SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution)

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE, II YEAR SYLLABUS

(BR22 Regulations)

Applicable from Academic Year: 2022-23 BATCH

II Year I Semester

S. No.	Course Code	Course	L	Т	Р	Credits
1.	MA304BS	Numerical Methods and Complex Variables	3	1	0	4
2.	EC302PC	Analog Circuits	3	0	0	3
3.	EE301ES	Network analysis and Synthesis	3	0	0	3
4.	EC303PC	Digital Logic Design	3	0	0	3
5.	EC304PC	Signals and Systems	3	1	0	4
6.	EC305PC	Analog Circuits Laboratory	0	0	2	1
7.	EC306PC	Digital logic Design Laboratory	0	0	2	1
8.	EC307PC	Basic Simulation Laboratory	0	0	2	1
9.	*MC302	Constitution of India	3	0	0	0
		Total	18	2	6	20

II Year II Semester

S. No.	Course Code	Course	L	Т	Р	Credits
1.	MA403BS	Probability Theory and Stochastic Processes	3	0	0	3
2.	EC402PC	Electromagnetic Fields and Transmission Lines	3	0	0	3
3.	EC403PC	Analog and Digital Communications	3	0	0	3
4.	EC404PC	Linear and Digital IC Applications	3	0	0	3
5.	EC405PC	Electronic Circuit Analysis	3	0	0	3
6.	EC406PC	Analog and Digital Communications Laboratory	0	0	2	1
7.	EC407PC	Linear and Digital IC Applications Laboratory	0	0	2	1
8.	EC408PC	Electronic Circuit Analysis Laboratory	0	0	2	1
9.	EC409PC	Real Time Project/ Field Based Project	0	0	4	2
10.	*MC401	Gender Sensitization Lab	0	0	2	0
		Total	15	0	12	20

NUMERICAL METHODS AND COMPLEX VARIABLES

(Course Code: MA304BS)

B.Tech. II Year I Sem.

Course Objectives: To learn

- Expressing periodic function by Fourier series and a non-periodic function by Fourier transforms
- Various numerical methods to find roots of polynomial and transcendental equations.
- Concept of finite differences and to estimate the value for the given data using interpolation.
- Evaluation of integrals using numerical techniques

Pre-requisites: Mathematics courses of first year of study.

- Solving ordinary differential equations of first order using numerical techniques.
- Differentiation and integration of complex valued functions.
- Evaluation of integrals using Cauchy's integral formula and Cauchy's residue theorem.
- Expansion of complex functions using Taylor's and Laurent's series.

Course outcomes: After learning the contents of this paper the student must be able to

- Express any periodic function in terms of sine and cosine •
- Find the root of a given polynomial and transcendental equations.
- Estimate the value for the given data using interpolation
- Find the numerical solutions for a given first order ODE's
- Analyze the complex function with reference to their analyticity, integration using Cauchy'sintegral and residue theorems
- Taylor's and Laurent's series expansions in complex function

UNIT-I: Fourier Series & Fourier Transforms:

Fourier series - Dirichlet's Conditions - Half-range Fourier series - Fourier Transforms: Fourier Sine and cosine transforms - Inverse Fourier transforms.

SIIET

LTPC

3 1 0 4

10 L

UNIT-II: Numerical Methods-I

Solution of polynomial and transcendental equations: Bisection method, Iteration Method, Newton- Raphson method and Regula-Falsi method. Jacobi and Gauss-Seidal iteration methods for solving linear systems of equations.

Finite differences: forward differences, backward differences, central differences, symbolic relations and separation of symbols, Interpolation using Newton's forward and backward difference formulae. Central difference interpolation: Gauss's forward and backward formulae, Lagrange's method of interpolation.

UNIT-III: Numerical Methods-II

Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8th rules.

Ordinary differential equations: Taylor's series, Picard's method, Euler and modified Euler's methods, Runge-Kutta method of fourth order for first order ODE

UNIT-IV: Complex Differentiation

Limit, Continuity and Differentiation of Complex functions. Cauchy-Riemann equations (without proof), Milne- Thomson methods, analytic functions, harmonic functions, finding harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithm) and their properties. (All theorems without Proofs), Conformal mappings, Mobius transformations.

UNIT-V: Complex Integration:

Line integrals, Cauchy's theorem, Cauchy's Integral formula, zeros of analytic functions, singularities, Taylor's series, Laurent's series, Residues, Cauchy Residue theorem.

and their properties. (All theorems without Proofs)

TEXT BOOKS:

- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.

SIIET

10 L

8 L

10 L

10 L

REFERENCE BOOKS:

- 1. M. K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical methods for Scientific and EngineeringComputations, New Age International publishers.
- Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Edition, Mc-GrawHill, 2004.

ANALOG CIRCUITS (Course Code: EC302PC)

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Pre-requisite: Electronic Devices and Circuits

Course Objectives:

- 1. Learn the concepts of, load line analysis and biasing techniques
- 2. Learn the concepts of high frequency analysis of transistors.
- 3. To give understanding of various types of amplifier circuits
- 4. Learn the concepts of small signal analysis of BJT and FET
- 5. To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.

Course Outcomes: Upon completing this course, the students will be able to

- 1. Design the amplifiers with various biasing techniques.
- 2. Design single stage amplifiers using BJT and FET
- 3. Design multistage amplifiers and understand the concepts of High Frequency Analysis of BJT.
- 4. Utilize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to sustained oscillations.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	-	-	-	-	-	-	-	1
CO2	2	3	3	2	-	-	-	-	-	-	-	1
CO3	2	3	3	2	-	-	-	-	-	-	-	1
CO4	2	3	3	2	-	-	-	-	-	-	-	1

UNIT - I

BJT Biasing: Transistor Biasing and Stabilization - Operating point, DC & AC load lines, Biasing - Fixed Bias, Self Bias, Bias Stability, Bias Compensation using Diode

Analysis and Design of Small Signal Low Frequency BJT Amplifiers: Transistor Hybrid model, Determination of h-parameters from transistor characteristics, Typical values of h-parameters in CE, CB and CC configurations, Transistor amplifying action, Analysis of CE, CC, CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors on CE Amplifier.

UNIT - II

FET- Biasing Techniques

FET Amplifiers: Analysis of CS, CD, CG JFET Amplifiers, comparison of performance with BJT Amplifiers, Basic Concepts of MOSFET Amplifiers, MOS Small signal model, Common source amplifier with resistive, Diode connected and Current source loads, Source follower, Common Gate Stage, Cascode and Folded Cascode Amplifier – frequency response.

UNIT - III

Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Cascade RC Coupled amplifiers, Cascode amplifier, Darlington pair.

Transistor at High Frequency: Hybrid $-\pi$ model of Common Emitter transistor model, f α , f β and unitygain bandwidth, Gain-bandwidth product.

UNIT - IV

Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

UNIT - V

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wienbridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude stability of Oscillators, Crystal Oscillator.

TEXT BOOKS:

- 1. Jacob Millman, Christos C Halkias -Integrated Electronics, McGraw Hill Education.
- Robert L. Boylestead, Louis Nashelsky -Electronic Devices and Circuits theory, 11th Edition, 2009, Pearson

REFERENCE BOOKS:

- 1. David A. Bell Electronic Devices and Circuits, 5th Edition, Oxford.
- 2. Adel S. Sedra, Kenneth C. Smith- Microelectronic Circuits- Theory and Applications, Oxford.
- 3. Chinmoy Saha, Arindam Halder, Debaati Ganguly -Basic Electronics-Principles and Applications, 2018, Cambridge.

NETWORK ANALYSIS AND SYNTHESIS

(Course Code: EE301ES)

B.Tech. II Year I Sem.

Course Objectives:

- 1. To understand the basic concepts on RLC circuits.
- 2. To know the behavior of the steady state and transient states in RLC circuits.
- 3. To understand the two port network parameters.
- 4. Learn the design concepts of various filters and attenuators

Course Outcomes: Upon successful completion of the course, students will be able to:

- 1. Gain the knowledge on basic RLC circuits behaviour.
- 2. Analyse the Steady state and transient analysis of RLC Circuits.
- 3. Characterization of two port network parameters.
- 4. Analyse the Design aspect of various filters and attenuators

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	1	-	-	-	-	1
CO2	2	3	2	-	-	-	1	-	-	-	-	1
CO3	3	2	1	-	-	-	-	-	-	-	-	1
CO4	2	3	3	-	-	-	1	-	-	-	-	1

UNIT - I

Network Topology: Basic cutset and tie set matrices for planar networks, Magnetic Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for Magnetically coupled circuits, Ideal Transformer.

UNIT - II

Transient and Steady state analysis: RC, RL and RLC Circuits, Sinusoidal, Step and Square responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves.

SIIET

L T P C 3 0 0 3

UNIT - III

Two port network parameters: Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros. Standard T, π , L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network.

UNIT-IV

Filters: Classification of Filters, Filter Networks, Constant-K Filters-Low pass, high pass, Band pass, band-stop filters, M-derived Filters- T and π filters- Low pass, high pass **Attenuators:** Types – T, π , L, Bridge T and lattice ,Asymmetrical Attenuators T, π , L Equalizers- Types- Series, Shunt, Constant resistance, bridge T attenuation, bridge T phase, Lattice attenuation, lattice Phase equalizers

$\mathbf{UNIT}-\mathbf{V}$

Network Synthesis: Driving point impedance and admittance, transfer impedance and admittance, network functions of Ladder and non ladder networks, Poles, Zeros analysis of network functions, Hurwitz polynomials, Positive Real Functions, synthesis of LC, RC and RL Functions by foster and causer methods.

TEXT BOOKS:

- 1. Van Valkenburg -Network Analysis, 3rd Ed., Pearson, 216.
- 2. JD Ryder Networks, Lines and Fields, 2nd Ed., PHI, 1999.

REFERENCE BOOKS:

- J. Edminister and M. Nahvi Electric Circuits, Schaum's Outlines, Mc Graw Hills Education, 1999.
- A. Sudhakar and Shyammohan S Palli Networks & Circuits, 4th Ed., Tata McGraw- Hill Publications
- William Hayt and Jack E. Kimmerley Engineering Circuit Analysis, 6th Ed., William Hayt and Jack E. Kimmerley, McGraw Hill Company

DIGITAL LOGIC DESIGN (Course Code: EC303PC)

B.Tech. II Year I Sem.

Course Objectives:

- 1. To understand common forms of number representation in logic circuits.
- 2. To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- 3. To understand the concepts of combinational logic circuits and sequential circuits.
- 4. To understand the Realization of Logic Gates Using Diodes & Transistors.

Course Outcomes: Upon completing this course, the students will be able to

- 1. Acquire the knowledge on numerical information in different forms and Boolean Algebra theorems.
- 2. Define Postulates of Boolean algebra and to minimize combinational functions, and design the combinational circuits.
- 3. Design and analyse sequential circuits for various cyclic functions.
- 4. Characterize logic families and analyze them for the purpose of AC and DC parameters.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2	1	-	-	-	-	-	2
CO2	3	2	2	1	2	1	-	-	-	-	-	2
CO3	2	3	3	2	2	1	-	-	-	-	-	1
CO4	3	2	1	1	1	-	-	-	-	-	-	-

UNIT - I

Number Systems: Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.

Boolean algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard Form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations.

LTPC

3 0 0 3

UNIT - II

Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don't Care Map Entries, Tabular Method

Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL, CML and CMOS Logic Families and its Comparison, standard TTL NAND Gate-Analysis & characteristics, TTL open collector O/Ps, Tristate TTL, MOS & CMOS open drain and tri-state outputs,IC interfacing- TTL driving CMOS & CMOS driving TTL.

UNIT – III

Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations.

Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.

UNIT - IV

Registers and Counters: Shift Registers – Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Sequential Machines: Finite State Machines, Synthesis of Synchronous Sequential Circuits- Serial Binary Adder, Sequence Detector, Parity-bit Generator, Synchronous Modulo N – Counters.

$\mathbf{UNIT} - \mathbf{V}$

Finite state machine: capabilities and limitations, Mealy and Moore models, State equivalence and machine minimization, simplification of incompletely specified machines, Merger graphs. Asynchronous design-modes of operation, Hazards, synthesis of SIC fundamental mode circuits, synthesis of burst mode circuits. Introduction to ASM Charts

TEXT BOOKS

- Zvi Kohavi &Niraj K. Jha, Switching and Finite Automata Theory, 3rd Ed., Cambridge, 2010.
- 2. R. P. Jain Modern Digital Electronics, 3rd Edition, 2007- Tata McGraw-Hill

REFERENCE BOOKS

- Morris Mano, Fredriac J. Hill, Gerald R. Peterson Introduction to Switching Theory and LogicDesign –3rd Ed., John Wiley & Sons Inc.
- 2. Charles H. Roth Fundamentals of Logic Design, 5th ED., Cengage Learning, 2004.

SIGNALS AND SYSTEMS (Course Code: EC304PC)

B.Tech. II Year I Sem.

Course Objectives: The objectives of this subject are to:

- 1. Classify signals and systems and their analysis in time and frequency domains.
- 2. Study the concepts of distortion less transmission through LTI systems, convolution and correlation properties.
- 3. Understand Laplace and Z-transforms their properties for analysis of signals and systems.
- 4. Identify the need for sampling of CT signals, types and merits and demerits of each type.

Course Outcomes: Upon completing this course the students able to:

- 1. Characterize various signals, systems and their time and frequency domain analysis, using transform techniques.
- 2. Identify the conditions for transmission of signals through systems and conditions for physical realization of systems.
- 3. Use sampling theorem for baseband and band pass signals for various types of sampling and for different duty cycles.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	3	3	2	-	-	-	-	-	-	-	-	1
CO3	3	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	1

4. Apply the correlation and PSD functions for various applications.

UNIT - I

Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

SIIET

LTPC

3104

SIIET

UNIT – II

Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform.

UNIT - III

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

$\mathbf{UNIT} - \mathbf{IV}$

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.

Z–Transforms: Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

UNIT - V

Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.

Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions, Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum, Relation between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by Filtering.

TEXT BOOKS

- 1. B.P. Lathi -Signals, Systems & Communications, BSP, 2013.
- A.V. Oppenheim, A.S. Willsky and S.H. Nawabi -Signals and Systems, 2nd Ed., Prentice Hall

REFERENCE BOOKS

- Simon Haykin and Van Veen, A. Rama Krishna Rao, -Signals and Systems, TMH, 2008.
- Michel J. Robert Fundamentals of Signals and Systems, MGH International Edition, 2008.
- C. L. Philips, J. M. Parr and Eve A. Riskin -Signals, Systems and Transforms, 3rd Ed., PE,2004.

ANALOG CIRCUITS LABORATORY (Course Code: EC305PC)

B.Tech. II Year I Sem.

LTPC

0 0 2 1

Course Outcomes: Upon completing this course the students will be able to

- 1. Design amplifiers with required Q point and analyse amplifier characteristics
- 2. Examine the effect multistage amplification on frequency response

3. Investigate feedback concept in amplifiers and oscillator

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	3	_	-	3	3	-	-	1
CO2	1	-	2	-	3	-	-	3	3	-	-	1
CO3	1	-	2	-	3	-	-	3	3	-	-	1

List of Experiments (Twelve experiments to be done):

Verify any twelve experiments in H/W Laboratory

- 1. Perform an experiment to choose Q-point for a Transistor that operate in active region and observe the effect of external Load resistance on Q-point.
- 2. Design a Self bias Circuit and determine the Q-point of the Transistor and its Stability factor by both simulation and realization with hardware components.
- 3. Obtain the I/O Characteristics of CE, CB, CC amplifiers. Calculate h-parameters from the Characteristics.
- 4. Design and Simulate a Common Drain Amplifier with voltage divider bias and determine the stability factor.
- 5. Obtain the Drain and Transfer characteristics of CD, CS amplifiers of JFET. Calculate gm, rd from the Characteristics.
- 6. By experiment prove that the voltage gain of Emitter Follower Circuit is one.
- Design a Common Emitter Amplifier with a gain of 30db and Bandwidth of 10KHZ and plot the frequency response practically.
- 8. Design a two stage RC Coupled amplifier and prove that gain is increased and analyze the effects of coupling capacitance.
- 9. Practically prove that the Darlington pair has high input impedance.

- 10. Draw the high frequency response of common emitter transistor amplifier and calculate $f\alpha$, $f\beta$ and gain bandwidth product.
- 11. Design a cascode amplifier for a given specifications
- 12. Design four topologies of feedback amplifiers and draw the frequency response of them with and without feedback.
- Design an RC phase shift oscillator circuit and derive the gain condition for oscillations practically for given frequency.
- 14. Design a Colpitts oscillator circuit for the given frequency and draw the output waveform.

Major Equipment required for Laboratories:

- 1. Regulated Power Suppliers, 0-30V
- 2. 20 MHz, Dual Channel Cathode Ray Oscilloscopes.
- 3. Functions Generators-Sine and Square wave signals
- 4. Multimeters
- 5. Electronic devices

DIGITAL LOGIC DESIGN LABORATORY (Course Code: EC306PC)

B.Tech. II Year I Sem.

Course Outcomes: Upon completing this course, the students will be able to

- 1. Acquire the knowledge on numerical information in different forms and Boolean Algebra theorems.
- 2. Define Postulates of Boolean algebra and to minimize combinational functions, and design the combinational circuits.
- 3. Design and analyze sequential circuits for various cyclic functions.
- 4. Characterize logic families and analyze them for the purpose of AC and DC parameters.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2	1	-	_	1	-	-	2
CO2	3	2	2	1	2	1	-	_	1	-	-	2
CO3	2	3	3	2	2	1	-	_	1	-	-	1
CO4	3	2	1	1	1	-	-	-	-	-	-	-

List of Experiments

- 1. Realization of Logic circuit to generater's Compliment using Logic Gates.
- 2. Realization of given Boolean function using universal gates and minimizing the same. Compare the gate count before and after minimization.
- Design and realize Full Adder circuit using gates/universal gates. Implement Full Subtractor using full adder.
- 4. Designing a 2 bit Comparator using AND, OR and NOT gates. Realize 4 bit Comparator using 2– bit Comparators.
- 5. Realize 2:1 MUX using the given gates and Design 8:1 using 2:1 MUX.
- 6. Implement the given Boolean function using the given MUX(ex: code converters).
- 7. Realize a 2x4 Decoder using logic gates and implement 3x8 Decoder using 2x4 Decoder.
- 8. Implement the given Boolean function using given Decoders.
- 9. Convert Demultiplexer to Decoder and vise versa.

- 10. Verification of truth tables of flip flops using different clocks (level triggering, positive and negative edge triggering) also converts the given flip flop from one type to other.
- 11. Designing of Universal n-bit shift register using flip flops and Multiplexers. Draw the timing diagram of the Shift Register.
- 12. Design a Synchronous binary counter using D-flip flop/given flip flop.
- 13. Design a asynchronous counter for the given sequence using given flip flops.
- 14. Designing of MOD 8 Counter using JK flip flops.
- 15. Designing of sequence detecting State Machine with minimal states using the given flip flops.
- 16. Designing of Parity Bit(even/odd) generator using the given flip flops.
- 17. Realize all logic gates with TTL logic.
- 18. Realize all logic gates with DTL logic.
 - *Design a sequence detector to detect a given sequence and verify practically
 - *Design a serial subtractor for 4 bit binary numbers

Major Equipment required for Laboratories:

- 1. 5 V Fixed Regulated Power Supply/ 0-5V or more Regulated Power Supply.
- 2. 20 MHz Oscilloscope with Dual Channel.
- 3. Bread board and components/ Trainer Kit.
- 4. Multimeter.

BASIC SIMULATION LABORATORY

(Course Code: EC307PC)

B.Tech. II Year I Sem.

LTPC

1

0 0 2

Course Outcomes: Upon completing this course, the students will be able to

- 1. Generate, analyze and perform various operations on Signals/Sequences both in time and Frequency domain
- 2. Analyze and Characterize Continuous and Discrete Time Systems both in Time and Frequency domain along with the concept of Sampling
- 3. Generate different Random Signals and capable to analyze their Characteristics
- 4. Apply the Concepts of Deterministic and Random Signals for Noise removal Applications and on other Real Time Signals

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	-	-	3	1	-	1
CO2	3	2	3	3	3	2	-	-	3	1	-	1
CO3	3	2	3	3	3	2	-	-	3	1	-	1
CO4	3	2	3	3	3	2	-	-	3	1	-	1

Note:

- All the experiments are to be simulated using MATLAB or equivalent software
- Minimum of 15 experiment are to be completed

List of Experiments:

- 1. Basic Operations on Matrices.
- 2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
- Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
- 5. Convolution for Signals and sequences.

- 6. Auto Correlation and Cross Correlation for Signals and Sequences.
- 7. Verification of Linearity and Time Invariance Properties of a given Continuous/DiscreteSystem.
- 8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realiazability and stability properties.
- 9. Gibbs Phenomenon Simulation.
- 10. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
- 11. Waveform Synthesis using Laplace Transform.
- 12. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
- Generation of Gaussian noise (Real and Complex), Computation of its mean, M.S.
 Value and its Skew, Kurtosis, and PSD, Probability Distribution Function.
- 14. Verification of Sampling Theorem.
- 15. Removal of noise by Autocorrelation / Cross correlation.
- 16. Extraction of Periodic Signal masked by noise using Correlation.
- 17. Verification of Weiner-Khinchine Relations.
- 18. Checking a Random Process for Stationarity in Wide sense.

Major Equipment required for Laboratories:

- 1. Computer System with latest specifications connected
- 2. Window Xp or equivalent
- 3. Simulation software-MAT Lab or any equivalent simulation software

CONSTITUTION OF INDIA (Course Code: *MC302)

B.Tech. II Year I Sem.

L T P C 3 0 0 0

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rightsperspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before thearrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution-History of Drafting Committee.

Unit - 2 Philosophy of the Indian Constitution- Preamble Salient Features

Unit - 3 Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

Unit - 4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit - 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit - 6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

PROBABILITY THEORY AND STOCHASTIC PROCESSES (Course Code: MA403BS)

B.Tech. II Year II Sem.

Pre-requisite: Mathematics

Course Objectives:

- 1. This gives basic understanding of random variables and operations that can be performed onthem.
- 2. To known the Spectral and temporal characteristics of Random Process.
- 3. To Learn the Basic concepts of Information theory Noise sources and its representation forunderstanding its characteristics.

Course Outcomes: Upon completing this course, the students will be able to:

- 1. Perform operations on single and multiple Random variables.
- 2. Determine the Spectral and temporal characteristics of Random Signals.
- 3. Characterize LTI systems driven by stationary random process by using ACFs and PSDs.
- 4. Understand the concepts of Noise and Information theory in Communication systems.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	-
CO2	3	3	-	2	-	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	2	-	-	-	-	-	-	-	-

UNIT - I

Probability & Random Variable: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, Total Probability, Bay's Theorem, Independent Events, Random Variable-Definition, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Methods of defining Conditioning Event, Conditional Distribution, Conditional Density and their Properties.

SIIET

3

LTPC 3 0 0

UNIT - II

Operations on Single & Multiple Random Variables – Expectations: Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic and Nonmonotonic Transformations of Continuous Random Variable, Transformation of a Discrete Random Variable.

Vector Random Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence.

Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions. Expected Value of a Function of Random Variables: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT - III

Random Processes – **Temporal Characteristics:** The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process. Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelationFunction of Response, Cross-Correlation Functions of Input and Output.

UNIT - IV

Random Processes – Spectral Characteristics: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function. Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

SIIET

UNIT - V

Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade -off betweenbandwidth and SNR.

TEXT BOOKS:

- Peyton Z. Peebles Probability, Random Variables & Random Signal Principles, 4th Ed, TMH,2001.
- 2. Taub and Schilling Principles of Communication systems, TMH, 2008

REFERENCE BOOKS:

- 1. Bruce Hajck Random Processes for Engineers, Cambridge unipress, 2015
- Athanasios Papoulis and S. Unnikrishna Pillai Probability, Random Variables and StochasticProcesses, 4th Ed., PHI, 2002.
- 3. B.P. Lathi Signals, Systems & Communications, B.S. Publications, 2003.
- S.P Eugene Xavier -Statistical Theory of Communication, New Age Publications, 2003

ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

(Course Code: EC402PC)

B.Tech. II Year II Sem.

Pre-requisite: Mathematics

Course Objectives: Upon completing this course, the students will be able to

- 1. To learn the Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields, and apply them to solve physics and engineering problems.
- 2. To distinguish between static and time-varying fields, and understand the significance and utility of Maxwell's Equations and Boundary Conditions, and gain ability to provide solutions to communication engineering problems.
- 3. To study the propagation, reflection and transmission of plane waves inbounded and unbounded media.

Course Outcomes: Upon completing this course, the student able to

- Acquire the knowledge of Basic Laws, Concepts and proofs related to Electrostatic Fields and Magneto static Fields.
- 2. Characterize the static and time-varying fields, establish the corresponding sets of Maxwell's Equations and Boundary Conditions.
- 3. Analyze the Wave Equations and classify conductors, dielectrics and evaluate the UPW Characteristics for several practical media of interest.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	-	1	-	-	-	1	-	-
CO2	3	3	2	1	-	1	-	-	-	1	-	-
CO3	3	3	2	1	-	1	-	-	-	1	-	-
CO4	3	3	2	1	-	1	-	-	-	1	-	-

4. Analyze the Design aspect of transmission line parameters and configurations.

UNIT - I

Electrostatics: Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Energy Density. Convection and Conduction Currents,

L	Т	Р	С
3	0	0	3

Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors.

UNIT – II

Magnetostatics: Biot-Savart's Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law.

$\mathbf{UNIT} - \mathbf{III}$

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer EMF, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Two Equations for Magnetostatic Fields, Maxwell's Two Equations for Electrostatic Fields Maxwell's Equations in Different Forms, Conditions at a Boundary Surface - Dielectric-Dielectric and Dielectric-Conductor Interfaces.

$\mathbf{UNIT} - \mathbf{IV}$

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definitions, Relation between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization.

Reflection and Refraction of Plane Waves – Normal and Oblique Incidences for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem.

$\mathbf{UNIT}-\mathbf{V}$

Transmission Lines: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization, Condition for Distortion less line, Minimum Attenuation, Loading - Types of Loading.SC and OC Lines, $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines, Reflection Coefficient, VSWR Smith Chart – Configuration and Applications, Single Stub Matching.

TEXT BOOKS:

- William H. Hayt Jr. and John A. Buck- Engineering Electromagnetics, 8th Ed., McGraw Hill,2014
- Matthew N.O. sadiku and S.V. Kulkarni Principles of Electromagnetics, 6th Ed., OxfordUniversity Press, Aisan Edition, 2015.

REFERENCE BOOKS:

- 1. JD. Kraus -Electromagnetics with Applications ,5th Ed., TMH
- Umesh Sinha, Satya Prakashan -Transmission Lines and Networks, (Tech. India Publications), New Delhi, 2001.
- 3. JD Ryder -Networks, Lines and Fields, 2nd Ed., PHI, 1999

ANALOG AND DIGITAL COMMUNICATIONS

(Course Code: EC403PC)

B.Tech. II Year II Semester

LTPC

0 0

3

3

Prerequisite: Probability theory and Stochastic Processes, Signal and system

Course Objectives:

- 1. To develop ability to analyze system requirements of Analog and digital communication systems.
- To understand the generation, detection of various Analog and digital modulation techniques.
- 3. To acquire the vortical knowledge of each block in AM, FM transmitters and receivers.
- 4. To understand the concepts of baseband transmissions.

Course Outcomes: Upon completing this course, the student able to

- Design and analyze various Analog and Digital Modulation and Demodulation techniques.
- 2. Model the noise present in continuous wave Modulation techniques.
- Implement the Super heterodyne Receiver concept and Pulse Modulation Techniques in various applications
- 4. Analyze and design the base band Transmission

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	-	3	2	-	-	-	-	1	2	2
CO2	3	3	3	1	-	2	2	-	-	-	-	1	2	2
CO3	3	3	3	1	-	2	2	-	-	-	-	1	2	2
CO4	3	3	3	1	-	3	2	-	-	-	-	1	2	2

UNIT - I

Amplitude Modulation: Need for modulation, Amplitude Modulation - Time and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves - Switching modulator, Detection of AM Waves - Envelope

detector, DSBSC modulation - time and frequency domain description, Generation of DSBSC Waves - Balanced Modulators, Coherent detection of DSB-SC Modulated waves, COSTAS Loop, SSB modulation - time and frequency domain description, frequency discrimination and Phase discrimination methods for generating SSB, Demodulation of SSB Waves, principle of Vestigial side band modulation.

UNIT - II

Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave using Bessel functions, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Signal- Armstrong Method, Detection of FM Signal: Balanced slope detector, Phase locked loop, Comparison of FM and AM., Concept of Pre-emphasis and de-emphasis.

UNIT - III

Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters

Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super heterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver, Comparison of AM and FM Receivers.

UNIT - IV

Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM.

Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Companding, DPCM, Adaptive DPCM, DM and Adaptive DM, Noise in PCM and DM.

UNIT - V

Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK-Modulator, Non- Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK and QAM.

Baseband Transmission and Optimal Reception of Digital Signal: A Baseband Signal Receiver, Probability of Error, Optimum Receiver, Coherent Reception, ISI, Eye Diagrams.

TEXT BOOKS

- 1. Simon Haykin Analog and Digital Communications, John Wiley, 2005.
- Wayne Tomasi Electronics Communication Systems-Fundamentals through Advanced, 5thEd., PHI, 2009.

REFERENCE BOOKS

- Herbert Taub, Donald L Schilling, Goutam Saha, -Principles of Communication Systems, 3rdEd., McGraw-Hill, 2008.
- 2. Dennis Roddy and John Coolean Electronic Communications, 4th Ed., PEA, 2004
- George Kennedy and Bernard Davis Electronics & Communication System, TMH, 2004
- 4. K. Sam Shanmugam Analog and Digital Communication, Willey, 2005

LINEAR AND DIGITAL IC APPLICATIONS (Course Code: EC404PC)

B.Tech. II Year II Sem.

Course Objectives: The main objectives of the course are:

1. To introduce the basic building blocks of linear integrated circuits.

2. To introduce the theory and applications of Analog multipliers and PLL.

3. To introduce the concept sine waveform generation and introduce some special function ICs.

4. To understand and implement the working of basic digital circuits.

Course Outcomes: Upon completing this course, the students will be able to

1. A thorough understanding of operational amplifiers with linear integrated circuits.

2. Attain the knowledge of functional diagrams and design applications of IC555 and IC565.

3. Acquire the knowledge and design the Data converters.

4. Choose the proper digital integrated circuits by knowing their characteristics.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	-	-	-	-	-	-	-	-
CO2	3	3	3	1	-	-	-	-	-	-	-	-
CO3	3	3	3	1	-	-	-	-	-	-	-	-
CO4	3	3	2	1	-	-	-	-	-	-	-	-

UNIT - I

Operational Amplifier: Ideal and Practical Op-Amp, Op-Amp Characteristics, DC and AC Characteristics, Features of 741 Op-Amp, Modes of Operation-Inverting, Non-Inverting, Differential, Instrumentation Amplifier, AC Amplifier, Differentiators and Integrators, Comparators, Schmitt Trigger, Introduction to Voltage Regulators, Features of 723 Regulator, Three Terminal Voltage Regulators.

UNIT - II

Op-Amp, IC-555 & IC565 Applications: Introduction to Active Filters, Characteristics of Bandpass, Bandreject and All Pass Filters, Analysis of 1st order LPF & HPF Butterworth Filters, Waveform Generators – Triangular, Sawtooth, Square Wave, IC555 Timer-Functional Diagram, Monostable and Astable Operations, Applications, IC565 PLL-Block Schematic, principle and Applications.

L T P C 3 0 0 3

UNIT - III

Data Converters: Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs – Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC and Dual Slope ADC, DAC and ADC Specifications.

UNIT - IV

Combinational Logic ICs: Specifications and Applications of TTL-74XX & CMOS 40XX Series ICs - Code Converters, Decoders, LED & LCD Decoders with Drivers, Encoders, Priority Encoders, Multiplexers, Demultiplexers, Priority Generators/Checkers, Parallel Binary Adder/Subtractor, Magnitude Comparators.

UNIT - V

Sequential Logic IC's and Memories: Familiarity with commonly available 74XX & CMOS40XX Series ICs - All Types of Flip-flops, Synchronous Counters, Decade Counters, Shift Registers.

Memories - ROM Architecture, Types of ROMS & Applications, RAM Architecture, Static & Dynamic RAMs.

TEXT BOOKS:

- 1. Ramakanth A. Gayakwad Op-Amps & Linear ICs, PHI, 2003.
- 2. Floydand Jain- Digital Fundamentals, 8th Ed., PearsonEducation,2005.

REFERENCE BOOKS:

- D. Roy Chowdhury Linear Integrated Circuits, New Age International(p)Ltd,2nd Ed., 2003.
- 2. John. F. Wakerly Digital Design Principles and Practices, 3rdEd., Pearson, ,2009.
- 3. Salivahana Linear Integrated Circuits and Applications, TMH, 2008.
- William D.Stanley- Operational Amplifiers with Linear Integrated Circuits, 4thEd., Pearson Education India, 2009.

ELECTRONIC CIRCUIT ANALYSIS (Course Code: EC405PC)

	•
3 0 0 Pre-requisite: Analog Circuits	3
Course Objectives: Upon completing this course, the student twill be able to	
1. Learn the concepts of Power Amplifiers.	
2. To give understanding of tuned amplifier circuits	
3. Understand various multivibrators using transistors and sweep circuits.	

Course Outcomes: Upon completing this course, the student will be able to

- 1. Design the power amplifiers
- 2. Design the tuned amplifiers and analyse is frequency response
- 3. Design Multivibrators and sweep circuits for various applications.
- 4. Utilize the concepts of synchronization, frequency division and sampling gates

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	3	2	-	-	-	-	1
CO2	3	3	3	1	-	2	2	-	-	-	-	1
CO3	3	3	3	1	-	2	2	-	-	-	-	1
CO4	3	3	3	1	-	3	2	-	-	-	-	1

UNIT - I

Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class –C and D Amplifiers.

UNIT-II

Tuned Amplifiers: Introduction, single Tuned Amplifiers – Q-factor, frequency response, Double Tuned Amplifiers – Q-factor, frequency response, Concept of stagger tuning and synchronous tuning

UNIT - III

Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.

UNIT - IV

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement.

UNIT - V

Synchronization and Frequency Division: Pulse Synchronization of Relaxation Devices, Frequency division in Sweep Circuits, Stability of Relaxation Devices, Astable Relaxation Circuits, Monostable Relaxation Circuits, Synchronization of a Sweep Circuit with Symmetrical Signals, Sine wave frequency division with a Sweep Circuit, A Sinusoidal Divider using Regeneration and Modulation.

Sampling Gates: Basic operating principles of Sampling Gates, Unidirectional and Bidirectional Sampling Gates, Four Diode Sampling Gate, Reduction of pedestal in Gate Circuits

TEXT BOOKS:

- 1. Jacob Millman, Christos C Halkias Integrated Electronics, , McGraw Hill Education.
- J. Millman, H. Taub and Mothiki S. PrakashRao Pulse, Digital and Switching Waveforms -2nd Ed., TMH, 2008,

REFERENCE BOOKS:

- 1. David A. Bell Electronic Devices and Circuits, 5th Ed., Oxford.
- Robert L. Boylestead, Louis Nashelsky Electronic Devices and Circuits theory, 11th Ed., Pearson, 2009
- 3. Ronald J. Tocci Fundamentals of Pulse and Digital Circuits, 3rd Ed., 2008.
- 4. David A. Bell Pulse, Switching and Digital Circuits, 5thEd., Oxford, 2015.

ANALOG AND DIGITAL COMMUNICATIONS LABARATORY

(Course Code: EC406PC)

B.Tech. II Year II Sem.

L	Т	Р	С
0	0	2	1

Note:

- Minimum 12 experiments should be conducted:
- All these experiments are to be simulated first either using MATLAB, COMSIM or any othersimulation package and then to be realized in hardware

Course Outcomes: Upon completing this course, the student able to:

- Design and implement various Analog modulation and demodulation Techniques and observe the time and frequency domain characteristics
- 2. Design and implement various Pulse modulation and demodulation Techniques and observe the time and frequency domain characteristics
- 3. Apply different types of Sampling with various Sampling rates and duty Cycles
- Design and implement various Digital modulation and demodulation Techniques and observe the waveforms of these modulated Signals practically

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	3	1	2	2	-	2	3	2	-	1
CO2	1	-	3	1	2	2	-	2	3	2	-	1
CO3	1	-	3	1	2	2	-	2	3	2	-	1
CO4	1	_	3	1	2	2	-	2	3	2	-	1

List of Experiments:

- 1. (i) Amplitude modulation and demodulation (ii) Spectrum analysis of AM
- 2. (i) Frequency modulation and demodulation (ii) Spectrum analysis of FM
- 3. DSB-SC Modulator & Detector
- 4. SSB-SC Modulator & Detector (Phase Shift Method)
- 5. Frequency Division Multiplexing & De multiplexing

- 6. Pulse Amplitude Modulation & Demodulation
- 7. Pulse Width Modulation & Demodulation
- 8. Pulse Position Modulation & Demodulation
- 9. PCM Generation and Detection
- 10. Delta Modulation
- 11. DPCM Generation and Detection
- 12. Frequency Shift Keying: Generation and Detection
- 13. Binary Phase Shift Keying: Generation and Detection
- 14. Generation and Detection (i) DPSK (ii) QPSK
- 15. Generate FSK modulated signal using PLL

*Prove practically the Figure of Merit of DSB-SC is unity for single tone modulation

Major Equipment required for Laboratories:

- 1. CROs: 20MHz
- 2. Function Generators: 2MHz
- 3. Spectrum Analyzer
- 4. Regulated Power Supplies: 0-30V
- 5. MAT Lab/Equivalent Simulation Package with Communication tool box

LINEAR AND DIGITAL IC APPLICATIONS LABORATORY

(Course Code: EC407PC)

B.Tech. II Year II Semester

LTPC

0 0 2 1

Course Outcomes: Upon completing this course, the student able to

- 1. Design and implementation of various analog circuits using 741 ICs.
- 2. Design and implementation of various Multivibrators using 555 timer.
- 3. Design and implement various circuits using digital ICs.
- 4. Design and implement ADC, DAC and voltage regulators.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	3	3	3	-	-	-	3	3	-	1
CO2	1	0	3	3	3	-	-	-	3	3	-	1
CO3	1	0	3	3	3	-	-	-	3	3	-	1
CO4	1	0	3	3	3	-	-	-	3	3	-	1

Note:

- Minimum 12 experiments should be conducted.
- Verify the functionality of the IC in the given application.

Design and Implementation of:

- 1. Design an Inverting and Non-inverting Amplifier using Op Amp and calculate gain.
- 2. Design Adder and Subtractor using Op Amp and verify addition and subtraction process.
- Design a Comparator using Op Amp and draw the comparison results of A=B, A<B, A>B.
- 4. Design a Integrator and Differentiator Circuits using IC741 and derive the required condition practically.
- 5. Design a Active LPF, HPF cutoff frequency of 2 KHZ and find the roll off of it.
- Design a Circuit using IC741 to generate sine/square/triangular wave with period of 1KHZ and draw the output waveform.
- 7. Construct Mono-stable Multivibrator using IC555 and draw its output waveform.

- 8. Construct Astable Multivibrator using IC555 and draw its output waveform and also find its duty cycle.
- 9. Design a Schmitt Trigger Circuit and find its LTP and UTP.
- 10. Design Frequency modulator and demodulator circuit and draw the respective waveforms.
- 11. Design Voltage Regulator using IC723, IC 7805/7809/7912 and find its load regulation factor.
- 12. Design R-2R ladder DAC and find its resolution and write a truth table with respective voltages.
- 13. Design Parallel comparator type/ counter type/ successive approximation ADC and find its efficiency.
- 14. Design a Gray code converter and verify its truth table.
- 15. Design an even priority encoder using IC 74xx and verify its truth table.
- 16. Design a 8x1 multiplexer using digital ICs.
- 17. Design a 4-bit Adder/Subtractor using digital ICs and Add/Sub the following bits.
 - (i) 1010 (ii) 0101 (iii) 1011 0100 0010 1001.
- 18. Design a Decade counter and verify its truth table and draw respective waveforms.
- 19. Design a Up/down counter using IC74163 and draw read/write waveforms.
- 20. Design a Universal shift register using IC 74194/195 and verify its shifting operation.
- 21. Design a 16x4 RAM using 74189 and draw its read/write operation.
- 22. Design a 8x3 encoder/3x8 decoder and verify its truth table.

Major Equipment required for Laboratories:

- 5 V Fixed Regulated Power Supply/ 0-5V or more Regulated Power Supply; Multimeter
- 2. 20 MHz Oscilloscope with Dual Channel; Bread board and components/Trainer Kit;

ELECTRONIC CIRCUIT ANALYSIS LABARATORY

(Course Code: EC408PC)

B.Tech. II Year II Sem.

Note:

- Experiments marked with * has to be designed, simulated and verified in hardware.
- Minimum of 9 experiments to be done in hardware.

Course Outcomes: Upon completing this course, the students will be able to

- 1. Design power amplifiers and find its efficiency
- 2. Design tuned amplifiers and find its Q-factor
- 3. Design various multivibrators and sweep circuits. Understand the necessity of linearity
- 4. Design sampling gates and understanding the concepts of frequency division

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	0	3	3	3	-	-	-	3	3	-	1
CO2	1	0	3	3	3	-	-	-	3	3	-	1
CO3	1	0	3	3	3	-	-	-	3	3	-	1
CO4	1	0	3	3	3	-	-	_	3	3	-	1

Hardware Testing in Laboratory:

- 1. Design transformer coupled class A power amplifier and draw the input and output waveforms find its efficiency
- Design class B power amplifier and draw the input and output waveforms, find 2nd order and above harmonics.
- 3. Prove that the complementary symmetry pushpull amplifier eliminate cross over distortion.
- 4. Design class C power amplifier and draw the input and output waveforms
- 5. Design a single tuned amplifier and determine the Q of its tuned circuit practically.
- 6. Design a Bistable Multivibrator and analyze the effect of commutating capacitors anddraw the wave forms at base and collector of transistors.

SIIET

LTPC

2 1

0

0

- 7. Design an Astable Multivibrator and draw the wave forms at base and collector of transistors.
- 8. Design a Monostable Multivibrator and draw the input and output waveforms
- 9. Draw the response of Schmitt trigger for gain of greater than and less than one.
- 10. Design a Bootstrap sweep circuit using BJT and draw its output time base waveform
- 11. Design a Miller sweep circuit using BJT and draw its output time base waveform.
- 12. Design a constant current sweep generator and draw input and output waveforms
- 13. Design unidirectional and bidirectional sampling gates
- 14. Prove practically Schmitt Trigger generates square wave
- 15. Frequency division with sweep circuit

Major Equipment required for Laboratories:

- 1. Computer System with latest specifications connected
- 2. Window XP or equivalent
- 3. Simulation software-Multisim or any equivalent simulation software
- 4. Regulated Power Suppliers, 0-30V
- 5. 20 MHz, Dual Channel Cathode Ray Oscilloscopes.
- 6. Functions Generators-Sine and Square wave signals
- 7. Multimeters
- 8. Electronic Components

GENDER SENSITIZATION LAB (Course Code: *MC401)

B.Tech. II Year II Sem.

L T P C 0 0 2 0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- > Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men

- Preparing for Womanhood. Growing up Male. First lessons in Caste.

Unit – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

Unit – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work.

-Gender Development Issues-Gender, Governance and Sustainable Development-Gender andHuman Rights-Gender and Mainstreaming

Unit – IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping withEveryday Harassment- Further Reading: "*Chupulu*".

Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

Unit – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender andPopular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

<u>Note</u>: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".
- ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%