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Abstract: Agriculture has been an important research area in the field of image processing for the last 

five years. Diseases affect the quality and quantity of fruits, thereby disrupting the economy of a country. 

Many computerized techniques have been introduced for detecting and recognizing fruit diseases. However, 

some issues remain to be addressed, such as irrelevant features and the dimensionality of feature vectors, 

which increase the computational time of the system. Herein, we propose an integrated deep learning 

framework for classifying fruit diseases. We consider seven types of fruits, i.e., apple, cherry, blueberry, 

grapes, peach, citrus, and strawberry. The proposed method comprises several important steps. Initially, data 

increase is applied, and then two different types of features are extracted. In the first feature type, texture and 

color features, i.e., classical features, are extracted. In the second type, deep learning characteristics are 

extracted using a pretrained model. The pretrained model is reused through transfer learning. Subsequently, 

both types of features are merged using the maximum mean value of the serial approach. Next, the resulting 

fused vector is optimized using a harmonic threshold-based genetic algorithm. Finally, the selected features are 

classified using multiple classifiers. An evaluation is performed on the PlantVillage dataset, and an accuracy 

of 99% is achieved. A comparison with recent techniques indicate the superiority of the proposed method. 
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1 Introduction 

Agricultural imaging is an important research domain in  image  processing  and  computer 
vision [1]. Fruit plants contribute significantly to the economic growth of  any country [2,3]. They 

not only provide food and raw materials, but also contribute to the employment of the local 
 
 



 

 

 

population [4]. Fruit plants that contribute primarily to production include citrus fruits, apples, 

grapes, and peaches. Citrus fruits are beneficial to human health as they are abundant in vitamin 
C [5]. Fruit diseases affect the production of fruits; the reduction in fruit productivity inevitably 

affects the overall economy of  a  country.  Therefore,  it  is  important  to  detect  and  recognize  

these diseases at the early stage to overcome major losses. The most typical citrus fruit diseases 
include downy, greening, canker, and black spots.  Main leaf  diseases that affect apple production 

are frog eye spots, cedar rust, mosaics, gray spots, and scabs. The detection and identification 

of fruit diseases at the early stage can improve fruit quality and production [6].  The  manual 

detection process incurs considerable time and energy; therefore, computerized techniques must be  
introduced. 

Recently, the automated recognition of fruit  diseases has garnered significant interest  in the  

field of computer vision. The primary procedures of these automated systems are preprocessing, 

segmentation, feature extraction, feature selection, and classification [7]. Researchers have primarily 

focused on enhancing the efficiency of the system using different techniques in these procedures. 
Researchers have utilized different segmentation methods such as K-means clustering [8], snake 

segmentation [9], globally adaptive thresholding [10], and genetic cellular neural network-based 

segmentation [11] to identify the infected regions in fruit plant diseases. 

Feature extraction is crucial in fruit disease classification. During feature extraction, hand - 

crafted features and deep CNN features are extracted for disease identification. The important 
handcrafted features for fruit plant and leaf disease recognition are color and texture features [12]. 

In [13], researchers utilized color features for disease recognition. For texture feature extraction,  

researchers utilized the local binary pattern (LBP) [14] and color texture features [15].  Addi- 
tionally, deep-learning-based features have garnered significant attention for the classification of 

different fruit diseases [16,17]. Deep CNN features can improve recognition accuracy. Some deep- 

feature-based systems are used for recognizing plant leaf diseases [18,19]. Furthermore, researchers 

have proposed feature selection techniques to select the best features. The computational time can 
be minimized using the best feature selection techniques. 

Herein, we present a framework for the classification of fruit plant diseases. We evaluated our  

technique on 16 classes of the Plant Village database, which comprises different fruit plants such 

as apple, blueberry, cherry, orange, peach, grapes, and strawberry. In the proposed framework, we  
extracted the LBP, color, and deep ResNet50 features and then combined them to obtain a single  

vector using the maximum mean value serial approach. Subsequently, the combined vector was 

optimized using a modified genetic algorithm (GA) and fed to the ensemble subspace discriminant  

(ESD) classifier for disease recognition. 

The remainder  of  this  paper  is organized as follows:  The  existing studies  (related  studies) 

are discussed in Section 2. In Section 3, the proposed framework is described based on different  

visualizations and mathematical modeling, and the results are presented in Section 4. Finally, the  

conclusions are presented in Section 5. 
 

2 Related Work 

Researchers have introduced several automated systems to detect  and recognize  diseases  in 

fruit plants and leaves [20,21]. These systems utilize handcrafted and deep CNN features. Sharif 

et al. [5] developed a system for recognizing diseases in citrus fruits based on two phases. In the 
first phase, the lesion area was detected in the citrus fruits and leaves. To detect the lesion, they  

utilized an optimized weight-based segmentation method. In the next step, they combined the 



 

 

color, texture, and geometric features. Feature selection was performed using skewness, entropy, 

and PCA-based methods. Subsequently, the selected feature vector was fed to a support vector 
machine (SVM), which achieved a 97% recognition accuracy for citrus diseases and 90.4% on 

a private dataset. In [22], a grape leaf disease detection method based on a back-propagation 

neural network was introduced. First, images denoised using a wavelet transform-based Wiener 
filtering technique, and the infected region was segmented using the Otsu segmentation method.  

Subsequently, the features were calculated from the perimeter, circularity, area, shape complexity, 

and rectangularity. 

Liu et al. [23] presented a CNN-based methodology for the recognition of apple leaf diseases.  

They trained the AlexNet model on 13689 images of apple leaves and achieved a 97.62% accuracy.  
Khan et al. [6] presented a method for classifying different  fruit  diseases.  They  utilized  the 

features from pretrained Caffe AlexNet and VGG-16 networks. In another study [24], researchers 

developed a system for the segmentation and recognition of grape leaf  disease. In this system, 
a haze reduction and enhancement technique was first introduced. Subsequently, LAB color 

transformation  was performed  to select the best channel. During feature extracti on, the features 

were calculated based on the geometric, color, and texture features. The extracted features were  

combined using canonical correlation analysis, and the best feature set was selected by imple - 
menting neighborhood component analysis. This method yielded accuracies of 90% and 92% for 

segmentation and classification, respectively. 

Khan et al. [25] proposed a technique for identifying apple leaf diseases. Initially, the images 

were enhanced using a hybrid method. This hybrid method combines de-correlation as well as three-

dimensional (3D) Gaussian, 3D median, and 3D box  filtering.  They  extracted  and  com- bined the 

LBP, color,  and  color  histogram-based  features  and  optimized  them  using  a  GA. Chao et al. 
[26] introduced a method for identifying apple leaf diseases based  on  deep  CNN models. They 

combined DenseNet and Xception models  using  global  average  pooling  layers. They extracted 

the features from the CNN models and fed them to an SVM for classification. Additionally, 

researchers [27] have implemented a transfer learning technique for the detection of apple diseases, 
where they utilized a global average pooling layer for feature collection from the VGG-16 network. 

Adeel et al. [4] introduced a deep CNN-based methodology for the detection of grape leaf  diseases. 

They implemented the transfer learning technique on pretrained networks such as AlexNet and 
ResNet101 and selected the  best  features  using  the  Yager  entropy  and kurtosis. In [28], a leaf 

generative adversarial network (GAN) was introduced for grape disease recognition, where grape 

leaf images in four different diseases were generated. 

All of the abovementioned techniques focused on the classification of fruit diseases using deep  
learning. Challenges in deep learning during training have been discussed, and they were solved  

using data augmentation techniques in a few studies. Furthermore, few  researchers have high- 

lighted the issue of irrelevant features, which can be resolved using feature selection techniques.  
Nonetheless, issues in the classification phase persist. 

 

3 Proposed Methodology 

In this section, we present the proposed framework for the classification of fruit plant diseases 

from leaf images with visual and technical details. The primary procedures of the proposed 

framework are dataset collection, data augmentation to increase the number of images per class, as 

well as extraction of features that include LBPs [29], robust color features, and deep ResNet50 [30] 
features. Subsequently, these extracted features are combined using a maximum mean value serial 

approach and optimized using a modified GA. Finally, the optimized feature vector is fed to 



 

 

 

multiple classifiers for image recognition. Fig. 1 illustrates the main flow diagram of this process. 

The details of each procedure are provided below. 

 

Figure 1: Flow of the proposed fruit diseases classification framework 

 
3.1 Dataset Collection 

In this study, the PlantVillage database [31] was utilized to prepare a dataset for the evaluation 

of the proposed technique. The PlantVillage dataset comprises 54303 leaf images and 38 classes. 

In this study, we utilized 16 classes of healthy and diseased fruit plants. The images were captured  
from apple, blueberry, cherry, grape, orange,  peach, and strawberry leaves. All images of  this 

dataset were resized to 256 × 256 pixels. Sample images of this dataset are shown in Fig. 2. 

 

Figure 2: Sample images of the Plantvillage dataset 
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3.2 Dataset Augmentation 

In this study, we performed data augmentation to increase the amount of data of classes 

comprising few images to balance the dataset. For the augmentation, image flips were performed 
to convert the original image into a new angle. Initially, the apple scab class contained 630 images; 

however, the number of images increased  to  1260 after  augmentation.  The  original apple cedar 

rust class contained 276 images, which to 550 images after augmentation. Meanwhile, the grape  

healthy and peach healthy classes contained 423 and 360 images, respectively, which increased to 
846 and 720 images after augmentation, respectively. The number of healthy strawberry classes 

increased from 456 to 912 images. Mathematically, the horizontal and vertical flip operations are  

defined as follows: 

FH = Ii(n + 1 − j) (1) 

FV = I(n + 1 − j)j (2) 

where FH represents the horizontal flip operation, FV the vertical flip operation, and I the original 

database image with dimensions N × M × k. 

3.3 Feature Extraction 

Feature extraction is an important  aspect  in computer  vision and image processing.  Features 

are extracted to represent the image information. The extraction of robust features enables image 
to be classified correctly.  In this  study,  we focused  on both classical and deep learning features,  

i.e., LBP, color, and deep features extracted through the ResNet50 CNN pretrained model. A 

mathematical description of each method is provided below. 

3.3.1 Local Binary Patterns (LBP) Features 

LBP features are used extensively to perform texture analysis on image datasets. They estimate 

the texture information of an image based on its neighboring pixels. Suppose  Xh(a, b) is an image 

of size M N, where (a, b) is the position of the image pixels. The central pixel and its neighring 
pixels are denoted as qc, and qh respectively. Using these parameters, the LBP features can be 
calculated a: 

h−1 

LBP(qc)h ,r = x(qh − qc)2 (3) 

h=0 

x(y) = 

 
1, y ≥ 0 

 
(4) 

 

where h denotes the neighboring  pixel, and r  is  the  neighborhood  radius.  The  extracted feature 

set size of  the LBP features was N    59. Here, N  represents the total number of  images, and for 

each image, 59 features were extracted. 

3.3.2 Color Features 

Color features [32] are vital to the recognition of diseases using RGB images. We utilized 
three color spaces, namely RGB, HSV, and LAB, to extract the color features from the database. 

First, we separated each channel of the color space and then converted it into a histogram. Sub- 

sequently, for each channel, we calculated five parameters including the mean, standard deviation,  
variance, kurtosis, and skewness. This calculation was performed for all nine channels of the three 
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color spaces. The computed  parameters  were combined  serially to obtain a vector  c_fv(i) of  size 

N 6500. Robust color features were selected by defining a threshold function, which selects the 
features based on the mean value and eliminates approximately 60% to 70% of irrelevant features.  

Mathematically, this can be described as follows: 

where ψcf (i) is the robust color feature set of size N × 2511, selected from c_fv(i). 

c_fv(i) = {RGB; LAB; HSV}3
 

CF 
ψcf (i), c_fv(i) μ 

Eliminate otherwise 

where ψcf (i) is the robust color features set of size N × 2511, selected from c_fv(i). 

3.3.3 Deep Learning Features 

(5) 

 
 

(6) 

In this study,  we utilized the ResNet50 [30] model for deep feature extraction. This model, 

which was established using the residual learning technique, comprised 50 layers and 16 bottleneck  

residual  blocks.  Three  convolutional  operations  of  size  1   1,  3   3,  and  1   1  were  performed 
on each residual block. The image size for the input was 224 224, and this model yielded 2048 

features as the output. The feature map sizes for the first three residual blocks were 64 and 256. 

The feature maps for the next four blocks were 128 and 512. The feature sizes for  the  next six 
blocks were 256 and 1024. The final three blocks contained  feature  maps of  sizes 512 and 2048. 

We extracted the features from the fully connected (fc1000) layer, which generated a feature vector 

of  size N    1000, as illustrated  in Fig. 3. The feature  set was later combined  with the LBP and 

color features for the final classification. 
 

Figure 3: An architecture of ResNet50 deep learning model 

 

3.4 Features Fusion 

After extracting the features, we combined all features in a single vector using a new approach 

known as the “maximum mean value serial approach.” Three feature vectors, including LBP, color, 

and ResNet50 features, were combined into a single vector to obtain a new feature  set of  size N 

3570 to achieve a better classification accuracy. The combination process can be mathematically 

expressed as follows: 

Consider, we have three feature vectors ψ(LBP), ψ(cf ), and ψ(df ) of dimensions N      59, 

N  2511, and N  1000, respectively. Suppose ψfd  is a fused vector of  dimension N   K, then 
computed the mean value of each vector as follows: 

μ(1) =  
1   Σ

(ψ(LBP))
 

, μ(2) =  
1   Σ

(ψ(cf ))
  

, μ(3) =  
1   Σ

(ψ(df ))
  

(7) 
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UP(ψfd(i)) for  ψfd (i) < μ̌ 

(10)
 

NotUpdated for  ψfd (i) ≥ μ̌  

where  ψ(LBP)N×59,  ψ(cf )N×2511,  and  ψ(df )N×1000  represent  the  LBP,  color,  and  deep  ResNet50 

features, respectively. ψfd(i) is the serial fused vector, and ψfd(i) is the final maximum mean value 
of the serial approach-based feature vector. This vector is further optimized using a modified GA, 

and this process is known as threshold-function-based GA feature selection. 

3.5 Features Selection 

A GA is a feature optimization technique inspired by biological evolution theory [33]. The GA 
belongs to the evolutionary class of algorithms. In this study, using the GA, the best features were 

selected from the combined feature vector ψfd(i). The combined feature vector was provided as an 
input. The best features were selected as the set of solutions, also known as the population. The  
solution is known as a chromosome and comprises genes that depict a possible solution for 

the specified problem. The GA evaluated  the  generated  solutions  after  each  iteration  based  on  

the fitness function. The GA randomly selected individuals as parents from the population. These  

parents produce children for the next generation. Finally, the GA provided an optimal  solution, 
which was then passed through a threshold function. The threshold function was based on the  

harmonic mean of the optimal solution. 

Initialization: The GA performs an initialization using a set of individuals, known as a 
population.  The population  was set to 20, which is the possible number of  solutions.  The number  

of generations was set to 500, signifying that this  algorithm performed  500 iterations  to  evaluate 

the fitness function. The mutation rate and crossover rate were set to 0.01 and 0.8, respectively. 

Selection: The most important step in the GA is the selection  of  the best  features.  In this 

study, we applied the roulette-wheel method for parent selection. The probability-based roulette 

wheel selection is mathematically defined as: 

    w 
= Σ

(wi)    

 

(11) 

wi = exp 

  

−b1 × 
Sρ

 

(12) 

where, b1 represents the selected parent pressure, Sρ denotes the sorted population, and Wl is the 

last selected population. 

Crossover: This step generates a better individual by swapping the genes of two parents. In this 

study, we utilized a single-point crossover rate of 0.8. A single-point crossover randomly selects a 

ψfd(i) = (9) 



 

 

Σ 

  
≥
=

 

 

point from both parents. A high crossover rate may cause a premature convergence of the GA. 

In mathematical form, it can be defined as: 

γcr = CrossOver(X1, X2) (13) 

 
X1 = vZ1 + (1 − v) × Z2 (14) 

 
X2 = vZ2 + (1 − v) × Z1 (15) 

Mutation: Mutation maintains genetic diversity and avoids the premature convergence of the  

GA. In this process, one or more genes are flipped based on the defined mutation  rate. In our 
method, a uniform mutation rate of 0.01 was utilized. 

Fitness Function: The fitness function is a key parameter for selecting the best features. The  

fitness function verifies the quality of the solution; hence, a good fitness function yields more 

optimized results. In this method, the “fitcknn” function is used as the fitness  function.  This 

function returns the K-nearest neighbor (KNN) classification model based on the input features. 
The Euclidean distance is used in this fitness function for the KNN classification model. The 

Euclidean distance is formulated in mathematical form as follows: 

d(p, q) = 

,

(p1 − q1)2 + . . . + (pn − qn)2 (16) 

To calculate the error rate,  we utilized  the  “kfoldLoss” function.  This function  returns  the  

loss of a cross-validated classification model. The classification error for the loss function of the  

KNN model is expressed as: 

n 

Kloss = mhI{r̂h 

h=1 

rh} (17) 

 

After the completion of all iterations, a new optimized feature vector is  obtained;  subse- 

quently, it is passes into a harmonic-mean-based threshold function. Mathematically, the function 

is expressed as follows: 
n 

¯ = Σn 1 
 

 

(18) 

i=1 Sel(i) 

Fitness 
Vec(i) forSel(i) H̄ 

Discard, Elsewhere 

 
 

(19) 

 

The final selected features represented by Vec(i) were validated using multiple classifiers. The 

highest accuracy was achieved using the ESD. 
 

4 Experimental Setup and Results 

The proposed framework was evaluated on 16 classes of the publicly available PlantVillage  

dataset. A brief description is provided in Tab. 1. In the preprocessing step, we performed data 

augmentation to increase the number of images per class. Different features, including handcrafted  
and deep features, were extracted and combined;  subsequently,  the fused vector was optimized  

using the GA. The handcrafted features included LBP and color features, and for deep feature 
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Algorithm: For GA based Features Optimization 
Output: Vec(i) SelectedVector 

Input: ψfd(i) FusedVector 
Step 1: Parameters Initialization 

- Population ← N = 20 

- Iterations ← T = 500 

- γcr ← 0.8 

- γmr ← 0.01 

 
Start 

- β ← 5 

Step 2: Fitness Function 

- Type ← FKNN 

- Neighbors ← 5 

- K − fold ← 2 
- Distance ←

n     
Euclidean 

- Kloss ← 
Σ 

mhI{r̂h rh} 

- W =
   wi 

 

Σ

S 
(w i) 

Step 4: Crossover 

- γcr CrossOver(X1, X2) 
Step 5: Mutation 

- Type Uniform 

Step 6: Repeat Step 2 

Step 7: Sel(i) BestFeatures 

End 

Step 8: Apply Threshold function by Eqs. (18) and (19). 

Step 9: Selected best features are returned as output. 

extraction, we utilized the ResNet50 model. In the training phase of the model, a 70:30 approach 

was used. Extensive experiments were performed on different cross-validations, including 5-, 10-, 

15-, and 20-fold cross-validations. Multiple classifiers were selected for a fair comparison, including 
the linear SVM, quadratic SVM, cubic SVM, medium Gaussian SVM, coarse Gaussian SVM, 

medium KNN, cosine KNN, weighted KNN, ensemble bagged trees (EBT), and ESD.  Each 

classifier was evaluated using different performance measures such as accuracy, false-negative rate 

(FNR), precision, sensitivity, F1 score, and time. 

Step 3: Selection 
h=1 



 

 

 

 

Table 1: Technical details of the selected database 

Database details 

Total classes 16 
Total images 15801 
Training ratio 70% 

Testing ratio 30% 

Image size 256 × 256 
 

 

4.1 Results for 5-Fold Cross-Validation 

In the first experiment, the optimized feature set was fed to the classifiers using five-fold cross- 

validation for evaluation. The best accuracy was 99%, achieved using the ESD classifier, as shown 

in Tab. 2. Other measures such as precision, sensitivity, F1 score, and FNR calculated using the 
ESD were 95.5%, 95.5%, 95.5%, and 1%, respectively.  The accuracy  was verified,  as shown  in 

Fig. 4. The computational time for the ESD was 746.3 s. The best computational time was 68.2 

s, which was achieved on the EBT classifier. However, the accuracy achieved using the EBT was  

95%. The worst performance observed in the five-fold cross-validation was an accuracy of 89.7%, 
which was calculated using the C-KNN classifier. 

 
 

Table 2: Results for 5-Fold cross-validation 
 

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s) 

L-SVM 98.4 1.6 99.3 98.8 99.0 337.8 

Q-SVM 98.8 1.2 99.2 99.2 99.2 564.4 

C-SVM 98.7 1.3 98.4 98.1 98.3 684.9 

MGSVM 96.5 3.5 97.7 97.4 97.5 1071.3 

CGSVM 95.9 4.1 98.4 97.1 97.7 1058.2 

M-KNN 90.0 10.0 93.9 94.8 94.3 281.9 

C-KNN 89.7 11.3 94.0 94.9 94.4 342.5 
W-KNN 90.5 9.5 93.5 95.1 94.3 270.7 

EBT 95.0 5.0 97.7 96.9 97.3 68.2 

ESD 99.0 1.0 99.5 99.5 99.5 746.3 

 

4.2 Results for 10-Fold Cross-Validation 

Next, we used 10-fold cross-validation to evaluate the proposed framework. The maximum 

accuracy achieved on the Q-SVM and ESD was 99%, as shown in Tab. 3. The FNR for both 

classifiers was 1%, and the  highest precision was 99.7%, which was achieved using the  Q-SVM. 

The accuracy was verified, as shown in  Fig. 5.  The  computational  times  for  the  Q-SVM  and 
ESD were 729.6 and 993.3 s, respectively. The sensitivity and F1 score were 99.4% and 99.5%, 

respectively, achieved using the ESD classifier. The best computational time was 82.9 s, which was  

achieved using the EBT classifier with a 95.1% accuracy. The C-KNN recorded the worst accuracy 
of 90.1%. 



 

 
 

 
 

Figure 4: Confusion matrix for ESD classifier using 5-fold cross-validation 

 
Table 3: Results for 10-Fold cross-nalidation 

 

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s) 

L-SVM 98.6 1.4 99.5 99.1 99.3 484.6 

Q-SVM 99.0 1.0 99.7 99.3 99.4 729.6 

C-SVM 98.8 1.2 99.6 99.1 99.4 948.2 

MGSVM 96.7 3.3 98.9 97.7 98.3 1603.2 

CGSVM 96.2 3.8 98.8 97.4 98.1 1527.7 

M-KNN 90.3 9.7 94.7 95.1 94.9 207.4 

C-KNN 90.1 9.9 94.3 95.3 94.8 183.5 
W-KNN 91.0 9.0 94.5 96.1 95.3 137.6 

EBT 95.1 4.9 97.9 97.1 97.5 82.9 

ESD 99.0 1.0 99.6 99.4 99.5 993.3 

4.3 Results for 15-Fold Cross-Validation 

For the 15-fold cross-validation, the best results were obtained using the ESD classifier. The 

best accuracy, FNR, precision, sensitivity, and F1 score obtained using the ESD were 99%, 1%, 

99.7%, 99.5%, and 99.6%, respectively, as shown in Tab. 4. This accuracy was further verified, as 

shown in Fig. 6. However, the computational time of the ESD was 1709.5 s. The Q-SVM and C-
SVM yielded good accuracies of 98.9% and 98.8%, respectively. However, the Q-SVM and C- SVM 

incurred 1339.9 and 1678.9 s for recognition, respectively. The C-KNN recorded the worst accuracy 

of 90.1%. The best computational time afforded by the EBT was 218.2 s. 



 

 

 
 

 
 

Figure 5: Confusion matrix for ESD classifier using 10-fold cross-validation 

 
Table 4: Results for 15-Fold cross-validation 

 

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s) 

L-SVM 98.6 1.4 99.5 99.1 99.3 1170.1 
Q-SVM 98.9 1.1 99.5 99.3 99.4 1339.9 

C-SVM 98.8 1.2 99.6 99.1 99.4 1678.9 

MGSVM 96.7 3.3 98.9 97.7 98.3 2637.2 

CGSVM 96.3 3.7 98.9 97.6 98.2 2572.3 

M-KNN 90.4 9.6 94.9 95.3 95.1 371.5 

C-KNN 90.1 9.9 94.7 95.4 95.0 376.2 

W-KNN 91.2 9.8 94.9 96.3 95.6 334.6 

EBT 95.2 4.8 98.1 97.3 97.7 218.2 

ESD 99.0 1.0 99.7 99.5 99.6 1709.5 

4.4 Results for 20-Fold Cross-Validation 

The final experiment was performed using a 20-fold cross-validation. The maximum accuracy 

achieved in this experiment was 99% for the ESD classifier, whereas the FNR, precision, sensitiv- 

ity, F1 score, and computational  time  were 1%, 99.5%, 99.4%, 99.4%, and  2130.9 s, respectively,  
as shown in Tab. 5. In addition, this accuracy was verified, as shown in Fig. 7. The accuracies 

of the Q-SVM and C-SVM were 98.9% and 98.9%, respectively, indicating good performances.  

However, those classifiers required 1870.8 and 2151.9 s, respectively. The best computational time 
was achieved by the EBT, with a 95.3% accuracy. Meanwhile, the C-KNN classifier recorded the 

worst accuracy of 90.3%. 



 

 
 

 
 

Figure 6: Confusion matrix for ESD classifier using 15-fold cross-validation 

 
Table 5: Results for 20-Fold cross-validation 

 

Classifier Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 Score (%) Time (s) 

L-SVM 98.7 1.3 98.5 99.2 98.8 1583.0 

Q-SVM 98.9 1.1 99.4 99.3 99.3 1870.8 

C-SVM 98.9 1.1 98.8 99.2 98.9 2151.9 

MGSVM 96.8 3.2 98.9 97.7 98.3 3137.2 

CGSVM 96.5 3.5 98.9 97.6 98.2 2972.3 

M-KNN 90.45 9.55 94.6 95.4 95.0 775.5 
C-KNN 90.3 9.7 94.8 95.7 95.2 665.2 

W-KNN 91.4 9.6 95.2 96.5 95.9 684.5 

EBT 95.3 4.7 98.3 97.33 97.8 548.2 

ESD 99.0 1.0 99.5 99.4 99.4 2130.9 

Additionally, we compared the proposed framework with previous fruit plant disease detection 

techniques. Specifically, we compared our technique with methods evaluated on only four to eight  
classes, as presented in Tab. 6. Khan et al. [6] performed experiments on six classes of diseases and 

achieved a 98.6% accuracy. The authors of  [7] evaluated their model on eight classes and obtained 

an accuracy of 82%. Meanwhile, the authors of [20,21] used four and five classes, respectively, to 

verify their methodology and achieved accuracies of  97% and  97.8%, respectively. In  this study,  
we evaluated our framework on 16 classes comprising different diseases and healthy images and 

achieved an accuracy of 99%. 



 

 

 
 

 
 

Figure 7: Confusion matrix for ESD classifier using 20-fold cross-validation 

 
Table 6: Comparison with previous techniques 

 

Author Year No. of classes Accuracy (%) 

Khan et al. [6] 2018 6  98.6 

Barbedo [7] 2019 8  82.0 

Thapa et al. [20] 2020 4  97.0 
Akram et al. [21] 2020 5  97.8 

Proposed 2021 16  99.0 

5 Conclusion 

A new framework for the classification of fruit plant diseases from leaf images was presented  

herein. The primary steps of the proposed framework were dataset collection, data increase, LBP  

extraction, color based on mean value, ResNet50 features, feature  fusion,  feature  optimization 

using improved GA, and classification. We evaluated our technique by conducting extensive 
experiments, which yielded promising results. The maximum accuracy achieved was 99% using 

the ESD and Q-SVM classifiers, whereas the precision, sensitivity, and F1 score were calculated 

to be 99.7%, 99.5%, and 99.6%, respectively. We analyzed all the results and concluded that our  
proposed framework is superior to the other compared methods.  Furthermore,  we concluded  that  

the selection of features through the threshold function further minimized the computational time  

while maintaining the classification accuracy. In future studies, we will consider more fruit classes 

and implement new optimization techniques to improve the computational time. 
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