RTCs (Multiple Randomized controlled Trials),

which will slightly increase and decrease the current rate R

(empirically 0.99r and 1.01R). The four rates of 0.99r, 0.99r,

1.01r and 1.01r were randomly arranged in pairs. After

sending, the effect values of these rates were calculated. If

the effect values of 1.01r were both large, the sending rate

would be set to 1.01r, otherwise 0.99r. However, if there is a

staggered situation, the sending rate of R will continue to

enter the decision-making stage again. At this time, it is

necessary to adjust the coefficient, but keep it between

0.95-0.99 and 1.01-1.05.

3) Rate adjustment

In each MI, the rate will be adjusted according to the sending

rate R given in the decision-making stage and the adjustment

direction. Only when the effect value of the adjusted rate is

smaller than the effect value of the rate before adjustment,

the rate will return to the decision-making stage.

3. Improved algorithm: PCC-DRL

PCC uses a black-box approach: THE PCC sender observes

the performance metrics generated by sending at a particular

rate, converts these metrics into numerical utility values, and

adjusts the sending rate in a direction empirically associated

with higher utility. However, the specific implementation of

PCC shows that the convergence rate is too long and is far

from the ideal trade-off between convergence rate and

stability.

3.1 Deep reinforcement learning

Applying deep reinforcement learning to congestion control

is essentially transforming the congestion control formula

into a sequential decision problem under the framework of

deep reinforcement learning.

(1) The action is the change of the transmission rate. In

congestion control, the agent is the data sender, so its action

is actually a change in the transmission rate. We use the

concept of monitoring interval (MIs) to define this action

concretely. The time is divided into consecutive time

intervals. At the beginning of each time interval T, the sender

can adjust the sending rate 𝑥𝑡 and keep it fixed throughout

the time interval. The effects of actions (i.e., rate changes)

may have indirect consequences. Sending too fast may

overload buffers and lead to future packet loss and delay. In

deep reinforcement learning, long-term decisions can be

captured by discount factors.

(2) Status is the historical record of network statistics. After

the sender selects the rate𝑥𝑡 at the time interval T, it will

observe the results sent by the system at this rate and

calculate the statistical vector 𝑣𝑡 based on the received

packets. The statistical vector 𝑣𝑡 is composed of three parts:

① Delay gradient (the reciprocal of delay relative to time)

② delay rate (the ratio of the average delay of the current

time interval to the minimum average delay of any time

interval in the connection history) ③ Send rate (the ratio of

packets sent to packets confirmed by the receiver). Networks

vary greatly in available bandwidth, latency and loss rate, so

when selecting the elements of statistical vector, statistical

information that may change greatly between connections,

[𝐴

such as the change of link attributes (absolute value of delay),

is avoided, so as to achieve the universality of the model. The

agent's choice of the next rate change depends on the fixed-

length history of the statistical vector collected from the

packets sent by the receiver. This allows agents to detect

trends and changes in network state and respond more

appropriately, taking into account the limited length of

history, not just the latest statistics. Therefore, the state𝑠𝑡 at t

is defined as: 𝑠𝑡 = (𝑣𝑡−(𝑘+𝑑), ⋯ , 𝜈𝑡−𝑑). For constant k > 0, d
represents the delay between the selected sending rate and

transmission rate to ensure smooth network.

3.3PCC-DRL

In order to make it be able to recover experience like DQN

and make use of previous data, PCC-DRL algorithm adopts

importance sampling, so that even the data generated by

another strategy can be applied to the training of the current

strategy. The factor of importance sampling is actually the

ratio of the current strategy to the previous strategy:

the collection result.
𝑟 (𝜃) =

 𝜋𝜃 (𝑎𝑡 ,𝑠𝑡) (2)

(3) Set rewards. The rewards generated by sending at a

particular rate at a particular time depend on the performance

requirements of the particular application. Some applications

such as online games require very low latency; Some

applications such as large file transfers require high
bandwidth; Some services want to use low but constant

𝑡 𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡)

Which 𝜋𝜃 (𝑎𝑡 , 𝑠𝑡) refers to the current policy, and

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 , 𝑠𝑡)refers to the last round of strategy.

Then we can obtain its strategic gradient descent algorithm:

bandwidth (that isno jitter); Others require higher bandwidth 𝐽 (𝜃) = 𝐸 𝜋𝜃 (𝑎𝑡 ,𝑠𝑡) (𝑠 , 𝑎)] (3)

and tolerate bandwidth variations. Therefore, rewards can be
𝜃𝑜𝑙𝑑 (𝑠𝑡 ,𝑎𝑡

)~𝜋𝜃𝑜𝑙𝑑
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡) 𝜋𝜃𝑜𝑙𝑑 𝑡 𝑡

better structured according to the performance required by

different services. We will implement intelligent congestion

control algorithm based on deep reinforcement learning

(DRL). DRL is used to generate policies for mapping

observed network statistics such as latency, throughput, and

so on to rate selection.

3.2 System input and output

Deep reinforcement learning agents essentially solve

However, if the difference between the old and new

strategies is too large, the system will be unstable due to too

much update. The policy difference here refers to that the

probability distribution of the actions obtained by the

network with the same input state cannot be too different.

The similarity degree can be calculated by using THE KL

divergence. If the KL divergence value is too large, the

punishment will be increased, and if the KL divergence value

is too small, the punishment will be reduced. Therefore, the

PC-DRL algorithm is shown in the following formula:

sequential decision problems by interacting with the
𝐽𝑃𝐶𝐶−𝐷𝑅𝐿 (𝜃) = 𝐸 [

 𝜋𝜃 (𝑎𝑡 ,𝑠𝑡)
𝐴

 (𝑠 , 𝑎)] −
environment. In discrete time 𝑡 ∈ 0,1, ⋯ , the agent will 𝜃𝑜𝑙𝑑 (𝑠𝑡 ,𝑎𝑡

)~𝜋𝜃𝑜𝑙𝑑
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡) 𝜋𝜃𝑜𝑙𝑑 𝑡 𝑡

observe the perceptible environmental state 𝑠𝑡 and select the

action 𝑎𝑡 according to the current state. Next, the agent will

judge whether the action at time t is good or bad according to

the feedback reward 𝑟𝑡 of the system, so as to make more

appropriate action at time 𝑡 + 1. The goal of an agent as a

whole is to select a strategy 𝜋 that maximizes the payoff of

the action, and deep learning is the best way to approximate

the optimal strategy. In the network congestion control
system, the action of the agent can be mapped to the

transmission rate of the system. According to the statistical

vector discussed above, the action of the agent can be

mapped to the change of the transmission rate 𝑥𝑡−1 through

function transformation, and the specific change can be

judged by the following formula:
𝑥𝑡−1 ∗ (1 + 𝛼𝑎𝑡) ; 𝑎𝑡 ≥ 0

𝛽𝑘𝐿(𝜃, 𝜃𝑜𝑙𝑑)(4)

The flow of the PC-DRL algorithm is shown as follows:

Input: α,t,rtt
Output: pacing_gain

1 for iteration = 1,2,… do

2 for actor = 1,2,…,N do

3 Run 𝑇 times in the environment according to the

strategy𝜋𝜃𝑜𝑙𝑑

4 Calculate the average estimate �̂�1 , ⋯ , �̂�𝑇

5 end for

6 The punishment size was adjusted according to the KL

divergence value and the processing strategy θ, and the

minimum batch M ≤ NT
𝑥𝑡 = {

𝑥
 /(1 − 𝛼𝑎) ; 𝑎 (1) < 0

𝑡−1 𝑡 𝑡 7 𝜃0𝑙𝑑 ⟵ 0
Where 𝛼 is the scale factor used to suppress the oscillation

(𝛼 =0.025), 𝑎𝑡 is the action performed, 𝑥𝑡 is the

transmission rate, and the above equation is the

transformation formula that maps the action to the

transmission rate. When 𝑎𝑡 ≥0, it indicates that the current

rate has not reached the maximum throughput, and the

transmission rate can be further increased to improve the

transmission efficiency of network data. Therefore,

multiplication mapping is performed to improve the network

utilization rate. When 𝑎𝑡 <0, it indicates that the current rate

is too high, and congestion occurs in the system at this rate.

Therefore, division mapping is performed to reduce the

8 end for

4. Analysis of Experimental Results

The performance of PCC-DRL algorithm was tested on

Pantheon and NS3, and the network topology is shown in the

figure. S0 to S1 are the sender, D0 to D1 are the receiver, and

they are connected to R1 and R2 respectively. The link

bandwidth, delay, and queue management mechanism are 10

Mbps, 1ms, and DropTail. The link between R1 and R2 is a

bottleneck link, with bandwidth and delay of 1 Mbps and

20ms. The File Transfer Protocol (FTP) is used as an

example to simulate network congestion. The sender uses

different TCP data streams. Vegas is used for S0 and Reno is

used for S1. The simulation starts at 0s, and the simulation

period is 10 s, in which 1% of the sent packets are discarded

randomly.

speed quickly, and at the rate of more than 20 MBPS no

packet loss when the system can find the available

bandwidth higher and quickly adjust to a higher rate of

sending 40 MBPS, balance the congestion control and

capacity utilization, therefore, Thus, it ADAPTS well to the

changing network conditions.

Figure 4.1: Network topology

According to the figure 4.2 we will find that the TCP Vegas

agreement under the condition of the link, the throughput is

extremely low, thus the random packet loss will also result in

system selection will send rate by half, it shows that the

traditional congestion control algorithm can't distinguish

congestion caused by packet loss or a congestion caused by

packet loss, so it cannot make full use of the bandwidth of the

link. In contrast, our intelligent system can effectively

distinguish the two types of loss by the relationship between

packet loss and sending rate. Random lost packets are not

affected by the sender's operation, but packet loss caused by

congestion will increase with the increase of sending rate.

When random packet loss occurs, it increases the

transmission rate, but when packet loss is due to link

congestion, it does not increase the transmission rate to avoid

exceeding link capacity. Therefore, our system can maintain

a higher link utilization rate, better use of resources to

achieve better data transmission effect.

Figure 4.2: Differentiates non-congestion loss from

congestion loss

We set the capacity of a single stream on the network link to

alternate between 20Mbps and 40Mbps every 5 seconds with

no random loss. Ideally, the congestion control protocol

changes the transmission rate as it alternates to match the

bandwidth of the link to maximize capacity utilization

without causing congestion. In the test, we found that TCP

Vegas protocol basically cannot adjust the transmission rate

with the rate change after 30 seconds. But our intelligence

system steep rises suddenly in packet loss can be found that

the bandwidth suddenly reduced to reduce the transmission

Figure 4.3: Adaptation to changing network conditions

We tested the robustness of the model in the context of link

configuration in NS3 with bandwidth between 1Mbps and

1000Mbps, delay of 1ms~256ms, queue of 1000 packets and

random loss of 0~ 5%. As shown in Figure 4.4 and 4.5, in

general, the trained intelligent network model can well adapt

to the network environment with bandwidth changes in terms

of delay and link utilization, and achieve better congestion

control.

Figure 4.4: Bandwidth sensitivity - delay change

Figure 4.5: Bandwidth sensitivity - link utilization change

Vegas

PCC-DRL

 Vegas

 Vegas

And the link utilization, although when the delay is more

than 30 ms, intelligent system also can appear a certain

degree of link utilization rate of decline, but compared with

the bluffs overlooking TCP Vegas protocol type, still can

ensure higher throughput, this shows that our algorithm is to

balance the throughput, latency and packet loss rate of the

system of feedback.

Figure 4.8: Queue sensitivity - link utilization change

Figure 4.6: Delay sensitivity - Delay change

Figure 4.9: Queue sensitivity - delay variation

Figure 4.7: Delay sensitivity - link utilization change

In terms of queue sensitivity, the trained intelligent network

model can basically guarantee a delay of less than 10ms in

terms of delay, and maintain a ratio of about 90% in terms of

link utilization. Compared with TCP Vegas, the congestion

control effect is greatly different under different queue sizes.

It achieves basically stable congestion control effect in the

whole queue size range, indicating that it can well adapt to

the network environment with queue size variation.

In the packet loss sensitivity test, our model can achieve the

same low latency as TCP Vegas protocol, but the link

utilization ratio is much higher than TCP Vegas protocol.

TCP is a reliable protocol. Under the traditional congestion

control protocol, the 1% packet loss rate directly triggers

congestion control and reduces the transmission rate rapidly.

However, as mentioned above, intelligent congestion control

protocol can distinguish packet loss caused by non-

congestion from that caused by congestion. Therefore,

random packet loss set by network link basically does not

affect the transmission rate of the system. Therefore, even if

the packet loss rate reaches 5%, the system can guarantee the

link utilization rate of 80%.

 Vegas

 Vegas

 Vegas

 Vegas

application scenario, the promotion network congestion

control algorithm performance and practicability.

References

Figure 4.10: Packet loss sensitivity - link utilization change

Figure 4.11: Packet loss sensitivity - delay change

5. Conclusion

Based on the research of PCC congestion control protocol,

an improved algorithm, PCC-DRL, is proposed to solve the

problem that the original PCC algorithm cannot distinguish

non-congestion from congestion loss. The PCC-DRL

algorithm maps the transmission rate of the system to the

action of deep reinforcement learning, sets the reward

function by balancing throughput, delay and packet loss rate,

and uses a simple deep neural network to carry out the final

strategy approximation, so as to realize the congestion

control algorithm under deep reinforcement learning.

The simulation results of NS3 show that compared with TCP

Vegas, the intelligent system can solve the two drawbacks of

the traditional congestion control algorithm: distinguish the

loss caused by non-congestion and adapt to the changing

network conditions; At the same time, it has excellent

robustness under various link conditions such as bandwidth,

delay, queue size and packet loss.

In future work, will be further complicated network

simulation, continue to optimize the congestion control

algorithm based on depth of intensive study, on the other

hand, continue to follow up new congestion control

algorithm and its iterative update optimization algorithm is

applied to other network congestion control algorithm and

[1] S. H. Low, F. Paganini, and J. C. Doyle, “Internet

congestion control,” IEEE Control Syst., vol. 22, no. 1,

pp. 28–43, Feb. 2002.

[2] K. Brown and S. Singh, “M-TCP: TCP for mobile

cellular networks,” ACM SIGCOMM Comput.

Commun. Rev., vol. 27, no. 5, pp. 19–43,1997.

[3] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C.

Görg, “Adaptive congestion control for unpredictable

cellular networks,” in Proc. ACM Conf. Special Int.

Group Data Commun., vol. 45, no. 4, 2015,pp. 509–

522.

[4] M. Alizadeh et al., “Data center TCP (DCTCP),”

ACMSIGCOMM Comput. Commun. Rev., vol. 41, no.

4, pp. 63–74, 2011.

[5] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast

congestion controlfor TCP in data-center networks,”

IEEE/ACMTrans. Netw. (ToN), vol. 21,no. 2, pp.

345–358, Apr. 2013.

[6] Sikdar B, Kalyanaraman S, Vastola K S. Analytic

models for the latency and steady-state throughput of

TCP Tahoe, Reno, and SACK [J]. IEEE/ACM

Transactions On Networking, 2003, 11(6): 959-971.

[7] Ha S, Rhee I, Xu L. CUBIC: a new TCP-friendly high-

speed TCP variant [J]. ACM SIGOPS operating

systems review, 2008, 42(5): 64-74.

[8] Tan K, Song J, Zhang Q, et al. A compound TCP

approach for high-speed and long distancenetworks

[C]//Proceedings-IEEE INFOCOM. 2006.

[9] Keith Winstein and Hari Balakrishnan. 2013. TCP ex

machina: computer-generated congestion control.

SIGCOMM Comput. Commun. Rev. 43, 4 (October

2013), 123–134.

[10] Dong M, Li Q, Zarchy D, et al. {PCC}: Re-architecting

congestion control for consistent high performance

[C]//12th {USENIX} Symposium onNetworked

Systems Design and Implementation ({NSDI} 15).

2015: 395-408.

[11] Cardwell N, Cheng Y, Gunn C S, et al. BBR:

congestion-based congestion control [J].

Communications of the ACM, 2017, 60(2): 58-66.

[12] F. Y. Yan, J. Ma, et al., “Pantheon: the training ground

for internet congestion-control research,” in ATC,

2018.

 Vegas

 Vegas

	1. Introduction
	2. Overview of PCC Algorithm
	1) Start
	2) Decision making
	3) Rate adjustment

	3. Improved algorithm: PCC-DRL
	3.1 Deep reinforcement learning
	3.3PCC-DRL
	3.2 System input and output
	5 end for
	< 0

	4. Analysis of Experimental Results
	References
	5. Conclusion

