

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

Microwave and Optical Communications

Course Code – EC701PC

IV B.Tech ECE I-SEMESTER

A.Y.: 2022-2023

Prepared by

Mr. S. NARESH Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECM Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510 PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	Microwave and Optical Communications
Course Code	EC701PC
Programme	B.Tech
Year & Semester	IV Year I-Semester
Branch & Section	ECE-C
Regulation	R18
Course Faculty	Mr. S. NARESH, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (COs)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - Highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference books
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Result Analysis to identify weak and advanced learners
18	Result Analysis at the end of the course
19	Remedial classes schedule for weak students
20	Course attainment sheets
21	Attendance register
22	Course file digital form

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

VISION OF THE INSTITUTE

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

MISSION OF THE INSTITUTE

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Disi-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION OF THE DEPARTMENT

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

MISSION OF THE DEPARTMENT

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- **DM3:** To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sneriguda(V), Ibrahimpatnam(M), R.R.Dist-501 610

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- **PEO3:** Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS

(Applicable From 2018-19 Admitted Batch)

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC701PC	Microwave and Optical Communications	3	0	0	3
2		Professional Elective – III	3	0	0	3
3		Professional Elective – IV	3	0	0	3
4		Open Elective - II	3	0	0	3
5	SM702MS	Professional Practice, Law & Ethics	2	0	0	2
6	EC703PC	Microwave and Optical Communications Lab	0	0	2	1
7	EC704PC	Industrial Oriented Mini Project/ Summer Internship	0	0	0	2
8	EC705PC	Seminar	0	0	2	1
9	EC706PC	Project Stage - I	0	0	6	3
		Total Credits	14	0	10	21

Professional Elective – III

EC711PE	Artificial Neural Networks
EC712PE	Scripting Languages
EC713PE	Digital Image Processing

Professional Elective – IV

EC721PE	Biomedical Instrumentation
EC722PE	Database Management Systems
EC723PE	Network Security and Cryptography

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COURSE SYLLABUS

EC701PC: MICROWAVE AND OPTICAL COMMUNICATIONS (PC)

B.Tech. IV Year I Semester

L T P C 3 0 0 3

UNIT - I

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes: 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics.

Helix TWTs: Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - II

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics,

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, GunnDiodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Principle of operation of IMPATT and TRAPATT Devices.

UNIT - III

Waveguide Components: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters

– Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions - E plane and H plane Tees. Ferrites– Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator,

UNIT - IV

Scattering matrix: Scattering Matrix Properties, Directional Couplers – 2 Hole, Bethe Hole, [S] matrix of Magic Tee and Circulator.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Measurement of Attenuation, Frequency. Standing Wave Measurements, measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

UNIT - V

Optical Fiber Transmission Media: Optical Fiber types, Light Propagation, Optical fiber Configurations, Optical fiber classifications, Losses in Optical Fiber cables, Light Sources, Optical Sources, Light Detectors, LASERS, WDM Concepts, Optical Fiber System link budget.

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Electronic Communications Systems- Wayne Tomasi, Pearson, 5th Edition

REFERENCE BOOKS:

- 1. Optical Fiber Communication Gerd Keiser, TMH, 4th Ed., 2008.
- 2. Microwave Engineering David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011Reprint.
- Microwave Engineering G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012. Electronic Communication System – George Kennedy, 6th Ed., McGrawHill.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Outcomes

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Course Year/ Semester: B.Tech IV ECE - C Section

СО	Course Outcome
Number	(CO)
C411.1	Classify O type and M type microwave tubes
C411.2	Explain the microwave solid state devices and applications
C411.3	Analyze the waveguide components
C411.4	Illustrate microwave measurements by using microwave bench and S matrix determination
C411.5	Explain the basic elements of optical fiber transmission link, types, optical transmitters & receivers
C411.6	Describe the significance of microwave and Optical fibers in Communications

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

CO - PO/PSO Mapping & Justification

Course Name: Microwave and Optical Comm	Course Code: EC701PC		
Class: IV B.Tech ECE-C	A.Y. : 2022-23	Semester: I	

Course Outcomes:

After completing this course the student will be able to:

- C411.1: Classify O type and M type microwave tubes. (Analyze)
- C411.2: Explain the microwave solid state devices and applications. (Understand)
- C411.3: Analyze the waveguide components (Analyze)
- C411.4: Illustrate microwave measurements by using microwave bench and S matrix determination. (Understand)
- C411.5: Explain the basic elements of optical fiber transmission link, types, optical transmitters and receivers. (Evaluate)
- C411.6: Describe the significance of microwave and Optical fibers in Communications. (Analyze)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO / CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C411.1	3	3											1	1
C411.2		3		2	1							2	2	2
C411.3				2							3		2	1
C411.4			3									3	1	1
C411.5	2	2			2								2	2
C411.6	3	3		3							3	3	2	1
C411	2.67	2.75	3.00	2.33	1.50						3	2.67	1.67	1.33

CO-PO/PSO Mapping Justification

Course: Microwave And Optical Communications (C411)

Class: IV ECE - C

- PO1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use researchbased knowledge and research methods including design of experiments, analysis
 PO4. and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Design Skills: Design, analysis and development a economical system in the area of PSO1.Embedded system & VLSI design.

Software Usage: Ability to investigate and solve the engineering problems using PSO2. MATLAB, Keil and Xilinx.

CO-PO Mapping Justification:

C411.1: Classify O type and M type microwave tubes.

	Justification
PO1	Students will be able to study about O type tubes like Klystron Tube, Travelling Wave Tube.
	Students can able to find solutions for the problems associated with these tubes.
PO2	Students find the problems on rectangular wave guides.
PSO1	Students can improve design and development skills on microwave tubes.
PSO2	Students can investigate and solve problems associated with microwave tubes using software
	tools.

C411.2: Explain the microwave solid state devices and applications.

	Justification
PO2	Students solve the problems related to M-Type tubes.
PO4	Students get research knowledge on M-Type tubes and Microwave solid state devices.
PO5	Students can select and use appropriate tools to solve the problems related to solid state devices.
PO12	Students recognize the need of microwave tubes, Microwave solid state devices.
PSO1	Students can analysis and design solid state devices.
PSO2	Students can investigate and solve problems associated with microwave solid state devices using
	different software tools.

C411.3: Analyze the waveguide components

	Justification
PO4	Students Get the research knowledge on different microwave waveguide components which plays
	a major role to do the research.
PO11	Students can demonstrate knowledge and understand management principles and apply these to
	analyze waveguide components.
PSO1	Students can analysis, design and develop new waveguide components using different design
	technologies.
PSO2	Students can investigate and solve problems associated with waveguide components using
	different software tools.

C411.4 : Illustrate microwave measurements by using microwave bench and S matrix determination.

	Justification
PO3	Students get the solutions for the complex problems related to microwave measurements using S
	matrix.
PO12	Students can recognize the need of microwave bench and S Matrix.
PSO1	Students can analysis, design and develop new S matrix determination techniques using different
	design technologies.
PSO2	Students can investigate and solve problems associated with microwave bench and S Matrix using
	different software tools.

C411.5 : Explain the basic elements of optical fiber transmission link, types, optical transmitters & receivers.

	Justification
PO1	Students Can measure Numerical Aperture, Powers etc. by using some mathematical techniques.
PO2	Students can solve complex problems in the transmission and reception of optical signals.
PO5	Students can understand the utilization of different software's, IT tools in the transmission and reception of optical signals.

PSO1	Students can analysis, design and develop optical transmitters and receivers using different design
	technologies.
PSO2	Students can investigate and solve problems associated with fiber optic transmitters & receivers
	using different software tools.

C411.6: Describe the significance of microwave and Optical fibers in Communications.

	Justification
PO1	Students get the knowledge on fiber types, configurations and losses in the optical transmission.
PO2	Students can solve the problems on losses which occur during the transmission and reception of
	optical signals.
PO4	Students can get research knowledge on different optical sources and optical detectors.
PO11	Students can demonstrate knowledge and understand management principles and apply these in
	the fields of microwave and optical fibers communication.
PO12	Students can recognize the need of microwave engineering and optical fiber communication.
PSO1	Students can analysis, design and develop new things in the field of microwave engineering and
	optical fiber communication using different design technologies.
PSO2	Students can investigate and solve problems associated with microwave engineering and optical
	fiber communication using different software tools.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ACADEMIC CALENDAR 2022-23

B. Tech./B. Pharm. IV YEAR I & II SEMESTERS

I SEM

S No	Description		Duration	
5. 140	Description	From	To	
1	Commencement of I Semester classwork		29.08.2022	
2	1 st Spell of Instructions (including Dussehra Recess)	29.08.2022	31.10.2022 (9 Weeks)	
3	Dussehra Recess	03.10.2022	08.10.2022 (1 Week)	
4	First Mid Term Examinations	01.11.2022	07.11.2022 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before	12.11.2022		
6	2 nd Spell of Instructions	09.11.2022	03.01.2023 (8 Weeks)	
7	Second Mid Term Examinations	04.01.2023	10.01.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	11.01.2023	19.01.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	17.01.2023		
10	End Semester Examinations	20.01.2023	02.02.2023(2 Weeks)	

Note: No. of Working/instructional days: 94

II SEM

S No	Description	Duration		
5.110	Description	From	То	
1	Commencement of II Semester classwork	03.02.2023		
2	1 st Spell of Instructions	03.02.2023	31.03.2023 (8 Weeks)	
3	First Mid Term Examinations	01.04.2023	08.04.2023 (1 Week)	
4	Submission of First Mid Term Exam Marks to the University on or before	15.04.2023		
5	2 nd Spell of Instructions	10.04.2023	17.06.2023 (10 Weeks)	
6	Summer Vacation	15.05.2023 27.05.2023 (2 Wee		
7	Second Mid Term Examinations	19.06.2023	24.06.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	26.06.2023	01.07.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	01.07.2023		
10	End Semester Examinations	03.07.2023	15.07.2023 (2 Weeks)	

Note: No. of Working/ instructional days: 91

RI

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510

https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Class Timetable

SEMESTER: I

CLASS: IV-B.Tech ECE-C

A.Y:2022-23

LH: B-202

TIME/ DAY	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	IV 12:10-1:00	1:00-1:30	V 1:30-2:20	VI 2:20-3:10	VII 3:10-4:00
MON	DIP	NS&C	MW&OC	JAVA		PPL&E	PPL&E	JAVA
TUE	MW&OC	LIB	NS&C	DIP		INT	со	-CU/DAA
WED	NS&C	MW&OC	DIP	COUN		JAVA	MW&OC LAB / SEMINAF	
THU	PPL&E	P	ROJECT STAGE-I		N C	DIP	MW&OC	SPORTS
FRI	JAVA	P	ROJECT STAGE-	[н	DIP	NS&C	PPL&E
SAT	NS&C		IOMP			MW&OC	SEMINAR /	MW&OC LAB

*(T) - Tutorial Concern Faculty

Course Code	Course Name	Name of the Faculty	Course Code	Course Name		Name of the Faculty		
EC701PC	MW&OC-Microwave and Optical Communications	S.Naresh	EC703PC	MW&OC LAB-Microwave and Optical Communications Lab		MW&OC LAB-Microwave and Optical Communications Lab Dr.S		Dr.S.Anjaneyulu /S.Naresh
	DIP-Digital Image		EC704PC	IOMP-Industry Oriented Mini Project		A.Apsara/G.Anitha/P.Meena		
EC713PE	Processing(Prof.ElecIII)	Dr.S.Anjaneyulu	EC705PC	Seminar Dr.T.Ra		makrishna/G.Swathi/G.Anusha		
			EC706PC	Project Stage-I K.Srika		nth/B.Ashwini/T.Divya		
ECTOTO	NS&C-Network Security	D. T. Demekrishne	LIB	Library		K.Rajender/D.Aruna Kumari		
EC/23PE	and Cryptography (PE - IV)	Dr. I. Kamakrishna	SPORTS	Sports		Y.Rajani		
0050300	JAVA- Java Programming	Ok Bushhalaan	COUN	Counseling A	Vaani/Dr.S	Anjaneyulu/K.Bhaskar Reddy		
CS/03OE	(Open Elective - II)	Ch.Praonakar	INT	Internet		A.Vaani/P.Krishna Rao		
SM702MS	PPL&E-Professional Practice, Kary & Ethics	K.Balakrishna	OO-CU/ DAA	Co-Curricular/Department Association Activities		Y.Raju/P.R.H.Shinakao		
ale suidered	Class Incharge	Head	s and Commun	Departmen Deus lication Elligit	ana de la	PR Dist Telangana -501 510		

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lesson Plan with Lesson Plan with Number of Hours/Periods, Teaching Aids/Methods, Text/Reference Book

Course Name: Microwave and Optical Communications Course Code: EC701PC

Class: B.Tech- IV Year ECE - C

Session Duration: 50 minutes

Unit-I Syllabus:

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes: 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics.

Helix TWTs: Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
1	Limitations and Losses of conventional Tubes at Microwave Frequencies	T1,R2	BB
2	Classification of Microwave Tubes	T1,R3	BB
	Two cavity klystron Amplifier & It's Mathematical Analysis	T1,R2	PPT
1	Expressions for O/P Power and Efficiency of Two cavity klystron amplifier	T1,R2	BB
1	Reflex Klystron oscillator structure, velocity modulation	T1,R2	BB
1	Reentrant Cavities	T1,R3	BB
2	Reflex Klystron oscillator Applegate Diagram, Mathematical Theory of Bunching	T1,R2	PPT
2	Power Output, Efficiency, Oscillating Modes	T1,R3	BB
1	O/P Characteristics of TWT amplifier	T1,R3	BB
1	Types and Characteristics of Slow Wave Structures	T1,R2	BB
1	Structure of Travelling Wave Tube(TWT) Amplifier	T1,R3	PPT
2	TWT amplification process & Suppression of Oscillations	T1,R2	BB
1	Gain considerations in Helix TWTs	T1,R3	BB

Total Number of Hours/Unit: 16

Unit-II Syllabus:

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI Mode, o/p characteristics,

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Principle of operation of IMPATT and TRAPATT Devices.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
1	Introduction to M-Type tubes and cross field effects	T1,R2	BB
1	Types of Magnetron	T1,R3	BB
2	Cylindrical Traveling Wave Magnetron structure and operation	T1,R3	PPT
1	Hull Cut-off and Hartree Conditions	T1,R2	BB
1	Pi-Mode of Magnetron	T1,R3	BB
1	Magnetron output characteristics	T1,R2	BB
1	Introduction & Classification of microwave solid state devices	T1,R3	BB
1	Introduction to Transferred Electron Devices(TED's)	T1,R2	BB
2	Gunn diode structure, Characteristics of a Gunn diodes	T1,R2	PPT
2	Gunn diode and modes of operation, RWH theory	T1,R2	BB
2	Structure and Principle of operation of IMPATT	T1,R3	BB
1	Structure and Principle of operation of TRAPATT devices	T1,R3	SEMINAR

Course Outcome (C411.2): Explain the microwave solid state devices and applications.

Total Number of Hours/Unit: 16

Unit-III Syllabus:

Waveguide Components: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters – Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions - E plane and H plane Tees. Ferrites– Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
2	Waveguide coupling mechanisms	T1,R2	BB
2	Waveguide discontinuities	T1,R3	BB
1	Waveguide Attenuators : Resistive Card	T1,R2	PPT
1	Waveguide Attenuators : Rotary Vane Attenuator	T1,R3	SEMINAR
1	Waveguide Phase Shifters : Dielectric Type Phase Shifter	T1,R3	BB
2	Waveguide Phase Shifters : Rotary Vane Phase Shifter	T1,R2	PPT
1	E-Plane Tee	T1,R3	BB
1	H-Plane Tee	T1,R2	SEMINAR
1	Ferrites composition and characteristics.	T1,R3	BB
1	Faraday Rotation	T1,R2	BB
1	Ferrite Components: Isolator	T1,R3	BB
1	Ferrite Components: Gyrator	T1,R2	BB

Course Outcome (C411.3): Analyze the waveguide components

Total Number of Hours/Unit: 15

Unit-IV Syllabus:

Scattering matrix: Scattering Matrix Properties, Directional Couplers – 2 Hole, Bethe Hole, [S] Matrix of Magic Tee and Circulator.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Measurement of Attenuation, Frequency. Standing Wave Measurements, measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
1	Properties of [S] Matrix	T1,R2	BB
1	[S] matrix of E-Plane Tee	T1,R3	BB
1	[S] matrix of H-Plane Tee	T1,R2	BB
1	[S] matrix of Magic Tee	T1,R3	BB
1	[S] matrix of Circulator	T1,R2	BB
1	2 Hole Directional Coupler Structure and [S] matrix	T1,R2	BB
1	Bethe Hole Directional Coupler Structure and [S] matrix	T1,R3	BB
1	Description of Microwave Bench	T1,R2	PPT

1	Different Blocks and their Features of different blocks of microwave bench	T1,R2	PPT
1	Errors and Precautions of different blocks of microwave bench	T1,R3	BB
1	Measurement of Attenuation : Power Ratio Method	T1,R2	BB
1	Measurement of Attenuation : RF Substitution Method	T1,R3	BB
1	Measurement of Frequency : Using Frequency Meter	T1,R3	SEMINAR
1	Measurement of Frequency : Using Slotted Line	T1,R2	BB
1	Measurement of Frequency : Using Down Conversion Method	T1,R2	BB
1	Measurement of Low VSWR and High VSWR	T1,R3	BB
2	Measurement of Impedance	T1,R2	BB
1	Q factor of a cavity	T1,R2	BB

Course Outcome (C411.4): Illustrate microwave measurements by using microwave bench and S matrix determination.

Total Number of Hours/Unit: 19

Unit-V Syllabus:

Optical Fiber Transmission Media: Optical Fiber types, Light Propagation, Optical fiber Configurations, Optical fiber classifications, Losses in Optical Fiber cables, Light Sources, Optical Sources, Light Detectors, LASERS, WDM Concepts, Optical Fiber System link budget.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
2	Introduction to optical fibers & Types of optical fibers	T2,R1	BB
1	Light propagation in optical fibers	T2,R1	PPT
2	Optical fiber configurations	T2,R4	BB
1	Optical fiber classifications	T2,R1	BB
2	Losses in Optical Fiber cables	T2,R4	BB
2	Optical Sources : Structure and Operation	T2,R1	BB
2	Optical Detectors : Structure and Operation	T2,R4	SEMINAR
2	Optical fiber system Link budget	T2,R1	BB
1	Wavelength Division Multiplexing(WDM)	T2,R4	BB

Course Outcome (C411.5): Explain the basic elements of optical fiber transmission link, types, optical transmitters & receivers.

Course Outcome (C411.6): Describe the significance of microwave and Optical fibers in Communications

Total Number of Hours/Unit: 15

TEXT BOOKS:

T1. Microwave Devices and Circuits – Samuel Y. Liao, Pearson, 3rd Edition, 2003.

T2. Electronic Communications Systems- Wayne Tomasi, Pearson, 5th Edition

REFERENCE BOOKS:

R1. Optical Fiber Communication – Gerd Keiser, TMH, 4th Ed., 2008.

R2. Microwave Engineering - David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011 Reprint.

R3. Microwave Engineering - G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012.

R4. Electronic Communication System – George Kennedy, 6th Ed., McGrawHill.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

WEB REFERENCES

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Class: B.Tech- IV ECE - C

- 1) https://archive.nptel.ac.in/courses/108/103/108103141/
- 2) <u>https://onlinecourses.nptel.ac.in/noc20_ee91/preview</u>
- 3) <u>https://archive.nptel.ac.in/courses/108/101/108101112/</u>
- 4) <u>https://onlinecourses.nptel.ac.in/noc21_ee42/preview</u>
- 5) https://archive.nptel.ac.in/courses/108/106/108106167/
- 6) https://archive.nptel.ac.in/courses/117/101/117101002/

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture Notes

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Course Year/ Semester: B.Tech IV ECE - C Section

S.No	Unit Number	Lecture Notes Link
1	Unit-1	https://drive.google.com/file/d/172RtEDQqz33Zw7X5QJ9uwsagQNGqTmAT/view?usp=drive_link
2	Unit-2	https://drive.google.com/file/d/1jK56aUfk1blsh5x-f_WK1zd6qrFmM7Ux/view?usp=drive_link
3	Unit-3	https://drive.google.com/file/d/1_BOtqYYlC1CFq9jsicdjwNnxyO3AdLw2/view?usp=drive_link
4	Unit-4	https://drive.google.com/file/d/1D3HZotqWrcqnUJOwvVJ0myhHUdU5Hy2e/view?usp=drive_link
5	Unit-5	https://drive.google.com/file/d/1ii-vW8j75DDrisBmX1Pr5bbG8tY1GN4s/view?usp=drive_link

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

List of PPTs

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Course Year/ Semester: B.Tech IV ECE - C Section

S.No	Topic Name& PPT Link
1	Two Cavity Klystron Amplifier:
1	https://drive.google.com/file/d/1WbyOZVFUZKYpOMukcwZGbMHx5oCh6V6t/view?usp=drive_link
2	Reflex Klystron Oscillator:
Z	https://drive.google.com/file/d/1LvY35tyvXiAs_ZTDEuZKdZJ94g7HVVK6/view?usp=drive_link_
2	Travelling Wave Tube Amplifier:
3	https://drive.google.com/file/d/1njiAoCz-9Qt0RnbEtjdDfI1Z1EJzzQjq/view?usp=drive_link
4	Cylindrical Travelling Wave Magnetron:
4	https://drive.google.com/file/d/104sxQw5Zlhi8EJLv0qTmII0IogFi3B3s/view?usp=drive_link
5	Gunn Diode Structure and Characteristics:
5	https://drive.google.com/file/d/1fOHKmMPYaYvoZV8mFeUfkin5HyRlFufT/view?usp=drive_link_
6	Waveguide Attenuator: Resistive Card:
0	https://drive.google.com/file/d/1JKw97iAVqXZN6rvbE0H9m5IgflSQ50W1/view?usp=drive_link
7	Rotary Vane Phase Shifter:
/	https://drive.google.com/file/d/1TbfM253L1KHW-Evdg1RdpfYIgd7n9gNd/view?usp=drive_link
0	Block Diagram of Microwave Bench Setup:
0	https://drive.google.com/file/d/1D_ixH5MFk9_fn3dEdvOAu43lIh-qYbvw/view?usp=drive_link
9	Light Propagation in Optical Fibers:
	https://drive.google.com/file/d/1rHC-TEKg6pbF5zJvV2muPzlbkYfCvOgl/view?usp=drive_link

Code No: 157CM JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, February/March - 2022 MICROWAVE AND OPTICAL COMMUNICATIONS (Electronics and Communication Engineering)

Time: 3 Hours

Answer any Five Questions All Questions Carry Equal Marks

- 1.a) Explain in detail the operation of Reflex Klystron and derive equation for its efficiency.
- b) What is Velocity modulation? How is it different from normal modulation? Explain how velocity modulation is utilized in Klystron amplifier. [8+7]
- 2.a) Explain the operation of TWT and derive its gain. Give its characteristics and applications.
 - b) What is a Gunn Diode? Explain how it works as a Oscillator and also discuss about the characteristic curve. [8+7]
- 3.a) Explain the operation of magnetron and derive its Hull Cutoff Voltage equation.
- b) Explain the operation of IMPATT Diode and explain its characteristics curve. [7+8]
- 4.a) Discuss the design of Waveguide terminations.
 - b) With a neat diagram explain in detail about H-plane tee and determine its S-matrix.

[8+7]

Max. Marks: 75

- 5.a) What are ferrites? How they are useful in microwaves? Explain faradays rotation.
- b) Explain the design and working principle of a Gyrator. [8+7]
- 6.a) Explain the operation of Magic Tee. Describe how it can be used in constructing a Circulator and a Duplexer.
 - b) Discuss in detail the operation of a 2-hole directional coupler, Calculate the coupling factor if the power in the primary waveguide is 65mw and the power delivered to the directional coupler is 7mw.
- 7.a) With a neat block diagram of typical microwave bench, explain the functionality of each block.
 - b) Define an optical fiber. Explain in detail different types of optical fibers with neat sketches. [8+7]
- 8.a) Explain P-I-N photo detector with neat sketch.
 - b) Briefly explain the types of losses occur in optical fiber. [7+8]

--00000--

Code No: 157CM JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, January/February - 2023 MICROWAVE AND OPTICAL COMMUNICATIONS (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

1.a)	What are the limitations of conventional vacuum tubes?	[2]
b)	How the two cavity Klystron acts as an oscillator?	[3]
c)	What is meant by Hull Cutoff Voltage?	[2]
d)	How a Gunn Diode act as an oscillator?	[3]
e)	What is the principle of microwave phase shifter?	[2]
f)	Discuss about waveguide discontinuities?	[3]
g)	Give the properties of S matrix.	[2]
h)	Discuss the significance of slotted section.	[3]
i)	What is a graded index fiber? Sketch its refractive index profile.	[2]
j)	Discuss about "Signal Distortion" in fibres.	[3]

PART - B

(50 Marks)

2.a)	Explain in detail about the classification of M type Microwave tubes.	
b)	Explain the velocity modulation in two cavity Klystron amplifiers.	[5+5]
	OR	
3.a)	Draw the diagram of TWT and explain the operation in detail.	
b)	Explain the significance of Applegate diagram.	[5+5]
4.a)	Explain the growth of oscillations in a travelling wave magnetron.	
b)	Discuss about magnetron and its types.	[5+5]
	OR	
5.a)	Write short notes on "TRAPATT diode".	
b)	What are the different avalanche transit time devices?	[5+5]
6.a)	Discuss in detail about Ferrites Composition and Characteristics.	
b)	Explain about various wave guide attenuators.	[5+5]
	OR	
7.a)	Draw the structure diagram of H-plane Tee and explain its characteristics.	

b) Explain the principle of Faraday rotation. [5+5]

R18

(25 Marks)

- 8.a) Explain the operation of Directional Coupler with a neat diagram and derive its Scattering Matrix.
 - b) Describe how a magic tee can be used in constructing a Circulator and a Duplexer.[5+5]

OR

- 9.a) With the help of a neat sketch, briefly explain the functions of different blocks of a microwave bench.
 - b) Discuss in detail about measurement of VSWR. [5+5]
- 10.a) Explain Classification of Optical Fibers.
 - b) Explain LED Structure with neat sketch. [5+5]

OR

- 11.a) Describe any two types of Losses in Optical Fiber Communication System.
 - b) Describe in detail about Rise time Budget of Optical Fibre Communication interms of digital system design. [5+5]

---00000----

Code No: 127FE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, November/December - 2018 MICROWAVE ENGINEERING (Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
Wh	y TEM mode is not possible for rectangular waveguides?	[2]
b)	A rectangular waveguide has the following values $l=2.54$ cm, $b = 1.27$ cm wa	veguide
	thickness = 0.0127 . Calculate the cut-off frequency.	[3]
c)	What Magic is associated with a Magic Tee?	[2]
d)	A 20 dB coupler has a directivity of 30 dB. Calculate the value of isolation.	[3]
e)	What is slow wave structure?	[2]
f)	How oscillations are prevented in a Travelling Wave Tube?	[3]
g)	Write down the different types of magnetron.	[2]
h)	What are the Hull Cut-off and Hartree Conditions?	[3]
i)	Define scattering matrix.	[2]
j)	What is a VSWR meter and how will you determine the VSWR?	[3]

PART-B

(50 Marks)

2. Explain the wave impedance of a rectangular wave – guide and derive the expression for the wave impedance of TE, TM, and TEM mode? [10]

OR

- 3.a) A rectangular waveguide has the following dimensions: a=5.1cm, b=2.4cm. i) Calculate the cut-off frequency of the dominant mode. ii) Calculate the lowest frequency and determine the mode closest to the dominant mode.
 - b) Derive the expression for the characteristic impedance of microstrip lines. [4+6]
 - Incident power to a directional coupler is 80 watts. The direction coupler has coupling factor of 20 dB, directivity of 30 dB and insertion loss of 0.5 dB. Find the output power at i) main arm, ii) coupled and iii) isolated parts.
 - b) Explain Faraday rotation with a neat diagram. Explain the working of a ferrite isolator.

[4+6]

OR

- 5.a) Explain the functioning of rotary vane attenuators.
 - b) A 30 dB directional coupler is used to sample incident and reflected power in a waveguide. The value of VSWR is 2, and the coupler sampling power = 4.5 mW. What is the value of reflected power?

R15

- 6.a) Explain about electronic and mechanical tuning of reflex klystron.
- b) A TWT operates under following parameters: Beam Voltage $V_0=3KV$, Beam current $I_0 = 20$ mA, characteristic Impedance of helix $Z_0=10$, circuit length, N=50 and frequency f =10 GHz. Determine: i) Gain parameter, ii) Output power gain in dB and iii) all Four propagation constants. [6+4]

OR

- 7.a) Explain how a helical TWT achieve amplification.
 - b) An O-type TWT operates at 2GHz. The slow wave structure has a pitch angle of 4.4^o and attenuation constant of 2 Np/m. Determine the propagation constant of the travelling wave in the tube.
- 8.a) Explain the *pi*-mode operation of magnetron.
 - b) A magnetron operates with following parameters: $V_0 = 25$ KV, $I_0=1.25$ A, $B_0= 0.4$ wb/m², diameter of the cathode = 8cm, Radius of vane edge to center = 8cm. Find the cyclotron frequency and cutoff voltage. [6+4]

OR

[5+5]

- 9.a) Explain the construction of GUNN diode using RWH theory.
- b) Differentiate between TEDs and transistors.
- 10.a) Find the S matrix of isolator.

b) For the given scattering parameters for a two-port network calculate the equivalent impedance parameters if the characteristic impedance is 50Ω . $S_{11} = 0.4 + j0.7$ $S_{12} = S_{21} = j0.6$ $S_{22} = 0.3 - j0.8$ [5+5]

OR

- 11.a) Calculate the SWR of a transmission system operating at 8 GHz. Assume TE_{10} wave transmission inside a waveguide of dimensions a =3.5 cm, b=2.1 cm. The distance measured between twice minimum power points (successive minima) is 1 mm on a slotted line.
 - b) Explain how low power is measured using Bolometer technique. [4+6]

--00000--

Code No: 117FE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year I Semester Examinations, November/December - 2016

MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	Calculate the group and phase velocities for an angle of incidence of 33° .	[2]
b)	Explain how the excitation of modes is done in rectangular waveguide?	[3]
c)	What is Q Factor?	[2]
d)	Write short notes on Waveguide Irises.	[3]
e)	What are the limitations of conventional vacuum tubes at microwave freque	encies?[2]
f)	What is the principle of working of Backward Wave Oscillator?	[3]
g)	What are the disadvantages of strapping?	[2]
h)	A magnetron has a cathode radius of 2.5 mm and an anode radius of 5 mm.	What is the
	cut-off potential if a 0.27-Wb/m ² magnetic field is applied?	[3]
i)	What is Q of a Cavity Resonator?	[2]
j)	Why the S-parameters are used in microwaves?	[3]

PART-B

(50 Marks)

- 2.a) Discuss the significance and advantage of dominant mode in rectangular waveguide.
- b) A rectangular waveguide with a width of 4 cm and a height of 2 cm is used to propagate an electromagnetic wave in the TE10 mode. Determine the wave impedance, phase velocity, and group velocity of the waveguide for the wavelength of 6 cm. [5+5]

OR

- 3.a) Distinguish between TE and TM modes of the propagation in rectangular waveguide.
- b) A wave of frequency 6GHz is propagated in a parallel plane waveguide separated by 3cm. Calculate i) the cut-off wavelength for the dominant mode. ii) Wavelength in the waveguide. iii) the group and phase velocities. iv) Characteristic wave impedance.[6+4]
- 4.a) A 20mV signal is fed to the series arm of a lossless Magic Tee junction. Calculate the power delivered through each port when other ports are terminated with a matched load.
 - b) Explain coupling probes and coupling loops. [4+6]

OR

- 5.a) Explain the working of a two-hole directional coupler with a neat diagram and derive the expression for the coupling and directivity of a two-hole directional coupler.
 - b) For a directional coupler, the incident power is 550 mW. Calculate the power in the main and auxiliary arm. The coupling factor is 30 dB. [6+4]

R13

6. Explain in detail bunching process and obtain expression for bunching parameter in a two cavity klystron. [10]

OR

- 7.a) The parameters of a two-cavity klystron are given by $V_b = 900$ V, f = 3.2 GHz, and $d = 10^{-3}$ m. Determine electron velocity, transit angle, and beam coupling coefficient.
- b) Explain the principle of working of Travelling Wave Tube. [3+7]
- 8.a) Derive the Hartree anode Voltage equation for linear magnetron.
 - b) A normal circular magnetron has the following parameters: Inner radius 0.15 m, outer radius 0.45 m, Magnetic flux density 1.6 milli weber/^{m²}. (i) Determine Hull cut-off voltage (ii) Determine the Hull cut-off magnetic flux density if the beam voltage is 4000 V. [6+4]

OR

- 9.a) Explain Gunn Effect using two-valley theory? Also explain several modes of operation and applications of Gunn diodes.
 - b) Give the classification of solid state microwave devices. [6+4]
- 10.a) Find the S matrix for a matched isolator having an insertion loss of 0.5dB and isolation of 25dB.
 - b) Explain the S-matrix representation of a multiport microwave network and its significance. [4+6]
- 11.a) Describe the blocks of microwave bench and their features.
 - b) Calculate the VSWR of a transmission system operating at 15 GHz.TE₁₀ modes is propagating through the waveguide of dimensions 4.0 and 2.1 cm respectively. The distance between two successive minima is 1.5 mm. [7+3]

--00000--

Sheriguda (Vill), Ibrahimpatnam (Mdl), R.R.Dist-501 510 I- Mid Examinations, Nov -2022

Set – I

Year & Branch: IV ECE-A,B&C Subject: Microwave & Optical Communications	Max. Marks: 10	Date: 01 Tim	-11-2022(FN) ne: 1 Hour
Answer any TWO Questions. All Q	uestion Carry Equal Mai	rks 2*.	5=10 marks
1. Explain the limitations of conventional tubes at frequencies.	t microwave	(C411.1)	(Understand)
2. Discuss the operation of Two Cavity Klystron a neat diagram.	mplifier with	(C411.1)	(Create)
3. Write short notes on Gunn Diode.		(C411.2)	(Remember)
4. Explain different waveguide coupling mechanis diagrams.	sms with neat	(C411.3)	(Understand)

-----All the Best------

Sheriguda (Vill), Ibrahimpatnam (Mdl), R.R.Dist-501 510

Microwave and Optical Communications

(Objective Exam)

B.TECH IV YEAR, I SEM, I MID-TERM EXAMS, NOV-2022.

Date: 01.11.2022 (FN) Time: 20 Min. Max Marks: 10 Answer All the Questions. All Questions Carry Equal Marks. I. I. Choose the Correct Answer: (] A) Large Bandwidth B) Large Spectrum Usage C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called [] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3.	ROLL NO:	NAME:	MARKS:	
Answer All the Questions. All Questions Carry Equal Marks. I. Choose the Correct Answer: 1. Advantages of Microwaves. 1. A) Large Bandwidth B) Large Spectrum Usage C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called [] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3.	Date: 01.11.2022 (FN)	Time: 20 Min.	Max Ma	rks: 10
I. Choose the Correct Answer: [] A. Aurge Bandwidth B) Large Spectrum Usage C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called []] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3.	Answer All the Questions.	All Questions Carry Equal Ma	rks.	
1. Advantages of Microwaves. [] A) Large Bandwidth B) Large Spectrum Usage C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called [] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3.	I. Choose the Correct Ans	wer:		
A) Large Bandwidth B) Large Spectrum Usage C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called []] A) Active space B) Transmitting space C) Drift space D) Reflecting space 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called []] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3.	1. Advantages of Microway	/es.		[]
C) Low Power Consumption D) All of the above 2. In a Two cavity Klystron Amplifier space between burcher cavity and catcher cavity is called []] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3. is not a Microwave Tube from below []] A) Cathode Ray Tube B) Magnetron []] A) Cathode Ray Tube D) Reflex Klystron Tube []] A) Cathode Ray Tube D) Reflex Klystron Tube []] A) Amplitude Modulation B) Velocity Modulation []] C) Phase Modulation D) Space Modulation []] A) Microwave Bench B) VSWR []] C) Bolometer D) Cavity []] A) 20% B) 45% []] D) 100% D []]	A) Large Bandwid	lth	B) Large Spectrum Usage	
 2. In a Two cavity Klystron Amplifier space between buncher cavity and catcher cavity is called [] A) Active space B) Transmitting space D) Reflecting space C) Drift space D) Reflecting space [] A) Cathode Ray Tube B) Magnetron C) Travelling Wave Tube D) Reflex Klystron Tube 4. Reflex Klystron works on the principle of [] A) Amplitude Modulation B) Velocity Modulation C) Phase Modulation D) Space Modulation 5 setup is used for measuring any parameter in mirrowaves. A) Microwave Bench B) VSWR C) Bolometer D) Cavity 6. Efficiency of Two Cavity Klystron Amplifier [] A) 20% B) 45% C) 58% D) 100% 	C) Low Power Co	nsumption	D) All of the above	
is called []] A) Active space B) Transmitting space C) Drift space D) Reflecting space 3	2. In a Two cavity Klystron	Amplifier space between but	heter cavity and catcher cavity	
A) Active space B) Transmitting space C) Drift space D) Reflecting space 3	is called			[]
C) Drift space D) Reflecting space 3	A) Active space		B) Transmitting space	
3	C) Drift space		D) Reflecting space	
A) Cathode Ray Tube B) Magnetron C) Travelling Wave Tube D) Reflex Klystron Tube 4. Reflex Klystron works on the principle of []] A) Amplitude Modulation B) Velocity Modulation C) Phase Modulation D) Space Modulation C) Phase Modulation D) Space Modulation S	3i	s not a Microwave Tube from	below	[]
C) Travelling Wave TubeD) Reflex Klystron Tube4. Reflex Klystron works on the principle of[]]A) Amplitude ModulationB) Velocity ModulationC) Phase ModulationD) Space Modulation5	A) Cathode Ray T	ube	B) Magnetron	
 4. Reflex Klystron works on the principle of [] A) Amplitude Modulation C) Phase Modulation D) Space Modulation 5 setup is used for measuring any parameter in microwaves. A) Microwave Bench C) Bolometer B) VSWR C) Bolometer C) Bolometer C) Sa% 	C) Travelling Wave	e Tube	D) Reflex Klystron Tube	
 A) Amplitude Modulation B) Velocity Modulation C) Phase Modulation D) Space Modulation 5	4. Reflex Klystron works o	n the principle of	_	[]
C) Phase Modulation D) Space Modulation 5setup is used for measuring any parameter in microwaves. [] A) Microwave Bench B) VSWR C) Bolometer D) Cavity 6. Efficiency of Two Cavity Klystron Amplifier [] A) 20% B) 45% C) 58% D) 100%	A) Amplitude Modu	Ilation	B) Velocity Modulation	
 5setup is used for measuring any parameter in microwaves. A) Microwave Bench B) VSWR C) Bolometer D) Cavity 6. Efficiency of Two Cavity Klystron Amplifier A) 20% B) 45% C) 58% D) 100% 	C) Phase Modulatio	n	D) Space Modulation	
A) Microwave Bench B) VSWR C) Bolometer D) Cavity 6. Efficiency of Two Cavity Klystron Amplifier [] A) 20% [] C) 58% D) 100%	5setup is used for	measuring any parameter in	microwaves.	[]
C) Bolometer D) Cavity 6. Efficiency of Two Cavity Klystron Amplifier [] A) 20% [] C) 58% D) 100%	A) Microwave Bend	:h	B) VSWR	
6. Efficiency of Two Cavity Klystron Amplifier [] A) 20% B) 45% C) 58% D) 100%	C) Bolometer		D) Cavity	
A) 20% B) 45% C) 58% D) 100%	6. Efficiency of Two Cavity	y Klystron Amplifier		[]
C) 58% D) 100%	A) 20%	• •	B) 45%	
,	C) 58%		D) 100%	

7. Choose the correct statement from below		[]
A) TWT contains 2 cavities B) TWT contains 4 cavities			
C) TWT contains 3 cavities	D) TWT doesn't contain an	y cav	vities
8 Structures are used to rec	luce the velocity of a microwave	[]
A) Fast Wave Structures	B) Slow Wave Structures		
C) Beam Structures	D) Field Structures		
9. Gunn Diode has characteristic	es	[]
A) Positive Resistance Characteristics	B) Negative Resistance Characteristic	cs	
C) Zero Resistance Characteristics	D) None		
10. 'Ku' band frequency rangeGF	IZ	[]
A) 1 to 2 B) 0 to 2 C) 58	to 49 D) 12 to 18		
II. Fill in the blanks:			
1. Limitations of Conventional Vacuum Tub	es are		
2. Microwave frequency range			
3. Milli Meter Band(MM Band) frequency ra	nge		
4. Microwave tubes are classified as	and		
5 VCWD stords for			
5. VSWK stands for			
6. Efficiency of Reflex Klystron Oscillator_			
7. Name few Slow Wave Structures			
8. The M- type tubes are also called as	tubes		
9. List any two operating modes of a Gunn Di	iode (i)		
	(ii)		_
10. IMPATT stands for			

Sheriguda (Vill), Ibrahimpatnam (Mdl), R.R.Dist-501 510 II- Mid Examinations, JAN -2023

Set – I

Year & Branch: IV ECE-A,B&C Subject: Microwave & Optical Communications	Max. Marks: 10	Date: 04 Tin	-01-2023(FN) ne: 1 Hour
Answer any TWO Questions. All Q	uestion Carry Equal Ma	rks 2*	5=10 marks
1. Explain the operation of Isolator with neat diag	gram.	(C411.4)	(Understand)
2. Discuss Microwave Bench in detail.		(C411.4)	(Create)
3. Distinguish different optical fiber configuration	15.	(C411.6)	(Analyze)
4. Explain WDM in detail.		(C411.5)	(Understand)

-----All the Best------

Question Paper Mapping with CO's

Sheriguda (Vill), Ibrahimpatnam (Mdl), R.R.Dist-501 510

Microwave and Optical Communications

(Objective Exam)

B.TECH IV YEAR, I SEM, II MID-TERM EXAMS, JAN-2023.

ROLL NO:	NAME:	MARKS:
Date: 04 .01.2023(FN)	նime: 20 Min.	Max Marks: 10
Answer All the Questions.		
I. Choose the correct alternative:		10*0.5=5 Marks
1. Series junction is also known as		[]
a) E-Plane Tee	b) H-Plane Tee	
c) Magic Tee	d) None of the ab	oove.
2. The tapering at both ends of dielectric	slab in phase shifters is used to	[]
a) Increase the Reflection	b) Reduce the Re	eflection
c) Generate the Reflection	d) None	
3. LED is an		[]
a) Optical Source	b) Optical Detect	or
c) Microwave Source	d) None of the abo	ove
4 setup is used to measure	any parameter in microwaves	[]
a) Microwave Bench	b) VSWR	
c) E-Plane Tee	d) Bolometer	
5. H Plane Tee is also called as		[]
a) Series junction	b) Shunt Junction	1
c) EH Tee Junction	d) None	
6. VSWR is ratio of and		[]
a) Maximum Current, Minimum Cu	rrent b) Maximum Volta	age, Minimum Voltage
c) Maximum Phase, Minimum Phas	d) None of the ab	ove

7. Optical fibers works of	on the principle of			[]
a) Refraction		b) Tota	l Internal Reflection	
c) Total Numerical	Aperture	d) None	2	
8 prevents the fib	per from any dama	ge.		[]
a) Core		b) Clad	ding	
c) Buffer Coating(.	Jacket)	d) None	e	
9. Fiber Optic Cable ope	rate at frequencies	s near		[]
a) 100 GHZ		b) 500 I	MHZ	
c) 700 HZ		d) 800 '	THZ	
10. A circuit is called Re	ciprocal if			[]
a) $\mathbf{S}_{ij} = \mathbf{S}_{ji}$	b) $S_{ij} > S_{ji}$	c) $S_{ij} < S_{ji}$	d) none	
II. Fill in the blanks:				10*0.5=5 Marks
1is	the example for op	ptical detector.		
2. E Plane Tee is calle	ed dB Spli	itter.		
3. Advantage of optic	al fibers			
4. Types of Attenuate	ors			
5. [S] matrix of E-Pla	ine Tee is [S] =			
6. Attenuation measu	rement formula			
7. Ferrite devices wor	rks on the principle	e of		
8. LED stands for		, LASER stan	ds for	
9. Frequency meter in	microwave bench	is used to measur	re	
10. Microwave frequen	ncy range			

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Internal Question Papers Keys

Course Name: Microwave and Optical Communications

 Course Code: EC701PC
 A.Y.: 2022-23
 Semester: I

Course Year / Semester: B.Tech IV ECE – C Section

S.No	Key Paper Link
1	Mid-I Descriptive Paper Key Link: https://drive.google.com/file/d/1aKQijNMdRO2zO3gC3RdE73-7dZ5HnNzU/view?usp=drive_link
2	Mid-I Objective Paper Key Link: https://drive.google.com/file/d/1iL ADOK Ui3spzfGvfSbtbR7lyHl9eMa/view?usp=drive link
3	Mid-II Descriptive Paper Key Link: https://drive.google.com/file/d/1Hmd_umLYbrg-4wb_Y24be1YNckHF-YGl/view?usp=drive_link
4	Mid-IIObjective Paper Key Link: https://drive.google.com/file/d/13JhJQR7EUMM8pqKaMgrS4Dvw7KeJymPR/view?usp=drive_link

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT-1

Course Name: Microwave and Optical Commu	unications	Course Code: EC701PC
Class: B.Tech- IV Year ECE – C	A.Y.: 2022-23	Semester: I

1) Discuss limitations and losses of conventional tubes at microwave frequencies. (C411.1)(Create)

2) Explain the operation of two cavity klystron amplifier with neat diagram. (C411.1)(Understand)

3) Discuss the operation of cylindrical travelling wave Magnetron. (C411.2)(Create)

4) Explain the operation of Gunn Diode in detail. (C411.2)(Evaluate)

5) Analyze different waveguide coupling mechanisms. (C411.3)(Analyze)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 2

Course Name: Microwave and Optical Comm	nunications	Course Code: EC701PC
Class: B.Tech- IV Year ECE – C	A.Y.: 2022-23	Semester: I

1) Explain the operation of Gyrator with neat diagram. (C411.3)(Understand)

2) Derive the S Matrix of E-Plane Tee. (C411.4)(Evaluate)

3) Discuss microwave bench setup in detail. (C411.4)(Create)

4) Explain the light propagation in optical fibers. (C411.5)(Understand)

5) Analyze different optical fiber configurations. (C411.6)(Analyze)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Assignment Proofs

Course Name: Microwave and Optical Communications

Course Code: EC701PC **A.Y.**:2022-23

Semester: I

Course Year / Semester: B.Tech IV ECE – C Section

S. No	Assignment Number	Assignments Proofs Link
1	Assignment-1	https://drive.google.com/file/d/19lEek0I3yemfx44V4UypfHOa_1p8B55t/view?usp=drive_link_
2	Assignment-2	https://drive.google.com/file/d/1LXHq6nXCmDqqtWoIpEEJjnAX6jIzo6gr/view?usp=drive_link

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

RESULT ANALYSIS TO IDENTIFY SLOW AND ADVANCED LEARNERS

Course Name:	Microwave	and Optical	Communications

Course Code: EC701PC

 Class: B.Tech- IV ECE – C
 A.Y.: 2022-23
 Semester: I

Slow Learners (From III-II Result Analysis having >=3 backlogs) :

Total 18 slow learners are identified.

Remedial classes are held for improvement of slow learners.

Old and important questions are discussed more.

Home assignments are given regularly.

Counseling is provided regularly.

S.No	Roll Number	No.of Backlogs	MID-I Marks	MID-2 Marks
1	18X31A0403	58	14	14
2	18X31A0413	58	15	14
3	18X31A0454	55	15	14
4	18X31A04D4	55	15	14
5	18X31A04F1	55	14	14
6	18X31A04H7	55	15	14
7	19X31A04B0	38	22	18
8	19X31A04B5	3\$	20	15
9	19X31A04B7	58	21	14
10	19X31A04C3	4S	22	14
11	19X31A04C7	4S	21	16
12	19X31A04D2	4S	17	15
13	19X31A04D3	58	18	14
14	19X31A04D8	4S	19	14

15	19X31A04E2	4S	17	18
16	19X31A04E5	58	14	15
17	20X35A0425	38	20	22
18	20X35A0426	38	18	16

Advanced Learners (From III-II Result Analysis having <=2 backlogs):

Total 40 advanced learners are identified.

S.No	Roll Number	Type of Support Provided
1	18X31A04H2	
2	19X31A04A1	
3	19X31A04A2	
4	19X31A04A3	
5	19X31A04A4	
6	19X31A04A5	
7	19X31A04A6	Advanced Concepts material is provided for
8	19X31A04A7	advanced learners, Subject seminars are
9	19X31A04A8	presented by advanced learners in the class.,
10	19X31A04A9	Advanced learners are encouraged to support slow learners.
11	19X31A04B1	
12	19X31A04B2	
13	19X31A04B3	
14	19X31A04B4	
15	19X31A04B6	
16	19X31A04B8	
17	19X31A04B9	
18	19X31A04C0	
19	19X31A04C1	
20	19X31A04C2	

21	19X31A04C4	
22	19X31A04C5	
23	19X31A04C6	
24	19X31A04C8	
25	19X31A04C9	
26	19X31A04D0	
27	19X31A04D1	
28	19X31A04D4	
29	19X31A04D5	
30	19X31A04D6	
31	19X31A04D7	
32	19X31A04D9	
33	19X31A04E0	
34	19X31A04E1	
35	19X31A04E3	
36	19X31A04E4	
37	20X35A0421	
38	20X35A0422	
39	20X35A0423	
40	20X35A0424	
1		

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-IV BTECH I SEM ECE-C RESULT ANALYSIS

ACADAMIC YEAR/	COURSE NAME	NUMBEI OF STUDENT	R	QUESTION PAPER SETTING		
SEMESTER		APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%
2022-23 SEMESTER-I	Microwave and Optical Communications	56	39	Course Faculty	JNTU Hyderabad	69.6%

Microwave and Optical Communications Result Analysis

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-I

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM-5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EDC	NATL	DSD	PTSP	SS
II ECE-B	NATL	DSD	PTSP	SS	EDC
III ECE-A	МРМС	DCCN	CS	BEFA	EMI
III ECE-B	DCCN	CS	BEFA	EMI	МРМС
III ECE-C	CS	BEFA	EMI	MPMC 🔥	DCCN
IV ECE-A	MW&OC	DIP	PPLE	NS&C	JAVA
IV ECE-B	DIP	PPLE	NS&C	JAVA	MW&OC
IV ECE-C	PPLE	NS&C	JAVA	MW&OC	DIP

Head of the Department Electronics and Communication Engg. Dept. SRI INDU INSTITUTE OF ENGG & TECH, Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

Sh Indu Institute of Engineering & Tech. Shefiguda(Vill), Ibrahimpatham, R R DISt Telangana -501 510

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	NARESH SURABU	Academic Year:	2022-23	
Branch & Section:	ECE - C	Examination:	I Internal	
Course Name:	MW&OC	Year: IV	Semester:	I

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max	. Marks ==>	5		5		5		5		10	5
1	18X31A0403	5								4	5
2	18X31A0413			4						6	5
3	18X31A0454	5								5	5
4	18X31A04D4	3				3				4	5
5	18X31A04F1	2				2				5	5
6	18X31A04H2	4		3						8	5
7	18X31A04H7			2						8	5
8	19X31A04A1	2				2				5	5
9	19X31A04A2			5		5				10	5
10	19X31A04A3	4				4				10	5
11	19X31A04A4	3		2						9	5
12	19X31A04A5	4						3		9	5
13	19X31A04A6	4				4				9	5
14	19X31A04A7			5				4		9	5
15	19X31A04A8			5		5				8	5
16	19X31A04A9	5						4		8	5
17	19X31A04B0			4				5		8	5
18	19X31A04B1	4				4				8	5
19	19X31A04B2	4						3		7	5
20	19X31A04B3			4				4		7	5
21	19X31A04B4	5				4				8	5
22	19X31A04B5			4				3		8	5
23	19X31A04B6	5						4		9	5
24	19X31A04B7			4		4				8	5
25	19X31A04B8	4						4		8	5
26	19X31A04B9			5		4				9	5
27	19X31A04C0	5		5						9	5
28	19X31A04C1			5				5		8	5
29	19X31A04C2	4				4				8	5
30	19X31A04C3			4				4		9	5
31	19X31A04C4	4				4				9	5
32	19X31A04C5	5						5		9	5
33	19X31A04C6			4		5				8	5
34	19X31A04C7	4						4		8	5
35	19X31A04C8			4		4				9	5
36	19X31A04C9	5						5		7	5
37	19X31A04D0			5		4				7	5
38	19X31A04D1	5						5		6	5
39	19X31A04D2			3		3				6	5
40	19X31A04D3	4						3		6	5

11	1072140404			5				5		6	5
41	19X31A04D4	5		5		4		5		7	5
42	19X31A04D5	5		4				4		7	5
43	19X31A04D0	5		-		5				6	5
44	19X31A04D7	5		4		5		4		6	5
45	19X31A04D0	4				1		т Т		С Б	5
40	19X31A04D9	4		5		-		4) 0	5
47	19X31A04E0	4		3		4		4		Ö F	5
48	19X31A04E1	4		2		4		2		5	5
49	19X31A04E2			3				2		/	5
50	19X31A04E3	4		4						6	5
51	19X31A04E4			4				4		6	5
52	19X31A04E5	4								5	5
53	20X35A0421			3				2		8	5
54	20X35A0422	3				3				8	5
55	20X35A0423	4				4				8	5
56	20X35A0424			5				4		8	5
57	20X35A0425	4				3				8	5
58	20X35A0426	3						2		8	5
Targ	et set by the faculty										
/ Hol	D	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Num	ber of students										
perfo	ormed above the	32	0	25	0	22	0	22	0	50	58
targe	et	52	Ū	20	Ū	22	Ū	22	Ū	50	50
Num	ber of students				<u>^</u>				_	- 0	-0
atten	npted	34	0	27	0	24	0	25	0	58	58
	*										
Perce	entage of students	94%		93%		92%		88%		86%	100%
score	ed more than target	21/0		2270		2/0		0070		00/0	10070
CO	Manning mith Error										
	Viapping with Exam	n Questi	<u>ons:</u>	37						T 7	37
	0-1	Y		Y						Y	Ŷ
	CO - 2					Y				Y	Y
	CO - 3							Y		Y	Y
	CO - 4										
	CO - 5										
	CO - 6										
<u> </u>						1	1				
%	Students Scored										
	>Target %	94%		93%		92%		88%		86%	100%
<u>CO</u> .	Attainment based o	n Exam	Questio	ns:		1	1				· · · · · · · · · · · · · · · · · · ·
	CO - 1	94%		93%						86%	100%
	CO - 2					92%				86%	100%
	CO - 3							88%		86%	100%
	<u>CO-4</u>							0070		0070	100/0
	CO = 5										<u> </u>
	CO - 5										
	0.0-0										

СО	Subj	obj	Asgn	Overall	Level
CO-1	93%	86%	100%	93%	3.00
CO-2	92%	86%	100%	93%	3.00
CO-3	88%	86%	100%	91%	3.00
CO-4					
CO-5					
CO-6					

Atta	inment Level
1	40%
2	50%
3	60%

Attainment (Internal 1 Examination) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the faculty :	NARESH SURABU	Academ
Branch & Section:	ECE - C	Examin
Course Name:	MW&OC	Year: I

nic Year: 2022-23 nation: II Internal IV Semester:

Ι

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj2	A2
Max	. Marks ==>	5		5		5		5		10	5
1	18X31A0403	1								8	5
2	18X31A0413			2						7	5
3	18X31A0454	4								5	5
4	18X31A04D4					3				6	5
5	18X31A04F1							1		8	5
6	18X31A04H2							1		8	5
7	18X31A04H7							1		8	5
8	19X31A04A1	4				4				8	5
9	19X31A04A2	5		5						8	5
10	19X31A04A3			4		4				7	5
11	19X31A04A4	3		4						7	5
12	19X31A04A5	4				4				6	5
13	19X31A04A6			5				4		4	5
14	19X31A04A7	5				5				4	5
15	19X31A04A8	5				4				5	5
16	19X31A04A9	5		4						5	5
17	19X31A04B0			3				3		7	5
18	19X31A04B1	4				4				6	5
19	19X31A04B2			4		4				7	5
20	19X31A04B3	4						4		5	5
21	19X31A04B4	5				4				6	5
22	19X31A04B5	3		2						5	5
23	19X31A04B6	4				3				5	5
24	19X31A04B7	4								5	5
25	19X31A04B8			4				4		6	5
26	19X31A04B9	5				5				7	5
27	19X31A04C0			4				4		5	5
28	19X31A04C1			4		4				8	5
29	19X31A04C2	5				4				8	5
30	19X31A04C3			1						8	5
31	19X31A04C4	5						5		7	5
32	19X31A04C5			5		4				9	5
33	19X31A04C6	4						4		9	5
34	19X31A04C7			3		3				5	5
35	19X31A04C8	5	<u> </u>		ļ			5		5	5
36	19X31A04C9		<u> </u>	5	ļ	5				4	5
37	19X31A04D0	5	<u> </u>		ļ	5				5	5
38	19X31A04D1			5				5		4	5
39	19X31A04D2			4						6	5
40	19X31A04D3	4	<u> </u>	-	 					5	5
41	19X31A04D4			4				3		4	5
42	19X31A04D5	3	<u> </u>		ļ	3				6	5
43	19X31A04D6		<u> </u>	5	ļ			4		6	5
44	19X31A04D7	5		-		5				5	5
45	19X31A04D8			4						5	5
46	19X31A04D9	4				3				6	5

47 19X31A04E0			5				5		6	5
48 19X31A04E1	5				5				7	5
49 19X31A04E2			4				3		6	5
50 19X31A04E3	4								6	5
51 19X31A04E4					5		4		8	5
52 19X31A04E5			4						6	5
53 20X35A0421	1								9	5
54 20X35A0422	4				3				9	5
55 20X35A0423			4						8	5
56 20X35A0424	5						5		8	5
57 20X35A0425	4		4						9	5
58 20X35A0426					4				7	5
Target set by the faculty	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
/ HoD	5.00	0.00	5.00	0.00	5.00	0.00	5.00	0.00	0.00	5.00
Number of students							l	ľ		
performed above the	29	0	23	0	24	0	15	0	39	58
target										
Number of students	21	0	26	Λ	24	Ο	19	0	59	58
attempted	31	0	20	U	24	0	10	0	50	50
Demoentage of the last	0.10/		0001		1000/		0.001		(F 0)	1000/
Percentage of students	94%		88%		100%		83%		67%	100%
scored more than target										
CO Mapping with Exa	<u>m Questi</u>	ions:			-		-			
CO - 1										
CO - 2										
CO - 3										
CO - 4	Y		Y						Y	Y
CO - 5			-				Y		Ŷ	Ŷ
CO - 6	1				Y				Ŷ	Ŷ
CO Attainment based	on Exam	Questi	ons:						-	
CO - 1										
CO = 2					1					
CO - 2	+									
CO - 3	0.40/		0.00/						(70/	1000/
CO - 4	94%		88%						67%	100%
0-5					10001				67%	100%
CO - 6					100%				67%	100%
	0.11	1.1		~		т	1	1	A 2 4 1	·····
	Subj	obj	Asgn	Ov	erall	Le	vei		Atta	inment L
CO-1								4	1	40%
CO-2									2	50%
CO-3									3	60%
CO-4	91%	67%	100%	80	6%	3.	00	1		
CO-5	1	67%	100%	8/	4%	3	00	1		
	-	0770	10070	0-	1/0	5.		4		

 co-6
 100%
 67%
 100%
 89%
 3.00

 Attainment (Internal Examination-2) =
 3.00

c 1.

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Academic Year:

Year / Semester:

Name c	of the faculty :	NAKESH SURABU	
Branch	& Section:	ECE - C	
Course	Name:	MW&OC	
S.No	Roll Number	Marks Secured	
1	18X31A0403	1	
2	18X31A0413	6	
3	18X31A0454		
4	18X31A04D4		
5	18X31A04F1	0	
6	18X31A04H2	8	
7	18X31A04H7	12	
8	19X31A04A1	33	
9	19X31A04A2	30	
10	19X31A04A3	27	
11	19X31A04A4	26	
12	19X31A04A5	28	
13	19X31A04A6	37	
14	19X31A04A7	28	
15	19X31A04A8	26	
16	19X31A04A9	28	
17	19X31A04B0	18	
18	19X31A04B1	28	
19	19X31A04B2	26	
20	19X31A04B3	28	
21	19X31A04B4	42	
22	19X31A04B5	8	
23	19X31A04B6	45	
24	19X31A04B7	5	
25	19X31A04B8	49	
26	19X31A04B9	35	
27	19X31A04C0	45	
28	19X31A04C1	37	
29	19X31A04C2	32	
30	19X31A04C3	2	
31	19X31A04C4	39	
32	19X31A04C5	41	
33	19X31A04C6	30	
34	19X31A04C7	21	
35	19X31A04C8	32	
Max Ma	arks	75	
Class A	verage mark		28
Number	of students per	formed above the target	34
Number	of successful st	udents	56

S.No	Roll Number	Marks Secured
36	19X31A04C9	44
37	19X31A04D0	39
38	19X31A04D1	55
39	19X31A04D2	20
40	19X31A04D3	7
41	19X31A04D4	40
42	19X31A04D5	34
43	19X31A04D6	36
44	19X31A04D7	49
45	19X31A04D8	18
46	19X31A04D9	40
47	19X31A04E0	43
48	19X31A04E1	29
49	19X31A04E2	34
50	19X31A04E3	26
51	19X31A04E4	39
52	19X31A04E5	5
53	20X35A0421	20
54	20X35A0422	29
55	20X35A0423	37
56	20X35A0424	40
57	20X35A0425	15
58	20X35A0426	15

2022-23

IV/I

Attainment Level	% students
1	40%
2	50%

Percentage of students scored more than target	61%
Attainment level	3

Department of Electronics and Communication Engineering Course Outcome Attainment

2022-23

IV

Ι

 Name of the faculty
 NARESH SURABU
 Academic Year:

 Branch & Section:
 ECE - C
 Year:

 Course Name:
 MW&OC
 Year:

 Semester:
 Year:
 Year:

Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	Attainment Level	
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Internal	& Universit	ty Attainment:	3.00	3.00	
		Weightage	25%	75%	
O Attainment for the	course (Inte	ernal, Universi	0.75	2.25	
CO Attainment for th	he course (E	Direct Method)		3.00	

Overall course attainment level 3.00

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

Name of Faculty:	NARESH SURABU	Academic Year:	2022-23
Branch & Section:	ECE - C	Year:	IV
Course Name:	MW&OC	Semester:	1

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											1	1
CO2		3		2	1							2	2	2
CO3				2							3		2	1
CO4			3									3	1	1
CO5	2	2			2								2	2
CO6	3	3		3							3	3	2	1
Course	2.67	2.75	3.00	2.33	1.50						3.00	2.67	1.67	1.33

со	Course Outcome Attainment
(01	3.00
	2 00
CO2	5.00
	3.00
СОЗ	
CO4	3.00
	3.00
CO5	
CO6	3.00
Overall course attainment level	3.00

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO Attainm ent	2.67	2.75	3.00	2.33	1.50						3.00	2.67

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Attendance Register

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Course Year/ Semester: B.Tech IV ECE - C Section

S.No	Attendance Register Link:
1	https://drive.google.com/file/d/1Ii4eUU733wZfsZErI7uXiWBzFTnKuW-c/view?usp=drive_link

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course File Digital Form

Course Name: Microwave and Optical Communications

Course Code: EC701PC

Course Year/ Semester: B.Tech IV ECE - C Section

S.No	Course File Digital Form Link:
1	https://drive.google.com/file/d/1DQexsI9lRpbq_QUgPcIIZXV14Eo4UPoz/view?usp=drive_link