
Price-Based Resource Allocation For Edge Computing:

A Market Equilibrium Approach

 Dr.B.Ratnakanth1, M.Karuna2, Valakanti Vamshi3, Rathod Rohith4, Pooja Yadav5, Eslavath Vinod Kumar6

1 Professor, Department of CSE& HOD, Sri Indu Institute of Engineering & Technology, Hyderabad

2 Assistant Professor, Department of CSE, Sri Indu Institute of Engineering & Technology, Hyderabad

3,4,5,6 IVthBtech Student, Department of CSE, Sri Indu Institute of Engineering & Technology, Hyderabad

ABSTRACT

The emerging edge computing paradigm promises to deliver superior user

experience and enable a wide range of Internet of Things (IoT) applications. In this paper,

we propose a new market-based framework for efficiently allocating resources of

heterogeneous capacity-limited edge nodes (EN) to multiple competing services at the

network edge. By properly pricing the geographically distributed ENs, the proposed

framework generates a market equilibrium (ME) solution that not only maximizes the edge

computing resource utilization but also allocates optimal resource bundles to the services

given their budget constraints. When the utility of a service is defined as the maximum

revenue that the service can achieve from its resource allotment, the equilibrium can be

computed centrally by solving the Eisenberg-Gale (EG) convex program. We further show

that the equilibrium allocation is Pareto-optimal and satisfies desired fairness properties

including sharing incentive, proportionality, and envy-freeness. Also, two distributed

algorithms, which efficiently converge to an ME, are introduced. When each service aims to

maximize its net profit (i.e., revenue minus cost) instead of the revenue, we derive a novel

convex optimization problem and rigorously prove that its solution is exactly an ME.

Extensive numerical results are presented to validate the effectiveness of the proposed

techniques.

1. Introduction

1.1 Introduction

The last decade has witnessed an explosion

of data traffic over the communication

network attributed to the rapidly growing

cloud computing and pervasive mobile

devices. This trend is expected to continue

for the foreseeable future with a whole new

generation of applications including 4K/8K

UHD video, tactile Internet,

virtual/augmented reality (VR/AR), and a

variety of IoT applications. As the cloud

infrastructure and number of

devicescontinue to expand at an accelerated

rate, a tremendous burden will be put on the

network.

Cloud data centers (DC) are often

geographically distant from the end-user,

which induces enormous network traffic,

along with significant communication delay

and jitter. Therefore, despite the immense

power, cloud computing alone is facing

growing limitations in satisfying the stringent

requirements in terms of latency, reliability,

security, mobility, and localization of new

systems and applications (e.g., embedded

artificial intelligence, mission critical

communication, 5G wireless systems). To

this end, edge computing (EC), also known

as fog computing (FC), has emerged as a

novel computing paradigm that complements

the cloud and addresses many shortcomings

in the traditional cloud model.

In EC, storage, computing, control, and networking

resources are placed closer to end-users, things, and

sensors. Today, EC is still in the developing stages and

presents many new challenges, such as network

architecture design, programming models and abstracts,

IoT support, service placement. On the other hand,

different services may have different requirements and

properties. Some services can only be handled by ENs

satisfying certain criteria. Furthermore, different services

may be given different priorities.

The basic idea behind our approach is to assign different

prices to resources of different ENs. In particular, highly

sought- after resources are priced high while prices of

under-demanded resources are low. We assume that each

service has a certain budget for resource procurement.

In these scenarios, it is important to consider both fairness

and efficiency. Thus, conventional schemes such as social

welfare maximization, max min fairness, and auction

models may not be suitable. To strive the balance between

fairness and efficiency, we advocate the General

Equilibrium Theory, with a specific focus on the Fisher

market model, as an effective solution concept for this

problem.

1.2 Modules:

There are four modules can be divided here for this project

they are listed as below

 UPLOAD PRODUCTS

 PRODUCT REVIEW BASED

ORDER

 RATINGS AND REVIEWS

 DATA ANALYSIS

1.2.1 Upload Products

Uploading the products is done by

admin. Authorized person is uploading the

new arrivals to system that are listed to users.

1.2.2 Product review based order

The suggestion to user’s view of

products is listed based on the review by user

and rating to particular item. Naïve bayes

algorithm is used in this project to develop

the whether the sentiment of given review is

positive or negative

1.2.3 Ratings and reviews

Ratings and reviews are main concept

of the project in order to find effective

product marketing. The main aim of the

project is to get the user reviews based on

how they purchased or whether they

purchased or not.

1.2.4 Data analysis

The main part of the project is to analysis the

ratings and reviews that are given by the user.

The products can be analysis based on the

numbers which are given by user.

2. Literature Survey

2.1 Introduction

1. Fog and IoT: an overview of research

opportunities:

Fog is an emergent architecture for

computing, storage, control, and networking

that distributes these services closer to end

users along the cloud-to-things continuum. It

covers both mobile and wireline scenarios,

traverses across hardware and software,

resides on network edge but also over access

networks and among end users, and includes

both data plane and control plane.

2. The emergence of edge computing:

Industry investment and research interest in

edge computing, in which computing and

storage nodes are placed at the Internet's edge

in close proximity to mobile devices or

sensors, have grown dramatically in recent

years.

3. Existence of equilibrium for a competitive

economy:

Wald has presented a model of production

and a model of exchange and proofs of the

existence of an equilibrium for each of them.

Here proofs of the existence of an

equilibrium are given for an integrated model

of production, exchange and consumption

4. CloudFog: leveraging fog to extend cloud

gaming for thin-client MMOG with high

quality of service:

With the increasing popularity of Massively

Multiplayer Online Game (MMOG) and fast

growth of mobile gaming, cloud gaming

exhibits great promises over the conventional

MMOG gaming model as it frees players

from the requirement of hardware and game

installation on their local computers.

2.2 Existing system

In existing system, we study how to

allocate resources from multiple ENs to

multiple services. We exploit the General

Equilibrium, a Nobel prize-winning

theory, to construct an efficient market-

based resource allocation framework.

Although this concept was proposed

more than 100 years ago, only until 1954,

the existence of an ME was proved under

mild conditions in the seminal work of

Arrow and Debreu.

However, their proof based on fixed-

point theorem is no constructive and does

not give an algorithm to compute

equilibrium.

2.2.1 Drawbacks in existing system

 Complexity

 Lack of Control

 Market Manipulation

 Potential for Unfairness

2.3 Proposed System

In proposed system, the models are

inspired by the Fisher market which is a

special case of the exchange market

model in the General Equilibrium theory.

An exchange market model consists of a

set of economic agents trading different

types of divisible goods.

Each agent has an initial endowment of

goods and a utility function representing

their preferences for the different bundles

of goods. The goal of the market is to find

the equilibrium prices and allocations that

maximize every agent’s utility respecting

the budget constraint, and the market

clears.

In the Fisher market model, every agent

comes to the market with an initial

endowment of money only and wants to

buy goods available in the market. We

cast the EC resource allocation problem

as a Fisher market. We not only show

appealing fairness properties of the

equilibrium allocation, but also introduce

efficient distributed algorithms to find an

ME.

ADVANTAGES

 Efficient Resource Allocation.

 Fairness

 Scalability

 Incentivizes Innovation.

3. Feasibility Study

The feasibility of the project is analyzed

in this phase and business proposal is put

forth with a very general plan for the

project and some cost estimates. During

system analysis the feasibility study of

the proposed system is to be carried out.

This is to ensure that the proposed system

is not a burden to the company. For

feasibility analysis, some understanding

of the major requirements for the system

is essential.

Three key considerations involved in the

feasibility analysis are:

 ECONOMICAL

FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

3.1 Economical Feasibility

This study is carried out to check the

economic impact that the system will have on

the organization. The amount of fund that the

company can pour into the research and

development of the system is limited. The

expenditures must be justified. Thus the

developed system as well within the budget

and this was achieved because most of the

technologies used are freely available. Only

the customized products had to be purchased.

3.2 Technical Feasibility

This study is carried out to check the

technical feasibility, that is, the technical

requirements of the system. Any system

developed must not have a high demand on

the available technical resources. This will

lead to high demands on the available

technical resources. This will lead to high

demands being placed on the client. The

developed system must have a modest

requirement; as only minimal or null changes

are required for implementing this system.

3.3 Social Feasibility

The aspect of study is to check the

level of acceptance of the system by the user.

This includes the process of training the user

to use the system efficiently. The user must

not feel threatened by the system, instead

must accept it as a necessity. The level of

acceptance by the users solely depends on the

methods that are employed to educate the

user about the system and to make him

familiar with it. His level of confidence must

be raised so that he is also able to make some

constructive criticism, which is welcomed, as

he is the final user of the system.

4. Implementation

SYSTEM ARCHITECTURE

4.1 Python

Python is a high-level, interpreted,

interactive and object-oriented scripting

language. Python is designed to be highly

readable. It uses English keywords frequently

where as other languages use punctuation,

and it has fewer syntactical constructions

than other languages.

1. Python is Interpreted − Python is

processed at runtime by the interpreter. You

do not need to compile your program before

executing it. This is similar to PERL and

PHP.

2. Python is Interactive − You can

actually sit at a Python prompt and interact

with the interpreter directly to write your

programs.

3. Python is Object-Oriented −

Python supports Object-Oriented style or

technique of programming that encapsulates

code within objects.

4. Python is a Beginner's Language −

Python is a great language for the beginner

level programmers and supports the

development of a wide range of applications

from simple text processing to WWW

browsers to games.

4.1.1 Features

1. Easy-to-learn − Python has few keywords,

simple structure, and a clearly defined

syntax. This allows the student to pick up the

language quickly.

2. Easy-to-read − Python code is more clearly

defined and visible to the eyes.

3. Easy-to-maintain − Python's source code is

fairly easy-to-maintain.

4. A broad standard library − Python's bulk of

the library is very portable and cross platform

compatible on UNIX, Windows, and

Macintosh.

5. Interactive Mode − Python has support for

an interactive mode which allows interactive

testing and debugging of snippets of code.

6. Portable − Python can run on a wide

variety of hardware platforms and has the

same interface on all platforms.

7. Extendable − You can add low-level

modules to the Python interpreter. These

modules enable programmers to add to or

customize their tools to be more efficient.

8. Databases − Python provides interfaces to

all major commercial databases.

9. GUI Programming − Python supports GUI

applications that can be created and ported to

many system calls, libraries and windows

systems, such as Windows MFC, Macintosh,

and the X Window system of Unix.

10. Scalable − Python provides a better

structure and support for large programs than

shell scripting.

4.2 Django

Django is a Web framework written

in Python. A Web framework is a software

that supports the development of dynamic

Web sites, applications, and services. It

provides a set of tools and functionalities that

solves many common problems associated

with Web development, such as security

features, database access, sessions, template

processing, URL routing,

internationalization, localization, and much

more.

Using a Web framework, such as

Django, enables us to develop secure and

reliable Web applications very quickly in a

standardized way. The development of

Django is supported by the Django Software

Foundation, and it’s sponsored by companies

like JetBrains and Instagram.

4.2.1 Installation

Now that we have the venv activated, run the

following command to install Django:

pip install Django

To start a new Django project, run the

command below:

django-admin startproject myproject

The command-line utility django-admin is

automatically installed with Django. After

we run the command above, it will generate

the base folder structure for a Django project.

Our initial project structure is composed of

five files:

1. manage.py: a shortcut to use the

django-admin command-line utility.

It’s used to run management

commands related to our project. We

will use it to run the development

server, run tests, create migrations

and much more.

2. init .py: this empty file tells

Python that this folder is a Python

package.

3. Settings.py: this file contains all the

project’s configuration.

4. urls.py: this file is responsible for

mapping the routes and paths in our

project. For example, if you want to

show something in the URL /about/,

you have to map it here first.

5. wsgi.py: this file is a simple gateway

interface used for deployment. You

don’t have to bother about it. Just let

it be for now.

Django comes with a simple web server

installed. It’s very convenient during the

development, so we don’t have to install

anything else to run the project locally. We

can test it by executing the command: python

manage.py run server. For now, you can

ignore the migration errors; we will get to that

later. Now open the following URL in a Web

browser:

http://127.0.0.1:8000 and you should see the

following page:

5. Analysis

The main part of the project is to

analysis the ratings and reviews that are given

by the user. The products can be analysis

based on the numbers which are given by

user. The user data analysis of the data can be

done by charts format. The graphs may vary

like pie chart, bar chart or some other charts.

5.1 System Specification

5.1.1 Software Requirements:

 Operating System :

Windows 7.

 Coding Language :

Python.

 Front-End :

Python.

 Designing :

Html,css,javascript.

 Data Base :

MySQL.

5.1.2 Hardware Requirements:

 System :

Pentium IV 2.4 GHz.

 Hard Disk : 40

GB.

 Floppy Drive : 1.44

Mb.

 Monitor : 14’

Colour Monitor.

 Mouse :

Optical Mouse.

 Ram :

512mb

6. Testing

6.1 Introduction

The purpose of testing is to discover

errors. Testing is the process of trying to

discover every conceivable fault or weakness

in a work product. It provides a way to check

the functionality of components, sub-

assemblies, assemblies and/or a finished

product It is the process of exercising

software with the intent of ensuring that the

Software system meets its requirements and

user expectations and does not fail in an

unacceptable manner. There are various

types of test. Each test type addresses a

specific testing requirement.

6.2 Type of tests

6.2.1 Unit testing

Unit testing involves the design of

test cases that validate that the internal

program logic is functioning properly, and

that program inputs produce valid outputs.

All decision branches and internal code flow

should be validated. It is the testing of

individual software units of the application .it

is done after the completion of an individual

unit before integration. This is a structural

testing, that relies on knowledge of its

construction and is invasive. Unit tests

perform basic tests at component level and

test a specific business process, application,

and/or system configuration. Unit tests

ensure that each unique path of a business

process performs accurately to the

documented specifications and contains

clearly defined inputs and expected results.

6.2.2 Integration testing

Integration tests are designed to test

integrated software components to determine

if they actually run as one program. Testing

is event driven and is more concerned with

the basic outcome of screens or fields.

Integration tests demonstrate that although

the components were individually

satisfaction, as shown by successfully unit

testing, the combination of components is

correct and consistent. Integration testing is

specifically aimed at exposing the problems

that arise from the combination of

components.

6.2.3 Functional testing

Functional tests provide systematic

demonstrations that functions tested are

available as specified by the business and

technical requirements, system

documentation, and user manuals.

Functional testing is centered on the

following items:

 Valid Input : identified

classes of valid input must be

accepted.

 Invalid Input : identified

classes of invalid input must be

rejected.

 Functions : identified

functions must be exercised.

 Output : identified

classes of application outputs must be

exercised.

 Systems/Procedures : interfacing

systems or procedures must be

invoked.

Organization and preparation of functional

tests is focused on requirements, key

functions, or special test cases. In addition,

systematic coverage pertaining to identify

Business process flows; data fields,

predefined processes, and successive

processes must be considered for testing.

Before functional testing is complete,

additional tests are identified and the

effective value of current tests is determined.

6.2.4 System Testing

System testing ensures that the

entire integrated software system meets

requirements. It tests a configuration to

ensure known and predictable results. An

example of system testing is the

configuration oriented system integration

test. System testing is based on process

descriptions and flows, emphasizing pre-

driven process links and integration points.

6.2.5 White Box Testing

White Box Testing is a testing

in which in which the software tester has

knowledge of the inner workings, structure

and language of the software, or at least its

purpose. It is purpose. It is used to test areas

that cannot be reached from a black box level.

6.2.6 Black Box Testing

Black Box Testing is testing the software

without any knowledge of the inner

workings, structure or language of the

module being tested. Black box tests, as most

other kinds of tests, must be written from a

definitive source document, such as

specification or requirements document, such

as specification or requirements document.

Test Results: All the test cases mentioned

above passed successfully. No defects

encountered.

7. Conclusion

In this work, we consider the resource

allocation for an EC system which consists

geographically distributed heterogeneous

ENs with different configurations and a

collection of services with different desires

and buying power. Our main contribution is

to suggest the famous concept of General

Equilibrium in Economics as an effective

solution for the underlying EC resource

allocation problem. The proposed solution

produces an ME that not only Pareto-efficient

but also possesses many attractive fairness

properties. The potential of this approach are

well beyond EC applications. For example, it

can be used to share storage space in edge

caches to different service providers. We can

also utilize the proposed framework to share

resources (e.g., communication, wireless

channels) to different users or groups of users

(instead of services and service providers).

Furthermore, the proposed model can extend

to the multi-resource scenario where each

buyer needs a combination of different

resource types (e.g., storage, bandwidth, and

compute) to run its service. We will formally

report these cases (e.g., network slicing, NFV

chaining applications) in our future work.

The proposed framework could serve as a

first step to understand new business models

and unlock the enormous potential of the

future EC ecosystem. There are several future

research directions. For example, we will

investigate the ME concept in the case when

several edge networks cooperate with each

other to form an edge/fog federation.

Investigating the impacts of the strategic

behavior on the efficiency of the ME is

another interesting topic. Note that N. Chen

et. al. have shown that the gains of buyers for

strategic behavior in Fisher markets are

small. Additionally, in this work, we

implicitly assume the demand of every

service is unlimited. It can be verified that we

can add the maximum number of requests

constraints to the EG program to capture the

limited demand case, and the solution of this

modified problem is indeed an ME. However,

although the optimal utilities of the services

in this case are unique, there can have infinite

number of equilibrium prices. We are

investigating this problem in our ongoing

work. Also, integrating the operation cost of

ENs into the proposed ME framework is a

subject of our future work. Finally, how to

compute market equilibria with more

complex utility functions that capture

practical aspects such as task moving

expenses among ENs and data privacy is an

interesting future research direction. It is also

interesting to test the performance of the

proposed approach on real datasets of an EC

system when EC is widely deployed.

8. Reference

[1] M. Chiang and T. Zhang, “Fog and IoT:

an overview of research opportunities,” IEEE

Internet Things J., vol. 3, no. 6, pp. 854–864,

Dec. 2016.

[2] M. Satyanarayanan, “The emergence of

edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, Jan. 2017.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L.

Xu, “Edge computing: vision and

challenges,” IEEE Internet Things J., vol. 3,

no. 5, pp. 637–646, Oct. 2016.

[4] K.J. Arrow and G. Debreu, “Existence of

equilibrium for a competitive economy,”

Econometrica, vol. 22, no. 3, pp. 265–290,

1954.

[5] W.C. Brainard and H.E. Scarf, “How to

compute equilibrium prices in 1891,” Cowles

Foundation, Discussion Paper, no. 1272,

2000.

[6] A. Mas-Colell, M. D. Whinston, and J. R.

Green, “Microeconomic Theory”, 1st ed.

New York: Oxford Univ. Press, 1995.

[7] H. Moulin, “Fair division and collective

welfare,” MIT Press, 2004.

[8] N. Nisan, T. Roughgarden, E. Tardos, and

V. Vazirani, “Algorithmic Game Theory”,

Cambridge, U.K.: Cambridge Univ. Press,

2007.

[9] E. Eisenberg and D. Gale, “Consensus of

subjective probabilities: The pari-mutual

method,” Annals of Mathematical Statistics,

vol. 30, pp. 165–168, 1959.

[10] E. Eisenberg, “Aggregation of utility

functions,” Manage. Sci. 7, PP. 337–350,

1961.

	Price-Based Resource Allocation For Edge Computing:
	A Market Equilibrium Approach
	ABSTRACT
	1. Introduction
	1.1 Introduction
	1.2 Modules:
	1.2.1 Upload Products
	1.2.2 Product review based order
	1.2.3 Ratings and reviews
	1.2.4 Data analysis

	2. Literature Survey
	2.1 Introduction
	2.2 Existing system
	2.2.1 Drawbacks in existing system
	2.3 Proposed System
	ADVANTAGES

	3. Feasibility Study
	3.1 Economical Feasibility
	3.2 Technical Feasibility
	3.3 Social Feasibility

	4. Implementation
	SYSTEM ARCHITECTURE
	4.1.1 Features
	4.2 Django
	4.2.1 Installation

	5. Analysis
	5.1 System Specification

	6. Testing
	6.1 Introduction
	6.2 Type of tests
	6.2.2 Integration testing
	6.2.3 Functional testing
	6.2.4 System Testing
	6.2.5 White Box Testing
	6.2.6 Black Box Testing

	7. Conclusion
	8. Reference

