

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

CONTROL SYSTEMS

Course Code - EC503PC

III B.Tech I-SEMESTER A.Y.: 2022-2023

Prepared by

Mr. K. SRIKANTH Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sherguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	CONTROL SYSTEMS
Course Code	EC503PC
Programme	B.Tech
Year & Semester	III year I-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mr. K. SRIKANTH, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatham(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- DM3: To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- **PEO3:** Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH shenguda(V), Ibrahimpatnam(M), R.R.Dist-501510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING III YEAR COURSE STRUCTURE AND SYLLABUS (R18) Applicable From 2018-19 Admitted Batch

III YEAR I SEMESTER

						1
S. No.	Course	Course Title	L	Т	Р	Credits
	Code					
	0040					
1	EC501PC	Microprocessors & Microcontrollers	3	1	0	4
2	EC502PC	Data Communications and Networks	3	1	0	4
<mark>3</mark>	EC503PC	Control Systems	<mark>3</mark>	1	0	<mark>4</mark>
4	SM504MS	Business Economics & Financial	3	0	0	3
		Analysis				
5		Professional Elective - I	3	0	0	3
6	EC505PC	Microprocessors & Microcontrollers Lab	0	0	3	1.5
7	EC506PC	Data Communications and Networks Lab	0	0	3	1.5
8	EN508HS	Advanced Communication Skills Lab	0	0	2	1
9	*MC510	Intellectual Property Rights	3	0	0	0
		Total Credits	18	3	8	22

III YEAR II SEMESTER

S. No.	Course	Course Title	L	Т	Р	Credits
	Code					
1	EC601PC	Antennas and Propagation	3	1	0	4
2	EC602PC	Digital Signal Processing	3	1	0	4
3	EC603PC	VLSI Design	3	1	0	4
4		Professional Elective - II	3	0	0	3
5		Open Elective - I	3	0	0	3
6	EC604PC	Digital Signal Processing Lab	0	0	3	1.5
7	EC605PC	e – CAD Lab	0	0	3	1.5
8	EC606PC	Scripting Languages Lab	0	0	2	1
9	*MC609	Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

*MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective – I					
EC511PE	Computer Organization & Operating Systems				
EC512PE	Error Correcting Codes				
EC513PE	Electronic Measurements and Instrumentation				
Professional Elective – II					
EC611PE	Object Oriented Programming through Java				
EC612PE	Mobile Communications and Networks				
EC613PE	Embedded System Design				

EC503PC: CONTROL SYSTEMS

B.Tech. III Year I Semester

L T P C

3 1 0 4

Prerequisite: Linear Algebra and Calculus, Ordinary Differential Equations and Multivariable CalculusLaplace Transforms, Numerical Methods and Complex variables

Course objectives:

- To understand the different ways of system representations such as Transfer functionrepresentation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.
- Understand the concept of stability and its assessment for linear-time invariant systems.
- Design simple feedback controllers.

UNT - I

Introduction to Control Problem: Industrial Control examples. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra.

UNT - II

Time Response Analysis of Standard Test Signals: Time response of first and second order systems for standard test inputs. Application of initial and final value theorem. Design specifications for second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

UNT - III

Frequency-Response Analysis: Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response.

UNT - IV

Introduction to Controller Design: Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog andDigital implementation of controllers.

UNT - V

State Variable Analysis and Concepts of State Variables: State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

TEXT BOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

REFERENCE BOOKS:

1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.

1. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COs and Mapping with PO/PSO

Course: CONTROL SYSTEMS (C313)

Class: III ECE-A

Course Outcomes

After completing this course, the student will be able to:

C313.1: Create mathematical model using Laplace Transform and define the Transfer Function of an LTI system in various ways. [Application, Knowledge]

C313.2: Analyze the response of First and second order systems in time domain using characteristic Equations for feedback control systems, and also evaluate the stability of a system in Time Domain using RH Criterion and Root Locus [Analysis, Evaluation]

C313.3: Examine Frequency response analysis of a Control System and Solve the stability of the system using BODE Plots [Analysis, Evaluation]

C313.4: Analyze the stability of a system in frequency domain using polar and Nyquist plots [Analysis]

C313.5: Design and implementation of Compensators and Controllers to improve stability. [Synthesis]

C313.6: Design state model of a system and determine the transfer function for Linear Time Variant Systems [Synthesis]

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO														
C313.1	3	3	3	3	-	-	-	-	1	1	1	2	1	-
C313.2	3	3	3	3	-	-	-	-	1	1	1	2	1	-
C313.3	3	3	3	3	-	-	-	-	1	1	1	2	1	-
C313.4	3	3	3	3	-	-	-	-	1	1	1	2	1	-
C313.5	3	3	3	3	-	-	-	-	1	1	1	2	1	-
C313.6	3	3	3	3	-	-	-	-	1	1	1	2	1	-
	3.00.	3.00	3.00	3.00	-	-	-	-	1.00	1.00	1.00	2.00	1.00	-

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

CO- PO/PSO Mapping - Justification

Course: CONTROL SYSTEMS (C313)

Class: III ECE-A

	ENGINEERING KNOWLEDGE : Apply the knowledge of mathematics, science,
PO1.	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
	PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze
PO2.	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex
PO3	engineering problems and design system components or processes that meet the
105.	specified needs with appropriate considerations for the public health and safety, and
	the cultural, societal, and environmental considerations.
	CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-
PO4 .	based knowledge and research methods including design of experiments, analysis
101	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO9.	INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as
	a member or leader in diverse teams, and in multidisciplinary settings.
	COMMUNICATION: Communicate effectively on complex engineering activities
PO10	with the engineering community and with society at large, such as, being able to
1010.	comprehend and write effective reports and design documentation, make effective
	presentations, give and receive clear instructions.
-	PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and
DO11	understanding of the engineering and management principles and apply these to
POII.	one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
	LIFE-LONG LEARNING: Recognize the need for, and have the preparation and
PO12.	ability to engage in independent and life-long learning in the broadest context of
	technological change.
DCO1	Design Skills: Design, analysis and development a economical system in the area of
PSOI.	Embedded system & VLSI design

<u>CO-PO mapping Justification</u>

C313.1: Create mathematical model using Laplace Transform and define the Transfer Function of an LTI system in various ways. [Application, Knowledge]

	Justification
PO1	Gains knowledge on Open and Closed loop systems and Servomotors, classification of
	control systems, feedback mechanism.
PO2	Analyze the feedback characteristics, solving differential equations using rotational,
	mechanical methods and also reduction methods
PO3	Develop a solution for Block diagram algebra by Signal flow graph and by using the
	Mason's gain formula.
PO4	Student can solve the complicated Block Diagram problems.
PO9	Students can solve the complex problems and assignments with individual and team work.
PO10	Students can share information about the complex problems and assignments.
PO11	Students can use the Basics of control system in managing project work.
PO12	Students can learn about block diagram and signal flow graph
PSO1	Students can use this concept in design, analysis and development a system in the area of
	Embedded system & VLSI design

C313.2: Analyze the response of First and second order systems in time domain using characteristic Equations for feedback control systems, and also evaluate the stability of a system in Time Domain using RH Criterion and Root Locus [Analysis, Evaluation]

	Justification
PO1	Gains the knowledge on time response of first and second order systems and time domains
PO2	Solving the problems on root locus, R-H criteria.
PO3	Develop a solution for stability by using root locus
PO4	Student can solve the complicated root locus problems and they can plot the graph.
PO9	Students can solve the complex problems and assignments with individual and team work.
PO10	Students can share information about the complex problems and assignments.
PO11	Students can use the stability of the system concept to managing project work.
PO12	Students can learn about the root locus and Routh's stability criterion
PSO1	Students can use this concept in design, analysis and development a system in the area of
	Embedded system & VLSI design

C313.3: Examine Frequency response analysis of a Control System and Solve the stability of the system using BODE Plots [Analysis, Evaluation]

	Justification
PO1	Gains knowledge to plot the graph on the Bode Diagram – Phase margin and Gain margin
PO2	Analyze the problems on the frequency domains, bode plot and stability analysis
PO3	Develop a solution for stability by using bode plot
PO4	Students can solve the complicated stability problems by using bode plot
PO9	Students can solve the complex problems and assignments with individual and team work.
PO10	Students can share information about the complex problems and assignments.
PO11	Students can use the stability of the system concept to managing project work.
PO12	Students can learn about bode plot
PSO1	Students can use this concept in design, analysis and development a system in the area of
	Embedded system & VLSI design

C313.4: Analyze the stability of a system in frequency domain using polar and Nyquist plots. [Analysis]

	Instification
	Justification
PO1	Gains knowledge to plot the graph on the polar and nyquist plot-Phase margin and Gain
	margin
PO2	Analyze the problems on the frequency domains, polar and nyquist plot and stability
	analysis
PO3	Develop a solution for stability by using polar and nyquist plot
PO4	Students can solve the complicated stability problems by using polar and nyquist plot.
PO9	Students can solve the complex problems and assignments with individual and team work.
PO10	Students can share information about the complex problems and assignments.
PO11	Students can use the stability of the system concept to managing project work.
PO12	Students can learn about polar and nyquist plot.
PSO1	Students can use this concept in design, analysis and development a system in the area of
	Embedded system & VLSI design

C313.5: Design and implementation of Compensators and Controllers to improve stability. [Synthesis]

	7				
	Justification				
PO1	Gains the knowledge on how to improve stability by using compensators and controllers				
PO2	Analyze the problems on improving the stability by compensators and controllers				
PO3	Develop a solution for improve stability by lead ,lag compensators				
PO4	Students can solve the complicated stability problems by using compensators and				
	controllers				
PO9	Students can solve the complex problems and assignments with individual and team work.				
PO10	Students can share information about the complex problems and assignments.				
PO11	Students can use the Compensators and controllers concept to do project work.				
PO12	Students can learn about compensators and controllers				
PSO1	Students can use this concept in design, analysis and development a system in the area of				
	Embedded system & VLSI design				

C313.6: Design state model of a system and determine the transfer function for Linear Time Variant Systems. [Synthesis]

	Justification
PO1	Gains the knowledge on determine the transfer function of Linear Time Invariant systems
PO2	Analyze the problems on LTI systems by using state space model
PO3	Develop a solution for state equations
PO4	Student can solve the complicated transfer function for linear time invariant system.
PO9	Students can solve the complex problems and assignments with individual and team work.
PO10	Students can share information about the complex problems and assignments.
PO11	Students can use the stability and state equations of the system concept to managing project
	work.
PO12	Students can learn about Linear time invariant systems
PSO1	Students can use this concept in design, analysis and development a system in the area of
	Embedded system & VLSI design

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD <u>ACADEMIC CALENDAR 2022-23</u>

B. Tech./B. Pharm. III YEAR I & II SEMESTERS

I SEM

	8	Duration			
S. No	Description	From	То		
1	Commencement of I Semester classwork		09.09.2022		
2	1 st Spell of Instructions (including Dussehra Recess)	09.09.2022	10.11.2022 (9 Weeks)		
3	Dussehra Recess	03.10.2022	08.10.2022 (1 Week)		
4	First Mid Term Examinations	11.11.2022	17.11.2022 (1 Week)		
5	Submission of First Mid Term Exam Marks to the University on or before	24.11.2022			
6	2 nd Spell of Instructions	18.11.2022 12.01.2023 (8 We			
7	Second Mid Term Examinations	16.01.2023	21.01.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	23.01.2023	28.01.2023 (1 Week)		
9	Submission of Second Mid Term Exam Marks to the University on or before	30.01.2023			
10	End Semester Examinations	30.01.2023	11.02.2023 (2 Weeks)		

Note: No. of Working/ instructional days: 92

II SEM

		Duration			
S. No	Description	From	То		
1	Commencement of II Semester classwork	13.02.2023			
2	1 st Spell of Instructions	13.02.2023	08.04.2023 (8 Weeks)		
3	First Mid Term Examinations	10.04.2023	15.04.2023 (1 Week)		
4	Submission of First Mid Term Exam Marks to the University on or before	22.04.2023			
5	2 nd Spell of Instructions (including Summer Vacation)	17.04.2023	24.06.2023 (10 Weeks)		
6	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)		
7	Second Mid Term Examinations	26.06.2023	01.07.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	03.07.2023 08.07.2023 (1 W			
9	Submission of Second Mid Term Exam Marks to the University on or before	08.07.2023			
10	End Semester Examinations	10.07.2023	22.07.2023 (2 Weeks)		

Note: No. of Working/ instructional days: 90

REGISTRAR

(An Autonomous Institution under UGC)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Class Timetable

CLAS	SS: III-B.Tech	ECE-A	A.Y:2022-23		SEMES'	TER: I		LH: C-201
TIME/ DAY	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	IV 12:10-1:00	1:00-1:30	V 1:30-2:20	VI 2:20-3:10	VII 3:10-4:00
MON	DCN	IPR	CS	LIB		MPMC LAB / DCN LAB		N LAB
TUE	CS	MPMC	EMI	DCN	L	СҮВ	BEFA	SPORTS
WED	СҮВ	MPMC(T)/DCN(T)	CS	EMI		DCN LAB / MPMC LAB		C LAB
THU	EMI	DCN	CO-CU	/DAA	Ċ	IPR	MPMC	CS(T)/MPMC(T)
FRI	CS	BEFA	EMI	MPMC	н	DCN(T)/CS(T)	А	CS LAB
SAT	MPMC	IPR	MPMC(AI	DJUNCT)		BEFA	DCN	COUN

*(T) - Tutorial Concern Faculty

Course Code	Course Name	Name of the Faculty	Course Code		Course Name		Name of the Faculty	
EC501PC	MPMC- Microprocessors & Microcontrollers	I.Venu	EC505PC	MPMC LAB- Microprocessors & Microcontrollers Lab		MPMC LAB- Microprocessors & Microcontrollers Lab		
EC502PC	DCN-Data Communications and Networks	Y.Raju	EC506PC	DCN LAB- Data Communications and Networks Lab		DCN LAB- Data Communications J.Anand Rao/ and Networks Lab M.Ganesh/Y.F		J.Anand Rao/ M.Ganesh/Y.Raju
EC503PC	CS-Control Systems	K.Srikanth	EN508HS	ACS LAB- Advanced Communication Skills Lab		D.Ananda Rao		
CMED INC	BEFA- Business Economics	W M M	*MC510	IPR-Intellectual Property Rights		nts	S.Srinivas	
5M504M5	& Financial Analysis	K V Nagamani	MPMC(ADJUNCT) G.Chandrasekhar					
-	EMI-Electronic Measurements	1202-02-0 12	LIB	Librar	y y		B.Jyothirmai/S.Alekhya	
EC513PE	and Instrumentation (PE-I)	M.Ganesh	COUN	Couns	eling	Dr.	S.Suresh/S.Alekhya/M.Ganesh	
Louin			CO-CU/DAA	Co-Cu	rricular/Dent.Assc.Act.	M.0	Ganesh/S.Naresh/P.KrishnaRao	
*CAB	Cyber Security	T.Divya	SPORTS	-Sports	hartmen Depl	Srl	Mu Ganesh K. Pagmapatnam	
	Class Incharge		Head of Fret	eparta	BUND ENGO & TECH		R R Dist Rathrensal (501 51)	

HEAD COMME OF ENGO

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN

Programme: B.Tech	Academic Year: 2022-23
Year: III	Semester: I
Course Title: CONTROL SYSTEMS	Course Code: EC503PC
Name of Faculty: K SRIKANTH	

Unit-I Syllabus

Introduction to Control Problem: Industrial Control examples. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
1	Introduction to Control systems	T2, R 1	BB		
1	Classification control systems	T2, R 1	BB		
1	Industrial control examples	T2, R 1	BB		
1	Transfer Function – Definition and examples	T2, R 2	BB		
1	Mathematical Models – Electrical Systems	T2, R 2	BB		
1	Mathematical Models– Translational Mechanical Systems	T1, R2	BB		
1	Mathematical Models – Rotational Mechanical Systems	T1, R2	BB		
1	Analogies: Electrical – Mechanical, Problems	T1	BB		
2	Transfer Function of AC, DC Servo Motor	T1, R1	BB		
2	Synchro Transmitter and Receiver -Pair	T1, R1	BB		
1	Block Diagram Algebra – Rules	T1	BB		
2	Problems using Block Diagram Algebra	T1	BB		
2	Signal Flow Graph – Definition, Elements, Rules, Reduction using Mason's Gain Formula. PROBLEMS	T1, R2	BB		
1	SOME PROBLEMS	T1, R2	BB		
Gap beyo	Gap beyond syllabus(if any):				
Gap within the syllabus(if any)					
Course O Transfer I	Putcome 1: Create mathematical model using Laplace Transformation of an LTI system in various ways.	orm and defin	e the		

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-II Syllabus

Time Response Analysis of Standard Test Signals: Time response of first and second order systems for standard test inputs. Application of initial and final value theorem. Design specifications for second order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

No. of	Topics	Reference	Teaching
Sessions			Method/
Tamicu	Standard Test Signals – Step, Ramp, Parabola, Impulse,	T1. R 2	BB
2	Functions as Inputs, Impulse Response, Inverse	7	
	Laplace		
	Time Response of First order Systems,		BB
2	Order of the system, Characteristic Equation, Partial	T2,R 2	
	Fraction		
1	Transient Response of Second order Systems – Undamped, Underdamped,	T2,R 2	ВВ
1	Critically damped and over damped conditions,	T2,R 1	BB
	Time Domain Specifications – Delay Time Rise Time		BB
1	Derivations & Problems	T2	
1	Peak Time, Peak overshoot, Settle Time – Derivations	T2 R1	BB
	& Problems	12,111	
	Steady State Response – Definition, Derivation, Steady		BB
2	State Errors and Error Constants – Positional, Velocity	T2,R2	
	and acceleration.		DD
1	The Concept of Stability – Definition, HERWITZ	T1	BB
1	method.		DD
1	Routh's Stability Criterion – Definition,	12	BB
1	Advantages and Limitations of Routh's Stability,	T1, R 2	ВВ
	Poot Logue Technique The Poot Logue Concent		DD
2	Definition Construction of Poot Loci – Pules	T2, R 1	ממ
1	Problems on Poot Locus Technique	T2 P 1	BB
Gan beve	and syllabus (if any).	12, K 1	מט
Gap with	in the syllabus (if any)		

Course Outcome 1: Analyze the response of First and second order systems in time domain using characteristic Equations for feedback control systems, and also evaluate the stability of a system in Time Domain using RH Criterion and Root Locus

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-III Syllabus

Frequency-Response Analysis: Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	Introduction – Relation between Time and Frequency	T1 R1	BB	
1	Domain	11,101		
	Frequency Domain Specifications – Resonant Peak,		BB	
2	Resonant Frequency, Bandwidth, -Definition,	T1		
	Derivations & Problems			
2	Cut-off Rate, Gain Margin, Phase Margin – Definition,	T1 D 1	BB	
2	Derivations & Problems	11, K 1		
2	Bode Diagrams – Rules and Procedure for Construction	T1, R 1	BB	
2	Polar Plots – Design Rules, Construction Procedure,	T1 D 1	BB	
2	Problems, Stability Analysis	11, K 1		
1	Problems on bode diagram	T1, R 2	BB	
1	Problems on polar plot	T1, R 1	BB	
2	Nyquist Plots – Design Rules, Construction Procedure,	T1 D2	BB	
2	Problems, Stability Analysis	11, K2		
1	Problems on Nyquist plot	R1	BB	
1	Problems on Phase margin and Gain margin	T2,R2	BB	
1	Closed loop frequency response	T2	BB	
Gap beyond syllabus(if any):				
Gap with	in the syllabus(if any)			

Course Outcome 1: Examine Frequency response analysis of a Control System and Solve the stability of the system using BODE Plots **COURSE OUTCOME 2:** Analyze the stability of a system in frequency domain using polar and

COURSE OUTCOME 2: Analyze the stability of a system in frequency domain using polar and Nyquist plots

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-IV Syllabus

Introduction to Controller Design: Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog and Digital implementation of controllers.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	Stability, steady-state accuracy, transient	T2,R2	BB	
	accuracy,			
1	disturbance rejection, insensitivity and robustness of control systems.	R2	BB	
1	Root-loci method of feedback controller design.	T2,R1	BB	
1	Design specifications in frequency-domain	T2, R2	BB	
1	Frequency-domain methods of design.	T2, R 1	BB	
	Types of Controllers – P, PI, PD, PID –		BB	
2	Definitions and Derivations, Effects of	T2		
	Proportional Derivative systems			
1	Effects of Proportional Integral Systems.	T2	BB	
2	Compensation Techniques – Lag, Lead and	T1	BB	
2	Lag-Lead Compensators			
1	Lag Controller Design in Frequency Domain –	T2 D1	BB	
1	Procedures, Problems	12, KI		
1	Lead Controller Design in Frequency Domain –	T2 D2	BB	
1	Procedure, Problems	12,82		
1	Lead-Lag Controller Design in Frequency	DO	BB	
1	Domain – Procedure, Problems	K2		
1	Analog and digital implementation of	T2 D2	BB	
1	controllers	12,82		
Gap beyo	ond syllabus(if any):			
Gap within the syllabus(if any)				
Course O	Dutcome 1: Design and implementation of Compensation	tors and Contro	llers to	
improve s	tability.			

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-V Syllabus

State Variable Analysis and Concepts of State Variables: State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
2	Concepts of State, State Variables and	T2,R2	BB	
	State Model – Definitions, Derivations			
1	Diagonalization of State Matrix.	T2,R2	BB	
1	Solution of state equations.	T2	BB	
1	Eigen values and Stability Analysis.	T1, R 1	BB	
2	Concepts of Controllability – Derivation, Problems	T1, R 1	BB	
2	Concepts of Observability – Derivation, Problems	T1	BB	
1	Pole-placement by state feedback.	T2	BB	
1	Discrete-time systems. Difference	T1, R 1	BB	
	Equations.			
2	State-space models of linear discrete-time systems.	T2, R 1	BB	
1	Stability of linear discrete-time systems.	T2, R 2	BB	
1	Problems.	T1, R 2	BB	
Gap beyond syllabus(if any):				
Gap with	in the syllabus(if any)			

Course Outcome 1: Design state model of a system and determine the transfer function for Linear Time Variant Systems

*Session Duration: 50minutes

*Total Number of Hours/Unit: 10

TEXT BOOKS:

T1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.

T2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

REFERENCE BOOKS:

R1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.

R2. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

WEB REFERENCES:

<u>+</u>	
S.No.	Web Link
1	https://nptel.ac.in/courses/108101037/
2	https://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/course- videos/
3	https://www.youtube.com/watch?v=TyJSMVarQZQ
4	https://archive.nptel.ac.in/courses/107/106/107106081/
5	https://www.youtube.com/watch?v=vVFDmCdQwCdQwCdQwCdQw

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1YyfUk6fubnMTCf9xaBSRqXxUq1a 4wz1J/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/12xHRhQ6bcGRCVP2nt4XJAN6nxv -3gBpn/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1jutDFbbyHuD9FJTAp69Sw-_YhlIvOk9U/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1S9oWLqABLw6zITUoCBysh6hjwEEuvU7/view?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/1Y9hxrDb-SZ5_kG3nJHsUWvjBn_DOgteq/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Power point presentation

PPT link:

https://docs.google.com/presentation/d/1RvzxYzR4vnc_2iDiJw7VcB 5ZnUTikNGY/edit?usp=sharing&ouid=109692577134569542336&r tpof=true&sd=true

Code No: 155AR JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, January/February - 2023 CONTROL SYSTEMS (Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

(25 Marks)

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

What is the basic rule used for block diagram reduction technique? 1.a) [2] Write the force balance equation of an ideal mass, ideal dashpot and ideal spring b) element. [3] List the time domain specifications. [2] c) Define Centroid. How do you determine the centroid and angle of asymptotes in root d) locus technique? [3] What is Polar plot? e) [2] Define Phase Margin, Gain Margin with reference to Bode plot. f) [3] What is the function of P and I Controllers? [2] g) Define the terms Steady State Accuracy and transient accuracy of the system. h) [3] Define Controllability. [2] i) i) State the properties of state transition matrix. [3]

$\mathbf{PART} - \mathbf{B}$

(50 Marks)

- 2. Compare the Open loop and Closed loop Control Systems with examples in detail. [10] **OR**
- 3. Determine the Force voltage and Force current analogy for given mechanical system. [10]

4. The characteristic polynomial of a system is $s^7+9s^6+24s^5+24s^4+24s^3+24s^2+23s+15=0$. Determine the location of roots on s-plane and hence the stability of the system. [10]

OR

5. Sketch the root locus of the system whose open loop transfer function is G(s)=K/s(s+2)(s+4). Find the value of K so that the damping ratio of the closed loop system is 0.5. [10]

6. Sketch the polar plot for the following transfer function, Determine phase margin and gain margin. [10]

$$G(s) = \frac{k}{s^2(1+s)(1+2s)}$$
OR

7. Sketch the Bode plot of the given system and determine the phase margin and gain margin of the system. [10]

$$G(s) = \frac{20 \ (0.1s+1)}{s^2 (0.2s+1)(0.02s+1)}$$

8. Explain the step by step procedure of Root-loci method of feedback controller design.

[10]

- 9. Discuss the Analog and Digital implementation of controllers. [10]
- 10. Consider a system with state model given below: $x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 5 \end{bmatrix} \mu; \quad y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$ $\begin{bmatrix} -1 & -5 & -1 \end{bmatrix} \begin{bmatrix} -24 \end{bmatrix}$ Verify, the system is observable and controllable. [10]

OR

11. Explain about diagonalization and also obtain the state model of the given transfer function [10]

$$\frac{Y(S)}{U(S)} = \frac{5}{s^2 + 6s + 7}$$

---00000----

Code No: 155AR JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.** Tech III Year I Semester Examinations, March - 2021 **CONTROL SYSTEMS** (Common to ECE, EIE)

Time: 3 Hours

Answer any five questions All questions carry equal marks - - -

- List the differences between open loop and closed loop systems with suitable examples. 1.a)
- Obtain the transfer function $\frac{\Theta(s)}{V_{\sigma}(s)}$ for armature controlled dc servomotor. b) [8+7]
- 2.a) What is meant by time response? Explain about (i) Steady- state response (ii) Transient response.
 - b) Find the steady-state error for unit step, unit ramp and unit acceleration inputs for the following systems. i) 10/s(0.1s + 1)(0.5s + 1)ii) $1000/s^2(s+1)(s+20)$ [8+7]
- 3.a) List the properties of root locus and sketch the root locus of the unity feedback system with

$$G(s) = \frac{K}{s(s+2)(s^2+2s+4)}$$

- b) A unity feed-back system is characterized by an open loop T.F G(s) = K/s(s+10)Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K, determine Ts, Tp and Mp for a unit step input. [8+7]
- 4.a) Explain clearly the steps involved in the construction of Bode plots of a system with loop transfer function consisting of i) An open loop gain K ii) One pole at origin iii) One quadratic factor. State and explain Nyquist Stability Criterion. b) [8+7]
- 5. What is Phase Margin and gain margin? Determine the transfer function whose Bode diagram is given by

R18

Max. Marks: 75

[15]

- 6. Discuss the procedural steps of lag compensation design in frequency domain. [15]
- 7.a) Define the terms: i) State variable ii) State transition matrix.
- b) Obtain the state space representation of the electrical system shown below.

[6+9]

8.a) An LTI system is characterized by the homogeneous state equation:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}$$

Compute the solution of the homogeneous equation assuming the initial state vector $X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

b) The system is represented by the differential equation y + 5y + 6y = u. Find the transfer from state variable representation. [8+7]

---00000----

Code No: 155AR JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, September - 2021 CONTROL SYSTEMS (Common to ECE, EIE)

Time: 3 Hours

Answer any five questions All questions carry equal marks

- 1.a) Explain the benefits of feedback in detail.
- b) For the mechanical system below, derive the transfer function, f(t) is the input, where as V_2 is output. [6+9]

- 2.a) What are the basic blocks used in mathematical modeling of rotational systems? Explain.
 - b) Using block diagram algebra, determine C/R.

Max. Marks: 75

- 3.a) Discuss about initial and final value theorems used in time response analysis.
- b) Using Routh criterion, determine the stability of the system whose characteristic equation is given by [6+9]

 $9s^5 - 20s^4 + 8s^3 - 8s^2 - 6s + 5 = 0$

- 4. Explain different steps involved in construction of root-loci. [15]
- 5.a) How to draw bode plot? Explain.
- b) Sketch the polar plot of the following transfer function. [6+9]

$$G(s) = \frac{10(1+s)}{(2+s)(4+s)}$$

- 6.a) How to find Relative stability using Nyquist criterion? Explain.
- b) Sketch the bode plot of the following open loop transfer function. [6+9]

$$G(s) = \frac{50(1+0.1s)}{(1+0.01s)(1+s)}$$

- 7. Explain about Root-loci method of feedback controller design. [15]
- 8.a) Determine the state and output equations in vector matrix form for the system whose transfer function is given by

$$G(s) = \frac{(s+2)}{s(s^2+8s+11)}$$

b) Verify whether the following system is observable or not. [8+7] $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

Year &Branch: III –ECE	-A, B&C		Date: 12-11-20)22(FN)
Subject: CS Name:	Ma	ax. Marks: 10 Roll 1	Time: 20 mins No	
	1, ,			
1. Choose the correct a	alternati	lve:		r 1
1) The input signal is repre	sented by			ĹJ
a. b(t) b. c(t) 2) How is an output represe	ented in th	c. e(t) ne control systems?	d. r(t)	[]
a. r(t) b. c(t)		c. x(t)	d. y(t)	
3) Which notation represen	its the erro	or signal		[]
a. b(t) b. c(t)		c. e(t)	d. r(t)	
4) Which among the follow	ving is not	t an advantage of an o	pen loop system?	[]
a. Simplicity in constructi	on & desi	gn b. E	asy maintenance	
c. Rare problems of stabil	ity d. Re	quirement of system 1	recalibration from tim	e to time
5) In an open loop control	system			[]
(a) Output is independent	nt of conti	rol input		
(b) Output is dependent	on contro	ol input		
(c) Only system parame	ters have	effect on the control of	output	
(d) None of the above				
6) According to signal flow between nodes by drawing	v graph, w ng a line t	which among the follow between them?	wing represents the re	elationship []
a. Branch b. Self-loo	p c. Sei	mi-node d. Mesh		
7) A control system in whick a control system in whick a control system in whick a control of the control of th	ch the con	trol action is somehow	w dependent on the ou	tput is
(a) Closed loop system	(b)	Semi closed loop sys	stem	
(c) Open system	(d)	None of the above		

8)	A go	ood control system has a	ll the	following features except	[]
(a)	good stability	(b)	slow response		
((c)	good accuracy	(d)	sufficient power handling capacity		
9)	The	e output of a feedback co	ntrol	system must be a function of	[]
((a)	reference and output		(b) reference and input		
((c)	input and feedback sign	al	(d) output and feedback signal		
10)	In o	a signal flow graph met btained?	hod, ł	now is an overall transfer function of a system	[]
а	ı. Po	visson's equation		b. Block diagram reduction rules		
c	:. M	ason's equation		d. Lagrange's equation		

Fill in the blanks:

- 1) By equating the denominator of transfer function to zero, ----- will be obtained?
- 2) ----- notation represents the feedback path in closed loop system representation?
- 3) MASON'S gain formulae_____
- In Routh array, if zero is found in the first column, then by which term it needs to be Replaced------
- 5) In S/S+2 equation poles are -----
- 6) In $(S+2)(S+3)/S^2+2S+3$ Zeros are-----
- 7) If the control system is both linear and time-variant then the type of system is _____
- 8) Two loops are said to be non-touching only if no common _____exists between them.
- 9) How many types of feedbacks are there ------
- 10) Angle of asymptote formulae ------

	Sri Indu	1 Institu Sheriguda B-Te	te of En (V), Ibrahim ch II - Mid E	ginee patnam (xaminat	(M), R.R.Dist ions, JAN-2	Techno -501 510 023	logy	
	Year &Bran Subject: CS Name:	ch: III –ECE-A	<u>Objecti</u> A, B&C Max. Ma	ve Type urks: 10	<u>Exam</u> D Tir. Roll No	a te: 20/01/ 2 ne: 20 mins	23 (FN)	
]	. Choose the	e correct alt	ernative:					
1.	State space ar	nalysis is appli	cable even if	the initial	l conditions a	ire	[]
	a. Zero b. Noi	n-zero c. Eq	ual d. N	lot equal				
2.	Conventional	control theory	v is applicable	to	systems		[]
	a. SISO	b. MIMO	c. Time var	ying	d. Non-line	ear		
3.	What is the va	alue of steady	state error in	closed loo	op control sy	stems?	[]
	a. Zero	b. Unity	c. Infinity		d. Unpredi	ctable		
4.	How is the sin frequency do	nusoidal transf main?	er function ol	otained fr	om the syste	m transfer fun	ction in []
	a. Replacements c. Replacements	nt of 'jω' by 's nt of 's' by 'jα	s' b. R b' d. F	Leplaceme Leplaceme	ent of 's' by ent of 'ω' by	έω' 's'		
5.	Which amo system? a. State variat	ng the followin	ng plays a cru ate vector	c. Sta	in determinir te space	ng the state of d	dynamic [calar]
6.	The frequence crossover free a. 90°	cy at which the quency'. b90°	e phase of the c. 270°	system a d18	cquires	is known as '	Phase []
7.	At which freq a. Resonant fr c. Gain crosso	uency does th equency over frequency	e magnitude o	of the syst b. Cu d. Pha	tem becomes t-off frequen ase crossover	zero dB cy frequency	[]
8.	For Nyquist c a. 25	contour, the siz b. 0	e of radius is	c. 1		d . ∞	[]

9.	. The values of the characteristic equation is given by:]
	a) Eigen values	b) State matrix	c) Eigen vector	d) None		

10.	The diagonalizing n	natrix is also known a	s:		[]
	a) Eigen matrix	b) Modal matrix	c) Constant matrix	d) State matrix		

Fill in the blanks:

- 11. PD full form-----
- 12. PD controller improves ------Response
- 13. Types of compensators-----
- 14. Types of compensating networks------
- 15. What is matrix A-----
- 16. Characteristic equation formulae in state space------
- 17. The composite matrix Q_c is given by------
- 18. The composite matrix Q_o is given by------
- 19. PID controller improves------,-----
- 20. Root locus is used to calculate------

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech I - Mid Examinations, NOV-2022

Year &Branch: III –ECE-A, B&C

Subject: CS

Date: 02-11-2022(FN)

ANSWER KEY

Descriptive paper key link:

<u>https://drive.google.com/file/d/1nrJ-</u> OEw7vPrwf0nGKgE7mW1uPhOsirOO/view?usp=sharing

Objective Key Paper

I. Choose the correct alternative:

- 1) d. r(t)
- 2) b. c(t)
- 3) c. e(t)
- 4) d. Requirement of system recalibration from time to time
- 5) a. Output is independent of control input
- 6) a. Branch
- 7) a. Closed loop system
- 8) b. slow response
- 9) a. reference and output
- 10) c. Mason's equation

Fill in the blanks:

1) POLES

- 2) f(t) OR b(t)
- 3) T= $\frac{1}{\Delta} \sum_{k} P_k \Delta_k$
- 4) ε
- 5) S= -2
- 6) S= -2, -3

7 linear time-variant

- 8) Node
- 9) 2 or two

10)
$$\theta = \frac{2q+1}{p-z}$$
 180⁰ Where q=0,1,2 (n-1)

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech II - Mid Examinations, JAN-2023

Year &Branch: III –ECE-A, B&C

Date: 20/01/23 (FN)

Subject: CS

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1ZQwSRMzkephkUXDb5j0PauwrT4bJpw0S/view?usp=sha

<u>ring</u>

Objective/Quiz Key Paper

I. Choose the correct alternative:

- 1) a. Zero
- 2) a. SISO
- 3) a. Zero
- 4) c. Replacement of 's' by 'j ω '
- 5) a. State variables
- 6) d. -180°
- 7) c. Gain crossover frequency
- 8) d.∞
- 9) a) Eigen values
- 10) b) Modal matrix

Fill in the blanks:

- 1) Proportional derivative
- 2) Transient response
- 3) Series, Parallel, Series-parallel
- 4) Lead, Lag, Lag-Lead

5)System Matrix

6) C[SI-A]⁻¹ B+D

7) $Q_{c=}[B: AB: A^2 B: ...A^{N-1} B]$

 $8)Q_{o=}[C^{T}:A^{T}C^{T}:....(A^{T})^{N-1}C^{T}]$

- 9) Transient response and steady state response
- 10) Relative stability

Website: https://siiet.ac.in/

ASSIGNMENT-1

SUBJECT: CONTROL SYSTEMS

1) Find the transfer function for the below circuit?

000000 Vo(t) Vi(t) ci(t)

(C313.1)

3) Write the differential equations for the mechanical system as shown below figure and obtain transfer function $Y_2(S)/f(S)$? (C313.1) (Knowledge)

4) Write the differential equations for the mechanical system as shown below figure and obtain transfer function $\theta_2(S)/T(S)$? (C313.1) (Knowledge)

(C313.1)

(Knowledge)

5) Find the transfer function for the below signal flow graph? (C313.1) (Knowledge)

6) Analyze the response of under damped system when input is unit step? (C313.2) (Analysis)

7) Solve the R- H stability of given characteristic equation (C313.2) (Evaluation)

$$s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$$

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 2

SUBJECT: CONTROL SYSTEMS

1. Analyze the stability of a system in frequency domain using polar plot

G(s) H(s) = $\frac{1}{s(1+s)^2}$

(Analysis)

(C313.4)

- 2. Design PI and PD type of Controllers?
- 3. Obtain the transfer matrix (function)

- (C313.5) (Synthesis)
- (C313.6) (Knowledge)

$$\begin{bmatrix} \mathbf{\dot{x}}_1 \\ \mathbf{\dot{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}, \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

4. Obtain state model of given electrical system.

C313.6) (Knowledge)

5.

: Evaluate the observability of the system with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}$$

(C313.6) (Analysis)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

TUTORIAL TOPICS

SUBJECT: CONTROL SYSTEMS

S.NO	Unit	ΤΟΡΙϹ	Number of Sessions Planned	Teaching method/Aids
1.	1	Analyze the overall gain C/R represented by block diagram $R^{(s)} \bigoplus G_1 \bigoplus G_2 \bigoplus G_2 \bigoplus G_$	1	BB
2.		State the transfer function Derive the transfer function $X_{T}(s)/F(s)$, for the mechanical system shown $K_{1} = \int_{K_{1}}^{K_{1}} \int_{K_{2}}^{K_{1}} \int_{K_{2}}^{K_{1}} \int_{K_{2}}^{K_{1}} \int_{K_{2}}^{K_{2}} \int_$	1	BB
3.	2	Analyze and sketch the root locus of the system whoose $G(s) = \frac{K(s+15)}{s(s+1)(s+5)}$	1	BB
4.		Determine the R- H stability of given characteristic equation $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0.$	1	BB

5.		Sketch the Bode Plot for the Transfer Function G(S) = 10 / S (S + 5). Calculate Gain Crossover Frequency.	1	BB
6.	3	Explain about the Frequency Domain Specifications in brief.	1	BB
7.	4	PID type of controller.	1	BB
8.		Lag-Lead Compensator.	1	BB
9.		Find state transition matrix	1	BB
		$A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$		
10.	5	Find if the system is controllable	1	BB
		$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$		
11.		Find if the system is observable	1	BB
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}$		

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title	CONTROL SYSTEMS
Course Code	EC503PC
Programme	B.Tech
Year & Semester	III year I-semester, A sec
Regulation	R18
Course Faculty	K. SRIKANTH, Assistant Professor, ECE

Slow learners:

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	20X31A0401	4	20	20
2	20X31A0403	5	15	14
3	20X31A0406	4	17	21
4	20X31A0407	3	20	19
5	20X31A0408	3	16	19
6	20X31A0410	5	19	18
7	20X31A0411	4	18	21
8	20X31A0412	5	14	15
9	20X31A0413	4	14	21
10	20X31A0418	8	14	14
11	20X31A0419	4	17	20
12	20X31A0423	3	23	21
13	20X31A0427	3	21	18
14	20X31A0428	4	23	22
15	20X31A0430	4	24	23
16	20X31A0431	5	24	17
17	20X31A0433	3	20	17
18	20X31A0435	3	16	18
19	20X31A0436	5	19	19
20	20X31A0440	4	20	22
22	20X31A0445	4	23	21

23	20X31A0447	3	22	22
24	20X31A0450	4	22	22
25	20X31A0453	4	18	21
26	20X31A0454	5	14	20
27	20X31A0455	4	18	21
28	20X31A0456	5	14	21
30	20X31A0458	3	21	20
31	20X31A0462	3	21	22

Advanced learners:

S.NO	ROLL.NO.	GATE MATERIAL
1	20X31A0404	
2	20X31A0409	Steady state error, Steady state
3	20X31A0415	locus, Pole-zero plot, Routh
4	20X31A0416	array, State Space Analysis, Block Diagram, Time Domain
5	20X31A0420	Analysis, Nyquist plot, Compensators, transfer
6	20X31A0421	function, Nyquist plot, RH
7	20X31A0422	locus, Steady-state error,
8	20X31A0425	TDA.
9	20X31A0432	
10	20X31A0434	
11	20X31A0437	
12	20X31A0438	
13	20X31A0439	
14	20X31A0442	
15	20X31A0444	
16	20X31A0449	
17	20X31A0452	
18	20X31A0459	
19	20X31A0460	

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-III BTECH I SEM ECE-A RESULT ANALYSIS

ACADAMIC	COURSE	NUMBER OF STUDENTS		QUESTION PAPER SETTING			
YEAR	NAME	APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%	
2022-23	CONTROL SYSTEM	60	38	COURSE FACULTY	JNTUH	63.33	

CONTROL SYSTEM (C313) RESULT ANALYSIS

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-I

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM-5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EDC	NATL	DSD	PTSP	SS
II ECE-B	NATL	DSD	PTSP	SS	EDC
III ECE-A	МРМС	DCCN	CS	BEFA	EMI
III ECE-B	DCCN	CS	BEFA	EMI	МРМС
III ECE-C	CS	BEFA	EMI	MPMC 🔬	DCCN
IV ECE-A	MW&OC	DIP	PPLE	NS&C	JAVA
IV ECE-B	DIP	PPLE	NS&C	JAVA	MW&OC
IV ECE-C	PPLE	NS&C	JAVA	MW&OC	DIP

Head of HnDDepartment Electronics and Communication Engg. Dept. SRI INDU INSTITUTE OF ENGG & TECH, Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510.

Sil Indu Institute of Engineering & Tech.

Sheriguda(Vill), Ibrahimpatnam, R R Dist Telangana -501 510

I

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	KONGARI SRIKANTH	Academic Year:	2022-23
Branch & Section:	ECE - A	Examination:	I Internal
Course Name:	CONTROL SYSTEM	Year: III	Semester:

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max	. Marks ==>	5		5		5		5		10	5
1	20X31A0401	5						4		6	5
2	20X31A0402	5						5		6	5
3	20X31A0403			3						7	5
4	20X31A0404	5						4		6	5
5	20X31A0405	3		3				3		6	5
6	20X31A0406	2						3		7	5
7	20X31A0407	2		5						8	5
8	20X31A0408			3						8	5
9	20X31A0409	5		5				5		9	5
10	20X31A0410	5						3		6	5
11	20X31A0411	4						2		7	5
12	20X31A0412	2		2						5	5
13	20X31A0413			5				4		1	5
14	20X31A0414	4				3		4		7	5
15	20X31A0415	2				3		4		8	5
16	20X31A0416	4						3		8	5
17	20X31A0417	4		5				5		8	5
18	20X31A0418			1						8	5
19	20X31A0419	4						2		6	5
20	20X31A0420	3						2		6	5
21	20X31A0421	5						4		8	5
22	20X31A0422	5		4		3		5		9	5
23	20X31A0423	5		4				4		9	5
24	20X31A0424	5		3				4		9	5
25	20X31A0425	5		4				4		9	5
26	20X31A0426	4		4				3		9	5
27	20X31A0427	4		3				2		9	5
28	20X31A0428	5		4						9	5
29	20X31A0429	5						4		9	5
30	20X31A0430	5						5		9	5
31	20X31A0431	5						5		9	5
32	20X31A0432	5						5		9	5
33	20X31A0433	3		2				4		8	5
34	20X31A0434	5		3				5		9	5
35	20X31A0435	1		3						7	5
36	20X31A0436	4		4				4		6	5
37	20X31A0437	3		5		4		5		8	5
38	20X31A0438	5		4		-		5		9	5
39	20X31A0439	5				2		2		9	5
40	20X31A0440	4				2		5		9	5
41	20X31A0441	5		3		_		5		q	5
42	20X3140442	5		5				5		q	5
42	20X31A0442	5		4				5		a	5
43	20/31/0445	5		т				5		8	5
44	20/31/0443	5								Q Q	5
16	2013110440	5						-τ Δ		o Q	5
40	2013140447	5						- 1		0	5

47	20X31A0448	5						5		8	5	
48	20X31A0449	5		5				5		8	5	
49	20X31A0450	5						5		7	5	
50	20X31A0451	5						5		7	5	
51	20X31A0452	5		3		3		5		9	5	
52	20X31A0453	2						3		8	5	
53	20X31A0454	1								8	5	
54	20X31A0455							5		8	5	
55	20X31A0456	3		2						4	5	
56	20X31A0458	5						4		7	5	
57	20X31A0459	5						5		9	5	
58	20X31A0460	4						5		8	5	
59	20X31A0461	4						5		7	5	
60	20X31A0462	4						5		7	5	
Targ / Hol	et set by the faculty D	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00	
perfo	ormed above the	48	0	23	0	5	0	46	0	57	60	
Num	ber of students											
atten	nted	55	0	27	0	7	0	51	0	60	60	
Perce	entage of students ed more than target	87%		85%		71%		90%		95%	100%	
<u>CO</u> [Mapping with Exan	n Questi	ons:		1	1	1		1			r
	CO - 1	Y		Y				Y		Y	Y	
	CO - 2					Y				Y	Y	
	CO - 3									Y	Y	
	CO - 4											
	CO - 5											
	CO - 6											
0/	Students Scored	Ī										
/0	>Target %	87%		85%		71%		90%		95%	100%	
CO	Attainment based o	n Exam	Questio	ns:		/1/0		7070		1570	10070	
001		87%	Vuestio	85%				90%		95%	100%	İ
	co^{2}	0770		0.570		710/		2070		050/	10070	l
		<u> </u>				/1%0				93%	100%	ļ
	CO - 3					ļ				95%	100%	
	CO - 4											ļ
	CO - 5											ļ
	0-0	<u> </u>	[<u> </u>	<u> </u>		l
	со	Subi	obi	Ason	Ove	erall	Le	evel]	Atta	inment 1	Level
	CO-1	88%	95%	100%	94	1%	3	.00	1	1	40	%
	CO-2	71%	95%	100%	80	9%	3	.00	1	2	50	
	<u> </u>	,1,0	050/	100%	00	20/2	2	00	-	2	50	/ U
			7570	100%0	90	5/0	3	.00	-	3	60	/0
	CO-4								_			
	CO-5								1			
	CO-6											

Attainment (Internal 1 Examination) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the faculty :	KONGARI SRIKANTH	Academic Year:	2022-23	
Branch & Section:	ECE - A	Examination:	II Internal	
Course Name:	CONTROL SYSTEM	Year: III	Semester:	Ι

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj2	A2
Max	. Marks ==>	3	2	5		5		5		10	5
1	20X31A0401					4		4		7	5
2	20X31A0402					5		5		9	5
3	20X31A0403			4						5	5
4	20X31A0404					4				8	5
5	20X31A0405			4				4		8	5
6	20X31A0406	2				4				8	5
7	20X31A0407	2				4				8	5
8	20X31A0408	2						4		8	5
9	20X31A0409					5		5		8	5
10	20X31A0410	2						4		7	5
11	20X31A0411					5		3		8	5
12	20X31A0412					2		2		6	5
13	20X31A0413	3				5				8	5
14	20X31A0414	3				4				8	5
15	20X31A0415					4		5		9	5
16	20X31A0416	3						5		9	5
17	20X31A0417					5		4		8	5
18	20X31A0418	3				2				4	5
19	20X31A0419	3						4		7	5
20	20X31A0420	3				5				8	5
21	20X31A0421					1		5		9	5
22	20X31A0422					5		4		9	5
23	20X31A0423					3		4		9	5
24	20X31A0424					3		5		9	5
25	20X31A0425					3		4		9	5
26	20X31A0426					5				4	5
27	20X31A0427							4		9	5
28	20X31A0428			4				4		9	5
29	20X31A0429			3				4		9	5
30	20X31A0430					5		4		9	5
31	20X31A0431					1		3		8	5
32	20X31A0432					5		5		9	5
33	20X31A0433			5						7	5
34	20X31A0434					5		5		9	5
35	20X31A0435	3				4				6	5
36	20X31A0436	3				5				6	5
37	20X31A0437	3	2					5		9	5
38	20X31A0438					5		5		9	5
39	20X31A0439					5		5		9	5
40	20X31A0440			4				4		9	5
41	20X31A0441					3		4		9	5
42	20X31A0442					5		4		9	5
43	20X31A0444					5		5		9	5
44	20X31A0445	3				4				9	5

45	20X31A0446	3				4				9	5
46	20X31A0447	3				4				8	5
47	20X31A0448	3	1			4				9	5
48	20X31A0449					5		5		9	5
49	20X31A0450					4		4		9	5
50	20X31A0451					5		4		9	5
51	20X31A0452					5		5		9	5
52	20X31A0453					4		4		8	5
53	20X31A0454					4		4		7	5
54	20X31A0455					4		4		8	5
55	20X31A0456					4		4		8	5
56	20X31A0458					3		4		8	5
57	20X31A0459					5		5		9	5
58	20X31A0460					4		4		9	5
59	20X31A0461					4		5		9	5
60	20X31A0462					4		4		9	5
Targ / Ho	et set by the faculty D	1.80	1.20	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Num perfo targe	ber of students ormed above the et	17	1	6	0	44	0	43	0	57	60
Num atten	iber of students npted	17	2	6	0	48	0	44	0	60	60
Perc	entage of students ed more than target	100%	50%	100%		92%		98%		95%	100%

CO Mapping with Exam Questions:

CO - 1							
CO - 2							
CO - 3		Y				Y	Y
CO - 4	Y					Y	Y
CO - 5			Y			Y	Y
CO - 6				Y	Y	Y	Y

CO Attainment based on Exam Questions:

CO - 1							
CO - 2							
CO - 3		50%				95%	100%
CO - 4	100%					95%	100%
CO - 5			100%			95%	100%
CO - 6				92%	98%	95%	100%

СО	Subj	obj	Asgn	Overall	Level
CO-1					
CO-2					
CO-3	50%	95%	100%	82%	3.00
CO-4	100%	95%	100%	98%	3.00
CO-5	100%	95%	100%	98%	3.00
CO-6	95%	95%	100%	97%	3.00

Attainment Level							
1	40%						
2	50%						
3	60%						

Attainment (Internal Examination-2) = **3.00**

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Academic Year:

Year / Semester:

I vanie c	inc faculty.	KONGARI SKIKANTI	
Branch	& Section:	ECE - A	
Course	Name:	CONTROL SYSTEM	
S.No	Roll Number	Marks Secured	
1	20X31A0401	18	
2	20X31A0402	26	
3	20X31A0403	0	
4	20X31A0404	32	
5	20X31A0405	30	
6	20X31A0406	13	
7	20X31A0407	32	
8	20X31A0408	26	
9	20X31A0409	30	
10	20X31A0410	3	
11	20X31A0411	11	
12	20X31A0412	1	
13	20X31A0413	11	
14	20X31A0414	35	
15	20X31A0415	39	
16	20X31A0416	26	
17	20X31A0417	34	
18	20X31A0418	0	
19	20X31A0419	28	
20	20X31A0420	26	
21	20X31A0421	34	
22	20X31A0422	31	
23	20X31A0423	15	
24	20X31A0424	30	
25	20X31A0425	31	
26	20X31A0426	26	
27	20X31A0427	26	
28	20X31A0428	26	
29	20X31A0429	31	
30	20X31A0430	26	
31	20X31A0431	19	
32	20X31A0432	32	
33	20X31A0433	11	
34	20X31A0434	26	
35	20X31A0435	7	
Max Ma	arks	75	
Class A	verage mark		24
Number	of students per	formed above the target	38
Number	of successful st	udents	60

S.No	Roll Number	Marks Secured
36	20X31A0436	6
37	20X31A0437	26
38	20X31A0438	44
39	20X31A0439	45
40	20X31A0440	16
41	20X31A0441	17
42	20X31A0442	39
43	20X31A0444	43
44	20X31A0445	26
45	20X31A0446	30
46	20X31A0447	26
47	20X31A0448	26
48	20X31A0449	43
49	20X31A0450	8
50	20X31A0451	35
51	20X31A0452	46
52	20X31A0453	10
53	20X31A0454	4
54	20X31A0455	0
55	20X31A0456	0
56	20X31A0458	18
57	20X31A0459	40
58	20X31A0460	30
59	20X31A0461	19
60	20X31A0462	26

2022-23

III / I

Attainment Level	% students
1	40%
2	50%

Percentage of students scored more than target	63%
Attainment level	3

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty	KONGAR	I SRIKANTH		Academic Year:	2022-23
Branch & Section:	ECE - A			Examination:	I Internal
Course Name:	CONTROL	SYSTEM		Year:	III
				Semester:	Ι
Course Outcomes	Ist Internal 2nd Internal I Exam Exam I		Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00	3.00	3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Internal	& Universit	y Attainment:	3.00	3.00	
		Weightage	25%	75%	
D Attainment for the	course (Inte	ernal, Universi	0.75	2.25]
CO Attainment for t	he course (D)irect Method)		3.00]

Overall course attainment level3.00

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

Name of Faculty: Branch & Section: Course Name: KONGARI SRIKANTH ECE - A CONTROL SYSTEM Academic Year: 2022-23 Year: III Semester: I

CO-PO mapping

Course	3.00	3.00	3.00	3.00	-	-	-	-	1.00	1.00	1.00	2.00	1.00	-
CO6	3	3	3	3	-	-	-	-	1	1	1	2	1	-
CO5	3	3	3	3	-	-	-	-	1	1	1	2	1	-
CO4	3	3	3	3	-	-	-	-	1	1	1	2	1	-
CO3	3	3	3	3	-	-	-	-	1	1	1	2	1	-
CO2	3	3	3	3	-	-	-	-	1	1	1	2	1	-
CO1	3	3	3	3	-	-	-	-	1	1	1	2	1	-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

со	Course Outcome Attainment
	3.00
CO1	
	3.00
CO2	
	3.00
соз	
	3.00
CO4	
	3.00
CO5	
CO6	3.00
Overall course attainment level	3.00

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
со														
Attainme					-	-	-	-						-
nt	3.00	3.00	3.00	3.00					1.00	1.00	1.00	2.00	1.00	

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTERS

Assignment 1 script link:

https://drive.google.com/file/d/1MV443WHodvWwe5Rfe5CeuYPRdDuj0r7C/ view?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/1VIQ9SBJjyMIP9wUZvl9mtfus2kRxlcNS/view ?usp=sharing

Attendance register link:

https://drive.google.com/file/d/1w8hTgCeE1Tad3QFooLTjWjlwrfIs2Yyr/view ?usp=sharing