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Abstract—Autonomous driving technologies can provide 

greater safety, comfort and efficiency for future transportation 

systems. Until now, much of the research effort has been devoted 

to developing different sensing and control algorithms. However, 

there has been limited research on how to handle sensor errors 

efficiently. A simple error in the sensor may lead to an unexpected 

failure in the whole autonomous driving function. In those cases, 

the vehicle is then recommended to be sent back to the 

manufacturer for repair, which costs time and money. This paper 

introduces an efficient automatic on-line sensor correction method. 

The method includes four major functions: sensor error detection, 

human teaching, vehicle learning, and vehicle self-evaluation. The 

first function is assumed to be ready and the major contribution 

of this paper is the human-vehicle teaching and learning 

framework, which utilizes human-vehicle interaction to 

collaboratively adjust the parameter in the control model in order 

to compensate for the errors of the sensors. The self-evaluation 

function is also briefly introduced. The applications of this method 

to radar and vision sensors to recover adaptive cruise control and 

lane keeping functions are introduced in detail. Experimental 

results acquired from high-fidelity 1/10-scale autonomous driving 

vehicles illustrate the effectiveness and advantages of the proposed 

approach. 

 
Index Terms—Sensor correction, teaching-and-learning, 

adaptive cruise control, autonomous lane keeping 

 

 
I. INTRODUCTION 

AUTONOMOUS driving technology is becoming 

increasingly prevalent throughout many industries. It is 

widely believed that autonomous vehicles can significantly 

reduce traffic accidents, save fuel, avoid traffic congestion 

and increase productivity [1],[2]. The typical architecture of 

autonomous vehicles consists of multiple types of sensors and 

on-board computers that take input from sensors and generate 

steering and throttle control output. Generally, the algorithms 

that are used to compute the control output can be categorized 

into two different approaches. The first is the model based 

control approach [1]-[6], which requires knowledge about the 

theoretic model of the sensor’s perception process and 

vehicle’s dynamics. The other approach is the neural network 

based approach [7]-[10], which utilizes a neural network (NN) 

to generate control output directly. This approach does not 

require the designers to clearly understand the mathematical 

model of each part of the system, but it needs a laborious 

training data collection process and excessive computing 

capacity to train the NN effectively [11]-[14]. 

Any type of autonomous driving controller requires accurate 

sensory information as its input. To meet the requirements, 

sensors need to go through a complex offline calibration 

process in order to transfer the raw data in the sensor frame to 

meaningful data in the vehicle frame. Although the main 

purpose of autonomous vehicles is to safely drive without 

human intervention, some unexpected accidents may still occur 

which causes the sensors to lose their standard configuration. 

Existing autonomous driving controllers cannot recover the 

calibration and the autonomous driving functions will be 

compromised. The vehicle then needs to be sent back to the 

manufacturer for repair, costing both time and money. Many 

methods have been proposed to solve such problems, but most 

of them are subject to major limitations. Some of them need a 

special feature to do the correction [15]-[16], and the 

correspondence between sensor data and the feature needs to be 

found either manually or semi-automatically [17]-[19]. For 

certain types of sensors, dedicated moving paths are needed 

[20]-[23]. Some researchers have proposed fully-automatic 

online sensor error correction methods [24]-[28], but they can 

only correct misalignment between sensors, none can correct 

the errors between the sensors frame and the world frame. 

Nvidia has proposed a framework that uses a deep learning 

neural network to teach an autonomous vehicle how to drive 

[29]. However, this approach can only learn the driving 

scenarios that the human driver has demonstrated, thus 

exhaustive human driving data would be required to cover all 

possible driving scenarios, which is inefficient in terms of both 

cost and time. 

The major contributions of this paper are to develop a human-

vehicle teaching-and-learning framework that utilizes model 

based autonomous driving controller and non-linear 

optimization algorithm to handle sensor parameter errors in 

autonomous vehicles. The model-based autonomous driving 

controller will correct the sensor error by learning from human 

expert demonstrations. In the remaining section of this paper, an 

automatic on-line sensor error correction framework is proposed 

and the human teaching, vehicle learning, and vehicle self-

evaluation are then introduced. The vision system errors in 

autonomous lane keeping system and radar errors in adaptive 

cruise control system are adopted as examples to illustrate the 
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design and implementation of the framework. The 

implementations are verified on a 1/10 scale (every dimension 

of the vehicle is about a tenth of a real vehicle) high-fidelity 

experimental autonomous vehicle. Experimental results show 

that the proposed approach does not require a large set of 

training data and the learning process is very efficient. 

Therefore, the proposed framework can increase the flexibility 

of autonomous vehicles and reduce the maintenance cost of 

autonomous vehicles when unexpected accidents occur on their 

sensing systems.speed, position, steering angles and 

surrounding information such as the images with lanes and 

forward vehicle distances. 

While a human driver can have improper driving behaviors 

in reality, we assume that in this paper the human driver is 

always performing well enough to teach the autonomous 

controller, and leave the human driver performance evaluation 

problem for future research. 

C.   Vehicle Learning 

During autonomous driving, motion planner generates the 

desired motions based on the given task and real-time sensory 

information and the motion controller executes the generated 

motions through a feedback controller using the real-time 

sensory feedback. The key mission of the vehicle learning 

process is to synthesize or adapt the motion planner and motion 

controller based on the sensory information from the human 

driver’s demonstrations. In this paper, we are dealing with the 

adaptation problem, where the autonomous vehicle has an 

existing motion planner and motion controller for the given 

tasks, and the parameters in the control model will be updated 

in the presence of sensor errors. In the remainder of this section, 

the method we used to update the parameters in the controller 

is described in detail. 
Human Teaching Process 

 

II. AUTOMATIC SENSOR CORRECTION 

A. General Process 

The general process of automatic sensor correction can be 

described as Fig. 1. The whole process can be divided into 3 

functions: sensor error detection and notification, human- 

vehicle teaching-and-learning, and vehicle self-evaluation. 

Among these processes, the sensor error detection and 

classification problem has been studied extensively [30]-[42]. 

In this paper, we assume that this function is already available 

and will not be discussed in detail. The human teaching, vehicle 

 

 

 

 

 

 
Vehicle Learning Process 

 
 
 
 

vehicles. Sensors mounted on the vehicle will record the 

human-driven vehicle’s information such as the vehicle’s 



Journal of the Maharaja Sayajirao University of Baroda  
ISSN:0025-0422 

Volume-56, No.2 JULY-DEC, 2022 29 

 
 

 
 

 

 

 

 

learning and vehicle self-evaluation process will be introduced          

in the following sections. 

 
Fig. 1. General process of automatic sensor correction 

B. Human Teaching 

The relationship between human teaching and vehicle 

learning process is shown in Fig. 2. In the human teaching 

process, given a driving task such as lane tracking or adaptive 

cruise control, the human driver acts as a perception system, a 

motion planner and a motion controller to execute it. The 

perception and command data collected during human driving 

process will serve as an expert demonstration for autonomous 
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1 2 𝑛 

in this paper, we assume the road ahead is ideally flat to 

estimate the lane markers’ 3D coordinates in the vehicle frame 

from the 2D coordinates captured by a camera. 𝑀𝑢𝑛i𝑡 is a unit 

transformation matrix which transfers the values of the 

coordinates from standard units to the units used by the sensor. 

𝑀𝑢𝑛i𝑡 and 𝑀𝑝𝑟oj represent the intrinsic parameters of the 

sensor, which are not affected by sensor extrinsic errors. 

𝑀𝑡𝑟𝑎𝑛𝑠 represents the extrinsic parameters of the sensor, which 

are vulnerable to errors. In reality, this matrix will contain six 

variables: three rotation angles 𝘢, 𝛽, 𝗒 and three translation 

distances X0, Y0, Z0[47]. 
Once the relationship between coordinate 𝑝 and 𝑃 is derived, 

given coordinate 𝑝 in sensor frame based on equation (1), it is 

possible to find the coordinate 𝑃 in the vehicle frame. 

Furthermore, the measurement indices based on 𝑃 can be 

calculated for the given task. For example, once the coordinates 

of lane markers in the vehicle frame are estimated, the 

measurement index for lane keeping task, the steering 

command output, can be calculated. 

Therefore, we denote the measurement indices for a given 

task as 𝑀 = [𝑚1, 𝑚2,… , 𝑚𝑛]𝑇 , where 𝑚i means a specific 

measurement index. Next, we define all parameters in equation 

(1) as 𝜃, then the measurement indices can be expressed by 

equation (2): 

𝑚k  = ƒk(𝑝, 𝜃) (2) 

When sensing exceptions occur, the major mission is to find 

the   new   parameters   �̂�   to   recover   the   autonomous   driving 

function. In the human teaching process, a human driver 

manually drives the vehicle to perform the given task. During 

the human driving, sensory data 𝑝 in the sensor frame is directly 

recorded. Under the assumption that the human driver is driving 

well, it is reasonable to consider the measurement indices 

calculated based on 𝑝 as the desired measurement indices 

𝑀𝑑 = [𝑚𝑑, 𝑚𝑑,… , 𝑚𝑑]𝑇. Therefore, the desired measurement 

indices can be expressed by equation (3): 

𝑚𝑑   = ƒk (𝑝, �̂�) (3) 

Since  𝑝 and 𝑀𝑑   = [𝑚𝑑 , 𝑚𝑑 , … , 𝑚𝑑 ]𝑇   are  all  known, �̂�  can 
1 2 𝑛 

be found by solving equation (3). If the functions ƒ1, ƒ2,… , ƒ𝑛 

are all linear functions, the least square method can be adopted 

to find 𝜃^. For many sensor applications in autonomous vehicles, 

these functions are not linear. Therefore, non-linear based 

optimization methods such as Gauss–Newton method [48], 

Levenberg–Marquardt method [49], trust region reflective 

method [50] and pattern search [51] method can be adopted to 

find    �̂�  based  on  the  complexity  of  these  functions  and  the 

availability of data from the human teaching process. 

D. Vehicle Self-Evaluation 

The vehicle self-evaluation process needs to verify the 

learning effectiveness and terminate the teaching-and-learning 

process when the learning result is good enough. The structure 

of the vehicle self-evaluation process is shown in Fig. 3. any set 

of learned parameters. 

One important feature that can be learned from the 

 
 

Fig. 3. Vehicle self-evaluation 

 
When an autonomous driving controller has learned the 

sensor error from the driver properly, the control output from 

the controller should be similar to the control output from the 

human driver. We divide the data collected during human 

teaching into “batches”. After the controller has learned from 

one or several data batches, the next incoming batch is used as 

the validation data set. If the calculated residual indices, 

represented by 𝐸𝑦, between the controller’s output 𝑦𝑐 and the 

human driver’s output 𝑦ℎ over the validation set is within a 

predefined tolerance value 𝐸𝑚𝑎𝑥 , then the controller can be 

considered as having a good performance over this batch. If the 

controller successfully performs well over multiple batches that 

can cover different driving scenarios, then the controller can be 

considered as properly trained and the teaching-and-learning 

process can be terminated. However, if the controller fails to 

pass this evaluation process, it will need to learn from more 

batches until the error 𝐸𝑦 is smaller than 𝐸𝑚𝑎𝑥. 

Specifically, when this self-evaluation process is applied 

together with optimization methods, the detailed process can be 

described as Fig. 4. In an optimization algorithm, the 

undetermined parameters need to be initialized with initial 

values first and then updated with new values that bring the 

value of cost function 𝐸𝑦 to a local minimum over the training 

data batch. If the new parameters cannot keep the cost 

function’s value small enough over a validation data set, the 

optimization process will start over again with the previously 

optimized parameters as the initial parameters. The 
optimization process will be repeated until target cost value is 

met. 
 

 

Fig. 4. Self-evaluation applied to optimization algorithms 

 
III. APPLICATION OF VISION SENSOR ERROR HANDLING IN 

AUTONOMOUS DRIVING 

In this section, the application of the proposed automatic 

sensor correction algorithm to handle camera errors in 

autonomous driving is described in detail. 

experiments with error scenarios 1 and 2 is the threshold that 

distinguishes the “acceptable” training result from the 

“unacceptable” result. Combining TABLE I. and TABLE II. 

 

VI. CONCLUSION 
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A human-vehicle teaching-and-learning framework is 

developed and applied to handling vision sensor errors and 

distance sensor errors in autonomous vehicles. The human 

teaching and vehicle learning processes and self- 

evaluation scheme are introduced in this paper. 

Experimental results on 1/10 scale autonomous vehicles 

and simulator demonstrate that the proposed method can 

handle the exceptions very quickly with a brief 

demonstration. It was shown that a large dataset was not 

needed for the human teaching and vehicle learning. 

Although with the limited amount of data collected 

during a short period of time the autonomous controller’s 

performance may not be fully restored to OEM standard, 

the basic autonomous driving function should be able to be 

recovered and the vehicle can continue to serve the user. 

More data during human driving in the future can be 

collected so that the controller can be improved and 

eventually reach the required safety standard. Therefore, 

our method can increase the flexibility and reduce the 

maintenance cost of autonomous vehicles when 

unexpected events occur on their sensing systems. 

The scalability of the proposed method can be 

foreseen in many applications in other types of sensors or 

faults. There are a variety of different failure modes for 

different sensors, and the algorithm we proposed can be 

applied to those that satisfy the following requirements: 

(1) The sensor is having a failure due to errors in 

calibration. The sensor itself is still functional. 

(2) The relationship between the sensor readings and 

the corresponding physical information in the 

world framecan be analytically modelled. 

(3) A clear and consistent measurement can be found 

for the measurement indices from the 

environment during daily driving for re-training 

purpose. 

Sensor failures that can be solved by our algorithm 

include the misalignment of cameras, LIDARs, radars and 

IMUs, as well as the calibration software malfunctions of 

these sensors. The structural damage to these sensors, or 

some other sensors that do not respond to any obvious 

references in the 

 
sensor and more consistent values of such measurements 

while human is driving the vehicle. It is also possible to 

environment, for example GPS sensors, cannot be handled by 

our proposed approach. 

When a correctable sensor is used in multiple functions, our 

propose approach is still applicable by utilizing the training data 

from the function which can provide more measurements 

related to the leverage different functions to formulate the 

problem as a multi-objective optimization problem, which may 

be able to further improve the correction results than using just 

one function. All these mentioned examples indicate the future 

extensions and applications of this research work. 

RC Radio Controlled 

ACC Adaptive Cruise Control LIDAR 

Light Detection and Ranging 

RADAR    Radio Detection and Ranging IMU

 Inertial Measurement Unit 

GPS global positioning system 

2D Two-Dimensional 

3D Three-Dimensional 

PID Proportional–Integral–Derivative 

WiFi Wireless Fidelity 

USB Universal Serial Bus MSE

  Mean Squared Error 

OEM Original Equipment Manufacturer 

APPENDIX 

Acronyms List 

NN Neural Network 
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