

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

APPLIED PHYSICS

Course Code – AP202BS

I B. Tech Semester-II A.Y. 2022-23

Prepared by

Mr. P. Srinivasa Chary Asst. Professor

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH

heriauda(M Ibrahimoatnam (M) R.R. Dist-501 516 3 & TECH

beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510

R.R. Dist. Telangana-501 510.

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Index of Course File

	COURSE FILE INDEX					
S.No	Course/Subject Name					
1	Institute Vision & Mission					
2	POs /PSOs					
3	Course Structure					
4	Course syllabus					
5	Course Outcomes (CO)					
6	Mapping CO with PO/PSO; course with PO/PSO					
7	Academic Calendar					
8	Time table - highlighting your course periods including tutorial					
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book					
10	Gap within the syllabus - mapping to CO, PO/PSO					
11	Gaps beyond the syllabus - Mapping to PO/PSO					
12	Web references					
13	Lecture notes					
14	List of Power point presentations / Videos					
15	University Question papers					
16	Internal Question papers, Key with CO and BTL					
17	Assignment Question papers mapped with CO and BTL					
18	Scheme of evaluation with CO and BTL mapping					
19	Tutorial topics with evidence					
20	Result Analysis to identify weak and advanced learners					
21	Result Analysis at the end of the course					
22	Remedial class schedule and evidences					
23	CO, PO/PSO attainment					
24	Attendance register					
25	Course file (Digital form)					

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

EAMCET CODE: INDI

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- > IM1: To offer outcome-based education and enhancement of technical and practical skills.
- ➤ IM2: To Continuous assess of teaching-learning process through institute-industry collaboration.
- ➤ IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- ➤ **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda(N) Ibrahimpatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(VIII), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderaba Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PROGRAM OUTCOMES

PO1: ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

> Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH

reriguda(M) Ibrahimoatnam (M) R.R. Dist-501 516

B.Tech. in COMPUTER SCIENCE AND ENGINEERING COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations)

Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title		Т	P	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	CH103BS	Engineering Chemistry	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	EE101ES	Basic Electrical Engineering	2	0	0	2
5.	ME101ES	Computer Aided Engineering Graphics		0	4	3
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	CH106BS	Engineering Chemistry Laboratory	0	0	2	1
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EE102ES	Basic Electrical Engineering Laboratory	0	0	2	1
		Induction Program				
		Total	12	2	12	20

I Year II Semester

S. No.	Course Code	Course		Т	P	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	AP202BS	Applied Physics	3	1	0	4
3.	ME202ES	Engineering Workshop	0	1	3	2.5
4.	EN204HS	English for Skill Enhancement	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits		0	0	2
6.	AP205BS	Applied Physics Laboratory		0	3	1.5
7.	CS201ES	Python Programming Laboratory		1	2	2
8.	EN207HS	English Language and Communication Skills Laboratory		0	2	1
9.	CS203ES	IT Workshop		0	2	1
10.	*MC201ES	Environmental Science	3	0	0	0
		Total	13	4	12	20

APPLIED PHYSICS (Course Code: AP202BS)

B. Tech. I Year II Sem.

LTPC 3 1 0 4

Pre-requisites: 10 + 2 Physics

Course Objectives: The objectives of this course for the student are to:

- Understand the basic principles of quantum physics and band theory of solids.
- Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
- Study the characteristics of lasers and optical fibres.

Course Outcomes: At the end of the course the student will be able to:

- 1. Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
- 4. Appreciate the features and applications of Nano materials.
- Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wein's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect - Davisson and Germer experiment -Heisenberg uncertainty principle - Born interpretation of the wave function - time independent Schrodinger wave equation - particle in one dimensional potential box.

Solids: Symmetry in solids, free electron theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac

distribution - Bloch's theorem -Kronig-Penney model – E-K diagram- effective mass of electron-origin of energy bands- classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

Dielectric Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and pyroelectric materials - applications - liquid crystal displays (LCD) and crystal oscillators. Magnetic Materials: Hysteresis-soft and hard magnetic materials magnetostriction, magnetoresistance -applications -bubble memory devices, magnetic field sensors and multiferroics. Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD) - characterization techniques - XRD, SEM &TEM - applications of nanomaterials.

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relationslasing action - pumping methods- ruby laser, He-Ne laser, CO2 laser, Argon ion Laser, Nd:YAG laser-semiconductor laser-applications of laser.

Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection-construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers-losses in optical fiber - optical fiber for communication system - applications.

TEXT BOOKS:

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4th Edition, 2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

REFERENCE BOOKS:

2.

- Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
 Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11th Edition,
 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.
- 6. Energy Materials a Short Introduction to Functional Materials for EnergyConversion Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group
- 7. Energy Materials, Taylor & Francis Group, 1st Edition, 2022.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course: Applied Physics (C122) Class: I- B TECH- CSE-A

Course Outcomes

After completing this course the student will be able to:

- C122.1: Explain quantum behavior of matter and classify the solids into conductors, semiconductors and insulators. (Understanding)(L2)
- C122.2: Explain the various semiconductor devices and uses in different engineering applications. (Understanding)(L2)
- C122.3: Make use of the fundamental properties of dielectric, magnetic and energy materials for their application. (Applying)(L3)
- C122.4: Analyze the various fabrication techniques to prepare nano materials and nano sized devices. (Analyzing)(L4)
- C122.5: Explain the various laser devices and compare the uses in different fields.

(Evaluating)(L5)

C122.6: Applying the fiber optic principles in communication systems. (Applying)(L3)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO	PO	PO3	PO	PO	PO	PO	PO	PO	PO10	PO1	PO1
	1	2		4	5	6	7	8	9		1	2
C122.1	3	2	-	-	-	-	-	_	-	-	ı	-
C122.2	3	2	-	-	-	-	-	_	-	-	-	-
C122.3	3	2	-	-	-	-	-	-	-	_	ı	-
C122.4	3	-	-	-	-	-	-	_	-	1	1	1
C122.5	3	2	-	-	-	-	-	_	-	1	-	1
C122.6	3	2	_	-	-	_	_	_	_	1	ı	1
C122	3	2	_	-	-	-	-	_	_	1	-	1

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1.ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO10.COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C122.1: Explain quantum behavior of matter and classify the solids into conductors, semiconductors and insulators. (Understanding)

	Justification
PO1	student get the knowledge of the Quantum behavior of matter(level 3)
PO2	student can identify the solids into conductors, semiconductors and insulators(level 2)

C122.2: Explain the various semiconductor devices and uses in different engineering applications (Understanding)

	Justification
PO1	student acquire knowledge of working principle of P-N junction diode(level 3)
PO2	Student draw the characteristics of semiconductor photo detectors (level2)

C122.3: Make use of the fundamental properties of dielectric, magnetic and energy materials for their application. (Applying)

	Justification	
PO1	Student Utilize the magnetic materials applications to identify metals(lavel3)	
PO2	Student Utilize the dielectric, magnetic materials applications to identify materials.	(level2)

C122.4: Analyze the various fabrication techniques to prepare nanomaterial and nano sized devices. (Analyzing)

	Justification
PO1	Student get knowledge on nanotechnology(level3)
PO10	Student communicate effectively nanoscience in engineering community(level1)
PO12	Student recognize the nano materials fabrication and characterization techniques in engineering field(level1)

C122.5: Explain the various laser devices and compare the uses in different fields. (Evaluating)

	Justification
PO1	Student get knowledge on laser charactristics(level3)
PO2	Student analyze the different types of laser devices(level2)
PO10	Student can apply laser principles to judge pumping methods (level1)
PO12	Student recognize the laser techniques in engineering field(level1)

C122.6: Applying the fiber optic principles in communication systems. (Applying)

	Justification
PO1	Student get knowledge on fiber optic technology(level3)
PO2	Student classify the optical fibers(lavel2)
PO10	Student communicate effectively fiber optic principles in engineering technology(level1)
PO12	Student recognize the losses associated with optical fibers(level1)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana -501 510 https://siiet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR I B.TECH FOR THE ACADEMIC YEAR 2022-23

(BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

X3

To,

All the HOD's

Sir,

Sub: SIIET (Autonomous)-Academic & Evaluation-Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for I B.Tech – I & II Semesters for the academic year 2022-23 is given below.

LSEMESTER

SEIVIE		Per	Douglion			
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)	03.11.2022				
2.	1st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	16.03.2023				
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

ILSEMESTER

	D 1/2	Per	Downstian			
S. NO	Description	From	To	Duration		
1.	Commencement of II Semester class work		03.04.2023			
2.	1st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks		
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks		
3.	I Mid Examinations	12.06.2023	17.06.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023				
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks		
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week		
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023				
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks		

Indu Institute of Engineering and Technology

(An Autonomous Institution Under an Antibitile Depts. & AO: Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

KERSE EXAMINATIONS Sri Indu Institute of Engineering and Technology

(An Autonomous Institution under JNTUH)

PRINCIPAL

Sri Indu Institute of Paymental Technology (An Autonomous Institution Under JNTUH) Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

Class: CSE-A Semester: II W.E.F-03-04-2023 LH:-D-107

	I 9:40- 10:30	II 10:30 - 11:20	III 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00
MON	ENG	EDC	AP	L	ITWS/EWS	S LAB		PYTHON LAB(T)/ EWS(T)
TUE	ODE	EDC	AP	U	ITWS/EWS LAB		ODE(T)/AP(T)	
WED	ODE	AP	ENG	N C	PY	THON LA	В	LIBRARAY
THU		AP/ELCS LAB	•	н	ODE	EDC	AP	EWS(T)/ PYTHON
FRI	, a	AP/ELCS LAB		1	ODE	AP	ES	AP(T)/ODE(T)
SAT	ENG	ODE	EDC		ES	ENG	EDC	ES

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA201BS	ODE-Ordinary Differential Equations & Vector Calculus	B.RAMADEVI	AP205BS	APLAB-Applied Physics Laboratory	P.SRINIVASACHARY/ B.SANTHI/M.JANAIAH/ M.MANISHA
AP202BS	AP-Applied Physics	P.SRINIVASACHA RY	CS201ES	Python Programming Laboratory	D.SWAPNA/B.RAJASH WARI
EN204HS	ENG- English for Skill Enhancement	G.VENKAT REDDY	EN207HS	ELCS LAB-English Language and Communication Skills Laboratory	G.VENKAT REDDY/E.PRARTHAN A
EC201ES	EDC-Electronics Devices and Circuits	T.BHAVANI	CS203ES	ITWS-IT Workshop	K.UMAVYSHNAVI/B.R AJITHA
ME202ES	EWS-Engineering Workshop	B.SRINUNAIK/ M.V.B.KALYAN	MC201ES	ES-Environmental Science	K.MOUNIKA

Class In-Charge

Time Table Coordinator

Head of The Department

Sri Indu Institute of Engg. & Tech Main Road, Sheriguda(V), Ibrahimpatnam(M), R.R. Dist. Telangana-501 510

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

 $Khalsa\ Ibrahimpatnam,\ Sheriguda(V),\ Ibrahimpatnam(M),\ Ranga\ Reddy\ Dist.,\ Telangana-501510$

APPLIED PHYSICS: LESSON PLAN

Lectu re hour	UNIT	Торіс	Teaching Method/ Teaching Aid	Reference book
1		Unit wise Introduction of Applied physics-Syllabus	Lecture-Method/Black Board	T-2
2		UNIT –I Quantum Mechanics and Solids Introduction to quantum physics	Lecture-Method/Black Board, Webreference, Video	T-2, R-1,W- 1,V-1
3	-	Explanation of Black body radiation	Lecture-Method/Black Board	T-1,R-1
4		Derivation of of Planck's radiation law	Lecture-Method/Black Board, ,Web reference	T-1,T-2, W-1
5	UNIT –I	Photoelectric effect explanation with diagram Variation of Intensity and frequency	Lecture-Method/Black Board, ,Web reference	T-1,T-2, W-!
6	_	De-Broglie's hypothesis and equation for wavelength	Lecture-Method/Black Board	T-1
7		Verification of dual nature of electron- Davisson- Germerexperiment	Lecture-Method/Black Board,Video reference,	T-2, R-1, V-2
8		Heisenberg's Uncertainty principle and significance of the wave function-Born's explanation	Lecture-Method/Black Board	T-1, R-1
9	-	Derivation of Schrodinger's time independent wave equation	Lecture-Method/Black Board	T-1. R-1
10		Expression for energy and wave function of electron in one dimensional box.	Lecture-Method/Black Board, Webreference	T-1,T-2, W-2
11		Problems on of Schrodinger's wave equation and energy of electron	Lecture-Method/Black Board	T-1,T-2
12		Introduction to solids-symmetry in solids	Lecture-Method/Black Board	T-2,R-2,
13		Free electron theory of solids(Drude &Lorentz ,Sommerfeld)- Explanation	Lecture-Method/Black Board	T-2,R-2
14	-	Fermi-Dirac distribution function	Lecture-Method/Black Board	T-1,T-2
15		Kronig-Penny model, E-K diagram	Lecture-Method/Black Board	T-1,T-2,R-2
16		Effeftive mass of electron-Derivation and solids classification	Lecture-Method/Black Board	T-1
17		UNIT-II- Semiconductor Physics and Devices	Lecture-Method/Black Board	T-2, R-3
17	-	Intrinsic semiconductors explanation with diagram Extrinsic semiconductors explanation with diagram	Lecture-Method/Black	T-2,R-3
19	-	Hall effect explanation-Hall coefficient and Hall voltage	Board Lecture-Method/Black	T-2,T-3
		Tail effect explanation Tail coefficient and Tail voltage	Board	2,10

21		p-n junction diode under forward and reverse bias —energy		i de la companya de
		band diagram	Lecture-Method/Black Board	T-2,T-3
22		Explanation of zener diode and its V -I Characteristics	Lecture-Method/Black Board	T-2
23	TINITO II	Construction, Principle of operation of BJT	Lecture-Method/Black Board	T-2,R-3
24	UNIT-II	LED explanation with structure, working and V-I characteristics	Lecture-Method/Black Board,, Web reference,	T-2,R-3, W-3
25		PIN diode working principle, explanation and V-I characteristics	Lecture-Method/Black Board, Video reference,	T-2, V-3
26		Avalanche diode working principle, explanation and V-I characteristics	Lecture-Method/Black Board	T-2,T-3
27		Explanation of working principle of solar cell with structure	Lecture-Method/Black Board	T-2,T-3
28		Solar cell explanation and V-I characteristics and applications	Lecture-Method/Black Board	T-2,R-3
29		UNIT-III- Dielectric, Magnetic and Energy Materials: Basic definitions	Lecture-Method/Black Board	T-1, T-2
30		Explanation of Polarization and types of polarization	Lecture-Method/Black Board	T-2,
31		Classification of dielectric materials -Ferroelectrics Piezo electrics and pyro electrics	Lecture-Method/Black Board	T-2
32		Explanation of LCD and Crystal oscillators	Lecture-Method/Black Board	T-1 T-2
33		Definitions of Magnetization ,permeability and susceptibility Hysteresis curve explanation	Lecture-Method/Black Board	T-2
34	UNIT-III	Magnetosriction and Magneto resistance and Bubble memory devices	Lecture-Method/Black Board, Video reference,	T-2, V-4
35		Magnetic field sensors and Multi ferroics-Application	Lecture-Method/Black Board	T-2
36		Conductivity of liquid and solid electrolytes, supersonic conductors	Lecture-Method/Black Board,	T-2,
37		Materials and electrolytes for super capacitors	Lecture-Method/Black Board ,	T-2,R-4
38		Explanation of rechargeable ion batteries-LI-ion battery	Lecture-Method/Black Board , Video reference,	T-2,R-4, V-5
39		Solid fule cell and applications	Lecture-Method/Black Board,	T-2,R-4
40		UNIT-IV: Nanotechnology	Lecture-Metho	T-2, R-5
41		Introduction to Nanotechnology –quantum confinement Surface to volume ratio-Explanation	Lecture-Method/Black Board	T-2, R-5
42		Bottom up fabrication: Sol-gel, Precipitation method	Lecture-Method/Black Board	T-2,T-4
43		Combustion method, top up fabrication: Ball milling, PVD Methods	Lecture-Method/Black Board	T-2,T-4

44		Physical vapor deposition method	Lecture-Method/Black Board	T-2
45		Chemical vapor deposition method	Lecture-Method/Black Board, Video reference,	T-2,T-4, V-6
46	UNIT-IV	Characterization techniques : XRD and SEM	Lecture-Method/Black Board	T-2,R-5
47		Characterization technique: TEM and applications of nano materials	Lecture-Method/Black Board	T-2,R-5
48		UNIT-V- Lasers and Fiber Optics	Lecture-Method/Black Board	T-1,T-2
		Introduction to lasers and charectristics		
49		Working principle of laser- Three Quantum processes	Lecture-Method/Black Board	T-1,T-2
50		Explanation of lasing action, Population inversion and Pumping	Lecture-Method/Black Board	T-2
51		Explanation of Ruby laser AND Nd:YAG laser with energy band diagram	Lecture-Method/Black Board	T-1, T-2
52		Explanation of Argon-ion laser with energy band diagram	Lecture-Method/Black Board	T-1,T-2
53		Explanation of Carbon dioxide laser with energy band diagram	Lecture-Method/Black Board	T-1,T-2
54	UNIT-V	Explanation of He-Ne laser with energy band diagram	Lecture-Method/Black Board, Web reference	T-1,T-2,W-4
55		Explanation of Semiconductor laser with energy band diagram-Application	Lecture-Method/Black Board	T-1,T-2
56		Introduction to Optical fiber	Lecture-Method/Black Board	T-2
57		Total internal reflection explanation with diagram	Lecture-Method/Black Board	T-2
58		Derivation for Acceptance angle and cone and Numerical aperture	Lecture-Method/Black Board, Web reference	T-1,T-2, W-5
59		Classification of optical fibres	Lecture-Method/Black Board	T-2
60		Losses associated with optical fibers	Lecture-Method/Black Board	T-1, T-2
61		Optical fiber for communication system	Lecture-Method/Black Board, Web reference	T-2, W-5
62		Applications of optical fibers	Lecture-Method/Black Board	T-1, T-2

TEXT BOOKS:

- 1. Engineering Physics, B.K. Pandey, S. Chaturvedi Cengage Learing.
- 2. Applied Physics Dr. TVS Arun Murthy, Dr Avadhanulu- S chand
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4thEdition,2021.
- 4. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

REFERENCES:

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 3. MJ. Singh, Semiconductor Optoelectronics: Physics and Technology, Mc Graw-Hill inc. (1995).
- 4. Energy Materials, Taylor & Francis Group, 1st Edition, 2022.
- 5. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11th Edition, 2018.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP WITHIN THE SYLLABUS-MAPPING TO CO,PO

Boltzmann Distribution law, de-Broglie hypothesis, Schrodinger Time Dependent Wave Equation, Fermi-Dirac Law, Classification of Dielectric materials, , Magnetic moment, Magnetic induction, Magnetic susceptibility, Bhor –Magnetron, Laws of Ray-Optics.

Course Outcomes

After completing this topic, the student will be able to:

- 1. Explain quantum behavior of matter and classify the solids into conductors, semiconductors and insulators. (Understanding)
- 2. Make use of the fundamental properties of dielectric, magnetic and energy materials for their application. (Applying)
- 3. Applying the fiber optic principles in communication systems. (Applying)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	-	-	-	-	-	-	-	-	-	-
2	3	2	-	-	-	-	-	-	-	1	-	1
3	3	2	-	-	-	-	-	-	-	1	-	1

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Introducing current Scientific and Technological innovations and development.
- 2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
- 3. Teaching at least a few portions giving practical demonstration to create interest among the students
- 4. Motivate Students Participate Various Science Exhibitions to gaining Practical Knowledge
- 5. Regular industrial visits help students to know the information useful for knowledge up gradation

Mapping to PO/PSO:

High -3 Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
1	-	-	-	-	2	-	-	-	-	-	-	2
2	-	-	-	-	-	-	-	-	2	-	-	-
3	-	-	-	-	-	-	-	-	-	-	3	-
4	3	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	2	-	-

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana–501510

WEB REFERENCES:

- W-1: https://edisciplinas.usp.br/pluginfile.php/48089/course/section/16461/qsp_chapter10-plank.pdf
- W-2: https://www.physicsvidyapith.com/2022/01/particle-in-one-dimensional-box.html
- W-3: http://ggn.dronacharya.info/ECEDept/Downloads/QuestionBank/VIIsem/oc C-Unit-3-LED Structures.pdf
- W-4: https://www.daenotes.com/electronics/microwave-radar/He-Ne-laser
- W-5: https://www.scribd.com/document/282231579/Block-Diagram-of-Fiber-Optic-Communiction-System

VIDEO REFERENCES:

- v-1: https://www.youtube.com/watch?v=pGerhttps://www.youtube.com/watch?v=Ho7K27B_Uu8_RhxNQJE(video)
- V-2: https://www.youtube.com/watch?v=Ho7K27B Uu8
- V-3: https://www.youtube.com/watch?v=WR4559RqRzU
- V-4: https://www.youtube.com/watch?v=rJ-ysch4-NM
- V-5: https://ul.org/research/electrochemical-safety/getting-started-electrochemical-safety/what-are-lithium-ion
- V-6: https://www.youtube.com/watch?v=j80jsWFm8Lc

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

LECTURE NOTES

Unit: 1 Quantum Physics and Solids:

https://drive.google.com/file/d/1qSqCr0jAwgU811Toag2BPW-NeH6iKvs-/view?usp=sharing

Unit : 2 Semiconductors and Devices:

https://drive.google.com/file/d/16HtidqDQyO3yxQcRIIJWZDv95NF99oN-/view?usp=sharing

Unit: 3 Dielectric, Magnetic and Energy Materials:

https://drive.google.com/file/d/1eX3STCj7eJ5M9j4xHggQF4o-G1fTM8e6/view?usp=sharing

Unit: 4 Nanotechnology:

https://drive.google.com/file/d/11mCvbrWquTgTgHipt5Bk3qUAG3qkE bO1/view?usp=sharing

Unit: 5 Lasers and Fibre Optics:

https://drive.google.com/file/d/1MvTUn7xj4_BjqhqK7eCjJnQmG9K56b72/view?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

POWER POINT PRESENTATION

Semi conductors:

https://docs.google.com/presentation/d/1tm8tAbdhYXFS7D-XNm68cG60di sOCKK/edit?usp=sharing&ouid=116158123970542554956&rtpof=true&sd=true

Magnetic properties:

https://docs.google.com/presentation/d/1y6g3KfYErRJ4404pC6F-3YcBONZj dwu/edit?usp=sharing&ouid=116158123970542554956&rtpof=true&sd=true

Optical Fibre:

https://docs.google.com/presentation/d/1RZp4-CI MmobTe7LpWSoTmi1BQlq0CX4/edit?usp=sharing&ouid=116158123970542554956&rtpof=true&sd=true

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS OUESTION PAPERS

Link:

 $\frac{https://drive.google.com/file/d/1S9EbspvpUxXfiKqNzNed4EA0Eq6heeCm/view?usp=sharing}{}$

UGC AUTONOMOUS INSTITUTION Accredited by NAAC A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

(Approved by AIC1E, New Deini and Affiliated to JN1UH, Hyderabad)
Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510
I B. TECH II SEM I – MID Examinations. June-2023

X3

BR22

Set-I

Branch: CSE, CSE (CS) & CSE (DS)
Subject: APPLIED PHYSICS

Marks: 20

Date: 13-06-2023(FN) Time: 2 Hours

PART-B

Answer any FOUR Questions. All question Carry Equal Marks

4*5 = 20 Marks

1. Derive an expression for Schrodinger's time independent wave equation

(L2) (Understanding)

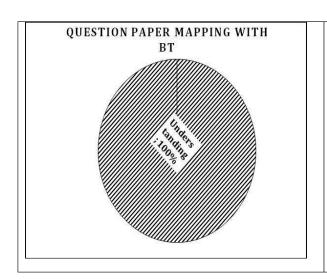
2. Derive an expression for energy and wave function of an electron confined in 1-D potential box.

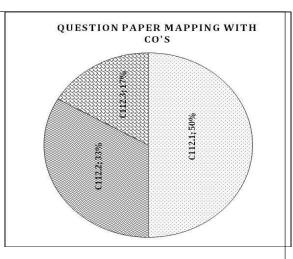
(L2) (Understanding)

3. Explain Fermi-Dirac distribution function equation.

(L2) (Understanding)

4. Derive an expression for Hall coefficient and Hall voltage?


(L2) (Understanding)


5. Write the applications of solar cell.

(L2) (Understanding)

6. Write the applications of ferroelectricity.

(L2) (Understanding)

Mid-1 Key papers Link:

https://drive.google.com/file/d/10t2hT-v hx100DSWvuDPpyvEfU5AWVEU/view?usp=sharing

Mid-Sample Answer Scripts Link

https://drive.google.com/file/d/1aD9IcvenLIEkV23x q-hW8mJ-lqa5LyI/view?usp=sharing

UGC AUTONOMOUS INSTITUTION Accredited by NAAC A+ Grade

Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510 **X3**

I B. TECH II SEM II – MID Examinations, AUGUST-2023

BR22

Set-I

Branch: CSE, CSE (CS) & CSE (DS)

Subject: APPLIED PHYSICS

Date: 16-08-2022(FN)

Marks: 20

Time: 2 Hours

PART-B

Answer any **FOUR** Questions. All question Carry Equal Marks

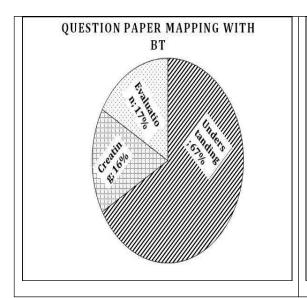
4*5 = 20 Marks

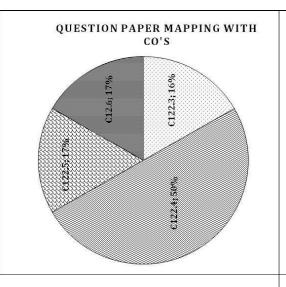
1. Write a note on super ionic conductors.

(Understanding) (L2)

2. Describe ball milling method to synthesis nanomaterials

(Understanding) (L2)


3. Write a note on PVD method.


(Understanding) (L2)

- 4. Explain how the nanomaterials are characterized by using TEM (Evaluating) (L5)
- 5. Discuss construction and working of Argon-ion laser?

(Creating) (L6)

6. Derive an expression for acceptance angle and numerical aperture of an optical fiber. (Undersstanding) (L2)

Mid-2 Key papers Link:

https://drive.google.com/file/d/1M6EKBC2lDivcT9LcMhpRgSjZuKKobc9g/view?usp=sharing

Mid-2 Sample Answer Scripts Link

 $\underline{https://drive.google.com/file/d/1EZ3w3bTXNxVnF9n_YsTY2TAj_bbZ8Hcy/view?usp=sh_aring}$

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ASSIGNMENT QUESTIONS (MID-I) APPLIED PHYSICS (SEM-II)

1. Derive an expression for Schrodinger's time independent wave equation.

(L2) (Understanding)

2. Describe the construction and working of Davisson and Germer's experiment

(L2) (Understanding)

3. Explain Fermi-Dirac distribution function equation. (L2) (Understanding)

4. Distinguish between intrinsic and extrinsic semiconductors (L4) (Analyzing)

5. Explain polarization and types of polarization.? (L2) (Understanding)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

(UGC AUTONOMOUS INSTITUTION)

ASSIGNMENT QUESTIONS (MID-II) APPLIED PHYSICS (SEM-II)

1. Explain bubble memory devices

(L2) (Undersstanding)

2. Write a note on PVD method.

(L2) (Undersstanding)

- 3. Describe ball milling method to synthesis nanomaterials. (L2) (Undersstanding)
- 4. Explain how the nanomaterials are characterized by using SEM? (L5) (Evaluating)
- 5. Write the principle and working of Nd:YAG laser with neat energy level diagram?

(L2) (Undersstanding)

- 6. Distinguish between step index and graded index fibers (L4) (Analyzing)
- 7. Derive an expression for acceptance angle and numerical aperture of an optical fiber.

(L2) (Undersstanding)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID AP ASSIGNMENT PROOF

https://drive.google.com/file/d/18JObQK-ayTsEZbj9ctrfw0HIj3yrDTwW/view?usp=sharing

II- MID AP ASSIGNMENT PROOF

https://drive.google.com/file/d/1VoBcMFpYwIsnm3vNTipxcAFxr2dink1m/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-APPLIED PHYSIS(MID-I)(Set-II)

Instructions:

a) Any answer by alternate method should be valued and suitably awarded.

b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Q	Description of Answer	Marks
n No		
1.	Wave equation and its solution (C122.1) (Understanding)	2
	To get derivation of Schrodinger equation $\nabla^2 \psi + \frac{8\pi^2}{h^2} m(E-V)\psi = 0$ (C122.1)(Understanding)	3
2. a.	To get derivation Energy of electron $E_n = \frac{n^2 h^2}{8mL^2}$ (C122.1) (Understanding)	3
b.	To get derivation wave function = $\sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$ (C122.1) (Understanding)	2
3.	Fermi-Dirac distribution equation (C122.1) (Understanding)	1
	Fermi-Dirac distribution function explanation with graph (C1122.1) (Understanding)	4
4.	To get Hall coefficient equation $R_H = \frac{1}{pe}$ (C122.2) (Understanding)	3
	To get Hall coefficient equation $V_{H} = R_{H} \frac{BI}{t}$ (C122.2) (Understanding)	2
5.	Solar cell Application: 1) Industrial application 2) Social applications 3) Satellites and space vehicles 4)Navigation aids 5) telecommunication systems(C122.2) (Understanding)	5
6.	(Any 5 Application) Ferro electricity applications: 1) Capacitors 2) Vibrators 3) Detectors 4) Ferro electric memories 5) Piezo electric transformers) (C122.3) (Understanding) (Any 5 Application)	5
	TOTAL	20

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-APPLIED PHYSICS (MID-II)(Set-1)

Instructions:

a) Any answer by alternate method should be valued and suitably awarded.

b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn No	Description of Answer	Marks
1.	Super ionic conductors explanation (C122.3) (Understanding)	2
	Classification of Super ionic conductors (C122.3) (Understanding)	3
2.	Definition of ball-milling synthesis method (C122.4) (Understanding)	1
	Diagram of ball-milling synthesis method (C122.4) (Understanding)	1
	Explanation of preparation of nonmaterial. (C122.5) (Evaluation)	3
3.	Diagram of PVD method. (C122.4) (Evaluating)	1
	Steps in PVD method and Explanation. (C122.4) (Evaluating)	4
4.	Transmission Electron Microscope diagram. (C122.4) (Evaluating)	1
	Explanation of TEM (C122.4) (Evaluating) (C122.4) (Evaluating)	4
5.	Diagram of Argon-ion laser (C122.5) (creating)	1
	Explanation and working of Argon-ion laser (C122.5) (Creating)	4
6.	Diagram of Acceptance angle (C122.6) (Understanding)	1
	To get equation $\theta_0 = \sin^{-1}(\sqrt{n_1^2 - n_2^2})$ (C122.6) (Understanding)	3
	To get equation NA = $\sin \sqrt{n_1^2 - n_2^2}$ (C122.6) (Understanding	1
	TOTAL	20

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

APPIED PHYSICS- TUTORIAL TOPICS

S.No	Topic	Teahind Method/Teaching Aid	No.of Sessions Planned	Reference book
1	Derivation of Planck's distribution law	Lecture-Method/Black Board	1	T-1,T-2
2	Verification of dual nature of electron- Davisson- Germer experiment	Lecture Method, video	1	T-2, R-1
3	Expression for energy of electron in one dimensional box.	Lecture- Method/Black Board Webreference	1	T-1,T-2,
4	Free electron theory of metals Fermi-Dirac distribution function	Lecture-Method/Black Board		T-1,T-2
5	Kronig-Penny model, E-K diagram	Lecture-Method/Black Board		T-1,T-2,R-2
6	Hall effect explanation	Lecture Method	1	T-2,T-3
7	Explanation of formation of p-n junction diode and energe band diagram	Lecture-Method/Black Board	1	T-2, R-3
8	LED explanation with structure	Video Lecture- Method/Black Board , webreference	1	Т-2,
9	Solar cell explanation and V-I characteristics	Lecture-Method/Black Board	1	T-2
10	Explanation of LCD and Crystal oscillators	Lecture-Method/Black Board,	1	T-2,R-3,
11	Magnetosriction and Magneto resistance and Bubble memory devices	Lecture-Method/Black Board,	1	T-2
12	Explanation of rechargeable ion batteries- LI-ion battery	Lecture-Method/Black Board,	1	T-2,R-4
13	Explanation of Nd:YAG and Ruby laser with energy band diagram	Lecture-Method/Black Board	1	T-1, T-2
14	Explanation of He-Ne laser with energy band diagram		1	T-1,T-2
15	Derivation for Acceptance angle and cone and Numerical aperture	Lecture-Method/Black Board	1	T-1,T-2
16	Losses associated with optical fibers	Lecture-Method/Black Board	1	T-1, T-2
17	Optical fiber for communication system	Lecture-Method/Black Board	1	T-2
18	Applications of optical fibers	Lecture-Method/Black Board	1	T-1, T-2

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CSE -A:

Result Analysis:

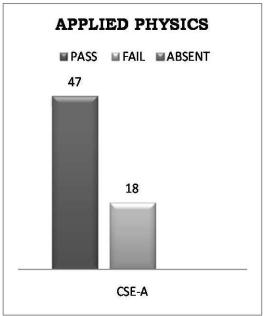
Course Title	APPLIED PHYSICS-I
Course Code	AP202BS
Programme	B. Tech
Year & Semester	I- year, semester-II
Regulation	R-22
Course Faculty	P. Srinivasa Chary Assistant Professor, H&S

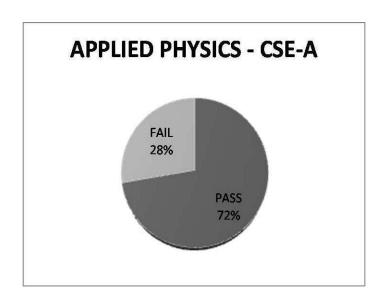
Weak Students:

S No	Roll no	I Sem Result	Internal-I	Internal-II
			Status(35Marks)	Status(40 Marks)
1	22X31A519	Failed(5 subjects)	17	22
2	22X31A522	Failed(4 subjects)	15	19
3	22X31A524	Failed(4 subjects)	19	20
4	22X31A527	Failed(4 subjects)	17	24
5	22X31A535	Failed(4 subjects)	16	16
6	22X31A548	Failed(4 subjects)	21	22
7	22X31A564	Failed(3 subjects)	17	21

Advanced learners:

S No	Roll No	I- Sem	Gate Material
		Percentage	
1	22X31A547	94%	Quantum Mechanics,
			Electronics
2	22X31A502	88.4%	
3	22X31A504	87.7%	
4	22X31A531	85.2%	
5	22X31A5	85.1%	


(UGC AUTONOMOUS INSTITUTION)


Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

RESULT ANALYSIS AT THE END OF SEMISTER

Branch: CSE-A Subject: APPLIED PHYSICS

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

DEPARTMENT OF HUMANITIES AND SCIENCE REMEDIAL CLASSES TIME TABLE

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
CSE-A	ODE&VC	ENG	EDC	AP	ODE&VC	AP
CSE-B	AP	EDC	ODE&VC	ENG	EDC	ENG
CSE-C	ENG	AP	EDC	ODE&VC	AP	ODE&VC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
DS	EDC	AP	ODE&VC	ENG	EDC	ODE&VC
CYBER	ENG	EDC	AP	ODE&VC	AP	ENG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	ODE&VC	EC	EDC	BEE	EC	ODE&VC
AIML-B	BEE	EDC	ODE&VC	EC	BEE	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AI&DS	BEE	EC	ODE&VC	EDC	BEE	EC
IOT	EC	ODE&VC	EDC	BEE	ODE&VC	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
ECE	ODE&VC	BEE	EC	EDC	BEE	EC
CIVIL	ODE&VC	BEE	EC	AM	BEE	EC

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda (**) Ibrahimostmam (**) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences Course Outcome Attainment (Internal Examination-1) Name of the faculty P. SRINIVAS CHARY Academic Year: 2022-2023 Branch & Section: CSE-A Examination: I Internal Course Name: APPLIED PHYSICS Year: Semester: II S.No HT No. Q1b | Q1c | Q2a | Q2b | Q2c | Q3a | Q3b | Q3c | Q4a | Q4b | Q4c | Q5a | Q5b | Q5c Q6b Q6c Obj1 **A1** Q1a Q6a Max. Marks ==> 22X31A501 22X31A502 22X31A503 22X31A504 22X31A505 22X31A506 22X31A507 22X31A508 22X31A509 22X31A510 22X31A511 22X31A512 22X31A513 22X31A514 22X31A515 22X31A516 22X31A517 22X31A518 22X31A519 22X31A520 22X31A521 22X31A522 22X31A523 22X31A524 22X31A525 22X31A526 22X31A527 22X31A528 22X31A529 22X31A530 22X31A531 22X31A532 22X31A533 22X31A534 22X31A535 22X31A536 22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542 22X31A543 22X31A544 22X31A545 22X31A546 22X31A547 22X31A548 22X31A549 22X31A550 22X31A551 22X31A552 22X31A553 22X31A554 22X31A555 22X31A556 22X31A557 22X31A558 22X31A559 22X31A560 22X31A561 22X31A562 22X31A563 22X31A564 22X31A565

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Number of students performed above	34	1	0	6	0	0	18	0	0	10	0	0	47	0	0	19	0	0	62	65
Number of students attempted	45	1	0	9	0	0	23	0	0	13	0	0	54	0	0	24	0	0	62	65
Percentage of students scored more than target	76%	100%		67%			78%			77%			87%			79%			100%	100%
CO Mapping with I	Exam (Question	ns:																	
CO - 1	Y			Y															Y	Y
CO - 2							Y			Y						Y			Y	Y
CO - 3													Y						Y	Y
CO - 4																				
CO - 5																				
CO - 6																				
Scored >Target %	76%	100%		67%			78%			77%			87%			79%			100%	100%
CO Attainment bas	ed on 1	Exam C	<u>)uesti</u>	ons:																
CO - 1	76%			67%															100%	100%
CO - 2							78%			78%						78%			100%	100%
CO - 3													78%						100%	100%
CO - 4																				
CO - 5																				
CO - 6																				
СО	Subj	obj		Asgn	(Overa	11		Leve	21									ttainn	ent Lev
CO-1	71%	100%		100%		90%			3.00										1	40%
CO-2	78%	100%		100%		93%			3.00										2	50%
CO-3		100%		100%		93%			3.00										3	60%
CO-4																				
CO-5																				
CO-6																				
Attainme	nt (I	nterr	nal 1	1 Ex	ami	nati	on)		3.00)										
	(1							'												

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences Course Outcome Attainment (Internal Examination-2) Name of the faculty P. SRINIVAS CHARY Academic Year: 2022-2023 CSE-A Branch & Section: Examination: II Internal Course Name: APPLIED PHYSICS Year: Semester: viva/ Obj **A2** S.No HT No. Q2b Q2c Q3b Q3c Q4a Q4b Q4c Q5a Q5b Q5c Q6a Q6b Q6c Q1a Q1b Q1c Q2a Q3a ppt Max. Marks ==> 22X31A501 22X31A502 22X31A503 22X31A504 22X31A505 22X31A506 22X31A507 22X31A508 22X31A509 22X31A510 22X31A511 22X31A512 22X31A513 22X31A514 22X31A515 22X31A516 22X31A517 22X31A518 22X31A519 22X31A520 22X31A521 22X31A522 22X31A523 22X31A524 22X31A525 22X31A526 22X31A527 22X31A528 22X31A529 22X31A530 22X31A531 22X31A532 22X31A533 22X31A534 22X31A535 22X31A536 22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542 22X31A543 22X31A544 22X31A545 22X31A546 22X31A547 22X31A548 22X31A549 22X31A550 22X31A551 22X31A552 22X31A553 22X31A554 22X31A555 22X31A556 22X31A557 22X31A558 22X31A559 22X31A560 22X31A561 22X31A562 22X31A563 22X31A564 22X31A565

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Number of students performed above the target	2	0	0	25	0	0	51	0	0	4	0	0	9	0	0	34	0	0	63	63	65
Number of students attempted	11	0	0	34	0	0	53	0	0	10	0	0	18	0	0	46	0	0	63	63	65
Percentage of students scored more than target	18%			74%			96%			40%			50%			74%			100%	100%	100%
CO Mapping with	Exam	Questi	ons:																		
CO - 1																					
CO - 2																					
CO - 3	Y																		Y	Y	Y
CO - 4							Y												Y	Y	Y
CO - 5										Y			Y						Y	Y	Y
CO - 6				Y												Y			Y	Y	Y
% Students	100/			7.40/			0.60/			400/			500/			7.40/			1000/	1000/	1000/
Scored >Target % CO Attainment ba	18%	Evam	Onectic	74%			96%			40%			50%			74%			100%	100%	100%
CO - 1	Scuon	LAGIII	Questi	<u> </u>																	
CO - 2																					
CO - 3	18%																		100%		100%
CO - 4							18%			100/			100/						100%	100%	100%
CO - 5 CO - 6				18%						18%			18%			18%			100% 100%	100%	100%
CO-0				1670												10 /0			10070	10070	10070
со	Subj	obj	aasgn	ppt	(Overa	11		Leve	21									Atta	inment	Level
CO-1																			1	40)%
CO-2																			2	50)%
CO-3	18%	100%	100%	100%		80%			3										3	60)%
CO-4	18%	100%	100%	100%		80%			3.00												
CO-5			100%			80%			3.00												
CO-6			100%			80%			3.00												
Attainme					าเทอ		1-21		3.00												
Attaiiiii	JIIL (.	HILEI	11a1 1	zzan	11110	uUl	1-4)		J.UU	, 											

Department of Humanities & Sciences

Course Outcome Attainment (University Examinations)

Course Name S.No Ro 1 22 2 22 3 22 4 22 5 22 6 22 7 22 8 22 9 22	ame: 2X31A501 2X31A502 2X31A502 2X31A503 2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	CSE-A APPLIED PHYSICS Marks Secured 22 45 24 52 23 22 33 51 21 21		S.No 36 37 38 39 40 41 42 43	Roll Number 22X31A536 22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542	Marks Secured 31 5 11 7 35 28
S.No Ro 1 22 2 22 3 22 4 22 5 22 6 22 7 22 8 22 9 22	2X31A501 2X31A502 2X31A502 2X31A503 2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	Marks Secured 22 45 24 52 23 22 33 51 21		36 37 38 39 40 41 42	22X31A536 22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542	31 5 11 7 35 28
1 2: 2 2: 3 2: 4 2: 5 2: 6 2: 7 2: 8 2: 9 2:	2X31A501 2X31A502 2X31A503 2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510	22 45 24 52 23 22 33 51 21		36 37 38 39 40 41 42	22X31A536 22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542	31 5 11 7 35 28
2 2: 3 2: 4 2: 5 2: 6 2: 7 2: 8 2: 9 2:	2X31A502 2X31A503 2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	45 24 52 23 22 33 51 21		37 38 39 40 41 42	22X31A537 22X31A538 22X31A539 22X31A540 22X31A541 22X31A542	5 11 7 35 28
3 22 4 22 5 22 6 22 7 22 8 22 9 22	2X31A503 2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	24 52 23 22 33 51 21		38 39 40 41 42	22X31A538 22X31A539 22X31A540 22X31A541 22X31A542	11 7 35 28
4 22 5 22 6 22 7 22 8 22 9 22	2X31A504 2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	52 23 22 33 51 21		39 40 41 42	22X31A539 22X31A540 22X31A541 22X31A542	7 35 28
5 22 6 22 7 22 8 22 9 22	2X31A505 2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	23 22 33 51 21		40 41 42	22X31A540 22X31A541 22X31A542	35 28
6 22 7 22 8 22 9 22	2X31A506 2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	22 33 51 21		41 42	22X31A541 22X31A542	28
7 22 8 22 9 22	2X31A507 2X31A508 2X31A509 2X31A510 2X31A511	33 51 21		42	22X31A542	
8 22 9 22	2X31A508 2X31A509 2X31A510 2X31A511	51 21			+	21
9 22	2X31A509 2X31A510 2X31A511	21		43		
	2X31A510 2X31A511				22X31A543	22
10 2	2X31A511	25		44	22X31A544	29
10 2				45	22X31A545	29
11 22	03701 4 510	35		46	22X31A546	12
12 22	2X31A512	14		47	22X31A547	42
13 22	2X31A513	13		48	22X31A548	11
14 22	2X31A514			49	22X31A549	57
15 22	2X31A515	21		50	22X31A550	38
16 22	2X31A516	21		51	22X31A551	30
17 22	2X31A517	13		52	22X31A552	34
18 22	2X31A518	23		53	22X31A553	38
19 22	2X31A519	9		54	22X31A554	34
20 22	2X31A520	2		55	22X31A555	45
21 22	2X31A521	33		56	22X31A556	23
	2X31A522	7		57	22X31A557	25
23 22	2X31A523	22		58	22X31A558	44
	2X31A524	8		59	22X31A559	38
25 22	2X31A525	2		60	22X31A560	48
	2X31A526	35		61	22X31A561	13
	2X31A527	29		62	22X31A562	33
	2X31A528	21		63	22X31A563	22
	2X31A529	42		64	22X31A564	13
	2X31A530	33		65	22X31A565	9
	2X31A531	48				
	2X31A532					
	2X31A533	51				
	2X31A534	12				
	2X31A535	6		<u> </u>	1	
Max Marks		60				
Class Avera			26		Attainment Level	% students
		formed above the target	29	1	1	40%
	successful s		63		2	50%
		scored more than target	46%		3	60%
Attainn	nent leve	el	2			

SRI INDU IN	NSTITU	TE OF ENG	SINEER	RING AND T	ECHNOLO	ζY
TO THE PARTY OF TH	Departme	nt of Humanities	& Science	es		
The state of the s		Course Out	come Atta	<u>ainment</u>		
STATE OF THE PARTY						
Name of the faculty	P. SRINI	VAS CHARY		Academic Year:	2022-2023	
Branch & Section:	CSE-A			Examination:	<u>I Internal</u>	
Course Name:	APPLIED	PHYSICS PHYSICS		Year:	1	
				Semester:	II	
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level	
	Littin.	- DAWIII	224411		T RECEIVED	
CO1	3.00		3.00	2.00	2.30	
CO2	3.00		3.00	2.00	2.30	
CO3	3.00	3.00	3.00	2.00	2.30	
CO4		3.00	3.00	2.00	2.30	
CO5		3.00	3.00	2.00	2.30	
CO6		3.00	3.00	2.00	2.30	
Inter	nal & Unive	ersity Attainment:	3.00	2.00		
		Weightage	30%	70%		
CO Attainment for the	e course (Int	ernal, University)	0.90	1.40		
CO Attainment for	the course (Direct Method)		2.30		
Overall co	ourse a	attainmei	nt leve	el	2.30	

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Humanities & Sciences **Program Outcome Attainment (from Course)** Name of Faculty: P. SRINIVAS CHARY Academic Year: 2022-2023 CSE-A Branch & Section: Year: Course Name: APPLIED PHYSICS Semester: Ш **CO-PO** mapping PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 3 2 CO2 3 2 CO3 3 1 1 CO4 3 2 1 CO5 3 2 _ 1 1 CO6 Course |3.00| 2.00 1.00 1.00 **Course Outcome Attainment** CO 2.30 **CO1** 2.30 CO₂ 2.30 **CO3** 2.30 **CO4** 2.30 **CO5** 2.30 CO6 Overall course attainment level 2.30 **PO-ATTAINMENT** PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 co Attainm 2.30 1.53 0.77 0.77 ent CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

Link:

https://drive.google.com/file/d/1zmnCMw_Nb67tlxndwUs DF0SS2e33fTWc/view?usp=sharing