Sri Indu Institute of Engineering and Technology Matoonous)
(Formerly RVR Institute of Engineering \& Technology)

COURSE FILE

ON

MATRICES \& CALCULUS

Course Code - MA101BS

I-B. Tech Semester-I

A.Y. 2022-2023

Prepared by

V.SRINIVAS

Asst. Professor

Sri Indu Institute of Engineering \& Tect Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501510.

Univerit) Gats Connissing Emimi Sri Indu Institute of Enginecring and TechnologY Amboonous)

ESTD : 2007
EAMCET CODE: INDI
(Formerly RVR Institute of Engineering \& Technology)
An Autonomous Institution Under UGC
NAAC Accredited. Recognized Under 2(f) of UGC Act 1956
Approved by AICTE, New Delhi, \& Affiliated to JNTUH, Hyderabad. JNTUH CODE: X3

Index of Course File

COURSE FILE INDEX	
S.No	Course/Subject Name
1	Institute Vision \& Mission
2	POs /PSOs
3	Course Structure
4	Course syllabus
5	Course Outcomes (CO)
6	Mapping CO with PO/PSO; course with PO/PSO
7	Academic Calendar
8	Time table - highlighting your course periods including tutorial
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
10	Gap within the syllabus - mapping to CO, PO/PSO
11	Gaps beyond the syllabus - Mapping to PO/PSO
12	Web references
13	Lecture notes
14	List of Power point presentations / Videos
15	University Question papers
16	Internal Question papers, Key with CO and BTL
17	Assignment Question papers mapped with CO and BTL
18	Scheme of evaluation with CO and BTL mapping
19	Tutorial topics with evidence
20	Result Analysis to identify weak and advanced learners
21	Result Analysis at the end of the course
22	Remidial class schedule and evidences
23	CO, PO/PSO attainment
24	Attendance register
25	Course file (Digital form)

 Sri Indu Institute of Engineering and Technology Amboomous)

INSTITUTE VISION \& MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

> IM1: To offer outcome-based education and enhancement of technical and practical skills.
> IM2: To Continuous assess of teaching-learning process through instituteindustry collaboration.
> IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
> IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Depatment 14 S SRI INDU WSTITUTE OF ENGG \& TECF 'eriouda/M Ibrahimoatmam MM R.R. Dist-501 51t

Sri Indu Institute of Engineering \& Tect. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

PROGRAM OUTCOMES

PO1: ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7: ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10: COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

B.Tech. in COMPUTER SCIENCE AND ENGINEERING (AI \& ML)

COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations)
Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title	\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits						
1.	MA101BS	Matrices and Calculus	3	1	0	4						
2.	AP102BS	Applied Physics	3	1	0	4						
3.	CS103ES	Programming for Problem Solving	3	0	0	3						
4.	ME102ES	Engineering Workshop	0	1	3	2.5						
5.	EN104HS	English for Skill Enhancement	2	0	0	2						
6.	CS106ES	Elements of Computer Science \& Engineering	0	0	2	1						
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5						
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1						
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1						
10.	*MC101ES	Environmental Science	3	0	0	0						
11.		Induction Programme										
		Total							$\mathbf{1 4}$	$\mathbf{3}$	$\mathbf{1 2}$	$\mathbf{2 0}$

I Year II Semester

S. No.	Course Code	Course Title	\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
			$\mathbf{1 1}$	$\mathbf{3}$	$\mathbf{1 2}$	$\mathbf{2 0}$

MATRICES AND CALCULUS
 (Course Code: MA101BS)

L T P C
31104
Pre-requisites: Mathematical Knowledge at pre-university level
Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigenvalues and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT - I: Matrices

10 L
Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by GaussJordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT - II: Eigen values and Eigen vectors

10 L

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT - III: Calculus

10 L

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.
Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

Definitions of Limit and continuity.
Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence \& independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

8 L

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.
Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

REFERENCE BOOKS:

1. Erwin kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ Edition, John Wiley \& Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, $9^{\text {th }}$ Edition,Pearson, Reprint, 2002.
3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Class: I-B.TECH CSE-AIML

Course Outcomes

After completing this course the student will be able to:
C111.1 : Write the matrix form of linear system of equations and test the consistency of the given system.(Analyzing)
C111.2 : Reduce the quadratic form to canonical form using orthogonal transformations. (Applying)
C111.3 : Solve the applications on the mean value theorems and expand Taylor's series(Creating)
C111.4 : Evaluate the improper integrals using Beta and Gamma functions(Evaluating)
C 111.5 : Find the maxima and minima of functions of two variables and three variables
.(Remembering)
C111.6 : Compare the difference between double integrals and triple integrals in cartesian and polar coordinates(Understanding)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:
High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C111.1	3	2	-	1	1	-	-	-	-	-	-	1
C111.2	3	2	-	1	1	-	-	-	-	-	-	1
C111.3	2	2	-	1	1	-	-	-	-	-	-	1
C111.4	2	3	-	1	1	-	-	-	-	-	-	2
C111.5	3	2	-	1	1	-	-	-	-	-	-	2
C111.6	3	2	-	1	1	-	-	-	-	-	-	2
C111	2.6	2.16	-	1	1	-	-	-	-	-	-	1.5

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

 (UGC AUTONOMOUS INSTITUTION)Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO2.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C111.1 : Write the matrix form of linear system of equations and test the consistency of the given system.(Analyzing)

	Justification
PO1	Student construct the matrix representation using system of linear equations(level 3)
PO2	Student analyse the linear equations in several variables(level 2)
PO4	Student can use different matrix methods to get solution(level 1)
PO5	Student apply numerical techniques to solve linear system. (level 1)
$\mathbf{P O 1 2}$	Student can recognize importance of using of variables in linear equations (level 1)

C111.2 : Reduce the quadratic form to canonical form using orthogonal transformations. (Applying)

	Justification
PO1	student get the knowledge of diagonalization on finding eigen values and eigen vectors(level 3)
PO2	Student can identify normalization of vectors to get modal matrix in orthogonalization(level 2)
PO4	Student can use knowledge of eigen values and eigen vectors in diagonalizing the matrix(level 1)
PO5	Student apply techniques of diagonalization to say nature of quadratic form. (level 1)
PO12	Student can recognize step by step procedure in diagonalization (level 1)

C111.3 : Solve the applications on the mean value theorems and expand Taylor's series(Creating)

	Justification
PO1	Student get the knowledge of continuous and derivable when using Mean value theorems(level 3)
PO 2	Student can compare the difference between Taylor's series and Maclaurin's series(level 2)
PO4	Student can use mean value theorems after satisfying continuity and differentiability of the given functions in the given intervals(level 1)
PO5	Student apply Maclaurin's series for the given function when is at origin (level 1)
PO12	Student can recognize importance of mean value theorems(level 1)
C111.4	: Evaluate Improper integrals using Beta and Gamma functions.(Evaluation)
PO1	Sustification
PO2	Student get the knowledge of Beta and Gamma functions(level3)
PO4	Student can use techniques of Beta functions can find exact value of integral function(level 1)
PO5	Student apply formula of Beta function for finite intervals of integration(level 1)
PO12	Student can recognize importance of calculus formulas in beta and gamma functions (level 1)

C111.5 : Find the maxima and minima of functions of two variables and three variables
.(Remembering)

	Justification
PO1	Student get the knowledge to finding maximum and minimum of functions(lavel3)
PO2	Student can differentiate the functions of two variables and three variables in finding maxima and minima of functions (lavel2)
PO4	Student can analyze the steps involving in functions of two variables and three variables. (level 1)
PO5	Student apply mean value theorems in the form of geometrical interpretation(level 1)
PO12	Student can recognize importance of differentiation in finding maxima and minima (level 1)

C111.6 : Compare the difference between double integrals and triple integrals in cartesian and polar coordinates(Understanding)

	Justification
PO1	Student get the knowledge to finding double and triple integrals.(level 3)
PO2	Student can differentiate integration in double and triple integrals(level 2)
PO4	Student can analyze the steps involving in carteasian and polar form for multiple integrals(level 1)
PO5	Student apply areas and volume concepts in double and triple integrals(level 1)
PO12	Student can recognize importance of multiple integrals in spherical and polar forms(level 1)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

REVISED ACADEMIC CALENDAR
 I B.TECH FOR THE ACADEMIC YEAR 2022-23
 (BR22-REGULATIONS)

Dr. I. Satyanarayana,
Principal.
X3
To,
All the HOD's
Sir,
Sub: SIIET (Autonomous)-Academic \& Evaluation-Revised Academic Calendar for I B.Tech - I \& II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for I B.Tech - I \& II Semesters for the academic year 2022-23 is given below.
I-SEMESTER

S. NO	Description	Period		Duration
	From	To 03.11 .2022		
1.	Commencement of I Semester class work (including Induction programme)			
2.	$1^{\text {st }}$ Spell of Instructions	03.11 .2022	28.12 .2022	8 Weeks
3.	I Mid Examinations	$` 29.12 .2022$	04.01 .2023	1 Week
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01 .2023		
5.	$2^{\text {nd }}$ Spell of Instructions	05.01 .2023	02.03 .2023	8 Weeks
6.	Second Mid Term Examinations	03.03 .2023	09.03 .2023	1 Week
7.	Preparation \& Practical Examinations	10.03 .2023	16.03 .2023	1 Week
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	16.03 .2023		
9.	I Semester End Examinations	17.03 .2023	01.04 .2023	2 Weeks

II-SEMESTER

S. NO	Description	Period		Duration
		From	T0	
1.	Commencement of II Semester class work	03.04.2023		
2.	$1^{\text {st }}$ Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks
3.	I Mid Examinations	$` 12.06 .2023$	17.06.2023	1 Week
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023		
5.	$2^{\text {nd }}$ Spell of Instructions	19.06.2023	12.08.2023	8 Weeks
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week
7.	Preparation \& Practical Examinations	21.08.2023	26.08.2023	1 Week
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023		
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks

Commencement of Class Work for II B.Tech I Semester - 11.09.2023

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510 https://siiet.ac.in/

Class:AI \&ML-A Semester: I W.E.F-14-11-2022
LH:-D-105

	$\begin{gathered} \text { I } \\ 9: 40- \\ 10: 30 \end{gathered}$	$\begin{gathered} \text { II } \\ 10: 30- \\ 11: 20 \\ \hline \end{gathered}$	$\begin{gathered} \text { III } \\ 11: 20- \\ 12: 10 \\ \hline \end{gathered}$	$\begin{gathered} 12: 10- \\ 12.45 \end{gathered}$	$\begin{gathered} \text { IV } \\ 12.45- \\ 1.35 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ 1.35- \\ 2.25 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { VI } \\ 2.25- \\ \hline 3.15 \\ \hline \end{array}$	$\begin{gathered} \text { VII } \\ 3.15-4.00 \end{gathered}$
MON	PPS	AP	ECSE	$\begin{aligned} & \mathrm{L} \\ & \mathrm{U} \\ & \mathrm{~N} \\ & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	ENG	M\&C	ES	M\&C(T)/ENG(T)
TUE	EWS/ELCS				PPS	M\&C	ES	M\&C(T)/ENG(T)
WED	AP	ENG	M\&C		EWS/ELCS			ECSE(T)
TIIU	ENG	M\&C	PPS		ES	AP	PPS	LIB
FRI	ECE	M\&C	AP		PPS LAB			ENG(T)/M\&C(T)
SAT	AP LAB				AP	PPS	ENG	ENG(T)/M\&C(T)

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA101BS	Matrices and Calculus	v.SRINIVAS	ME102ES	Engineering Workshop	B.SRINU NAIK/W.MARUTHI
AP102BS	Applied Physics	Dr.B.NAGALAKSHMI	AP105BS	Applied Physics -Lab	Dr.B.NAGALAKSHMI /M.MANISHA/M.JANAIAH/B.SA NTHI
CS103ES	Programming for Problem Solving	M.TEJASWI	CS107ES	Programming for Problem Solving Lab	M.TEJASWI/KALESHA SHAIK
EN104HS	English for Skill Enhancement	K.LAKSHMI SHILPA	EN107HS	English Language and Communicatio n Skills Lab	K.LAKSHMI SHILPAEE.PRARTHANA
CS106ES	Elements of Computer Enginecrring	N.RAJU	MC101ES	Environmen tal Science	G.VIJAY
Class		ch.Saithe Time Tab EGisondinator		Head of The Department Dr. R. YADAGIRI RAO M.Sc.,B.Ed.,M.Toch(CSE).,Ph.D Head of the Department Department of $\mathrm{H} \& \mathrm{~S}$ SRI INDU INSTITUTE OF ENGG \& TECH Sherin, thorhimnotn 캐	

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

Matrices and Calculus : Lesson Plan

L/H	Topic	TA/TM	Reference book
1	Unitwise Introduction of Matrices and Calculus Syllabus	Lecture Method	R-1
2	UNIT -I Matrices Types of matrices ,examples	Lecture Method	R-1
3	Properties and problems on Symmetric,skew symmetric Matrices	Lecture Method	R-1
4.	Rank of the matrix	Lecture Method	R-1
5.	Rank of the matrix by using Echelon form	Lecture Method	R-1
6	Rank of the matrix by using Normal form	Lecture Method	R-1
7	Problems on Rank of the matrix	Lecture Method	T-1
8	Inverse of the matrix by using Gauss Jordan method	Lecture Method	R-1
9	Problems	Problem solving Method	W-1
10	Concept to know the consistency of Linear system of equations	Lecture Method,Video	R-1,W-2,V-1
11	Homogeneous system of linear equations and problems	Lecture Method,Video	R-1,T-1,V-1
12	Non Homogeneous system of linear equations and problems	Problem solving Method,Video	R-1,T-1,V-1
13	Gauss Elimination method and Problems	Lecture Method/ Problem solving Method,Video	T-1,V-5
14	Gauss seidal Iteration methd and Problems	Lecture Method /Problem solving Method,Video	T-1,V-4
15	UNIT - II Eigen values and Eigen Vectors Introduction of Linear transformation and Orthogonal transformation	Lecture Method,Video	R-1, V-3
16	To finding eigen values and Eigen Vectors of a Martix	Problem solving Method,Web Presentation,video	T-1, W-2, V-1
17	To finding eigen values and Eigen Vectors of a Martix	Problem solving Method,Web Presentation,video	T-1,W-2,V-1
18	Problems	Problem solving Method,Web,Video	T-1,W-2,V-1
19	Properties of Eigen values and Eigen vectors	Lecture Method	R-1
20	To find Diagonalization of a Matrix	Lecture Method	T-1
21	Problems on Diagonalization	Problem solving Method	T-1
22	Cayely Hamilton theorem -Problems	Problem solving Method,Video	T-1,V-2
23	Cayely Hamilton theorem -Problems	Problem solving Method,Video	T-1,V-2
24	Finding Inverse and powers of a Matrix by using Cayley Hamilton theorem	Lecture Method,Video	R-1,V-2
25	Finding Inverse and powers of a Matrix by using Cayley Hamilton theorem	Lecture Method,Video	R-1,V-2
26	Quadratic form - Introduction	Lecture Method	T-1
27	Nature and Signature of Quadratic form	Lecture Method	R-1
28	Reduction of Quadtratic form to Canonical form by using Orthogonal transformation	Lecture Method	R-1
29	UNIT - IIICalculus	Lecture	R-1

	Introduction of Mean value theorems	Method	
30	Rolle's Mean value theorem - Problems	Problem solving Method,web presentation	R-1,W-5
31	Lagrange's Mean value theoremProblems	Problem solving Method ,web presentation	R-1,W-5
32	Applications	Lecture Method	R-1
33	Cauchy's mean value theorem --Problems	Problem solving Method, web presentation	R-1,T-1,W-5
34	Taylor's Series - Problems	Problem solving Method	R-1,T-1
35	Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	R-1
36	Introduction of ImproperIntegrals Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	R-1
37	Introduction of Improper Integrals	Lecture Method	R-1
38	Beta and Gamma functions and their properties problems		R-1,T-1
39	UNIT - IV Multi variable Calculus(Partial differentiation and applications) Introduction of Limit and Continuity	Lecture Method	R-1
40	Euler's theorem - Problems	Problem solving Method	R-1,T-1
41	Total derivative - Problems	Problem solving Method	R-1,T-1
42	Jacobian - Problems	Problem solving Method	R-1,T-1
43	Functional dependence \& independence - Problems	Problem solving Method	T-1
44	Functionaldependence \&independenc Problems	Problem solving Method	T-1
45	Maxima and Minima of functions of two variables Problems	Problem solving Method,Video	T-1,V-8
46	Maxima and Minima of functions of two variables Problems	Problem solving Method,Video	T-1,V-8
47	Maxima and Minima of functions of three variables Problems	Problem solving Method,Video	T-1,V-9
48	Maxima and Minima of functions of three variables Problems	Problem solving Method,Video	T-1,V-9
49	UNIT-V Multi variable calculus (Integration) Introduction to multiple integration	Lecture Method	R-1
50	Evaluation of double integrals in Cartesian and polar coordinates	Lecture Method	R-1
51	Change of order of integration in Cartesian form	Lecture Method	R-1
52	Evaluation of triple integrals	Problem solving Method,Video	T-1,V-9
53	Change of variables Cartesian to polar in double integrals	Problem solving Method,Video	T-1,V-9
54	Change of variables Cartesian to spherical in triple integrals	Problem solving Method,Video	T-1,V-9
55	Change of variables Cartesian to Cylindrical in triple integrals	Lecture Method	R-1
56	Areas by double integrals	Lecture Method	R-1
57	Volumes by double and triple integrals	Lecture Method	R-1

R-1 .Ramana B.V.,Higher Engineering Mathematics,Tata McGRAW Hill,New Delhi
R-2 .N.P. Bali and Manish Goyal,A text book of Engineering Mathematics

TEXTBOOKS :

T-1 B.S.Grewal,Higher Engineering Mathematics,Khanna Publishers
T-2 Erwin Kreyszig,Advanced Engineering Mathematics

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Cramer's rule,Matrix inversion method, Importance of sequence, Continuity and differentiability of a function with examples, Integration and differentiation methods

Course Outcomes

After completing this topic the student will be able to:
1.student can compare methods in solving linear system of equations.(Analysis)
2.after knowing calculus concepts student can easily solve partial differential equations methods and problems(Application)
3.after knowing calculus methods student can easily define beta gamma derivations (Knowledge)

Mapping of course outcomes with program outcomes:
High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	3										
2	3	2										
3	2	2										

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

1. Regular industrial visits help students to know the information useful for knowledge upgradation.
2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
3. Teaching at least a few portions giving practical demonstration to create interest among the students
4. Introducing current Scientific and Technological innovations and development
5. Computer aided learning tools are also used for better visual display for the Mathematics

Mapping to PO/PSO:
High -3 Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1				2								2
2										2		
3											3	
4									1			
5					2							

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

WEB REFERENCES

W-1 http://cs229.stanford.edu/section/cs229-linalg.pdf (For UNIT-I,UNIT-II)
W-2 https://see.stanford.edu/materials/Isoeldsee263/15-symm.pdf (For UNIT-I,UNIT-II)
W-3 http://tutorial.math.lamar.edu/Classes/Calcll/SeriesIntro.aspx (For UNIT-III)
W-4 http://tutorial.math.lamar.edu/Classes/Calcl/MeanValueTheorem.aspx (For UNIT-IV)

W-5 http://tutorial.math.lamar.edu/Classes/CalcI/MeanValueTheorem.aspx (For mean value theorems)

VIDEO REFERENCES :

V-1 https://nptel.ac.in/courses/111105035/5 (Video for eigen values and eigen vectors)
V-2 https://nptel.ac.in/courses/111105035/7 (Video for Cayley Hamilton theorem)
V-3 https://nptel.ac.in/courses/111105035/4 (Video for Linear Transformation)
V-4 https://www.youtube.com/watch?v=ajJD0Df5CsY (For Gauss seidal iteration method)

V-5 https://www.youtube.com/watch?v=2j5Ic2V7wq4 (For Gauss Elimination method)

V-6 https://www.youtube.com/watch?v=73DSHyBQ8i0 (For Sequences and series convergence and_Divergent)

V-7 https://www.youtube.com/watch?v=7uWXuZSxmVc (different types of tests for convergence)
V-8 https://www.youtube.com/watch?v=gLWUrF_cOwQ (For Maxima and Minima)

V-9 https://www.youtube.com/watch?v=ry9cgNx1QV8 (For Maxima and Minima)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

M\&C LECTURE NOTES

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

https://docs.google.com/presentation/d/1vmGu5JRh4AnfkfTakSH7LFmuutl2AQwB/edit?usp=sharing\&ouid=115477386604021184018\&rtpof=true\&sd=t rue

EIGENVALUES AND
EIGEN VECTORS
v.SRINIVAS Dept of Mathematics
https://docs.google.com/presentation/d/1bqLhpWdGo1Q0-
ObEHkoQwvYcyzRzgTak/edit?usp=sharing\&ouid=115477386604021184018\&rtpof=true\&sd=true

https://docs.google.com/presentation/d/1SGIPYT kYVuoJihdd4QFGRGydKHFaNV/edit?usp=drive link\&ouid=115477386604021184018\&rtpof=true\&sd =true

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

PREVIOUS QUESTION PAPERS

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

Set-I

I B.TECH SEM-I MID-I EXAMINATION Dec-2022/Jan-2023
Year \& Branch: Common to All
Date \& Session : 29-12-2022 \&FN
Subject : MATRICES \& CALCULUS
Marks: 20
Time : 2 Hours

Part-B

Answer any FOUR Questions. All Question Carry Equal Marks.

1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

$$
\left[\begin{array}{rrcl}
1 & 2 & 3 & 4 \\
-2 & -3 & 1 & 2 \\
-3 & -4 & 5 & 8 \\
1 & 3 & 10 & 14
\end{array}\right] \quad(\text { Remembering(L1)) }
$$

2. Show that the equations $x-4 y+7 z=14,3 x+8 y-2 z=13,7 x-8 y+26 z=5$ are inconsistent

(Evaluating(L5))

3. Solve the system of equations $10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14$ by using Gauss seidel iteration method (Applying(L3))
4. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ find the value of the matrix $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$ using Cayley Hamilton theorem (Remembering(L1))

5 .Reduce the given Quadratic form to canonical form $2 x y+2 y z+2 z x$ by orthogonal reduction and find the
Nature, Index and Signature of Quadratic form. (Analyzing(L4))
6. Verify Rolle's theorem for $f(x)=e^{x}(\sin x-\cos x)$ in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right] \quad$ (Evaluating(L5))

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510
Set-II
I B.TECH SEM-I MID-II EXAMINATION March-2023
Date \& Session : 03-03-2023 \&FN
Year \& Branch: Common to All
Time
2 Hours

Part-B

Answer any FOUR Questions. All Question Carry Equal Marks.

1. a) Express $f(x)=$ logcos x as Taylor's series about $x=\pi / 3$
b) Obtain the Maclaurin's series expansion of $f(x)=\cos x$
2. If $x+y+z=u, y+z=u v, z=u v w$ then evaluate i) $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ ii) $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

Understanding(L2)

Understanding(L2)
3. Find the maximum and minimum distances of the point of $u=x^{2} y^{3} z^{4}$ if

$$
2 x+3 y+4 z=a
$$

Remembering(L1)
4. Evaluate
i) $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$
Evaluating(L5)
ii) $\int_{0}^{4} \int_{0}^{x^{2}} e^{\frac{y}{x}} \mathrm{dxdy}$
Evaluating(L5)
5. Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r^{2} \cos \theta d r d \theta \quad$ Evaluating(L5)
6. Find the area of the region bounded by the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$

Remembering(L1)

MID I \& MID-II KEY link
https://drive.google.com/file/d/1r_tghyATwxUgbvZDkhQ c1jCjVvO178k/view?usp=sharing

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

I-MID M\&C ASSIGNMENT

1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

$$
\left[\begin{array}{rrcl}
1 & 2 & 3 & 4 \\
-2 & -3 & 1 & 2 \\
-3 & -4 & 5 & 8 \\
1 & 3 & 10 & 14
\end{array}\right]
$$

2. Define the Rank of the Matrix and find the rank of the following matrix using Normal form

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 4 \\
0 & 3 & 4 & 1 \\
2 & 3 & 7 & 5 \\
2 & 5 & 11 & 6
\end{array}\right]
$$

(Remembering(L1))
3. Find the value of k if the rank of the matrix A is 2 where $A=\left[\begin{array}{rrrr}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0\end{array}\right]$ (Remembering(L1))
4. Find the inverse of the matrix A using Gauss Jordan Method(Elementary row operations)

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

(Remembering(L1))
5. Discuss for what values of a, b the simultaneous equations $x+y+z=6, x+2 y+3 z=10, x+2 y+a z=b$ have i) no solution ii) a unique solution iii)an infinite number of solutions (Creating(L6))
6. Show that the system of equations $x+2 y+z=3,2 x+3 y+2 z=5,3 x-5 y+5 z=2,3 x+9 y-z=4$ are Consistent and solve them. (Evaluating(L5))
7. Solve the system of equations $10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14$ by using Gauss seidel iteration method (Applying(L3))
8. Verify Cayley Hamilton theorem and find A^{-1} and A^{4} for the matrix $A=\left[\begin{array}{rrr}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$ (Evaluating(L5))
9. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ find the value of the matrix $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$ using Cayley Hamilton theorem (Remembering(L1))
10. Prove that the sum of eigen values of the matrix A is equal to its trace of A and product of eigen values to its determinant. (Evaluating(L5))
11. Diagonalize the matrix $A=\left[\begin{array}{rrr}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right] \quad$ (Analyzing(L4))
12. Reduce the Quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form by orthogonal Reduction and find the Nature,,rank, index and signature of the Quadratic form (Analyzing(L4))
13. .Reduce the given Quadratic form to canonical form $2 x y+2 y z+2 z x$ by orthogonal reduction and find the Nature, Index and Signature of Quadratic form. (Analyzing(L4))
14. Verify Rolle's theorem for $f(x)=e^{x}(\sin x-\cos x)$ in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right] \quad$ (Evaluating $\left.(\operatorname{L5})\right)$
15. State Rolle's theorem and verify for $f(x)=x^{3}-6 x^{2}+11 x-6$ in $[1,3]$ (Understanding(L2)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

II-MID M\&C ASSIGNMENT

1. a) Express $\mathrm{f}(\mathrm{x})=\log \cos \mathrm{x}$ as Taylor's series about $\mathrm{x}=\pi / 3$
b) Obtain the Maclaurin's series expansion of $f(x)=\cos x$

Understanding(L2)
 Understanding(L2)

2. Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(0<b<a)$ rotates about major axis Remembering(L1)
3. Show that the area of the surface generated by the revolution about the x-axis of the loop of the curve $3 a y^{2}=x(x-a)^{2}$ is $\frac{\pi a^{2}}{3} \quad$ Evaluating(L5)
4. If $z=\log \left(e^{x}+e^{y}\right)$ show that $r t-s^{2}=0 \quad$ Evaluating(L5)
5. Using Euler's theorem, prove that $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}=\sin 2 \mathrm{u}$ if $\mathrm{u}=\tan ^{-1}\left(\frac{x^{3}+y^{5}}{x+y}\right)$ Applying(L3)
6. If $\mathrm{u}=\mathrm{f}(\mathrm{r})$ and $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ then prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=f^{I I}(\mathrm{r})+\frac{1}{r} f^{I}(\mathrm{r})$
7. Find $\frac{d u}{d x}$ if $\mathrm{u}=\sin \left(x^{2}+y^{2}\right)$ where $a^{2} x^{2}+b^{2} y^{2}=c^{2}$
8. If $x+y+z=u, y+z=u v, z=u v w$ then evaluate
i) $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
ii) $\frac{\partial(u, v, w)}{\partial(x, y, z)} \quad$ Evaluating(L5)
9. Showthat the functions $u=x+y+z, v=x y+y z+z x$ and $w=x^{2}+y^{2}+z^{2}$ are functionally dependent and find the relation between them

Evaluating(L5)

10. Find the maximum and minimum distances of the point of $u=x^{2} y^{3} z^{4}$ if $2 x+3 y+4 z=a$

Remembering(L1)
11. Find the maxima and minima of the function $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$

Remembering(L1)
12. Evaluate i) $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{dy}$

Evaluating(L5)

ii) $\int_{0}^{4} \int_{0}^{x^{2}} e^{\frac{y}{x}} \mathrm{dxdy}$

Evaluating(L5)
13. Solve $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} d x d y d z$ Evaluating(L5)
14. Find the area of the region bounded by the parabolas $y^{2}=4 a x$ and $x^{2}=4$ ay

Remembering(L1)
15. Evaluate the double integral $\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{y}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) d x d y$ by changing into polar coordinates

Evaluating(L5)
16. Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate the double integral

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

I-MID \& II-MID M\&C ASSIGNMENT PROOFS

MID-I \& MID-II link

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-MATRICES \& CALCULUS(MID-I)(Set-I)

Instructions:

a) Any answer by alternate method should be valued and suitably awarded.
b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn No	Description of Answer	Marks
1.	Using row1 and column1 operations (C111.1) (Analyzing)	1
	Using row2 and column2 operations (C111.1) (Analyzing)	1
	Using row3 and column3 operations \& get rank (C111.1) (Analyzing)	3
2.	To write matrix form (C111.1) (Analyzing) To write augmented form and getting rank using echelon form anf rank of A not equal to rank of [A;B](C111.1) (Analyzing)	1
	To compare consistency and to get solution(C111.1) (Analyzing)	2
3.	To check diagonal dominant (C111.1) (Analyzing)	2
	To find iterations until get solution (C111.1) (Analyzing)	1
4.	To find characteristic equation of A (C111.2) (Applying)	4
	Using Cayley Hamilton theorem and Calculations(C111.2) (Applying)	2
5.	To form matrix for the given quadratic form(C111.2) (Applying)	3
	To find eigen values and eigen vectors (C111.2) (Applying)	1
	To get PTAP = D and writing canonical form, rank, index and signature(C111.2) (Applying)	2
6.	To check continuous and derivable and f(a)=f(b) of f(x) (C111.3) (Creating)	2
	To apply Rolle's theorem and get value of c (C111.3) (Creating)	2
		$\mathbf{2 0}$

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

SCHEME OF EVALUATION-MATRICES \& CALCULUS(MID-II)(Set-2)		
Instructions:		
a) Any answer by alternate method should be valued and suitably awarded. b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.		
$\begin{aligned} & \hline \text { Qn } \\ & \text { No } \end{aligned}$	Description of Answer	Marks
1 a)	To write Taylor's series expansion (C111.3) (Creating)	1
	To calculate value of $\mathrm{f}(\mathrm{x})=\log \cos \mathrm{x}$ at $\mathrm{x}=\pi / 3$ (C111.3) (Creating)	1
b)	To write Maclaurin's series expansion(C111.3) (Creating)	1
	To calculate value of $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ at $\mathrm{x}=0$ (C111.3) (Creating)	2
2.	To find Jacobian of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ with respect to $\mathrm{u}, \mathrm{v}, \mathrm{w}$ (C111.5) . (Rememberıng)	3
	To find Jacobian of $\mathrm{u}, \mathrm{v}, \mathrm{w}$ with respect to $\mathrm{x}, \mathrm{y}, \mathrm{z} .($ (TП.5)($\mathrm{Cememberıng)}$	2
3.	Using Lagrange's method of multipliers formula .(C111.5)(Remembering)	1
	To calculate maximum and minimum values .(C111.5)(Remembering)	4
4.	To evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) \mathrm{dxdy}$ (C111.6) (Understanding)	2
	To evaluate $\int_{0}^{4} \int_{0}^{x^{x}} e^{\frac{y}{x}} \mathrm{dxdy} \quad$ (C111.6) (Understanding)	3
5.	To Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r^{2} \cos \theta d r d \theta$ (C111.6) (Understanding)	5
6.	To take limits of x and y (C111.6) (Understanding)	2
	To find area of the region bounded by the parabolas (C111.6) (Understanding)	3
TOTAL 20		

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

TUTORIAL TOPICS

V.Srinivas

$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Topic	Teahind Method/Teaching Aid	No.of Sessions Planned	Reference book
1	Rank of the matrix by using Echelon form	Lecture Method	1	R-1
2	Rank of the matrix by using Normal form	Lecture Method	1	R-1
3	Inverse of the matrix by using Gauss Jordan method	Lecture Method	1	R-1
4	Homogeneous system of linear equations and problems	Lecture Method,Video	1	R-1,T-1,V-1
5	Non Homogeneous system of linear equations and problems	Problem solving Method,Video	1	R-1,T-1,V-1
6	Gauss Elimination method and Problems	Lecture Method/ Problem solving Method,Video	1	T-1,V-5
7	Gauss seidal Iteration methd and Problems	Lecture Method /Problem solving Method,Video	1	T-1,V-4
8	To finding eigen values and Eigen Vectors of a Martix	Problem solving Method,Web Presentation, video	1	T-1,W-2,V-1
9	To find Diagonalization of a Matrix	Lecture Method	1	T-1
10	Cayely Hamilton theorem -Problems	Problem solving Method,Video	1	T-1,V-2
11	Reduction of Quadtratic form to Canonical form by using Orthogonal transformation	Lecture Method	1	R-1
12	Rolle's Mean value theorem - Problems	Problem solving Method,web presentation	1	R-1,W-5
13	Lagrange's Mean value theoremProblems	Problem solving Method ,web presentation	1	R-1,W-5
14	Cauchy's mean value theorem --Problems	Problem solving Method, web presentation	1	R-1,T-1,W-5
15	Taylor's Series - Problems	Problem solving Method	1	R-1,T-1
16	Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	1	R-1
17	Euler's theorem - Problems	Problem solving Method	1	R-1,T-1
18	Total derivative - Problems	Problem solving Method	1	R-1,T-1
19	Jacobian - Problems	Problem solving Method	1	R-1,T-1
20	Functional dependence \& independence Problems	Problem solving Method	1	T-1
21	Maxima and Minima of functions of two variables - Problems	Problem solving Method,Video	1	T-1,V-8
22	Evaluation of double integrals in Cartesian and polar coordinates	Lecture Method	1	R-1
23	Change of order of integration in Cartesian form	Lecture Method	1	R-1
24	Evaluation of triple integrals	Problem solving Method,Video	1	T-1,V-9

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

Result Analysis:
AI\&ML-A

Course Title	MATRICES AND CALCULUS
Course Code	MA101BS
Programme	B.Tech
Year \& Semester	I year I- semester
Regulation	BR22
Course Faculty	V.Srinivas, Assistant Professor, H\&S

Weak Students:

S No	Roll no	Intermediate Marks	Internal-I Status $(\mathbf{4 0})$	Internal-II Status $(\mathbf{4 0})$
1	22X31A6605	61%	34	24
2	22X31A6637	62%	34	24
3	22X31A6635	62%	34	24
4	22X31A6624	64.9%	33	31
5	22X31A6619	65.5%	24	23
6	22X31A6625	66.9%	30	23
7	22X31A6641	69%	30	25
8	22X31A6643	69%	27	23
9	22X31A6633	70%	34	23
10	22X31A6634	71%	33	32

Advanced learners:

S No	Roll No	Intermediate Marks	Gate Material
1	22X31A6602	96.3\%	Metric spaces,Applications of multiple integrals, Applications on Beta and Gamma functions
2	21X31A6627	95.7\%	
3	21X31A6616	95.4\%	
4	21X31A6631	95.4\%	
5	21X31A6629	94\%	
6	21X31A6618	92.3\%	
7	21X31A6646	91.6\%	

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

RESULT ANALYSIS AT THE END OF SEMISTER

Branch : AI8AML-A

Subject: MATRICES \& CALCULUS

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510

DEPARTMENT OF HUMANITIES AND SCIENCE REMEDIAL CLASSES TIME TABLE

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	$\mathbf{4 . 0 0 - 5 . 0 0 ~}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$
CSE-A	M\&C	PPS	BEE	EG	EC	M\&C
CSE-B	BEE	M\&C	EG	PPS	EC	BEE
CSE-C	EC	EG	BEE	M\&C	PPS	EC

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$
DS	M\&C	EC	BEE	PPS	EG	EC
CYBER	PPS	M\&C	EC	EG	BEE	M\&C

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$
AIML-A	AP	PPS	M\&C	ENG	AP	M\&C
AIML-B	M\&C	EG	PPS	AP	M\&C	EG

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$
AI\&DS	M\&C	ENG	AP	PPS	AP	PPS
IOT	PPS	AP	M\&C	EG	M\&C	EG

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$	$\mathbf{4 . 0 0 - 5 . 0 0}$
ECE	AP	ENG	M\&C	PPS	AP	PPS
CIVIL	EG	AP	M\&C	PPS	M\&C	EG

-Head of the Department
Department of H\&S
SRI INDU MSTITUTE OF ENGG \& TECH
"eriouda/\ Ibrahimoatnam MM R.R. Dist-501 51t

Sri Indu Institute of Engineering \& Tect Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Humanities \& Sciences
Course Outcome Attainment (Internal Examination-1)

Name of the farV.SRINIVAS									Academic Year:									2022-2023			
Branch \& SectiAI\&ML-A									Examination:									I Internal			
Course Name:		M\&C							Year:		I	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Semester I			A1
S.N	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a							Q6b	Q6c	Obj1	
Max. Marks $=$ =>		5			5			5			5			5			5			10	5
1	22X31A6601				4			4			3			4						7	5
2	22X31A6602	5						5			5			5						9	5
3	22X31A6603							5			5			3			4			8	5
4	22X31A6604							5			5			5			4			8	5
5	22X31A6605	3			3			4			4									10	5
6	22X31A6606	2									2						5			8	5
7	22X31A6607	3			2						4						3			9	5
8	22X31A6608							5			5			4			5			9	5
9	22X31A6609	5			5			5									5			10	5
10	22X31A6610	2			2									2						9	5
11	22X31A6611	5			2			3									3			9	5
12	22X31A6612	5			2												3			8	5
13	22X31A6613	4						3			4						4			8	5
14	22X31A6614				3						5			5			5			9	5
15	22X31A6615	4			5			5									5			9	5
16	22X31A6616	5						5			5			5						8	5
17	22X31A6617	5			4			5									5			9	5
18	22X31A6618				5						5			5			5			8	5
19	22X31A6619	2						1			2									9	5
20	22X31A6620	4			2			2												7	5
21	22X31A6621	4						2									3			9	5
22	22X31A6622	5			5			5			5									9	5
23	22X31A6623	4						5						5			3			9	5
24	22X31A6624	5						2			3						4			9	5
25	22X31A6625	4						3			1			3						9	5
26	22X31A6626	5									5			5			5			9	5
27	22X31A6627	5			5			5						5						9	5
28	22X31A6628	2			1						5						3			10	5
29	22X31A6629	4			3						4						4			9	5
30	22X31A6630				2						3			5			3			7	5
31	22X31A6631				5			5			5						5			9	5
32	22X31A6632	4						2			2						3			9	5
33	22X31A6633	3			5			3									6			8	5
34	22X31A6634	4						4			2						4			9	5
35	22X31A6635	4			3			3			4									10	5
36	22X31A6636	5			5			4												7	5
37	22X31A6637	5			4			4			3									8	5
38	22X31A6638	5						5			3						3			10	5
39	22X31A6639	5			5			5									5			10	5
40	22X31A6640	4			5			4			2									9	5
41	22X31A6641	4			1						1									7	5
42	22X31A6642	4			1						2						2			6	5
43	22X31A6643	4			1			1									4			7	5
44	22X31A6644	5			1			1												8	5
45	22X31A6645	3			4			5			5									9	5
46	22X31A6646	5			5									5			5			9	5
47	22X31A6647	5			5						5			5						8	5
48	22X31A6648	5			2						3			2						8	5
49	22X31A6649	5			2						5			5						8	5
50	22X31A6650				4						5			5			5			9	5

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Number of students performed	37	0	0	21	0	0	26	0	0	26	0	0	17	0	0	29	0	0	50	50
Number of students attempted	41	0	0	34	0	0	33	0	0	34	0	0	19	0	0	30	0	0	50	50
Percentage of students scored more than target	90%			62%			79%			76%			89%			97%			100%	100%

CO Mapping with Exam Questions:

$\mathrm{CO}-1$	\mathbf{Y}			\mathbf{Y}															\mathbf{y}	
$\mathrm{CO}-2$							\mathbf{Y}			\mathbf{Y}						\mathbf{y}			\mathbf{Y}	\mathbf{Y}
$\mathrm{CO}-3$													\mathbf{y}						y	y
$\mathrm{CO}-4$																				
$\mathrm{CO}-5$																				
$\mathrm{CO}-6$																				

CO Attainment based on Exam Ouestions:

$\mathrm{CO}-1$	90%			62%															100%	100%
$\mathrm{CO}-2$							79%			79%						79%			100%	100%
$\mathrm{CO}-3$													79%						100%	100%
$\mathrm{CO}-4$																				
$\mathrm{CO}-5$																				
$\mathrm{CO}-6$																				

CO	Subj	obj		Asgn	Overall	Level
CO-1	76%	81%		100%	86%	3.00
CO-2	79%	84%		100%	88%	3.00
CO-3	79%	89%		100%	89%	3.00
CO-4						
CO-5						
CO-6						

ainment Le

1	40%
2	50%
3	60%

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Humanities \& Sciences
Course Outcome Attainment (Internal Examination-2)

S.No	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c	Obj	A2	$\begin{array}{\|c\|} \hline \text { viva/ } \\ \text { ppt } \\ \hline \end{array}$
Max. Marks =->		5			5			5			5			5			5			10	5	5
1	22X31A6601	4			4			5			4									8	5	5
2	22X31A6602				5			5			5						5			10	5	5
3	22X31A6603	3	2		5			5			2									8	5	5
4	22X31A6604	3	2					5			4						5			8	5	5
5	22X31A6605	1			3			4												6	5	5
6	22X31A6606	2			3			3			3									7	5	5
7	22X31A6607	3			4			5			2									8	5	5
8	22X31A6608				5			5			3						5			9	5	5
9	22X31A6609				5			5			3						4			9	5	5
10	22X31A6610				1			4			1									9	5	5
11	22X31A6611	0			4			5												7	5	5
12	22X31A6612	2			4			5												6	5	5
13	22X31A6613	3			4			5			1									8	5	5
14	22X31A6614				5			5			5									5	5	5
15	22X31A6615	3			3			5			3									9	5	5
16	22X31A6616				5			5			5						5			8	5	5
17	22X31A6617	2			3			2			4										5	5
18	22X31A6618				5			5			5						5			8	5	5
19	22X31A6619	1			1						1			2						8	5	5
20	22X31A6620	2			1			1			1									8	5	5
21	22X31A6621	2			2			1												8	5	5
22	22X31A6622				5			5			5						5			8	5	5
23	22X31A6623				4			5			5						5			9	5	5
24	22X31A6624	3			4			5									3			6	5	5
25	22X31A6625	2	2		1															8	5	5
26	22X31A6626	3	2					5			5						4			9	5	5
27	22X31A6627				4			5			5						5			10	5	5
28	22X31A6628	2	1		3			3									2			7	5	5
29	22X31A6629	2	1		1			1												9	5	5
30	22X31A6630	3	2		3			5			3									9	5	5
31	22X31A6631	3	2		5			5									5			9	5	5
32	22X31A6632	2	1		5			4			2									4	5	5
33	22X31A6633	2						3									1			7	5	5
34	22X31A6634	3	2		4						3						3			7	5	5
35	22X31A6635		2		4			3												5	5	5
36	22X31A6636	3	2		4						4									7	5	5
37	22X31A6637	3	1		1			2			1										5	5
38	22X31A6638	3	2		5			5									3			7	5	5
39	22X31A6639				5			5			3			4						9	5	5
40	22X31A6640	2	1		3			3									1			7	5	5
41	22X31A6641	1			1			4			1									8	5	5
42	22X31A6642	1	2		3			4			3									10	5	5
43	22X31A6643	2			3												2			6	5	5
44	22X31A6644	2	1		2						2									8	5	5
45	22X31A6645	2	1		5						5									8	5	5
46	22X31A6646	3	2					5			5						5			9	5	5
47	22X31A6647	3	2		5			5			5									10	5	5
48	22X31A6648	2	1		5			5			5									8	5	5
49	22X31A6649	3	2		5			5			5									9	5	5
50	22X31A6650	3	2		5			3			3									10	5	5

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	$\# \# \#$	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Number of students performed above the target	18	23	0	37	0	0	38	0	0	26	0	0	1	0	0	15	0	0	45	50	50
Number of students attempted	38	23	0	46	0	0	43	0	0	36	0	0	2	0	0	19	0	0	48	50	50
Percentage of students scored more than target	47%	100%		80%			88%			72%			50%								

CO Mapping with Exam Ouestions:

| CO-1 | | | | | | | |
| :--- | :---: |

$\%$ Students Scored $>$ Target $\%$	47%	100%		80%			88%			72%			50%			79%			94%	100%	100%

CO	Subj	obj	aasgn	ppt	Overall	Level
CO-1						
CO-2						
CO-3	47%	94%	100%	100%	85%	3
CO-4	47%	94%	100%	100%	85%	3.00
CO-5	47%	94%	100%	100%	85%	3.00
CO-6	47%	94%	100%	100%	85%	3.00

Attainment (Internal Examination-2) $\mathbf{3 . 0 0}$

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Humanities \& Sciences
Course Outcome Attainment (University Examinations)

Name of the faculty
Branch \& Section:
V.SRINIVAS

Al\&ML-A
M\&C
Course Name:

S.No	Roll Number

S.No	Roll Number	Marks Secured
1	22X31A6601	35
2	22X31A6602	41
3	22X31A6603	33
4	22X31A6604	42
5	22X31A6605	21
6	22X31A6606	15
7	22X31A6607	34
8	22X31A6608	44
9	22X31A6609	50
10	22X31A6610	31
11	22X31A6611	25
12	22X31A6612	16
13	22X31A6613	31
14	22X31A6614	51
15	22X31A6615	42
16	22X31A6616	55
17	22X31A6617	16
18	22X31A6618	43
19	22X31A6619	8
20	22X31A6620	21
21	22X31A6621	44
22	22X31A6622	54
23	22X31A6623	44
24	22X31A6624	32
25	22X31A6625	24
26	22X31A6626	50
27	22X31A6627	48
28	22X31A6628	44
29	22X31A6629	25
30	22X31A6630	38
31	22X31A6631	52
32	22X31A6632	14
33	22X31A6633	21
34	22X31A6634	35
35	22X31A6635	25
Max Marks		60

Class Average mark	34
Number of students performed above the target	26
Number of successful students	50
Percentage of students scored more than target	52%
Attainment level	$\mathbf{3}$

Academic Year:
Year / Semester:
2022-2023
S.No \quad Roll Number \quad Marks Secured

S.No	Roll Number	Marks Secured
36	22X31A6636	22
37	22X31A6637	39
38	$22 \times 31 \mathrm{~A} 638$	

38	22X31A6638	24
39	$22 \times 31 \mathrm{~A} 6639$	36
40	$22 \times 31 \mathrm{~A} 6640$	16

41	22 X31A 6641	10
42	22X31A 6642	33
43	22X31A 6643	23
44	22X31A6644	28

45	22X31A6645	28
46	22X31A6646	55
47	22X31A6647	55
48	22 X31A 6648	40
49	22X31A 6649	46
50	22X31A6650	53
5		

51		
52		
53		
54		

54		
55		
56		
57		

57		
58		
59		

60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		

Attainment Level	$\%$ students
1	40%
2	50%
3	60%

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Humanities \& Sciences
Course Outcome Attainment

Name of the facult	V.SRINIV			Academic Year	2022-2023
Branch \& Section:	AI\&ML-A			Examination:	I Internal
Course Name:	M\&C			Year:	I
				Semester:	1
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	3.00	3.00
CO 2	3.00		3.00	3.00	3.00
CO 3	3.00	3.00	3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
$\mathrm{CO5}$		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Inter	nal \& Uni	rsity Attainment:	3.00	3.00	
		Weightage	30\%	70\%	
CO Attainment for th	e course (ternal, Uni versity	0.90	2.10	
CO Attainment for	the course	(Direct Method)		3.00	

Overall course attainment level

Department of Humanities \& Sciences
Program Outcome Attainment (from Course)

Name of Faculty:
Branch \& Section:

Course Name:
V.SRINIVAS

AI\&ML-A
M\&C

Academic Year: 2022-2023
Year:
Semester:

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3		1	1							1		
CO2	2	3		1	1							1		
CO3	1	2		1	1							1		
CO4	2	2		1	1							1		
CO5	3	2		1	1							1		
CO6	2	1		1	1							1		
Course	$\mathbf{2 . 0 0}$	$\mathbf{2 . 1 7}$		$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$							$\mathbf{1 . 0 0}$		

CO	Course Outcome Attainment
CO1	3.00
CO2	3.00
CO3	3.00
CO4	3.00
CO5	3.00
CO6	3.00

Overall course attainment level
3.00

PO-ATTAINMENT

	PO	PO 2	PO	PO 4	PO 10	PO 11						
PO 12												
Co Attainm ent	2.00	2.17										

[^0]SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)
Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510
ATTENDANCE REGISTER

Link : https://drive.google.com/file/d/1Vy esFm8516y5aldZ B4SdG70DtA-
nKg/view?usp=drive_link

[^0]: CO contribution to PO - 33\%, 67\%, 100\% (Level 1/2/3)

