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Abstract: To solve the congestion control algorithm of a dynamic network difficult to determine the appropriate size of the congestion 

window problem. To improve the traditional congestion control algorithm of the UDP black-box model, the packet loss behavior that is 

not congested or caused by congestion is distinguished. Optimizing the traditional PCC black-box model based on utility function, and 

improved PCC-DRL optimization algorithm based on the PCC method were proposed. Compared with the existing mainstream 

congestion control algorithm, the comparison results show that the application of THE PCC-DRL optimization algorithm improves the 

dynamic network bandwidth utilization rate 9.67%, reduces the packet loss rate 0.24%, reduces the delay 5.69ms, and improves the 

queue concurrency 6.73%. These results indicate that THE PCC-DRL algorithm has a good effect on distinguishing the packet loss 

behaviors caused by non-congestion or congestion in dynamic networks, and has good adaptability and robustness to dynamic 

conditions and congestion forms. 
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1. Introduction 
 

With the continuous and rapid growth of the Internet, 

network performance directly affects the quality of service of 

data transmission. Once the total demand for resources 

exceeds the maximum available amount, network congestion 

will occur. Typical effects include slow transmission speeds, 

high latency, high loss rates and, in severe cases, network 

crashes. The goal of congestion control is to dynamically 

adjust the transmission rate to make full use of network 

resources under dynamic and complex network conditions. 

A qualified congestion control algorithm should first sense 

the network state, then consider the influence of the factors 

including throughput, congestion window, packet loss rate, 

delay, fairness, and finally make a fast choice of the optimal 

transmission rate. Usually, the design of the congestion 

control algorithm is based on prior knowledge and 

experience one kind of network environment, but the actual 

network environment changing, based on the rules and the 

model of traditional congestion control algorithm can not 

well adapt to environmental changes, so we need the new 

breed of dynamic adaptive congestion control algorithm to 

meet the needs of the guarantee network transmission [1]. 

The popularity of smart phones has driven the development 

of mobile cellular networks, and with the rapid development 

of big data technology, data center network has become a 

research hotspot. Therefore, many congestion control 

algorithms for these two networks have emerged. For 

example, M-TCP [2] and Verus [3] are designed specifically 

for mobile cellular networks. TCP variants DCTCP [4] and 

ICTCP [5] are intended to serve data center networks. At the 

same time, with the rapid development of intelligent 

algorithms such as deep learning and reinforcement learning, 

the learning-based network congestion control scheme 

emerges at the right moment. The characteristics of 

autonomous learning mode enable the congestion control 

 

scheme to be automatically adjusted with the changes of the 

network environment. 

 
According to different control methods, the congestion 

control algorithm can be divided into the additive increase 

multiplicative decrease (AIMD) class represented by 

NewReno [6], the functional type represented by TCP-Cubic 

[7] algorithm, the rule aggregation type represented by 

TCP-compound [8] algorithm and the congestion control 

algorithm based on reinforcement learning. Through the 

analysis of the congestion control algorithm mentioned 

above, we find that the core of the congestion control 

algorithm lies in the real-time perception of the environment 

state and the dynamic adjustment of the congestion window 

(CWND). The traditional congestion control algorithm is 

usually defined by human experts using prior knowledge, so 

it cannot be adjusted dynamically. The congestion control 

algorithm based on reinforcement learning can learn the 

mapping of historical feedback behavior from the 

environment without manual adjustment to adapt it to special 

scenarios. Famous congestion control algorithms based on 

reinforcement learning proposed at present include Remy 

[9], PCC [10], BBR [11] and Indigo [12]. 

 
The congestion control algorithm Indigo based on imitation 

learning sets the network scene information as expert 

knowledge, and the decision network is a single-layer LSTM 

network, so as to realize the congestion control in the current 

training scene. However, the performance of the algorithm 

can only play a superior performance in trained scenarios, so 

the practical application is limited. In contrast, we find that 

the congestion control algorithm based on DRL only needs a 

simple neural network and can achieve better performance 

than the traditional algorithm according to the historical 

information of the state combination of multiple time slices 

before the current time. Therefore, we propose a congestion 



 

 

control algorithm based on DRL called PCC-DRL. 

 
Based on PCC algorithm can't distinguish between the 

congestion and the loss caused by congestion and quickly 

adapt to the change of network conditions, the system of 

sending rate mapping for depth of intensive study, and 

through the balance of throughput, delay, packet loss rate set 

a reward function, the use of the depth of the simple neural 

network for the final strategy approach, Thus, the congestion 

control algorithm based on deep reinforcement learning is 

realized. Compared with the traditional TCP CUBIC 

protocol, the experimental results show that the PCC-DRL 

algorithm can not only solve the problem that the traditional 

congestion control algorithm is difficult to adapt to network 

changes and cannot distinguish packet loss, but also has 

better congestion control effect and robustness. 

 

2. Overview of PCC Algorithm 
 

Compared with most Congestion Control protocols based on 

TCP, PCC (Performanc-oriented Congestion Control) 

protocol [4] is based on UDP, so the algorithm can jump out 

of various RULES of TCP. After all, in today's complex 

network environment, TCP can no longer preset enough 

network events. The congestion control is carried out 

through the model network, and the PCC algorithm can 

realize the end-to-end transmission rate control without the 

need for congestion window size adjustment to complete the 

congestion control. It is a black box model, and its sender can 

be decomposed into four parts: data transmission, SACK 

collection, effect value calculation and transmission rate 

adjustment. The specific operation process is shown as 

follows: 

 

1) Start 

In the process of congestion control, PCC algorithm divides 

time into a series of monitor intervals (MI), and each MI has 

1 to 2 RTT. After each MI, the sending rate is doubled, and 

then the current effect value is calculated according to the 

current sending rate. When the effect value decreases, PCC 

will exit the initial stage, but will not directly reduce the 

sending rate to extremely low like other traditional 

algorithms, but will look for a higher sending rate of the 

previous effect value to set. 

 

2) Decision making 

As an intelligent congestion control algorithm, its decision 

strategy is RTCs (Multiple Randomized controlled Trials), 

which will slightly increase and decrease the current rate R 

(empirically 0.99r and 1.01R). The four rates of 0.99r, 0.99r, 

1.01r and 1.01r were randomly arranged in pairs. After 

sending, the effect values of these rates were calculated. If 

the effect values of 1.01r were both large, the sending rate 

would be set to 1.01r, otherwise 0.99r. However, if there is a 

staggered situation, the sending rate of R will continue to 

enter the decision-making stage again. At this time, it is 

necessary to adjust the coefficient, but keep it between 

0.95-0.99 and 1.01-1.05. 

 

3) Rate adjustment 

In each MI, the rate will be adjusted according to the sending 

rate R given in the decision-making stage and the adjustment 

direction. Only when the effect value of the adjusted rate is 

smaller than the effect value of the rate before adjustment, 

the rate will return to the decision-making stage. 
 

3. Improved algorithm: PCC-DRL 
 

PCC uses a black-box approach: THE PCC sender observes 

the performance metrics generated by sending at a particular 

rate, converts these metrics into numerical utility values, and 

adjusts the sending rate in a direction empirically associated 

with higher utility. However, the specific implementation of 

PCC shows that the convergence rate is too long and is far 

from the ideal trade-off between convergence rate and 

stability. 
 

 
 

3.1 Deep reinforcement learning 

 
Applying deep reinforcement learning to congestion control 

is essentially transforming the congestion control formula 

into a sequential decision problem under the framework of 

deep reinforcement learning. 

 
(1) The action is the change of the transmission rate. In 

congestion control, the agent is the data sender, so its action 

is actually a change in the transmission rate. We use the 

concept of monitoring interval (MIs) to define this action 

concretely. The time is divided into consecutive time 

intervals. At the beginning of each time interval T, the sender 

can adjust the sending rate 𝑥𝑡 and keep it fixed throughout 

the time interval. The effects of actions (i.e., rate changes) 

may have indirect consequences. Sending too fast may 

overload buffers and lead to future packet loss and delay. In 

deep reinforcement learning, long-term decisions can be 

captured by discount factors. 

 
(2) Status is the historical record of network statistics. After 

the sender selects the rate𝑥𝑡 at the time interval T, it will 

observe the results sent by the system at this rate and 

calculate the statistical vector 𝑣𝑡 based on the received 

packets. The statistical vector 𝑣𝑡   is composed of three parts: 

① Delay gradient (the reciprocal of delay relative to time) 

② delay rate (the ratio of the average delay of the current 

time interval to the minimum average delay of any time 

interval in the connection history) ③ Send rate (the ratio of 

packets sent to packets confirmed by the receiver). Networks 

vary greatly in available bandwidth, latency and loss rate, so 

when selecting the elements of statistical vector, statistical 

information that may change greatly between connections, 
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such as the change of link attributes (absolute value of delay), 

is avoided, so as to achieve the universality of the model. The 

agent's choice of the next rate change depends on the fixed-

length history of the statistical vector collected from the 

packets sent by the receiver. This allows agents to detect 

trends and changes in network state and respond more 

appropriately, taking into account the limited length of 

history, not just the latest statistics. Therefore, the state𝑠𝑡 at t 

is defined as: 𝑠𝑡 = (𝑣𝑡−(𝑘+𝑑), ⋯ , 𝜈𝑡−𝑑 ). For constant k > 0, d 
represents the delay between the selected sending rate and 

transmission rate to ensure smooth network. 

 

3.3PCC-DRL 

 
In order to make it be able to recover experience like DQN 

and make use of previous data, PCC-DRL algorithm adopts 

importance sampling, so that even the data generated by 

another strategy can be applied to the training of the current 

strategy. The factor of importance sampling is actually the 

ratio of the current strategy to the previous strategy: 

the collection result. 
𝑟 (𝜃) =

   𝜋𝜃 (𝑎𝑡 ,𝑠𝑡 )  (2) 

(3) Set rewards. The rewards generated by sending at a 

particular rate at a particular time depend on the performance 

requirements of the particular application. Some applications 

such as online games require very low latency; Some 

applications such as large file transfers require high 
bandwidth; Some services want to use low but constant 

𝑡 𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡 ) 

Which 𝜋𝜃 (𝑎𝑡 , 𝑠𝑡 ) refers to the current policy, and 

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 , 𝑠𝑡 )refers to the last round of strategy. 

 
Then we can obtain its strategic gradient descent algorithm: 

bandwidth (that isno jitter); Others require higher bandwidth 𝐽 (𝜃) = 𝐸    𝜋𝜃 (𝑎𝑡 ,𝑠𝑡 )  (𝑠 , 𝑎 )]   (3) 

and tolerate bandwidth variations. Therefore, rewards can be 
𝜃𝑜𝑙𝑑 (𝑠𝑡 ,𝑎𝑡 

)~𝜋𝜃𝑜𝑙𝑑 
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡 ) 𝜋𝜃𝑜𝑙𝑑 𝑡 𝑡 

better structured according to the performance required by 

different services. We will implement intelligent congestion 

control algorithm based on deep reinforcement learning 

(DRL). DRL is used to generate policies for mapping 

observed network statistics such as latency, throughput, and 

so on to rate selection. 

 

3.2 System input and output 

 
Deep reinforcement   learning   agents   essentially   solve 

However, if the difference between the old and new 

strategies is too large, the system will be unstable due to too 

much update. The policy difference here refers to that the 

probability distribution of the actions obtained by the 

network with the same input state cannot be too different. 

The similarity degree can be calculated by using THE KL 

divergence. If the KL divergence value is too large, the 

punishment will be increased, and if the KL divergence value 

is too small, the punishment will be reduced. Therefore, the 

PC-DRL algorithm is shown in the following formula: 

sequential decision   problems   by   interacting   with   the 
𝐽𝑃𝐶𝐶−𝐷𝑅𝐿 (𝜃) = 𝐸 [

 𝜋𝜃 (𝑎𝑡 ,𝑠𝑡 )    
𝐴

 (𝑠 , 𝑎 )] − 
environment. In discrete time 𝑡 ∈ 0,1, ⋯ , the agent will 𝜃𝑜𝑙𝑑 (𝑠𝑡 ,𝑎𝑡 

)~𝜋𝜃𝑜𝑙𝑑 
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 ,𝑠𝑡 ) 𝜋𝜃𝑜𝑙𝑑 𝑡 𝑡 

observe the perceptible environmental state 𝑠𝑡 and select the 

action 𝑎𝑡 according to the current state. Next, the agent will 

judge whether the action at time t is good or bad according to 

the feedback reward 𝑟𝑡 of the system, so as to make more 

appropriate action at time 𝑡 + 1. The goal of an agent as a 

whole is to select a strategy 𝜋 that maximizes the payoff of 

the action, and deep learning is the best way to approximate 

the optimal strategy. In the network congestion control 
system, the action of the agent can be mapped to the 

transmission rate of the system. According to the statistical 

vector discussed above, the action of the agent can be 

mapped to the change of the transmission rate 𝑥𝑡−1 through 

function transformation, and the specific change can be 

judged by the following formula: 
𝑥𝑡−1 ∗ (1 + 𝛼𝑎𝑡 ) ; 𝑎𝑡 ≥ 0 

𝛽𝑘𝐿(𝜃, 𝜃𝑜𝑙𝑑)(4) 

The flow of the PC-DRL algorithm is shown as follows: 

Input: α,t,rtt 
Output: pacing_gain 

1 for iteration = 1,2,… do 

2 for actor = 1,2,…,N do 

3 Run 𝑇 times in the environment according to the 

strategy𝜋𝜃𝑜𝑙𝑑 

4 Calculate the average estimate  �̂�1 , ⋯ , �̂�𝑇 

5 end for 

6 The punishment size was adjusted according to the KL 

divergence value and the processing strategy θ, and the 

minimum batch M ≤ NT 
𝑥𝑡    = {

𝑥
 /(1 − 𝛼𝑎 )    ; 𝑎 (1) < 0 

𝑡−1 𝑡 𝑡 7 𝜃0𝑙𝑑 ⟵ 0 
Where 𝛼 is the scale factor used to suppress the oscillation 

( 𝛼 =0.025), 𝑎𝑡 is the action performed, 𝑥𝑡 is the 

transmission rate, and the above equation is the 

transformation formula that maps the action to the 

transmission rate. When 𝑎𝑡 ≥0, it indicates that the current 

rate has not reached the maximum throughput, and the 

transmission rate can be further increased to improve the 

transmission efficiency of network data. Therefore, 

multiplication mapping is performed to improve the network 

utilization rate. When 𝑎𝑡 <0, it indicates that the current rate 

is too high, and congestion occurs in the system at this rate. 

Therefore, division mapping is performed to reduce the 

8 end for 

 

4. Analysis of Experimental Results 
 

The performance of PCC-DRL algorithm was tested on 

Pantheon and NS3, and the network topology is shown in the 

figure. S0 to S1 are the sender, D0 to D1 are the receiver, and 

they are connected to R1 and R2 respectively. The link 

bandwidth, delay, and queue management mechanism are 10 

Mbps, 1ms, and DropTail. The link between R1 and R2 is a 

bottleneck link, with bandwidth and delay of 1 Mbps and 

20ms. The File Transfer Protocol (FTP) is used as an 



 

 

example to simulate network congestion. The sender uses 

different TCP data streams. Vegas is used for S0 and Reno is 

used for S1. The simulation starts at 0s, and the simulation 

period is 10 s, in which 1% of the sent packets are discarded 

randomly. 

speed quickly, and at the rate of more than 20 MBPS no 

packet loss when the system can find the available 

bandwidth higher and quickly adjust to a higher rate of 

sending 40 MBPS, balance the congestion control and 

capacity utilization, therefore, Thus, it ADAPTS well to the 

changing network conditions. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Network topology 
 

According to the figure 4.2 we will find that the TCP Vegas 

agreement under the condition of the link, the throughput is 

extremely low, thus the random packet loss will also result in 

system selection will send rate by half, it shows that the 

traditional congestion control algorithm can't distinguish 

congestion caused by packet loss or a congestion caused by 

packet loss, so it cannot make full use of the bandwidth of the 

link. In contrast, our intelligent system can effectively 

distinguish the two types of loss by the relationship between 

packet loss and sending rate. Random lost packets are not 

affected by the sender's operation, but packet loss caused by 

congestion will increase with the increase of sending rate. 

When random packet loss occurs, it increases the 

transmission rate, but when packet loss is due to link 

congestion, it does not increase the transmission rate to avoid 

exceeding link capacity. Therefore, our system can maintain 

a higher link utilization rate, better use of resources to 

achieve better data transmission effect. 
 

 

Figure 4.2: Differentiates non-congestion loss from 

congestion loss 

We set the capacity of a single stream on the network link to 

alternate between 20Mbps and 40Mbps every 5 seconds with 

no random loss. Ideally, the congestion control protocol 

changes the transmission rate as it alternates to match the 

bandwidth of the link to maximize capacity utilization 

without causing congestion. In the test, we found that TCP 

Vegas protocol basically cannot adjust the transmission rate 

with the rate change after 30 seconds. But our intelligence 

system steep rises suddenly in packet loss can be found that 

the bandwidth suddenly reduced to reduce the transmission 

 

 

 

 
Figure 4.3: Adaptation to changing network conditions 

 
We tested the robustness of the model in the context of link 

configuration in NS3 with bandwidth between 1Mbps and 

1000Mbps, delay of 1ms~256ms, queue of 1000 packets and 

random loss of 0~ 5%. As shown in Figure 4.4 and 4.5, in 

general, the trained intelligent network model can well adapt 

to the network environment with bandwidth changes in terms 

of delay and link utilization, and achieve better congestion 

control. 
 

 

Figure 4.4: Bandwidth sensitivity - delay change 
 

Figure 4.5: Bandwidth sensitivity - link utilization change 
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PCC-DRL 
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And the link utilization, although when the delay is more 

than 30 ms, intelligent system also can appear a certain 

degree of link utilization rate of decline, but compared with 

the bluffs overlooking TCP Vegas protocol type, still can 

ensure higher throughput, this shows that our algorithm is to 

balance the throughput, latency and packet loss rate of the 

system of feedback. 

 

 

 

 

 
 

 

 

 

Figure 4.8: Queue sensitivity - link utilization change 

 

 

 

 

 
 

Figure 4.6: Delay sensitivity - Delay change 

 

 

 

 

 

 

 

 

 

Figure 4.9: Queue sensitivity - delay variation 

 

 

 
 

Figure 4.7: Delay sensitivity - link utilization change 

 
In terms of queue sensitivity, the trained intelligent network 

model can basically guarantee a delay of less than 10ms in 

terms of delay, and maintain a ratio of about 90% in terms of 

link utilization. Compared with TCP Vegas, the congestion 

control effect is greatly different under different queue sizes. 

It achieves basically stable congestion control effect in the 

whole queue size range, indicating that it can well adapt to 

the network environment with queue size variation. 

 
In the packet loss sensitivity test, our model can achieve the 

same low latency as TCP Vegas protocol, but the link 

utilization ratio is much higher than TCP Vegas protocol. 

TCP is a reliable protocol. Under the traditional congestion 

control protocol, the 1% packet loss rate directly triggers 

congestion control and reduces the transmission rate rapidly. 

However, as mentioned above, intelligent congestion control 

protocol can distinguish packet loss caused by non-

congestion from that caused by congestion. Therefore, 

random packet loss set by network link basically does not 

affect the transmission rate of the system. Therefore, even if 

the packet loss rate reaches 5%, the system can guarantee the 

link utilization rate of 80%. 

 Vegas 

 Vegas   

 Vegas   

 Vegas  



 

 

application scenario, the promotion network congestion 

control algorithm performance and practicability. 
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Figure 4.10: Packet loss sensitivity - link utilization change 

 

 

Figure 4.11: Packet loss sensitivity - delay change 
 

5. Conclusion 
 

Based on the research of PCC congestion control protocol, 

an improved algorithm, PCC-DRL, is proposed to solve the 

problem that the original PCC algorithm cannot distinguish 

non-congestion from congestion loss. The PCC-DRL 

algorithm maps the transmission rate of the system to the 

action of deep reinforcement learning, sets the reward 

function by balancing throughput, delay and packet loss rate, 

and uses a simple deep neural network to carry out the final 

strategy approximation, so as to realize the congestion 

control algorithm under deep reinforcement learning. 

 
The simulation results of NS3 show that compared with TCP 

Vegas, the intelligent system can solve the two drawbacks of 

the traditional congestion control algorithm: distinguish the 

loss caused by non-congestion and adapt to the changing 

network conditions; At the same time, it has excellent 

robustness under various link conditions such as bandwidth, 

delay, queue size and packet loss. 

 
In future work, will be further complicated network 

simulation, continue to optimize the congestion control 

algorithm based on depth of intensive study, on the other 

hand, continue to follow up new congestion control 

algorithm and its iterative update optimization algorithm is 

applied to other network congestion control algorithm and 
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