

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

Antennas and Propagation

Course Code – EC601PC

III B.Tech II-SEMESTER A.Y.: 2022-2023

Prepared by

Mr.P.Krishna Rao Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	Antennas and Propagation
Course Code	EC601PC
Programme	B. Tech
Year & Semester	III year II-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mr.P.Krishna Rao, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- **IM1:** To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- **DM3:** To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- **PEO3:** Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING III YEAR COURSE STRUCTURE AND SYLLABUS (R18) Applicable From 2018-19 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC501PC	Microprocessors & Microcontrollers	3	1	0	4
2	EC502PC	Data Communications and Networks	3	1	0	4
3	EC503PC	Control Systems	3	1	0	4
4	SM504MS	Business Economics & Financial Analysis	3	0	0	3
5		Professional Elective - I	3	0	0	3
6	EC505PC	Microprocessors & Microcontrollers Lab	0	0	3	1.5
7	EC506PC	Data Communications and Networks Lab	0	0	3	1.5
8	EN508HS	Advanced Communication Skills Lab	0	0	2	1
9	*MC510	Intellectual Property Rights	3	0	0	0
		Total Credits	18	3	8	22

III YEAR II SEMESTER

S. No.	Course	Course Title	L	Т	Р	Credits
	Code					
1	EC601PC	Antennas and Propagation	3	1	0	4
2	EC602PC	Digital Signal Processing	3	1	0	4
3	EC603PC	VLSI Design	3	1	0	4
4		Professional Elective - II	3	0	0	3
5		Open Elective - I	3	0	0	3
6	EC604PC	Digital Signal Processing Lab	0	0	3	1.5
7	EC605PC	e – CAD Lab	0	0	3	1.5
8	EC606PC	Scripting Languages Lab	0	0	2	1
9	*MC609	Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

*MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation. **Professional Elective – I**

EC511PE Computer Organization & Operating Systems					
EC512PE	Error Correcting Codes				
EC513PE	C513PE Electronic Measurements and Instrumentation				
Professional Elective – II					
EC611PE	Object Oriented Programming through Java				
EC612PE	Mobile Communications and Networks				
EC613PE	Embedded System Design				

EC601PC: ANTENNAS AND PROPAGATION

B.Tech. III Year II Semester

L T P C

3 1 0 4

Prerequisite: Electromagnetic Theory and Transmission Lines

Course Objectives:

Course Objectives: The course objectives are:

1. To understand the concept of radiation, antenna definitions and significance of antenna parameters, to derive and analyze the radiation characteristics of thin wire dipole antennas and solve numerical problems.

2. To analyze the characteristics and design relations of UHF, VHF and Microwave Antennas.

3. To identify the antenna array requirements, to determine the characteristics of ULAs and estimate the patterns of BSA, EFA, and Binomial Arrays.

4. To understand the concepts and set-up requirements for microwave measurements, and familiarize with the procedure to enable antenna measurements.

5. To define and distinguish between different phenomenon of wave propagation (ground wave, space wave and sky wave), their frequency dependence, and estimate their characteristics, identifying their profiles and parameters involved.

Course Outcomes: Upon completing this course, the student will be able to explain the mechanism of radiation, definitions of different antenna characteristic parameters and establish their mathematical relations.

1. Characterize the antennas based on frequency, configure the geometry and establish the radiation patterns of VHF, UHF and Microwave antennas and also antenna arrays.

2. Specify the requirements for microwave measurements and arrange a setup to carry out the antenna far zone pattern and gain measurements in the laboratory.

3. Classify the different wave propagation mechanisms, determine the characteristic features of different wave propagations, and estimate the parameters involved.

UNIT - I

Antenna Basics: Basic Antenna Parameters – Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective Height.

Fields from Oscillating Dipole, Field Zones, Front - to-back Ratio, Antenna Theorems, Radiation, Retarded Potentials – Helmholtz Theorem

Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter Wave Monopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths. Loop Antennas - Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops (Qualitative Treatment).

UNIT - II

Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays.

Antenna Measurements: Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods.

UNIT –III:

VHF, UHF and Microwave Antennas - I: Arrays with Parasitic Elements, Yagi-Uda Array, Folded Dipoles and their Characteristics, Helical Antennas – Helical Geometry, Helix Modes, Practical Design Considerations for Monofilar Helical Antenna in Axial and Normal Modes, Horn Antennas – Types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns.

UNIT - IV

VHF, UHF and Microwave Antennas - II: Microstrip Antennas – Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas – Geometry and Parameters, Characteristics of Microstrip Antennas. Reflector Antennas – Introduction, Flat Sheet and Corner Reflectors, Paraboloidal Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types – Related Features.

UNIT - V:

Wave Propagation - Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts,

Ground Wave Propagation –Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections.

Space Wave Propagation –Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Troposphere Propagation.

Sky Wave Propagation –Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

TEXT BOOKS:

1. Antennas and Wave Propagation – J.D. Kraus, R.J. Marhefka and Ahmad S. Khan, TMH, New Delhi, 4th ed., (Special Indian Edition), 2010.

2. Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.

REFERENCE BOOKS:

1. Antenna Theory - C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.

2. Antennas and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.

- 3. Radio Engineering Handbook- Keith henney, 3rd edition TMH.
- 4. Antenna Engineering Handbook John Leonidas Volakis, 3rd edition, 2007.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COs and Mapping with PO/PSO

Course: ANTENNAS AND PROPAGATION (C321)

Class: III ECE-A

Course Outcomes

After completing this course, the student will be able to:

C321.1: Investigate the different types of antennas like short dipole, half wave dipole, quarter Wave monopole and small loops. And its parameters with mathematical relations. (Analysis)

C321.2: Design and analysis of folded dipole, yagi uda, helical and horn antennas based on the Frequency with its radiation patter. (Synthesis)

C321.3: Design and analysis of micro strip rectangular patch antenna and parabolic reflector Antenna according to their relevant feed structure. (Synthesis)

C321.4: Perpetrate the Linear array analysis, estimate the array factor, characteristics and sketch the pattern for 2-element array, N-element BSA, EFA, modified EFA, Binomial arrays. (Application)

C321.5: Interpret the requirement of microwave measurement for antenna far zone pattern and Gain measurements. (Application)

C321.6: Classify the different wave propagation mechanisms, identify their frequency ranges, determine the characteristic features of ground wave, ionosphere wave, space wave, duct and troposphere propagations, and estimate the parameters involved. (Application). **Mapping of course outcomes with program outcomes:**

High -3 Medium -2 Low-1

PO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
C321.1	2	2	-	-	-	-	-	-	-	-	-	3	2	1
C321.2	2	2	3	2	-	-	-	-		-	2	2	2	1
C321.3	2	2	3	2	-	-	-	-	-	-	2		2	1
C321.4	2	2	-	-	-	-	-	-	-	-	3	2	1	-
C321.5	2	2	-	-	-	-	-	-	-	-	-	-	1	-
C321.6	2	2	-	-	-	-	-	-	-	-	-	-	2	2
AVG	2	2	3	2							2.3	2.3	1.67	1.25

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

CO- PO/PSO Mapping - Justification

Course: ANTENNAS AND PROPAGATION (C321)

Class: III ECE-A

P01.ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

P02.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

P03. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO11. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

CO-PO mapping Justification

C321.1: Investigate the different types of antennas like short dipole, half wave dipole, quarter Wave monopole and small loops. And its parameters with mathematical relations. (Analysis).

	Justification
PO1	Investigating and understanding the parameters of different antennas involve the application
	of mathematics, science, and engineering fundamentals. This knowledge is crucial for designing antennas that meet specific performance requirements in complex engineering

	problems. (Level-2)
PO2	The investigation of antennas and their parameters involves a systematic problem analysis approach, leveraging mathematical principles and engineering sciences to formulate, research, and analyze complex engineering problems related to antenna design and optimization.(Level-2)
PO12	Investigating antennas and staying informed about their parameters aligns with the principles of life-long learning. Engineers and professionals need to recognize the dynamic nature of technology and be prepared to engage in continuous learning to stay at the forefront of advancements in antenna design and communication systems. (Level-3)
PSO1	The investigation of antennas and their parameters involves a systematic problem analysis approach, leveraging mathematical principles and engineering sciences to formulate, research, and analyze complex engineering problems related to antenna design and optimization.(Level-2)
PSO2	Investigating and understanding the parameters of different antennas involve the application of mathematics, science, and engineering fundamentals. This knowledge is crucial for designing antennas that meet specific performance requirements in complex engineering problems.(Level-1)

C321.2: Design and analysis of folded dipole, yagi uda, helical and horn antennas based on the Frequency with its radiation pattern. (Synthesis)

	Justification
PO1	The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas involve the
	application of mathematics, science, and engineering fundamentals. This knowledge is
	essential for solving complex engineering problems related to antenna design and
	optimization. (Level-2)
PO2	The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas involve a
	systematic problem analysis approach. This approach, supported by the application of
	engineering knowledge, allows engineers to formulate, research, and analyze complex
	engineering problems related to antenna design and optimization.(level-2)
PO3	The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas are
	approached with a focus on developing solutions that not only meet technical specifications
	but also consider public health, safety, cultural diversity, societal needs, and environmental
	sustainability. This holistic approach ensures that the engineering solutions are well-
	rounded and contribute positively to the broader context in which they operate.(level-3)
PO4	The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas involve a
	rigorous process of conducting investigations using research-based knowledge and
	methods. This approach ensures that the antennas are designed and optimized based on a
	solid foundation of theoretical understanding and practical experimentation, leading to valid
	conclusions regarding their performance and capabilities.(level-2)
PO11	The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas benefit from
	the application of project management and finance principles. These principles ensure
	efficient use of resources, adherence to timelines, risk mitigation, and effective
	collaboration in multidisciplinary environments, ultimately contributing to the successful
	completion of antenna projects.(level-2)
PO12	Life-long learning is crucial in the design and analysis of folded dipole, Yagi-Uda, helical,
	and horn antennas. Engineers committed to continuous learning are better equipped to

navigate technological changes, incorporate new research findings, and innovate in their
antenna designs to meet evolving communication standards and requirements.(level-2)
The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas involve a
systematic problem analysis approach. This approach, supported by the application of
engineering knowledge, allows engineers to formulate, research, and analyze complex
engineering problems related to antenna design and optimization.(level-2)
The design and analysis of folded dipole, Yagi-Uda, helical, and horn antennas benefit from
the application of project management and finance principles. These principles ensure
efficient use of resources, adherence to timelines, risk mitigation, and effective
collaboration in multidisciplinary environments, ultimately contributing to the successful
completion of antenna projects.(level-1)

C321.3: Design and analysis of micro strip rectangular patch antenna and parabolic reflector Antenna according to their relevant feed structure. (Synthesis)

	Justification
PO1	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas involve the application of engineering knowledge across multiple domains. The
	use of mathematics, science, and engineering fundamentals is essential for addressing
	complex engineering problems related to antenna design, feed structures, and overall
	performance optimization.(level-2)
PO2	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas involve a systematic problem analysis approach. This approach, supported by the
	application of engineering knowledge, allows engineers to formulate, research, and analyze
	complex engineering problems related to antenna design, feed structures, and overall
	performance optimization.(level-2)
PO3	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas involve a holistic approach in the design/development of solutions. These
	solutions not only meet technical specifications but also consider public health and safety,
	cultural diversity, societal needs, and environmental sustainability, reflecting a commitment
	to responsible engineering practices.(level-3)
PO4	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas necessitate the application of research-based knowledge and research methods.
	The investigation process involves a combination of theoretical understanding,
	experimental design, and data analysis to draw valid conclusions about the antennas'
	performance and optimize their design parameters.(level-2)
PO11	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas benefit from the application of project management and finance principles. These
	principles ensure that the design process is not only technically rigorous but also well-
	managed, with efficient resource allocation, effective team collaboration, and adherence to
DOOL	project timelines and budgets.(level-2)
PSO1	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas involve a holistic approach in the design/development of solutions. These
	solutions not only meet technical specifications but also consider public health and safety,
	cultural diversity, societal needs, and environmental sustainability, reflecting a commitment
DCCA	to responsible engineering practices. (level-2)
PSO2	The design and analysis of microstrip rectangular patch antennas and parabolic reflector
	antennas involve the application of engineering knowledge across multiple domains. The
	use of mathematics, science, and engineering fundamentals is essential for addressing
	complex engineering problems related to antenna design, feed structures, and overall

performance optimization.(level-1)

C321.4: Perpetrate the Linear array analysis, estimate the array factor, characteristics and Sketch the pattern for 2-element array, N-element BSA, EFA, modified EFA, Binomial arrays. (Application)

	Justification
PO1	The analysis of linear arrays, estimation of array factors, characteristics, and sketching of
	patterns for various types of arrays require a solid application of engineering knowledge,
	including mathematical principles and electromagnetic theory. This knowledge is essential
	for predicting and optimizing the performance of antenna arrays in different configurations
	and applications.(level-2)
PO2	The perpetration of linear array analysis, estimation of array factors, characteristics, and
	sketching of patterns for various arrays involves a systematic problem analysis approach.
	This approach, supported by the application of engineering knowledge, enables engineers to
	identify, formulate, research, and analyze complex engineering problems related to antenna
	array design and optimization.(level-2)
PO11	The perpetration of linear array analysis, estimation of array factors, characteristics, and
	sketching of patterns for various arrays benefits from the application of project management
	and finance principles. These principles ensure a structured and coordinated approach,
	effective collaboration, and optimized resource allocation, contributing to the successful
	execution of projects in the field of antenna array design.(level-3)
PO12	The perpetration of linear array analysis, estimation of array factors, characteristics, and
	sketching of patterns for various arrays is inherently linked to the principle of life-long
	learning. Engineers must recognize the need for continuous learning, be prepared to acquire
	new knowledge independently, and actively engage in life-long learning to adapt to the
	evolving landscape of antenna technology.(level-2)
PSO1	The perpetration of linear array analysis, estimation of array factors, characteristics, and
	sketching of patterns for various arrays involves a systematic problem analysis approach.
	This approach, supported by the application of engineering knowledge, enables engineers to
	identify, formulate, research, and analyze complex engineering problems related to antenna
	array design and optimization.(level-1)

C321.5: Interpret the requirement of microwave measurement for antenna far zone pattern and Gain measurements.(Application)

	Justification				
PO1	Microwave measurements for antenna far zone pattern and gain are integral to antenna				
	design and optimization. The application of engineering knowledge in mathematics,				
	science, and fundamental principles ensures the accuracy and reliability of these				
	measurements, enabling engineers to interpret results and make informed decisions for				
	enhancing antenna performance(level-2)				
PO2	The interpretation of microwave measurements for antenna far zone pattern and gain involves identifying, formulating, and analyzing complex engineering problems. A thorough literature review and the application of first principles in mathematics, natural sciences, and engineering sciences are essential for substantiating conclusions and ensuring accurate and reliable measurement outcomes.(level-2)				
PSO1	Microwave measurements for antenna far zone pattern and gain are integral to antenna				

design and optimization. The application of engineering knowledge in mathematics,
science, and fundamental principles ensures the accuracy and reliability of these
measurements, enabling engineers to interpret results and make informed decisions for
enhancing antenna performance(level-1)

C321.6: Classify the different wave propagation mechanisms, identify their frequency ranges, determine the characteristic features of ground wave, ionosphere wave, space wave, duct and troposphere propagations, and estimate the parameters involved.(Application).

	Justification					
PO1	The classification of wave propagation mechanisms and identification of their frequency					
	ranges, characteristic features, and parameter estimation involve the application.(level-2)					
PO2	The classification of wave propagation mechanisms and the identification of their					
	frequency ranges and characteristic features, coupled with the estimation of parameters, are					
	justified through a problem analysis approach. This approach involves identifying,					
	formulating, researching, and analyzing complex engineering problems using first					
	principles of mathematics, natural sciences, and engineering sciences. (level-2)					
PSO1	The classification of wave propagation mechanisms and identification of their frequency					
	ranges, characteristic features, and parameter estimation involve the application. (level-2)					
PSO2	This approach involves identifying, formulating, researching, and analyzing complex					
	engineering problems using first principles of mathematics, natural sciences, and					
	engineering sciences.(level-2)					

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD <u>ACADEMIC CALENDAR 2022-23</u>

B. Tech./B. Pharm. III YEAR I & II SEMESTERS

I SEM

	2	Duration			
S. No	Description	From	То		
1	Commencement of I Semester classwork	classwork 09.09.2022			
2	1 st Spell of Instructions (including Dussehra Recess)	09.09.2022	10.11.2022 (9 Weeks)		
3	Dussehra Recess	03.10.2022	08.10.2022 (1 Week)		
4	First Mid Term Examinations	11.11.2022	17.11.2022 (1 Week)		
5	Submission of First Mid Term Exam Marks to the University on or before	24.11.2022			
6	2 nd Spell of Instructions	18.11.2022	12.01.2023 (8 Weeks)		
7	Second Mid Term Examinations	16.01.2023	21.01.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	23.01.2023	28.01.2023 (1 Week)		
9	Submission of Second Mid Term Exam Marks to the University on or before	30.01.2023			
10	End Semester Examinations	30.01.2023	11.02.2023 (2 Weeks)		

Note: No. of Working/ instructional days: 92

II SEM

~		Duration			
S. No	Description	From	То		
1	Commencement of II Semester classwork		13.02.2023		
2	1 st Spell of Instructions	13.02.2023	08.04.2023 (8 Weeks)		
3	First Mid Term Examinations	10.04.2023	15.04.2023 (1 Week)		
4	Submission of First Mid Term Exam Marks to the University on or before	22.04.2023			
5	2 nd Spell of Instructions (including Summer Vacation)	17.04.2023	24.06.2023 (10 Weeks)		
6	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)		
7	Second Mid Term Examinations	26.06.2023	01.07.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	03.07.2023	08.07.2023 (1 Week)		
9	Submission of Second Mid Term Exam Marks to the University on or before	08.07.2023			
10	End Semester Examinations	10.07.2023	22.07.2023 (2 Weeks)		

Note: No. of Working/ instructional days: 90

REGISTRAR

UGC Autonomous, Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510 https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING **Class Timetable**

CLASS: III-B.Tech ECE-A		A.Y:2022-23 SI		SEMESTER: II		LH: C-201				
DAY MON	1 9:40-10:30 A&P	II 10:30 -11:20	11:20-1	2:10 IV 12:10-	/ 1:00	1: 1:	00- :30	V 1:30-2:20	VI 2:20-3:10	VII 3:10-4:00
THE	IM		JSP LAB	/e-CAD LAB		-		VLSID	ESD LIB	
WED	IM	DSP	FA	I ES	D		r.	DSP(T)/VLSID(T)	A&P SPORT	
WED	ESD	IM	A&	P A&P(T)/	DSP(T	F)	Ū	FAL DOD		510K15
THU	IM	DSP	VLSI	D VLSID(T)	/A&P(T	N		DIAD	COUN
FRI	FAI	DSP	A&I	P VLS	ID		C H	ESD ESD	D LAB / DSP LA	В
SAT	VLSID	ESD		VLSID(ADJUNCT	7			ESD	CO-C	U/DAA
*(T) -	Tutorial Co	oncern Faculty			/			SL LAP	3	A&P
Course Cod	e	Course Name		Name of the Faculty	0	Course Code		Course	Name of the	
EC601PC	A&P-An	tennas and Prop	agation	P.Krishna Rao	EC	C604PC	DSP Proc	LAB-Digital Signal essing Lab	Faculty Y.Raju/Dr.T.Ramakrishna/	
FC602DC	Don ni		0.55		E	C605PC	e-CA	D LAB-e - CAD Lab	S Alakhua/D D : 1 (D D)	
EC002PC	DSP-Digi	ital Signal Proce	essing	Y.Raju	E	C606PC	SLI	AB-Scripting	D Nagaraju/P.Kajendra/P.Krishn	
EC603PC	VLSID-V	LSI Design		6 41 11	-		Lang	uages Lab	K.Bhaskar Redd	y
-	FSD Emt	added Cost		S.Alekhya		1.5	Artif	rundamentals of	P.Meena	
EC613PE	Design(Pr	ofessional Fleet	tive_II)	A.Vaani	0	COUN	Com	and interligence		
VLSID	VISIDA	DUDICT	(196-11)			0001	Cou	iseting	Y.Raju/K.Padma	a/G.Swathi
DJUNCT)	VESID(A			G.Chandrasekha	r SI	PORTS	Spor	ts	P.Srilatha/B.Ashwini	
T600OE	(Open Eter	rial Managemer stive-I)	nt	K.V.Nagamani	C	CO- U/DAA	Co-C	Curricular/Dept.	S.Alekhya/S.Naresh/K.Bhaska	
Class Induarge			1	LIB	Libr	ary	G.Nirmala/A	etha /		
	1	B.		Head	d of I	Communic	artmc partin ation E ENGC	Alent ngg. Dept 5 & TECH	Prid Sn Indu k Sherig	stitute of Engineenr uda(Vill), Ibrahimp

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN

Programme: B.Tech	Academic Year: 2022-23
Year: III	Semester: II
Course Title: Antennas and Propagation	Course Code: EC601PC
Name of Faculty: Mr.P. Krishna Rao	

UNIT – I

Antenna Basics: Introduction, Basic Antenna Parameters – Patterns, Beam A ea, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Ape tu es, Effective Height, Illustrative Problems.

Fields from Oscillating Dipole, Field Zones, Front - to-back Ratio , Antenna Theorems, Radiation, Retarded Potentials – Helmholtz Theorem

Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter WaveMonopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths, Illustrative Problems. Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops (Qualitative Treatment)

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
	UNIT 1		
1	Antenna definition: Introduction	T1,T3	BB
1	Basic Antenna parameters:Patterns, Beam Area, Radiation Intensity, Beam Efficiency	T1,T3	BB
1	Directivity gain resolution, Antenna Aperture, Effective Height: Definitions	T1,T3	BB
1	Field from Oscillating Dipole:Field Zones, front to back ratio	T1,T3	BB
1	Antenna Theorems, Radiation, Retarded potentials Helmholtz Theorems	T3	BB
1	Tutorial – 1	T1	BB
1	Radiation from Small Electric Dipole- Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height	T1,R1,T3	BB
1	Quarter wave monopole - Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam	T1,R1	PPT/BB

	Width, Directivity, Effective Area and Effective Height			
1	Half Wave Dipole -Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height	T1	BB	
1	Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths, Illustrative Problems.	T1,T3	BB	
1	Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops	T1,T2	BB	
1	Tutorial – 2	T1,T2	BB	
1	Tutorial – 3	T1	BB	
Gap beyond syllabus(if any):				
Gap within the syllabus(if any)				
Course Outcome 1: Student would be able to Investigate the different types of antennas like short dipole, half wave dipole, quarter wave monopole and small loops and its parameters with				

mathematical relations. (Analysis)

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-II Syllabus

VHF, UHF and Microwave Antennas - I : Arrays with Parasitic Elements, Yagi-UdaArray, Folded Dipoles and their Characteristics, Helical Antennas – Helical Geometry, Helix Modes, Practical Design Considerations for Mono filar Helical Antenna in Axial and Normal Modes, Horn Antennas –types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns, Illustrative Problems.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
	Unit II				
1	VHF,UHF and Microwave Antennas-1:Basic concepts,	T1,T2	PPT/BB		
1	Array with parasitic Elements,				
1	Yagi Uda Array	T2,T3	PPT/BB		
1	Design Folded dipoles and their Characteristics	T2	BB		
1	Helical antennas	T1,T2	BB		
1	Helical Geometry, helix modes, basic properties	T2,T3	BB		
1	Practical design consideration for mono filar helical	T2,T3	BB		
1	antenna in axial mode				
1	Tutorial-4	T1,T3	BB		
1	Practical design consideration for mono filar helical	T2,T3	BB		
1	antenna in normal mode				
1	Horn Antennas:Introduction	T2,T3	BB		
1	Types of horn entennes, Format's principle	T2	BB		
	Types of norm antennas, Permat's principle,				
1	Optimum Horns, Design Considerations of Pyramidal	T2	BB		
1	Horns				
1	Tutorial-5	T1,R1	BB		
1	Tutorial-6	T2	BB		
Gap beyond syllabus(if any):					
Gap within the syllabus(if any):					
Course O	Dutcome 2: Student would be able to Design and analysis of	f folded dipole	e, Yagi Uda,		
helical an	helical and horn antennas based on the frequency with its radiation pattern. (Synthesis)				

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-III Syllabus

VHF, UHF and Microwave Antennas - II: Micro strip Antennas – Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas – Geometry and Parameters, Characteristics of Micro strip Antennas. Reflector Antennas – Introduction, Flar Sheet and Corner Reflectors, Paraboloidal Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types – Related Features, Illustrative Problems.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
	UNIT - III			
1	VHF,UHF and Microwave Antennas-II	T2	BB	
1	Micro strip Antennas-Introduction.	T2,T3	BB	
1	Features, Advantages, and Limitations of Micro strip	T2,T3	BB	
1	Antennas			
1	Rectangular Patch Antennas	T2,T3	BB	
1	Geometry and parameters, Characteristics of Micro strip	T2,T3	BB	
1	Antennas.			
1	Tutorial-7	T2,T3	BB	
1	Reflector Antennas: Introduction.	T1,T3	BB	
1	Flar sheet and corner Reflectors	T1,T3	BB	
1	Paraboloidal reflectors	T1,T3	BB	
1	Geometry and pattern Characteristics feed methods	T1,T3	BB	
	Geometry and pattern characteristics, feed methods			
1	Reflector Types- Related Features.	T1,T3	BB	
1	Tutorial-8	T1,T2	BB	
1	Tutorial-9	T1,T3	BB	
Gap beyo	ond syllabus(if any):			
Gap with	in the syllabus(if any)			
Course Outcome 3:Student would be able to design and analysis of micro strip rectangular				
patch ar	tenna and parabolic reflector antenna according to	o their rele	evant feed	
structure.	(Synthesis)			

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-IV Syllabus

Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside arrays, End fire Arrays, EFA with Increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays, Illustrative Problems.

Antenna Measurements: Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
	UNIT - IV		
1	Antenna arrays: Point sources-Definition, patterns	T1,T3	BB
1	Arrays of 2 isotropic sources-different cases	T1,T3	BB
1	Principle of pattern multiplication	T1,T3	BB
1	Uniform linear arrays- Broadside, End fire arrays	T1,T3	BB
1	EFA with increased Directivity	T1,T3	BB
1	Derivation of their characteristics and comparison	T1,T3	BB
1	Tutorial-10	T1,T3	BB
1	BSAs with non uniform amplitude distributions	T1,T3	BB
1	General considerations and Binomial arrays	T1,T3	BB
1	Antenna measurements: Introduction, concepts-reciprocity	T1,T2,T3	BB
1	Near and Far fields, Coordinate Systems, Sources of Errors	T2,T3	BB
1	Patterns to be measured, Directivity and Gain	T2,T3	BB
1	measurements		
1	Tutorial-11	T1,T3	BB
1.	Tutorial-12	T1,T2	BB
Gap beyo	ond syllabus(if any):		
0 14			

Gap within the syllabus(if any):

Course Outcome 4:Student would be able to perpetrate the Linear array analysis, estimate the array factor, characteristics and sketch the pattern for 2-element array, N-element BSA, EFA, modified EFA, Binomial arrays. (Application)

Course Outcome 5:Interpret the requirement of microwave measurement for antenna far zone pattern and gain measurements.(Application)

*Session Duration:50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-V Syllabus

Wave Propagation–I: Introduction, Definitions, Categorizations and GeneralClassifications, Different Modes of Wave Propagation, Ray/Mode Concepts, Ground Wave Propagation (Qualitative Treatment) – Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections. Space Wave Propagation – Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Tropospheric Propagation.

Wave Propagation – II: Sky Wave Propagation – Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Wave propagation-I: Introduction, Definitions,	T3,R2	BB
1	Categorizations and General Classification		
1	Different Modes of Wave Propagation, Ray/Mode	T3,R2	BB
1	Concepts		
1	Ground wave propagation-Introduction, Plane earth	T3,R2	PPT/BB
1	reflections		
1	Space and surface waves, wave tilt, curved earth	T3,R2	PPT/BB
I	reflections		
1	Space wave Propagation: Introduction, field strength	T3,R2	BB
1	variation with distance and height		
1	Tutorial-13	T3,R2	BB
1	Effect of earth's curvature, absorption, super	T3,R2	BB
1	refraction		
1	M-curves and Duct propagation, Scattering	T3,R2	PPT/BB
1	phenomena, Tropospheric Propagation		
1	Wave propagation-II: Sky wave propagation	T3,R2	PPT/BB
1	Mechanism of propagation		
1	Poflaction and refraction machanisms	T3,R2	PPT/BB
1	Ray path, Critical frequency, MUF, LUF, OF	T3,R2	PPT/BB
1	Virtual height and skip distance	T3,R2	PPT/BB
1	Relation between MUF and skip distance	T3,R2	PPT/BB
1.	Multi – hop propagation	T3,R2	PPT/BB
Gap beyond	syllabus(if any):		
Gap within	the syllabus(if any)		

Course Outcome 6:Student would be able to classify the different wave propagation mechanisms, identify their frequency ranges, determine the characteristic features of ground wave, ionosphere wave, space wave, duct and troposphere propagations, and estimate the parameters involved.

*Session Duration:50minutes

*Total Number of Hours/Unit: 14

SUGGESTED BOOKS: TEXT BOOKS:

- 1. Antennas for all applications-JohnD Kraus and Ronald J.Marhefka,3rd edition.TMHI 2003.
- 2. C.A.Balanis, 'Antenna Theory', 2nd edition, John Wiley& Sons, 2008.
- 3. Antennas and wave propagation-John D Kraus and Ronald J Marhefka,4th edition.SIE 2010,2006.

REFERENCE BOOKS:

- 1. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.

WEBREFERENCES:

- 1. <u>https://www.tutorialspoint.com/antenna_theory/antenna_theory_fundamentals.htm</u>
- 2. <u>http://www.ece.rutgers.edu/~orfanidi/ewa/</u>
- 3. <u>https://www.tutorialspoint.com/antenna_theory/antenna_theory_micro_strip.htm</u>
- 4. <u>https://www.elprocus.com/antenna-array/</u>
- 5. <u>https://www.sciencedirect.com/topics/physics-and-astronomy/wave-propagation</u>

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

<u>Unit-1:</u>

https://drive.google.com/file/d/1lb3BUudMZeZY8xUGmvZgNE9fE PMbxLwN/view?usp=sharing

<u>Unit-2:</u>

https://drive.google.com/file/d/1Er5vESF7EitbkW1qvDsMhuKm16I 105u7/view?usp=sharing

<u>Unit-3:</u>

https://drive.google.com/file/d/1tXVnAFtm_x2IMVSRJwRv68uE57 r7ZZtB/view?usp=sharing

<u>Unit-4:</u>

https://drive.google.com/file/d/1EuE0BZxH5W7UB1rTRPJGiI6y37 5xUEGO/view?usp=sharing

<u>Unit-5:</u>

https://drive.google.com/file/d/1jpkUND5O9HHGV92tJ88Noa87xqbsvC5/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Power point presentation

PPT link:

https://docs.google.com/presentation/d/1xhsfjGLpeBphplr0bNZQxTvny_xc5l/edit?usp=sharing&ouid=115806571272910632527&rtpof=true&sd =true

R18 CodeNo:156AF JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITY HYDERABAD B.TechIIIYearIISemesterExaminations,August/September-2021 ANTENNAS AND PROPAGATION (ElectronicsandCommunicationEngineering) **Time:3Hours** Max.Marks: 75 Answer any five questions Allquestionscarryequalmarks Developtheexpressionsforelectricandmagneticfieldcomponentsofquarter wavelength 1.a) monopole antenna. Draw and explain the radiation pattern of Monopole antennain principal planes. [10+5] b) 2.a)Developtheexpressionsforelectric and magnetic field components of hertz antenna. b) Radiationintensity of particular antennais given by $U=U_0\sin^2\theta$. Calculated irectivity. [10+5] 3.a) For anonuniform broads idelinear array derive the expression for array factorif the array has (i) even number of elements and (ii) odd number of elements. b) Explain the procedure to measure directivity of antenna. [10+5] 4.a)Solve fordirectivity of End FireArray antenna. b)Ifthetestantennaiscircularly polarized.Discusshowgainmeasurementis accomplishedusing the gain-transfer method. [7+8] 5.a)Explain the characteristicsoffolded dipoles. Briefouttheoperatingprinciple of Yagi-UdaAntenna. b) [10+5] 6.a)DiscusstheHelixmodesofHelical Antenna. b)Consider an array of 2 Isotropic Sources. Find the resultant electric field and perform a case studyfordistance between elements $d = \lambda/2$, $d = \lambda/2$ when the antennasarefed with currentsofsameamplitudeandphase. [8+7] 7.a) Explain the radiation mechanism in microstrip antenna using transmission line modelanalysis. b)With the help of Cassegrain feed geometry, explain the operation of parabolic reflector antenna. [8+7] 8.a)Derive the expression for skip distance.

b)Estimate the mechanism of space wave propagation over ideal flat earth with a neat sketch. [8+7]

---00000----

Code Time	No:156AF JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITY HYDER B.TechIIIYearIISemesterExaminations,February/March-2022 AN AND PROPAGATION (ElectronicsandCommunicationEngineering) :3Hours Ma Answer any five questions Allquestionscarryequalmarks 	R18 ABAD NTENNAS	5
1.a) b)	Whatisbeam area?Defineandderivethebeam efficiencyof antenna. ExplainaboutEffectiveareaandeffectiveheightoflinerwireantennas.	[7+8	3]
2.a) b)	Derive the radiating resistance and radiated power of Quarter-wave monopole. Write the equations for fields from oscillating dipole in detail.	[7+8	3]
3.a)	Write the Expression of principle of pattern multiplication and considering	g an array of	
b)	Derive the equation for fields trength of a uniform linear array.	[7+8	3]
4.a) b)	WritethedifferencesbetweenNearandFarfieldmeasurementsof anantenna. Discussabout theMeasurement ofantennapatterns in detail.	[7+8	3]
5.a) b)	Explaindesignand theoperationprincipleofhelical antennawithneat diagram Explainthe operationofYagi-udaantennaandwriteits applications.	ı. [8+7	7]
6.a)	Theaperturedimensionsofapyramidal horn are12×6cm. It is operating at a freq	uency	
b)	Explainaboutcornerreflectorandparabolicreflectorwithneatdiagrams.	[6+9)]
7. a) b)	Explaintheprincipleandoperationofmicrostripantennaandwriteits application Discuss the Mechanism of reflection and refraction of skywaves by ion osphere	ns. [7+8	3]
8.	Writeashort noteon: a) Virtualheight b) Critical frequency c) MUF	[5+5+5]]

---00000----

CodeNo:156AF JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITY HYDERABAD B.TechIIIYearIISemesterExaminations,February-2023 ANTENNAS AND PROPAGATION (ElectronicsandCommunicationEngineering)

Time:3Hours

b)

c)

d)

e)

f)

g)

h)

Max.Marks: 75

(25 Marks)

Note:i) QuestionpaperconsistsofPartA,Part B.

- ii) PartAiscompulsory, which carries 25 marks. In PartA, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

Defineeffective height. [2] Whatis meant byradiationresistance? [3] DefinePointsourceinantenna arrays. [2] What is source of errors? [3] WritetheapplicationsofHorn antenna. [2] Whatismonofilarhelicalantenna? [3] Definefeedmethodinreflector antennas. [2] Whataredifferent typesofreflectors? [3] [2]

1)	Definespace and surface waves in groundwave propagation.
j)	Whatis multihop propagation?

PART-B

(50 Marks)

[3]

2.a)	Discussabout Retardedpotentials in antennas.	
b)	Explainabout Oscillating Dipole.	[4+6]
	OR	
3.a)	ExplainandderivetheequationofRadiationresistanceof Quarter-wavemonopole.	
b)	CompareFarfields of smallloop and short dipole.	[6+4]
4.a)	Explaintheprincipleand operationofpatternofmultiplication.	
b)	DiscussaboutFieldstrengthofUniformlinear array.	[5+5]
	OR	
5.a)	Explainthe measurementofDirectivityin anymethod.	
b)	Howuni directionalpattern is obtained in end-firearray?	[5+5]
6.a)	DrawandexplainthepyramidalHornAntenna.	
b)	Explainaboutfoldeddipolewith neatdiagramandwriteits applications.	[5+5]
,	OR	
7.a)	ExplaintheprincipleandoperationofHelicalantennawithneat diagram.	
Ь́)	Designathread amont Vari Udeantennets anamete ato frequency of 172MUz [5] 5]	

b) Designathreeelement Yagi-Udaantennato operate ata frequencyof 172MHz.[5+5]

R18

- 8.a) Discussaboutrectangularpatch antennaandwrite its limitations. Writethepatterncharacteristicsofreflector antenna. b) [6+4] OR 9.a) Explainaboutparabolicreflectorantennawithneat diagram. A parabolic reflector with a mouth diameter of 22 meters operates at 5 GHz frequency, b) efficiencyof0.6.Findthepowergain? [5+5] Explainthereflectionofradiowavesbythesurfaceoftheearthingroundwave Propagation. 10.a) b) Discussabout effectof thecurvatureof theearth inspacewavepropagation. [5+5] OR 11. Writeshort noteson: a) MUF
 - b) Ray path
 - c) CharacteristicsofIonosphere
 - d) Duct Propagation.

[10]

---00000----

CodeNo:156AF	R18
JAWAHARLALNEHRUTECHNOLOGICALUNIVERSI B.TechIIIYearIISemesterExaminations,August-2 AND PROPAGATION (ElectronicsandCommunicationEngineering	TY HYDERABAD 2022 ANTENNAS
Time:3Hours	Max.Marks:75
Answer any five questions Allouestionscarryequalmarks	
1.a) Obtain the relations between the potentials and their sources.b) Write a short note on loop antennas	[8+7]
b) writedshort note on isopartennas.	[0+7]
2.a) Obtain the relationship between directivity and effective aperture.	
b) Defineradiationintensity?If the radiation intensity $U=A_0Cos\theta$, define the second	eterminedirectivity.
	[8+7]
3.a) Inalineararrayof4isotropicelementsspaced $\lambda/2$ apartance	withequalcurrentsfed
inphase, plotthe radiationpatternin polar coordinates.	
b) Derive the Fourier Transformmethod of synthesis.	[7+8]
4.a) Describeamethodofmeasurementof radiationpatternwithneatr	neasurementsetup.
b)What is polarization and describe polarization measuremen approach.	t by power measurement [7+8]
5.a)Design log periodic antenna to operate over a frequency range obtain a gain of 9 dB.	of 125MHz to 500MHzto
b) Deriveanexpression for theradiation resistance of a folded dipo	ole. [8+7]
6.a)Find the directivity, beam width and effective area of a parabolic which the reflector diameter is 6 cm and the illumination frequency of operation is 10GHz.	bloidal reflector antennafor on efficiency is 65%. The
b)Draw the diagram of pyramidal horn antenna and explain its and applications.	operation, characteristics [7+8]
7.a)Withthehelpofdiagramsandequivalentcircuits,explainfeedingmec antenna.	hanismsof micro strip
b)Design a rectangular micro strip antenna usinga substrate v 2.2,h=0.1588cm soas toresonateat10 GHz.	vith dielectric constant of [8+7]
8.a)Deriveanexpressionforeffectivedielectricconstantandcriticalfrequeb)Compute the effective dielectric constant of the E layer with N-frequencyof the waveis 25 MHZ.	encyof ionosphere layer. = 5×10^5 electrons/sec, if the [8+7]

r.

---00000----

Sri Indu Institute of Engineering & Technology Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

I - Mid Examinations, April - 2023

Year &Branch: III-II ECE-A&B&C	Date: 10-04-202	23 FN
Subject: A&P	Max. Marks: 10	Time: 60mins
Answer any two of the following question		
Answer any two of the following question		
 (a) Derive the radiation resistance of a half- wave dipole ant Analyze 	tenna. 2M	(C321.1)
(b) Derive the directivity of a half- wave dipole antenna. Analyze	3M	(C321.1)
 (a) Define the following antenna parameters.(i).antenna resi efficiency (iv).directive gain (v).directivity (C321.1)Understanding (b) An antenna has radiation resistance of 72Ω loss resistance antenna efficiency and directivity. Understanding (C321.1) 	istance (ii).radiation patter $3M$ ce of 8 Ω and a power gain	rn (iii).antenna n of 12db.Determine the 2M
3. Explain the operation of helical antenna in normal mode. Understanding	5M	(C321.2)
4. (a) Explain about principle of pattern multiplication with ex Understanding	cample. 2M	(C321.2)
(b) Explain about binomial array. Understanding	3 M	(C321.2)

Set – I

Sri Indu She	Institute of E riguda (V), Ibrahimj II - Mid	Engi patnan Exan	neering &	& Technol st-501 510	ogy Set – I
Year &Branch: III ECE A, B & C		Lasun	Date	: 26.06.2023	
Subject: A&P M	ax. Marks: 10		Time	e: 60 mins	
Answer any TWO Questions. All Ques	tion Carry Equal Ma	arks	2*5=10		
(This question paper	is prepared with Co	ourse (Dutcome and E	BT's mapping)	
1. Describe the parabolic reflect frequencies?	or used at micro	(5)	(C321.5)	(knowledge)	
2. Explain the horn antenna with	neat sketch?	(5)	(C321.4)	(Analysis)	
3.Design the setup for gain measure by gain comparison me	rement of antenna ethod?	(5)	(C321.3)	(Synthesis)	
4. Judge the salient features of g propagation?	round wave	(5)	(C321.5)	(Evaluation)	
Question Paper Mapping with BT	Qu	estion	Paper Mappir CO's	ng with	
JAN HANNEL	C32: 25	1.4; % C	C321. 25% 321.5; 50%	3;	

	Sri Indu Institute of Engineering & Technology	y	
	Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501510		
	B-Tech I - Mid Examinations, April -2023 Objective Type Exam		
Year & Subjec	Branch: III–ECE A&B&C Date: 10/4/23 ct: A&P Max. Marks: 10 Time: 20 mins		
Name:	Roll No		
Answe	er An Questions. An Questions Carry Equal Marks.		
I.	Choose the correct alternative:		
1.	The radiation resistance is 2 Ω and loss resistance is 8 Ω then the antenna efficiency is A) 5% B) 10% C) 20% D) 25%	s []
2.	HPBW of binomial array isthan that of uniform linear array.A) lessB) moreC) BothD) None	[]
3.	In antenna array N=0 meanslobe. [] A) First side B) second side		
	C) Main D) None		
4.	Which property/ies of antenna is/are likely to be evidenced in accordance to Reciproci	ity theor	em?
	A) Equality of impedancesB) Equality of directional patternsC) Equality of effective lengthsD) All above	L	J
5.	Which mode of radiation occurs in an helical antenna due to smaller dimensions of hecompared to a wavelength?A) NormalB) AxialC) Both a and bD) None	elix as []
6.	The directivity of half wave dipole antenna is	[]
ŀ	A) 1.64 B) 2.64 C) 3.64 D) 4.64		
7.	If AR=1, elliptical polarization becomes polarizataion.	[]
	A) horizontalB) verticalC) CircularD) None		
8.	In a Broadside array the radiation is along	[]
	A) X-direction B) Y-direction C) Both D) None		
9.	Helical antenna can be operated in and modes.A) NormalB) AxialC) BothD) None	[]
10.	The helix having the geometry of	[]
	A) straight wire B) Circle C) cylinder D) All		

II. Fill in the blanks :

- 11. Radiation pattern is ______ dimensional quantity.
- 12. ____kind of polarization provided by helical antennas.
- 13. _____is also called as 3-db bandwidth.
- 14. The radiation resistance of current element is given by_____
- 15. In axial mode, AR=_____
- 16. In Principle of pattern multiplication, the amplitudes will be______ and phase will be______
- 17. In gain measurement, the SGA is generally_____antenna.
- 18. In a end-fire array the radiation is along _____
- 19. The advantage of binomial array, is that there will be no_____lobes.
- 20. Binomial array was invented by _____

-000-

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 B-Tech II - Mid Examinations, JUNE-2023

Objective Type Exam

Year & Subjec Name:	Branch: III –ECE-A t: A&P	D Max. Marks: 10	ate: 26-06-2023(FN) Time: 20 mins Roll No	
Answe	r All Questions. All Questions Car	ry Equal Marks.		
I.	Choose the correct alternative:			
1.	The widely used shape for patch an A) Rectangular C) Parabolic	ntenna is	B) CircularD) Elliptical	[
2.	For square corner reflector the flar A) 30 B) 60 C) 90 D) 180	ing angle is deg	rees.	[
3.	For large distances the earth can	be considered as	region.	[
4.	A) FlatC) ConductorThe line of sight distance is the disA) ReflectedB) Direct	B) Curved D) None stance travelled by C) Scattered	wave. D) None	[
5.	The virtual height is always A) Less B) More	than the actual hei C) Both	ght. D) None	[
6.	The frequency at which 50% to 85	% of MUF is called]

]

]

]

]

]

1

1

A) LUF B) MUF C) OWF D) None

7.	In any dish antenna arrangement the parabolic reflector	or will acts as	antenna. []

A) Primary B) Secondary C) Both D) None

8. The disadvantage of parabolic reflector is ______ effect. [

A) Solar B) Spillover C) Random D) None

9.	Ionospheric propagati	ion is known as	_ [1		
	A) Tropospheric	B) Ground wave	C) Sky wave	D) None		
10.	mode of pro	pagation is adopted in HF	antennas.		[]
	A) Ground wave	B) Tropospheric	C) Ionospheric		D)	None

II. Fill in the blanks :

- 11. The efficiency of microstrip antenna is_____
- 12. The directivity of the paraboloid is _____
- 13. The parabolic antenna operates in the frequency range of_____
- 14. For small distances the earth can be considered as _____region.
- 15. The phenomenon of reduction of signal strength due to variation in refractive index is called_____
- 16. The relation between critical frequency and MUF is_____
- 17. The horizon of the earth, LOS distance is given by _____
- 18. In ground wave propagation the electric field at the receiving point is given by _____
- 19. The F2 layer of ionosphere exists between_____.
- 20. The highest frequency that returns from ionosphere other than vertical frequency is called

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech I - Mid Examinations, APRIL-2023

Year &Branch: III –ECE-A, B&C

Date: 10/04/23 (FN)

Subject: A&P

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1QwGnDSMHWud6J4KPn8YmQ8rEN8ROt_ej/view?usp=s haring

Objective/Quiz Key Paper

ve
V

1.C 2.B 3.C 4.B 5.A 6.A 7.C 8.B 9.C 10.D Fill in the blanks: 11.3 12.Clr 13.HPBW $14.80\pi^2 (dl/\lambda)^2$ 15.1+1/2N 16.Null, $\lambda/2$ 17.Horn 18.X-direction 19.Side lobes 20.Stone.

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech II - Mid Examinations, JUNE-2023

Year &Branch: III –ECE-A, B&C

Date: 26/06/23 (FN)

Subject: A&P

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1elvsnUa_hQktpcBBqQppv9CZFIMIN2uu/view?usp=sharing

Objective/Quiz Key Paper

I. Choose the correct alternative:

- 1.A
- 2.C
- 3.B
- 4.B
- 5.B
- 6.C
- 7.B
- 8.B

9.C

10.A

Fill in the blanks:

11.80%

12.30db

13.10GHz

14. Flattering

15.Fading

16.Fmuf=Fc $sec\theta$

17.6378kms

18.Eg=Eo.A/d

19.220-800kms

20.Critical frequency

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 1

SUBJECT: ANTENNAS & PROPAGATION

- 1. Derive the radiation resistance of a half wave dipole antenna? (C321.1) Analysis
- 2. Derive the directivity of the half wave dipole.(C321.2)(Understanding)

3. An antenna has radiation resistance of 72Ω loss resistance of 8Ω and a power gain of 12db.Determine the antenna efficiency and directivity(C321.1) (Understanding)

4. Explain the operation of helical antenna in normal mode and axial mode.(C321.2) (Understanding)

SRI INDI

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 2

SUBJECT: ANTENNAS & PROPAGATION

- 1. Write a short note on parabolic reflector antenna. (C321.3)(Synthesis)
- 2. Judge the salient features of ground wave propagation. (C321.5)(Synthesis)
- 3. Explain about Structure of atmosphere.. (C321.4)(Application)
- 4. Write a short note on measurement of Gain by direct comparision method..

(C321.3)(Synthesis)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

TUTORIAL TOPICS

SUBJECT: ANTENNAS & PROPAGATION

S.NO	Unit	ΤΟΡΙϹ	Reference	Teaching method/Aids
1.		Directivity gain resolution, Antenna Aperture, Effective Height: Definitions, Field from Oscillating Dipole:Field Zones, front to back ratio	T1,T3	BB
2.	1	Antenna Theorems, Radiation, Retarded potentials Helmholtz Theorems	T1, T3	BB
3		Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops	T1, T3	BB
4.		Helical antennas, Yagi Uda Array	T1, T3	BB
5.	2	Horn Antennas:Introduction	Т3	BB
6		Types of horn antennas, Fermat's principle	T1, R1, T3	BB
7	3	VHF,UHF and Microwave Antennas-II, Micro strip Antennas-Introduction.	T1, T3	BB
8		Paraboloidal reflectors	T1, T3	BB
9		Reflector Types- Related Features.	T1	BB
10	4	Rectangular Patch Antennas	T2	BB
11		Paraboloidal reflectors	T1, T2	BB
12		Reflector Types- Related Features	T1, T3	BB
13		Arrays of 2 isotropic sources-different cases	T1	BB
14		BSAs with non uniform amplitude distributions	T1, T2	BB

15		Near and Far fields, Coordinate Systems, Sources of Errors	T1	BB
16	5	Space and surface waves, wave tilt, curved earth reflections	T1, T3	BB
17		Virtual height and skip distance	T1, T2	BB
18		Relation between MUF and skip distance, Multi – hop propagation	T1	BB

SUGGESTED BOOKS: TEXT BOOKS:

- 1. Antennas for all applications-JohnD Kraus and Ronald J. Marhefka,3rd edition.TMHI 2003.
- 2. C.A.Balanis, 'Antenna Theory', 2nd edition, John Wiley& Sons, 2008.
- 3. Antennas and wave propagation-John D Kraus and Ronald J Marhefka,4th edition.SIE 2010,2006.

REFERENCE BOOKS:

- 1. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New.

Delhi, 2001

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title	ANTENNAS & PROPAGATION
Course Code	EC601PC
Programme	B.Tech
Year & Semester	III year II-semester, A sec
Regulation	R18
Course Faculty	Mr.P.Krishna Rao Assistant Professor, ECE

Slow learners:

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	20X31A0401	4	21	20
2	20X31A0403	5	14	14
3	20X31A0406	4	22	17
4	20X31A0407	3	22	19
5	20X31A0408	3	16	19
6	20X31A0410	5	14	14
7	20X31A0411	4	20	21
8	20X31A0412	5	20	18
9	20X31A0413	4	24	19
10	20X31A0418	8	14	14
11	20X31A0419	4	22	20
12	20X31A0423	3	23	15
13	20X31A0427	3	22	18
14	20X31A0428	4	21	19
15	20X31A0430	4	24	21
16	20X31A0431	5	16	18
17	20X31A0433	3	16	14
18	20X31A0435	3	20	19
19	20X31A0436	5	20	17
20	20X31A0440	4	22	22

22	20X31A0445	4	21	20
23	20X31A0447	3	24	23
24	20X31A0450	4	17	19
25	20X31A0453	4	22	19
26	20X31A0454	5	15	14
27	20X31A0455	4	20	16
28	20X31A0456	5	22	19
30	20X31A0458	3	23	20
31	20X31A0462	3	22	22

Advanced learners:

S.NO	ROLL.NO.	GATE MATERIAL
1	20X31A0404	
2	20X31A0409	Patterns, Beam Area, Radiation Intensity, Beam
3	20X31A0415	Efficiency, Radiation from
4	20X31A0416	Wave Monopole and Half
5	20X31A0420	Wave Dipole – Current Distributions, Folded Dipoles
6	20X31A0421	and their Characteristics,
7	20X31A0422	Geometry, Helix Modes,
8	20X31A0425	Practical Design Considerations for Monofilar
9	20X31A0432	Helical Antenna, Different Modes of Wave Propagation
10	20X31A0434	Ray/Mode Concepts, Ground
11	20X31A0437	wave Propagation.
12	20X31A0438	
13	20X31A0439	
14	20X31A0442	
15	20X31A0444	
16	20X31A0449	
17	20X31A0452	
18	20X31A0459	
19	20X31A0460	

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-III BTECH I SEM ECE-A RESULT ANALYSIS

ACADAMIC	COURSE	NUMBE STUDE	R OF NTS	QUESTIO SETI		
YEAR	NAME		DACCED			PASS%
		APPEAKED	PASSED	INTERNAL	EATEKNAL	
2022-23	ANTENNA & PROPAGATION	62	34	COURSE FACULTY	JNTUH	5483

ANTENNA& PROPAGATION (C321) RESULT ANALYSIS

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510

Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-II

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM- 5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EMF&W	LTNM	A&DC	LICA	ECA
II ECE-B	LICA	A&DC	EMF&W	ECA	LTNM
III ECE-A	IECE-A DSP		A&P	ESD	IM
III ECE-B	A&P	ESD	DSP	IM	VLSID
III ECE-C	IM	A&P	ESD	VLSID	DSP
IV ECE-A	IV ECE-A WSN		LPVLSID	-	-
IV ECE-B	ML	LPVLSID	WSN		-
IV ECE-C	LPVLSID	WSN	ML	<u>1</u> .	-

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpalham(M), R.R.Dist-501 514

PRINCIPAL Sin Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R R Dist Telangana -501 510

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	P.Krishna Rao	Academic Year:	2022-2023
Branch & Section:	ECE - A	Examination:	I Internal
Course Name:	A&P	Year: III	Semester: II

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj	Α
Max	. Marks ==>	5		5		5		5		10	5
1	20X31A0401			4				3		9	5
2	20X31A0402		5			4			2	9	5
3	20X31A0403	3								9	5
4	20X31A0404	5				1				9	5
5	20X31A0405	5						1	2	9	5
6	20X31A0406			5			3			9	5
7	20X31A0407	5				3				9	5
8	20X31A0408	3								9	5
9	20X31A0409			3	2			5		10	5
10	20X31A0410	3						3		3	5
11	20X31A0411	3						3		10	5
12	20X31A0412	3	2					1		9	5
13	20X31A0413	3	2			2	3			10	5
14	20X31A0414	3	2	5						10	5
15	20X31A0415	3	2	5						10	5
16	20X31A0416		3	3	2					10	5
17	20X31A0417	3	2	5						10	5
18	20X31A0418	5								4	5
19	20X31A0419	2	2					3	2	9	5
20	20X31A0420	3	2						2	10	5
21	20X31A0421	3	2					3		9	5
22	20X31A0422	3	2	3	2					9	5
23	20X31A0423	3	2			2	2			7	5
24	20X31A0424			3	2			2	2	3	5
25	20X31A0425	3	2				3			9	5
26	20X31A0426	3	2				4			9	5
27	20X31A0427			3	2		3			9	5
28	20X31A0428					3	2		3	9	5
29	20X31A0429			3	2			4		9	5
30	20X31A0430	3	2					3	2	10	5
31	20X31A0431	3								8	5
32	20X31A0432	3	2			2	2			9	5
33	20X31A0433	3								3	5
34	20X31A0434	3	2	5						10	5
35	20X31A0435			3	2	1				9	5
36	20X31A0436	3		3						9	5
37	20X31A0437	2	2			3	2			10	5
38	20X31A0438	3	2			5				9	5
39	20X31A0439	3	2	1	1	5				10	5
40	20X31A0440	2	2					2	2	10	5

41	20X31A0441	3	2			2	2			9	5
42	20X31A0442	3	2			2	3			9	5
44	20X31A0444			3	2	3	2			10	5
45	20X31A0445	3	2			2				8	5
46	20X31A0446			3	2			5		8	5
47	20X31A0447	3	2			5				9	5
48	20X31A0448			3	2	2	2			8	5
49	20X31A0449	3	2	5						10	5
50	20X31A0450	2	2	1						10	5
51	20X31A0451			3	2	3	2			9	5
52	20X31A0452			3	2	5				10	5
53	20X31A0453	3		3	2					4	5
54	20X31A0454	3		3						7	5
55	20X31A0455	3		3						9	5
56	20X31A0456	2	3	3						6	5
58	20X31A0458				3	2		4		9	5
59	20X31A0459			3	2		5			10	5
60	20X31A0460	3	3		4					10	5
61	20X31A0461	3	3		4					10	5
62	20X31A0462	3	2		3					9	5
Targ	et set by the faculty	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Num	ber of students	38	31	25	18	10	15	10	8	55	60
Num	ber of students	13	21	26	18	20	15	14	Q	60	60
atten	npted	43	51	20	10	20	15	14	0	00	00
Perce	entage of students ed more than target	88%	100%	96%	100%	50%	100%	71%	100%	92%	100%

<u>CO Mapping with Exam Questions:</u>

CO - 1	Y			Y	Y	Y
CO - 2		Y			Y	Y
CO - 3			Y		Y	Y
CO - 4						
CO - 5						
CO - 6						

% Students Scored	88%	100%	96%	100%	50%	100%	71%	100%	92%	100%
CO Attainment based of	n Exam	Question	ns:							
CO - 1	88%						71%		92%	100%
CO - 2			88%						92%	100%
CO - 3					50%				92%	100%
CO - 4										
CO - 5										
CO - 6										

СО	Subj	obj	Asgn	Overall	Level	Att	ainment Lo	evel	
CO-1	80%	92%	100%	91%	3.00		1	40%	
CO-2	88%	92%	100%	93%	3.00		2	50%	

CO-3	50%	92%	100%	81%	3.00
CO-4					
CO-5					
CO-6					
A 44	T	. 1 1 1	P	·	3 00

3	60%	
-		

Attainment (Internal 1 Examination) = 3.00

Contrasting of the second seco

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	P.Krishna Rao	Academic Year:	2022-2023
Branch & Section:	ECE - A	Examination:	II Internal
Course Name:	A&P	Year: III	Semester: II

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj4	Α
Max. I	Marks ==>	5		5		5		5		10	5
1	20X31A0401			3				3		9	5
2	20X31A0402			3				2		9	5
3	20X31A0403							5		9	5
4	20X31A0404			4				3		9	5
5	20X31A0405			3				3		9	5
6	20X31A0406							3		9	5
7	20X31A0407			3				2		9	5
8	20X31A0408			2				3		9	5
9	20X31A0409	5						5		10	5
10	20X31A0410			6						3	5
11	20X31A0411	4						2		10	5
12	20X31A0412			4						9	5
13	20X31A0413							4		10	5
14	20X31A0414			4				3		10	5
15	20X31A0415			5				5		10	5
16	20X31A0416			4				2		10	5
17	20X31A0417			3				5		10	5
19	20X31A0418			5						4	5
20	20X31A0419			3				3		9	5
21	20X31A0420							3		9	5
22	20X31A0421							3		9	5
23	20X31A0422			5						9	5
24	20X31A0423							3		7	5
25	20X31A0424			6						3	5
26	20X31A0425			5				4		9	5
27	20X31A0426			4				5		9	5
28	20X31A0427			4				1		9	5
29	20X31A0428	3		3						9	5
30	20X31A0429	3		3						9	5
31	20X31A0430			4				2		10	5
32	20X31A0431			2				2		8	5
33	20X31A0432			5				3		9	5
34	20X31A0433			6				3		4	5
35	20X31A0434	4		4				3		10	5
36	20X31A0435			4				4		9	5
37	20X31A0436			2				4		9	5
38	20X31A0437			3				3		10	5
39	20X31A0438			5				5		9	5
40	20X31A0439			5				4		10	5
41	20X31A0440			3				4		10	5
42	20X31A0441			3				3		9	5
43	20X31A0442			5				4		9	5
44	20X31A0444	4		5			2			10	5
45	20X31A0445	4					2			8	5

							1				
46	20X31A0446	5					4			8	5
47	20X31A0447			5			4			9	5
48	20X31A0448			3			3			8	5
49	20X31A0449			5			3			10	5
50	20X31A0450			4						10	5
51	20X31A0451			4			5			9	5
52	20X31A0452	5		5						10	5
53	20X31A0453	2		2						10	5
54	20X31A0454			5				-		4	5
55	20X31A0455	1		-				2		7	5
56	20X31A0456			2				3		9	5
57	20X31A0458			3				3		9	5
58	20X31A0459			4				4		10	
59	20X31A0460			5				3		10	
60	20X31A0461			5				3		10	~
01 Torrat	20X31A0462	 	0.00	4	0.00	2.00	0.00	4	0.00	9) 2.00
rarget	set by the faculty /		0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
perforr target	ned above the	3.00	0	44	0	0	7	34	0	55	57
Numbe attemp	er of students ted	9	0	49	0	0	7	42	0	60	57
Percen scored	tage of students more than target	11		90%			100%	81%		92%	100%
со м	apping with Exam	82%									<u>. </u>
	CO - 1	1									
	CO - 2										
	CO - 3										
	CO - 4							Y		Y	Y
	CO - 5	Y		Y						Y	Y
	CO - 6					Y				Y	Y
							1				
% \$	Students Scored			90%			100%	81%		92%	100%
<u>CO At</u>	tainment based on	82%									
	CO - 1										
	CO - 2										
	CO - 3										
	CO - 4							81%		92%	100%
	CO - 5	82%		90%				01/0		92%	100%
	CO - 6	0270		2070						92%	100%
	-	<u> </u>			1	1	1	1	1	/2/0	10070
	CO	1	obi	Asgn	01	verall	Le	vel	Att	ainment I	evel
		l	J	8						1	40%
	CO-1	Subi			-				4	-	
	CO-1 CO-2	Subj								2	50%
	CO-1 CO-2 CO-3	Subj								2	50%
	CO-1 CO-2 CO-3	Subj	020/	1000/		60/		00		2 3	50% 60%
	CO-1 CO-2 CO-3 CO-4	Subj	92%	100%	9	6%	3.	00		2 3	50% 60%
	CO-1 CO-2 CO-3 CO-4 CO-5	Subj 	92% 92%	100% 100%	9	96% 91%	3. 3.	00 00		2 3	50% 60%
	CO-1 CO-2 CO-3 CO-4 CO-5 CO-6	Subj 81% 86%	92% 92% 92%	100% 100% 100%	9 9 9	96% 91% 92%	3. 3. 3.	00 00 00		2 3	50% 60%

Department of Electronics and Communication Engineering **Course Outcome Attainment (University Examinations)**

Name o	of the faculty :	P.Krishna Rao
Branch	& Section:	ECE - A
Course	Name:	A&P
S.No	Roll Number	Marks Secured
1	20X31A0401	39
2	20X31A0402	56
3	20X31A0403	14
4	20X31A0404	51
5	20X31A0405	26
6	20X31A0406	37
7	20X31A0407	37
8	20X31A0408	51
9	20X31A0409	70
10	20X31A0410	20
11	20X31A0411	47
12	20X31A0412	25
13	20X31A0413	43
14	20X31A0414	55
15	20X31A0415	54
16	20X31A0416	48
17	20X31A0417	54
18	20X31A0418	14
19	20X31A0419	40

A.Y:	2022-2023	
Year / Se	emester:	

III-II

S.No	Roll Number	Marks Secured
36	20X31A0436	25
37	20X31A0437	52
38	20X31A0438	54
39	20X31A0439	51
40	20X31A0440	27
41	20X31A0441	34
42	20X31A0442	51
43	20X31A0444	51
44	20X31A0445	33
45	20X31A0446	39
46	20X31A0447	39
47	20X31A0448	29
48	20X31A0449	54
49	20X31A0450	22
50	20X31A0451	36
51	20X31A0452	51
52	20X31A0453	33
53	20X31A0454	15
54	20X31A0455	20

20	20X31A0420	38	
21	20X31A0421	50	
22	20X31A0422	71	
23	20X31A0423	35	
24	20X31A0424	39	
25	20X31A0425	59	
26	20X31A0426	52	
27	20X31A0427	46	
28	20X31A0428	49	
29	20X31A0429	39	
30	20X31A0430	58	
31	20X31A0431	38	
32	20X31A0432	53	
33	20X31A0433	28	
34	20X31A0434	58]
35	20X31A0435	47	1
Max M	arks	75	
Class A	verage mark		53
Number	r of students perfor	med above the target	1
Number	r of successful stud	ents	6
Percent	age of students sco	red more than target	29
Attai	nment level		1

55	20X31A0456	26
56	20X31A0458	41
57	20X31A0459	61
58	20X31A0460	49
59	20X31A0461	39
60	20X31A0462	43

53	Attainment Level							
1	1	40%						
60	2	50%						
2%	3	60%						
1								

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty :	P.Krishna Rao	Academic Year:	2022-2023
Branch & Section:	ECE - A	Year:	III
Course Name:	A&P	Semester:	II

Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level
C01	3.00		3.00	1.00	1.50
CO2	3.00		3.00	1.00	1.50
CO3	3.00		3.00	1.00	1.50
CO4		3.00	3.00	1.00	1.50
C05		3.00	3.00	1.00	1.50
CO6		3.00	3.00	1.00	1.50
Inter	nal & Unive	rsity Attainment:	3.00	1.00	
		Weightage	25%	75%	
CO Attainment for the	course (Int	ernal, University)	0.75	0.75]
CO Attainment for	the course (Direct Method)		1.50	

Overall course attainment level 1.50

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

Name of Faculty: Branch & Section: Course Name:

P.Krishna Rao ECE - A A&P

Academic Year: Year: Semester: 2022-2023 III II

CO-PO mapping

PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C321.1	2	2	-	-	-	-	-	-	-	-	-	3	2	1
C321.2	2	2	3	2	-	-	-	-		-	2	2	2	1
C321.3	2	2	3	2	-	-	-	-	-	-	2		2	1
C321.4	2	2	-	-	-	-	-	-	-	-	3	2	1	-
C321.5	2	2	-	-	-	-	-	-	-	-	-	-	1	-
C321.6	2	2	-	-	-	-	_	_	_	_	-	-	2	2
AVG	2	2	3	2							2.3	2.3	1.67	1.25

со	Course Outcome Attainment
CO1	1.50
CO2	1.50
СОЗ	1.50
CO4	1.50
CO5	1.50
CO6	1.50
Overall course attainment level	1.50

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO Attainme nt	2	2	3	2							2.3	2.3	1.67	1.25

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTERS

Assignment 1 script link:

https://drive.google.com/file/d/1AQp6G2gCcv_D6POW7f7lRhS6zl7yUdr8/vie w?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/15rKsPwPJxa3Ptye0qCFoetGZ7Zv1CA9/view?usp=sharing

Attendance register link:

https://drive.google.com/file/d/10THYZE0q0laVZxQLdTSo_XUixhMrdxR6/v iew?usp=sharing