COURSE FILE

ON

DIGITAL SYSTEM DESIGN

Course Code - EC303PC

II B.Tech I-SEMESTER

> A.Y.: 2022-2023

Prepared by

Mrs. G.Anusha

Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG \& TECH sinerguta(V), Ibrahimpatnam(M), R.R.Dist-5U1 510

Sri Indu Institute of

 Engineering \& TechnologyRecognized Under 2(f) of UGC Act 1956
Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	$2022-2023$
Course Title	DIGITAL SYSTEM DESIGN
Course Code	EC303PC
Programme	B.Tech
Year \& Semester	II year I-semester
Branch \& Section	ECE-A
Regulation	R18
Course Faculty	Mrs. G.Anusha, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

IM1: To offer outcome-based education and enhancement of technical and practical skills.
IM2: To Continuous assess of teaching-learning process through institute-industry collaboration.

IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.

IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Depi SRI INDU INSTITUTE OF ENGG \& TECH shenguda(V), Ibrahimpatnam(M), R.R.Dist-SU1 S10

Sri Indu Institute of Engineering \& Tect.
Sheriguda(Vill), Ibrahimpatnam
R.R. Dist. Telangana-501 510.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

DM1: To facilitate an academic environment that enables student's centric learning.
DM2: To provide state-of-the-art hardware and software technologies to meet industry requirements.

DM3: To continuously update the Academic and Research infrastructure.
DM4: To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG \& TECH shenguda(V), Ibrahimpatinam(M), R.R.Dist-5U1 510

Sri Indu Institute of Engineering \& Tect. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510. Engineering \& Technolog

Recognized Under 2(f) of UGC Act 1956
Approved by AICTE, New Delhi
Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

PEO1: Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.

PEO2: Graduates with ability to execute innovative ideas for Research and Development with continuous learning.

PEO3: Graduates inculcated with industry based soft-skills to enable employability.
PEO4: Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system \& VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG \& TECH shenguda(V), Ibranimpatnam(M), R.R.Dis1-SU1 StO

[^0]
Sri Indu Institute of Engineering \& Technology

Recognized Under 2(f) of UGC Act 1956
Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
6. THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.
11. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABADB.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE \& SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

II YEAR I SEMESTER

S. No.	Course Code	Course Title	\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
1	EC301PC	Electronic Devices and Circuits	3	1	0	4
2	EC302PC	Network Analysis and Transmission Lines	3	0	0	3
3	EC303PC	Digital System Design	3	1	0	4
4	EC304PC	Signals and Systems	3	1	0	4
5	EC305ES	Probability Theory and Stochastic Processes	3	0	0	3
6	EC306PC	Electronic Devices and Circuits Lab	0	0	2	1
7	EC307PC	Digital System Design Lab	0	0	2	1
8	EC308ES	Basic Simulation Lab	0	0	2	1
9	*MC309	Constitution of India	3	0	0	0
		Total Credits	$\mathbf{1 8}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{2 1}$

II YEAR II SEMESTER

S. No.	Course Code	Course Title	\mathbf{L}	\mathbf{T}	\mathbf{P}	Credits
1	MA401BS	 Complex Variables	3	1	0	4
2	EC402PC	Electromagnetic Fields and Waves	3	0	0	3
3	EC403PC	Analog and Digital Communications	3	1	0	4
4	EC404PC	Linear IC Applications	3	0	0	3
5	EC405PC	Electronic Circuit Analysis	3	0	0	3
6	EC406PC	Analog and Digital Communications Lab	0	0	3	1.5
7	EC407PC	IC Applications Lab	0	0	3	1.5
8	EC408PC	Electronic Circuit Analysis Lab	0	0	2	1
9	$* M C 409$	Gender Sensitization Lab	0	0	2	0
		Total Credits	$\mathbf{1 5}$	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{2 1}$

*MC - Satisfactory/Unsatisfactory

EC303PC: DIGITAL SYSTEM DESIGN

B.Tech. II Year I Sem. L T P C

Pre-Requisites: Nil

Course Objectives:

- To understand common forms of number representation in logic circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.
- To understand the Realization of Logic Gates Using Diodes \& Transistors.

Course Outcomes: Upon completing this course, the student will be able to

- Understand the numerical information in different forms and Boolean Algebra theorems
- Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Known about the logic families and realization of logic gates.

UNIT - I:
Number Systems: Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.
Boolean Algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard Form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations.
UNIT - II:
Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don’t Care Map Entries, Tabular Method,
Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations.
UNIT - III
Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.
Registers and Counters: Shift Registers - Left, Right and Bidirectional Shift Registers, Applications
of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.
UNIT - IV
Sequential Machines: Finite State Machines, Synthesis of Synchronous Sequential Circuits- Serial Binary Adder, Sequence Detector, Parity-bit Generator, Synchronous Modulo N -Counters. Finite state machine-capabilities and limitations, Mealy and Moore models.
UNIT - V
Realization of Logic Gates Using Diodes \& Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL, CML and CMOS Logic Families and its Comparison, Classification of Integrated circuits, comparison of various logic families, standard TTL NAND GateAnalysis \& characteristics, TTL open collector O/Ps, Tristate TTL, MOS \& CMOS open drain and tristate outputs, CMOS transmission gate, IC interfacing- TTL driving CMOS \& CMOS driving TTL.

TEXT BOOKS:

1. Switching and Finite Automata Theory - Zvi Kohavi \& Niraj K. Jha, 3rd Edition, Cambridge, 2010.
2. Modern Digital Electronics - R. P. Jain, 3rd Edition, 2007- Tata McGraw-Hill

REFERENCE BOOKS:

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

COURSE : Digital System Design(C213)

CLASS:II-ECE A\&B

Course Outcomes:

After completing this course the student will be able to:
C213.1:State the Boolean algebra, different number systems and codes. (Knowledge)
Change one number system into another number system.(Application)
C213.2: Design the different combinational logic circuits.(Synthesis)
Modify and transform one form of Boolean equation to another form and simplify the
Boolean equation in K-Map.(Application, Comprehension)
C213.3:Design the different Sequential circuits.(Synthesis)
Analyze and compare the flipflops and transform one flipflop to another flipflop.
(Analysis, Evaluation)
C213.4: Design synchronous and asynchronous counters.(Synthesis)
Analyze and differentiate the sequential machine.(Analysis)
C213.5:Define, Differentiate between logic families and realization of logic gates using diodes and transistors. (Knowledge, Analysis)

C213.6: Design the digital system.(Synthesis)
Mapping of course outcomes with program outcomes:
High -3 Medium -2 Low-1

PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C213.1	3	2	-	-	-	-	-	-	-	-	-	-	2	3
C213.2	3	3	3	-	-	-	-	-	-	-	2	3	3	3
C213.3	3	2	3	-	-	-	-	-	-	-	-	-	2	3
C213.4	3	1	3	-	-	-	-	-	-	-	3	-	3	3
C213.5	3	-	3	-	-	-	-	-	-	-	-	2	3	3
C213.6	2	-	3	-	-	-	-	-	-	-	-	-	3	3
AVG	$\mathbf{3 . 0 0}$	$\mathbf{2 . 0 0}$	$\mathbf{3 . 0 0}$								$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{3}$

CO-PO mapping Justification CO-PSO Mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO11. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

PO12 LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PSO1 Design Skills: Design, analysis and development a economical system in the area of Embedded system \& VLSI design

PSO2
Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx

C213.1: State the Boolean algebra, different number systems and codes. (Knowledge)
Change one number system into another number system.(Application)

	Justification
PO1	Students get the knowledge of Boolean algebra, different number systems, codes and different logic gates. (level-3)
PO2	Students solve problems on number system, conversion of SOP\&POS forms and Multilevel NAND/NOR Realizations. (level-2)
PSO1	Moderate Students able to design, analysis and develop a economical system in the area of Embedded system \& VLSI design (level-2)
PSO2	Moderate Students will able to investigate and solve the engineering problems using MATLAB, Keil,e-CAD and Xilinx. (level-3)

C213.2: Design the different combinational logic circuits.(Synthesis)
Modify and transform one form of Boolean equation to another form and simplify the Boolean equation in Karnaugh Map.(Application, Comprehension)

	Justification
PO1	Students get the knowledge on Combinational circuits and Karnaugh map(level-3)
PO2	Students solve problems on Karnaugh map and Tabular Method.(level-2)
PO3	Students able to design Adders,Comparators and Encoders. (level-2)
PO11	Students are able to solve the complex problems and design the circuits(level-3)
PO12	Students are able to design and modify different combinational circuit's with the chage with a broadcast context of technological change.(level-2)
PSO1	Students gain knowledge of digital logic design, circuit analysis, and hardware description languages (HDLs) like Verilog or VHDL (level-2)
PSO2	Absolutely, becoming proficient in MATLAB, Keil, e-CAD, and Xilinx tools can equip students to investigate and solve engineering problems effectively(level-3)

C213.3:Design the different Sequential circuits.(Synthesis)

Analyze and compare the flipflops and transform one flipflop to another flipflop. (Analysis, Evaluation)

	Justification
PO1	Students get the knowledge on Flipflops, Registers and Counters.(level-3)
PO2	Students solve problems on .(level-2)
PO3	Students able to design Adders,Comparators and Encoders. (level-3)
PSO1	Learn about logic gates, flip-flops, sequential circuits, and combinational circuits. (level-2)
PSO2	Get hands-on experience with tools like Cadence, Synopsys, or Xilinx for design, simulation, and synthesis. (level-3)

C213.4: Design synchronous and asynchronous counters.(Synthesis)
Analyze and differentiate the sequential machine.(Analysis)

	Justification
PO1	Students get the knowledge on State diagram,Parity-bit generator and FSM.(level-3)
PO2	Students solve problems on Sequence Detector.(level-3)
PO3	Students able to design Synchronous Sequential circuits,Synchronous and Asychronous counters. (level-2)
PO11	Utilize engineering knowledge to guide decision-making, problem-solving, and innovation within the project (level-2)
PSO1	Familiarize yourself with Xilinx design tools like Vivado or ISE for FPGA design and implementation(level-2)
PSO2	Learn how to integrate these tools in a cohesive workflow for tackling complex engineering challenges (level-3)

C213.5: Define and Differentiate between logic families and realization of logic gates using diodes and transistors.(Knowledge, Analysis)

	Justification
PO1	Students get the knowledge on logic families.(level-3)
PO3	Moderate students will learn and implement the realization of different logic gates(level-3)
PO12	Apply newly acquired knowledge and skills to practical projects or real-world scenarios. (level-2)
PSO1	Implement the design through synthesis tools and place \& route algorithms considering area, power, and performance constraints. (level-3)
PSO2	Practice implementing designs onto Xilinx FPGAs, including synthesis, place and route, and verification (level-3)

C213.6: Design the digital system.(Synthesis)

	Justification
PO1	Students get the knowledge on Logic gates,Boolean Algebra,K-Map,Combinational and Sequential circuits.(level-2)
PO3	Students able to analyse and design complex engineering problems by applying the principles of mathamatics and natural Sciences.(level-3)
PSO1	Create the Register-Transfer Level (RTL) design using HDLs (Verilog or VHDL) for logic synthesis. (level-3)
PSO2	Integrate necessary sensors, actuators, and communication interfaces considering cost-effectiveness and functionality. (level-3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD ACADEMIC CALENDAR 2022-23
 B.Tech./B.Pharm. II YEAR I \& II SEMESTERS

I SEM

S. No	Description	Duration	
		From	To
1	Commencement of I Semester classwork	28.11.2022	
2	$1{ }^{\text {st }}$ Spell of Instructions	28.11.2022	21.01.2023 (8 Weeks)
3	First Mid Term Examinations	23.01.2023	30.01.2023 (1 Week)
4	Submission of First Mid Term Exam Marks to the University on or before	04.02.2023	
5	$2^{\text {nd }}$ Spell of Instructions	31.01.2023	29.03.2023 (8 Weeks)
6	Second Mid Term Examinations	31.03.2023	08.04.2023 (1 Week)
7	Preparation Holidays and Practical Examinations	10.04.2023	15.04.2023 (1 Week)
8	Submission of Second Mid Term Exam Marks to the University on or before	15.04.2023	
9	End Semester Examinations	17.04.2023	29.04.2023 (2 Weeks)

Note: No. of Working / Instructional Days: 93
II SEM

S. No	Description	Duration		
	From	To		
1	Commencement of II Semester classwork	$\mathbf{0 1 . 0 5 . 2 0 2 3}$		
2	$1^{\text {st }}$ Spell of Instructions (including Summer Vacation)	01.05 .2023	08.07 .2023 (10 Weeks)	
3	Summer Vacation	15.05 .2023	27.05 .2023 (2 Weeks)	
4	First Mid Term Examinations	10.07 .2023	15.07 .2023 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before	22.07 .2023		
6	$2^{\text {nd }}$ Spell of Instructions	18.07 .2023	11.09 .2023 (8 Weeks)	
7	Second Mid Term Examinations	12.09 .2023	16.09 .2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	19.09 .2023	23.09 .2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	23.09 .2023		
10	End Semester Examinations	25.09 .2023	07.10 .2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 92

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 (An Autonomous Institution under UGC)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

$\begin{aligned} & \text { TIME/ } \\ & \text { DAAY } \end{aligned}$	$\begin{gathered} \mathrm{I} \\ 9: 40-10: 30 \end{gathered}$	$\begin{gathered} \hline \text { II } \\ \text { 10:30-11:20 } \end{gathered}$	$\begin{gathered} \text { III } \\ 11: 20-12: 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { IV } \\ \text { 12:10-1:00 } \\ \hline \end{gathered}$	1:00-1:30	$\frac{\mathrm{V}}{1: 30-2: 20}$	$\begin{gathered} \text { VI } \\ 2: 20-3: 10 \end{gathered}$	$\underset{\text { VII }}{3: 10-4: 00}$
MON	EDC	COI	EDC LAB / DSD LAB		$\begin{aligned} & \mathrm{L} \\ & \mathrm{U} \\ & \mathrm{~N} \\ & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	DSD	NATL	SPORTS
TUE	PTSP	NATL	DSD	COI		EDC	SS	DSD(T) SS(T)
WED	SS	PTSP	DSD LAB / BS LAB			DSD	SS(T)/EDC(T)	EDC
THU	NATL	PTSP	COI	EDC(T) $\operatorname{DSD}(\mathrm{T})$		SS	DSD	COUN
FRI	SS	EDC	COI	PTSP		LIB	CO-CU/DAA	
SAT	EDC	DSD	SS	NATL		PTSP	BS LAB / EDC LAB	

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
EC301PC	EDC-Electronic Devices and Circuits	K.Rajender	EC306PC	EDC LAB - Electronic Devices and Circuits Lab	K.Rajender/B.Ashwini/M.Srilatha
EC302PC	NATL-Network Analysis and Transmission Lines	M.Nagaraju	EC307PC	DSD LAB - Digital System Design Lab	G.Anusha/T.Divya/P.Krishna Rao
EC303PC	DSD-Digital System Design	G.Anusha	EC308ES	BS LAB - Basic Simulation Lab	P.Rajendra/T.Naresh
EC304PC	SS-Signals and Systems	P.Rajendra	LIB	Library	B.Ashwini/Dr.K.Srinivasa Reddy
EC305ES	PTSP-Probability Theory and Stochastic Processes	T.Naresh	COUN	Counseling	K.Rajender/G.Anusha/G.Anitha
*MC309	COI-Constitution of India re 9	S.Swapna	CO-CU/DAA	Co-Curricular/Dept.Assc.Act.	K.Rajender/T.Naresh/D.Aruna
			SPORTS	Sports	G.Anitha/P.Sumana
Class Incharge		Head \&ex mepritment			Srl indu instiute Bring pagindoy \& Tecm Sheriguda(Vil). Ibratimpatnam Po Niad Telanazna-501510

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

LESSON PLAN

Programme: B.Tech	Academic Year: 2022-23
Year: II	Semester: I
Course Title: Digital System Design	Course Code: EC303PC
Name of Faculty: G.Anusha	Number of lectures per week: 3

Unit-I Syllabus
Number Systems: Number systems, Complements of Numbers, Codes- Weighted and Nonweighted codes and its Properties, Parity check code and Hamming code.
Boolean Algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
2	Review of Numbers Systems	T2, R 1	BB
1	Complements of Numbers	T2, R 1	BB
1	Binary Codes	T2, R 1	BB
2	Binary Coded Decimal Code and its Properties	T2, R 2	BB
1	Unit Distance Codes	T2, R 2	BB
1	Error Detecting And Correcting Codes	T1, R2	BB
2	Basic Theoram And Properties	T1, R2	BB
1	Switching Functions	T1	BB
1	Canonical and Standard Form	T1, R1	BB
1	Problem on Hamming Codes and minimization of Switching functions	T1, R1	BB
1	Digital Logic gates	T1	BB
1	Properties of XOR Gates	T1	BB
1	Universal Gates	T1, R2	BB
2	Multilevel NAND/NOR Realizations	T1, R2	BB

Gap beyond syllabus(if any):
Gap within the syllabus(if any)
Course Outcome 1: Student able to State the Boolean algebra different number systems and codes, Change one number system into another number system.
*Session Duration: 50 minutes
*Total Number of Hours/Unit: 18

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

Unit-II Syllabus

Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don’t Care Map Entries, Tabular Method,
Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers,Encoders, Decoders and Code converters, Hazards and Hazard Free Relations..

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
1	Introduction, The Minimization of Switching function using Theoram	T1, R 2	BB
2	The Karnaugh Map Method-Up to Five Variable Maps	T2,R 2	BB
1	Don't care Map Entries	T2, R 2	BB
1	Tabular Method	T2, R 1	BB
1	Design of Combinational Logic :Adders	T2	BB
1	Subtractors,Comparators	T2,R1	BB
1	Multiplexers,Demultiplexers	T2,R2	BB
1	Decoders, Encoders	T1	BB
1	Code Converters	T2	BB
1	Problems on K-Map,Tabular method and design of combinational Circuits	T1, R 2	BB
2	Root Locus Technique - The Root Locus Concept, Definition Construction of Root Loci - Rules,	T2, R 1	BB
1	Hazards and Hazards Free Relations	T2, R 1	BB

Gap beyond syllabus (if any):
Gap within the syllabus (if any)
Course Outcome 1: Student able to design the different combinational logic circuits,Modify and transform one form of Boolean equation to another form and we can simplify the Boolean equation in K-Map.
*Session Duration: 50 minutes
*Total Number of Hours/Unit: 14

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

Unit-III Syllabus

Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.
Registers and Counters: Shift Registers - Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters

$\begin{array}{\|l\|} \hline \text { No. of } \\ \text { Sessions } \end{array}$ Planned	Topics	Reference	Teaching Method/ Aids
1	Basic Architectural Distinctions between Combinational and Sequential Circuits	T1,R1	BB
2	Latches and Flipflops	T1	BB
1	SR,JK,Race Around Conditions in JK	T1, R 1	BB
1	JK Master Slave	T1, R 1	BB
1	D and T Type Flipflops	T1, R 1	BB
2	Excitation Table of all Flip Flops	T1, R 2	BB
1	Design of a Clocked Flip-Flop	T1, R 1	BB
1	Timing and Triggering Consideration	T1, R2	BB
1	Conversation from one type of Flip-Flop to another	R1	BB
1	Shift Registers, Data Transmission in Shift Registers	T2,R2	BB
1	Operation of Shift Registers and its applications	T2	BB
1	Design and Operation of Ring Counter	R1	BB
1	Applications of Shift Registers	T1,R2	BB
1	Twisted Ring Counter	T1	BB
2	Operations of Asynchronous And Synchronous Counters	T1	BB
Gap beyond syllabus(if any):			
Gap within the syllabus(if any)			
Course Outcome 1:Student able to design the different Sequential Circuits.Analyse and compare the flipflops and transform one flipflop to another flipflop.			

*Session Duration: 50minutes
*Total Number of Hours/Unit: 18

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

Unit-IV Syllabus

Sequential Machines: Finite State Machines, Synthesis of Synchronous Sequential CircuitsSerial Binary Adder, Sequence Detector, Parity-bit Generator, Synchronous Modulo N Counters. Finite state machine-capabilities and limitations, Mealy and Moore models.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
$\mathbf{1}$	Introduction to finite state machines	R1	BB
2	Synthesis of Synchronous Sequential Circuits	R2	PPT
1	Serial Binary Adder	R1	PPT
1	Sequence Detector	R1	PPT
1	Parity Bit Generator	R1	BB
1	Design of Synchronous Modulo N-Counters	R1	BB
1	Capabilities and Limitations of Finite State Machines	R1	BB
2	Mealy and Moore Models	R1	PPT
1	Lag Controller Design in Frequency Domain - Procedures, Problems	R1	BB
1	Lead Controller Design in Frequency Domain - Procedure, Problems	R1	BB
1	Lead-Lag Controller Design in Frequency Domain - Procedure, Problems	R1	BB
1	Analog and digital implementation of controllers	R1	BB

Gap beyond syllabus(if any):

Gap within the syllabus(if any)

Course Outcome 1: Students able to design synchronous and asynchronous counters. Analyze and differentiate the sequential machines.
*Session Duration: 50minutes
*Total Number of Hours/Unit: 14

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

Unit-V Syllabus

Realization of Logic Gates Using Diodes \& Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL, CML and CMOS Logic Families and its Comparison, Classification of Integrated circuits, comparison of various logic families, standard TTL NAND Gate-Analysis \& characteristics, TTL open collector O/Ps, Tristate TTL, MOS \& CMOS open drain and tristate outputs, CMOS transmission gate, IC interfacing- TTL driving CMOS \& CMOS driving TTL.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
2	Realization of logic gates using Diodes and Transistors	$\mathrm{R} 1, \mathrm{~T} 1$	BB
2	Explain about Logic Families:DCTL,RTL,DTL,TTL,CML and CMOS	R 1	BB
1	Comparison of various logic families	R 1	BB
1	Clasification of Integrated Circuits	R 1	BB
2	TTL NAND Gate-Analysis \& characteristics	R 1	BB
2	TTL open collector O/Ps,Tristate outputs	R 1	BB
2	MOS \& CMOS open drain and tristate outputs	R 1	BB
1	CMOS Transmission gate	R 1	BB
2	IC Interfacing -TTL driving CMOS \& CMOS driving TTL	R 1	BB
Gap beyond syllabus(if any):			
Gap within the syllabus(if any) Course Outcome 1: Student able to get knowledge on logic families and realization of basic gates using diodes and transistors.			

*Session Duration: 50minutes
*Total Number of Hours/Unit: 14

TEXT BOOKS:

T1. Switching and Fininte Automata Theory-Zvi Kohavi \& Niraj K.Jha, $3{ }^{\text {rd }}$ Edition,Cambridge.
T2: Modern Digital Electronics - R. P. Jain, 3rd Edition, 2007- Tata McGraw-Hill

REFERENCE BOOKS:

R1. Switching Theory and Logic Design - A Anand Kumar, $3^{\text {rd }}$ Edition ,PHI,2013
R2. Digital Design -Morris Mano, $4^{\text {th }}$ Edition ,Pearson.

WEB REFERENCES:

W1. https://ecm2d.weebly.com/uploads/2/2/4/1/22419142/chapter-1.pdf

W2.https://www.tutorialspoint.com/5-variable-k-map-in-digital-electronics

W3. https://unacademy.com/content/gate-cse-it/difference-between-combinational-and-sequential-circuit/

W4. https://www.javatpoint.com/finite-state-machine

W5.https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1z3J0CK8RpAMpuHVD47IeW3fSb4 f9TcVe/view? usp=drive_link

Unit 2 link: https://drive.google.com/file/d/1K-ZUp5XuxZPpqRWgnLUi8hgP6VXPK5r/view? usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1z3J0CK8RpAMpuHVD47IeW3fSb4 f9TcVe/view? usp=drive_link

Unit 4 link:

https://drive.google.com/file/d/1z3J0CK8RpAMpuHVD47IeW3fSb4
f9TcVe/view? usp=drive_link

Unit 5 link:

https://drive.google.com/file/d/1pxIdlsQ08HEzOTtKieN_OAL7Fdp OwXGH/view? usp=sharing

Power point presentation

PPT link:

https://drive.google.com/file/d/1pPMVZ7BgKy2y3hwMARyPO8u6 C3TGkdP9/view? usp=sharing

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, April/May - 2023 DIGITAL SYSTEM DESIGN
 (Electronics and Communication Engineering)

Time: 3 Hours
Max. Marks: 75
Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

> PART - A
(25 Marks)
1.a) Given that $(292)_{10}=(1204)_{b}$, determine the value of b.
b) Write short notes on weighted binary codes.
c) What is the difference between Decoder and Demultiplexer?
d) Define a combinational logic circuit and give some examples.
e) What is a Flip-Flop? What is the difference between Flip Flop and Latch
f) Give the excitation table and characteristic equations of SR and JK Flip Flops
g) What is Meely and Moore models?
h) What are Finite State Machines and what are their limitations?
i) Draw the circuit diagram of OR gates using discrete components.
j) State advantages and disadvantages of TTL.
PART - B
(50 Marks)
2.a) Perform the following using BCD arithmetic.
i) $(79)_{10}+(177)_{10} \quad$ ii) $(481)_{10}+(178)_{10}$
b) Obtain the Dual and complement to the following Boolean expressions
[4+6]
i) $F=A B+A(B+C)+\bar{Z} B+D)$
ii) $F=A+B+\overline{A B}$

OR
3.a) Place the following equations into proper canonical form.
i) $F(A, B, C)=\overline{A B}+A C+B C$
ii) $F(A, B, C, D)=(A+\bar{B}(A+\bar{B}+D)$
b) State and prove consensus theorem.
4.a) \quad Simplify $F(A, B, C, D)=\sum(4,5,6,7,12,13,14)+\mathrm{d}(1,9,11,15)$ using K-map
b) With a neat design procedure, explain the implementation of a 4-bit Magnitude Comparator.

OR

5.a) What is Encoder? Design an octal to binary Encoder.
b) Reduce the expression using Quine McCluskey's method $\mathrm{F}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5)=$ $\sum \mathrm{m}(0,2,4,5,6,7,8,10,14,17,18,21,29,31)+\sum \mathrm{d}(11,20,22)$.
6.a) With a neat diagram, explain the operation of bidirectional shift register.
b) Describe the conversion of SR-FlipFlop to JK-FlipFlop.

OR

7.a) With a neat diagram, explain the operation of a 10-bit ring counter.
b) Explain the operation of synchronous and asynchronous counter.
8.a) Design a sequential circuit for the diagram shown in the below figure.

b) Discuss about the capabilities of Finite State Machines.

OR

9.a) Explain in detail about state equivalence and machine minimization.
b) With an example, describe state reduction in an incompletely specified machine. [5+5]
10.a) Draw the circuit of CMOS NOR gate and explain its operation. List some of the advantages of CMOS over other logic families.
b) Explain about Fan-In, Fan-Out, Tri-state gate.

OR

11.a) Draw and explain the circuit of 2-input NAND and 2-input NOR gates using CMOS.
b) Draw the symbol of CMOS transmission gate and write its advantages and applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, March - 2022

DIGITAL SYSTEM DESIGN
(Electronics and Communication Engineering)
Time: 3 Hours
Max. Marks: 75

Answer any five questions

All questions carry equal marks
1.a) Solve for x
i) $(257)_{8}=(x)_{2}$
ii) $(21.625)_{10}=(\mathrm{x})_{8}$
iii) $(\text { BC.2 })_{16}=(\mathrm{x})_{8}$ iv) $(33)_{10}=(201)_{\mathrm{x}}$
b) Obtain dual of the following Boolean expressions
(i) $\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}^{\prime}(\mathrm{B}+\mathrm{D})$
(ii) $A+B+A^{\prime} B^{\prime} C$.
2.a) Express the Decimal Digits 0-9 in BCD, 2421, 84-2-1 and Excess-3.
b) Using the tabular method, obtain the minimal expression for $\mathrm{F}=\sum \mathrm{m}(6,7,8,9)+\sum \mathrm{d}(10,11,12,13,14.15)$.
3.a) Minimize the following expression using K-map and realize using NAND Gates. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,7,11,15)+\sum \mathrm{d}(0,2,5)$.
b) Construct a full adder using only two half adders and one OR gate.
4.a) With the aid of external logic, convert D type flip-flop to a JK flip-flop.
b) Design a synchronous modulo-12 counter using JK flip-flop.
5.a) Find the characteristic equation for:
i) T flip-flop
ii) D flip-flop
b) Draw and explain the operations of 4-bit universal shift register.
6.a) Draw and explain the modulo N -counters.
b) Explain concept of minimal cover table.
7.a) Discuss about the approaches of designing synchronous sequential finite state machines.
b) Design a 1101 sequence detector and draw its logic diagram.
[5+10]
8. Write a short note on followings:
a) CMOS transmission gate
b) Tristate TTL
c) AND, OR gates using DTL.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, March - 2021
 DIGITAL SYSTEM DESIGN
 (Electronics and Communication Engineering)

Time: 3 Hours
Max. Marks: 75

Answer any five questions

All questions carry equal marks
1.a) Convert the following to Decimal and then to octal.
i) $(125 \mathrm{~F})_{16}$
ii) $(10111111)_{2}$
iii) (4234) 5 .
b) How do you convert a gray number to binary? Generate a 4-bit gray code directly using the mirror image property.
[7+8]
2.a) Find all the prime implicants of the function using Quine McClusky method $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma(7,9,12,13,14,15)+\mathrm{d}(4,11)$.
b) Design a circuit that converts 8421 BCD code to XS-3 code.
3.a) With a neat circuit diagram and waveforms explain the operation of Master Slave JK flip flop.
b) Explain the conversion of SR flip flop into JK and D flip flop with an excitation table.
[8+7]
4.a) What are the capabilities and limitations of finite state machines? Explain.
b) Draw the diagram of Mealy type FSM for serial adder.
5.a) Describe the operation of TTL logic circuit working as NAND gate.
b) Realize 2-input OR gates using CMOS logic and then explain its operation with the help of functional table.
6.a) Convert the following expression into SOP and POS:
i) $(A B+C)(B+C ' D)$
ii) $x^{\prime}+\left(x+y^{\prime}\right)\left(y+z^{\prime}\right)$
b) Implement the switching function using $\mathrm{F}=\Sigma \mathrm{m}(0,1,3,4,12,14,15)$ using an 8 input MUX.
[8+7]
7.a) Design a 3-bit synchronous counter with T-flip flop and draw the diagram.
b) Discuss the differences between combinational and sequential circuit.
8.a) Mention the characteristics of different logic families. Also compare the performance of TTL, CMOS and ECL logic.
b) Design a synchronous sequential circuit which goes through the following states: $1,3,5,3,6,1,3,5$.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, August/September -2022

DIGITAL SYSTEM DESIGN
(Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) State and prove Boolean Theorems:
i) Commutative
ii) Associative
iii) Distributive
b) Expand $A(\bar{A}+B)(\bar{A}+B+\bar{C})$ to maxterms and minterms.
c) i) Add $6 \mathrm{E}_{16}$ and $\mathrm{C}_{16} \quad$ ii) Add $5 \mathrm{D}_{16}$ from $3 \mathrm{~A}_{16}$
$[6+5+4]$
2.a) Reduce the following function using K-Map.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(1,4,8,10,11,20,22,24,25,26)+\mathrm{d}(0,12,16,17)$
b) Design and explain a 4-bit binary parallel Adder/Substractor.
3.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8 -input multiplexers.
b) Describe the operations performed by the following logic circuits with an example:
(i) Comparator
(ii) Decoder
(iii) Encoder.
[9+6]
4.a) With the block diagram, Truth table, describe the principle operation of edge triggered negative SR flip flop.
b) Explain the operation of 4 -stage twisted ring counter with circuit diagram and timing diagram.
5.a) Differentiate combinational and sequential circuits.
b) Write differences between Mealy and Moore machines.
c) Write the limitations of finite state machines?
6.a) Design, draw and explain a 4-bit ring counter using D- flip flops with relevant timing diagrams.
b) Explain the operation J-K master slave flip flop. Explain its truth table.
7.a) Draw a state diagram of a sequence detector which can detect 101.
b) How to interface TTL and CMOS and also CMOS to TTL.
8.a) Discuss about RTL logic family in detail, with one example.
b) Realize 2-input NAND using TTL logic.

Sri Indu Institute of Engineering \& Technology

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510
I - Mid Examinations, JAN -2023
Year \& Branch: II -ECE (A,B) Date: 23/01/23(FN)
Time: 60 mins
Subject: DSD
Max. Marks: 10
$2 * 5=10$ marks
1.a) Write 12-bit hamming code,for a given 8 bit data 01011011
(Knowledge)
(C213.1) (3M)
b)Locate and Correct if any errors, if the received hamming code is 101110110100 there are four parity bits and even parity is used.
(C213.1) (2M)
2. a)Define Universal gates and properties of X-OR Gates? (C213.1) (3M) (Knowledge)
b)Change the Expression $\mathbf{X}\left(\mathbf{X}+\mathbf{Y}^{`}\right)\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right)$ into sum of products and product of sums (C213.1) (Comorehension) (2M)
3. Apply the K-Map method to simplify the Boolean functions $\mathbf{Y}=\mathbf{A B}+\mathbf{C}+\mathbf{A C D}+\mathbf{A B C D}+\mathbf{C D}$? (C213.1) (5M) (Application)

4a) State and proof the De-Morgan's Theoram (C213.2) (3M) (Knowledge)
b) Solve the given expression using De-Morgan's Theoram ((AB)'+A'+AB)' (C213.2)
(3M) (Evaluation)

Sri Indu Institute of Engineering \& Technology

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510
II - Mid Examinations, APRIL -2023
Year \& Branch: II -ECE (A,B)
Date: 31/03/23(FN)

Answer any TWO Questions. All Question Carry Equal Marks
2. Design a 3-bit up/down counter which counts up when the control signal $\mathrm{M}=1 \&$ counts down when $\mathrm{M}=0$ (C213.1) (5M) (Comprehension)
3. Define Sequence Detector? Design a Mealy type sequence detector to detect a serial input sequence of 101 ? (C213.1) (5M) (Knowledge)
4.Difference between logic families and Explain in detail TTL logic family (C213.2) (5M)
(Knowledge)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF ECE

B.Tech II Year I Sem I Mid -Term Examination,JAN-2023

DIGITAL SYSTEM DESIGN
(Objective Exam)
DATE: 23/01/2023(FN)
TIME: 20 Min
MAX.MARKS: 10
NAME : \square ROLL NO: \square MARKS: \square

I.Choose The Correct Answers

1. The value of binary 1111 is
a) $2^{3}-1$
b) $2^{4}-1$
c) 2^{4}
d) none of these
2. The following code is not a BCD code.
a) Gray Code
b) Xcess 3 Code
c) 8421 code
d) All of these
3. A 15 -bit hamming code requires
a) 4 parity bits
b) 5 parity bits
c) 15 parity bits
d) 7 parity bits
4. Which of the following are called Universal gates
a) NAND, NOR
b) AND, OR
c) XOR XNOR
d) OR, XOR
5. A gate is enabled when its enable input is at logic 0 . The gate is
a) NOR
b) AND
c) NAND
d) None of these '

6 Convert the hexadecimal number (1E2)16 to decimal
a) 480
b) 482
c) 481
d) 484
7. (170)10 is equivalent to
a) (FD)16 b) (DF)16
c) (AA) 16
d) (AF)16
8. In combinational circuits the o / p depends on \qquad i/p
a) Present
b) Past
c) $\mathrm{A} \& \mathrm{~B}$
d) None
9. An overflow occurs in \qquad
a) MSD position
b) LSD position
c) Middle position
d) Signed Bit

10 The combinational circuits are \qquad than sequential circuits
a) Slower
b) Faster
c) Same Speed
d) None

II.Fill In The Blanks:

1. Cyclic codes are also called \qquad codes.
2. The basic two types of BCD codes are \qquad and \qquad codes
3. The NOR gate can function as a NOT gate if \qquad
4. The NOR-NOR Realization is equivalent to gates
5. The 2 's Complement of 10110000 \qquad
6. Code is a symbolic representation of \qquad information
7. In Boolean algebra $\mathrm{A}+\mathrm{AB}=$ \qquad
8. The output of a logic gate is 1 , when all its inputs are at logic 0 .The gate is either-
9. Truth table is used to express
10. The logical sum of two or more logical product terms is called \qquad

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE
 B.Tech II Year I Sem II Mid -Term Examination,APRIL-2023 DIGITAL SYSTEM DESIGN
 (Objective Exam)
 DATE: 31/03/2023(FN)
 TIME: 20 Min
 MAX.MARKS: 10
 NAME :
 \square
 ROLL NO:
 \square MARKS:
 \square

I.Choose The Correct Answers

1. How many Flipflops are Cascaded in Master Slave filpflop
a) 1
b) 2
c) 3
d) 4
2. Modulus of a counter having n -bit is given as
a) $2 n \geq N$
b) $2^{n} \geq \mathrm{N}$
c) $2 / n=N$
d) $2+n=N$
3.How many states are required to detect 110 in moore circuit
a) 1
b) 4
c) 3
d) 6
3. Which of the following filpflop is used as a latch
a) J-K flipflop
b) Master-Slave flipflop
c) S-R flipflop
d)T flipflop
5.The characteristic equation of a T- flipflop
a) $\mathrm{Q}_{\mathrm{n}+1}=\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{T}+\mathrm{Q}_{\mathrm{n}} \mathrm{T}^{\prime}$
b) $\mathrm{Q}_{\mathrm{n}+1}=\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{T}^{\prime}+\mathrm{Q}_{\mathrm{n}} \mathrm{T}$
c) $Q_{n+1}=Q_{n} R+S^{\prime}$
d) $Q_{n+1}=Q_{n}{ }^{\prime}$
6.In general, a Sequential Logic Circuit consists of
a) only flip-flops
b)only gates
c) flip-flops\& Combinational Logic Circuits
d) only Combinational Logic Circuits
4. A Sequential Circuit with 10 states will have
a) 10 flip-flops
b) 5 flip-flops
c) 4 flip-flops
d) 0 flip-flops
5. Mealy type of outputs are
a) Independent of the inputs
b)dependent only on inputs
c) dependent only on present states
d) dependent only on the present state and inputs
6. Which of the following is the fastest of all logic families
a)TTL
b)ECL
c)DTL
d)CML
7. Which gate is used as an Inverter
a) AND
b) NAND
c) NOR
d) EX-OR

II.Fill In The Blanks:

1. For a $\mathrm{J}-\mathrm{K}$ flipflop, $\mathrm{J}=1, \mathrm{~K}=1$ is the \qquad mode.
2. Synchronous counters are \qquad than Asynchronous counters.
3. \qquad circuits require memory elements.
4. Moore type of outputs are dependent on \qquad
5.The Modulo- 10 counter is also called as \qquad
6.The number of pins connected to a given output is known as \qquad
7.The operating speed of totem- pole output is \qquad
5. What is a figure of merit \qquad
6. Redundant states can be reduced using \qquad technique.
10.A register capable of shifting the binary information in one or both directions is known as \qquad register.

Sri Indu Institute of Engineering \& Technology

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510
B-Tech I - Mid Examinations, JAN-2023
Year \&Branch: II -ECE-A, B
Date: 23-01-2023(FN)
Subject: DSD

ANSWER KEY

Descriptive paper key link:
https://drive.google.com/file/d/1sZJ07wK6cRaLrNuBzUn8pp5DS9RY3qKj/view? usp=shari
ng

Objective Key Paper

I.Choose The Correct Answers

II.Fill In The Blanks:
1)B
2)B
3) A
4) A
5) A
6)B
7)C
8)C
9) A
10)B

1) Block Code
2)unpacked and packed
3)one input is set to 0
2) OR ,AND Realization
3) 01010000
4) Discrete
5) AB
6) NOR
7) Boolean Expression
8) SOP

Sri Indu Institute of Engineering \& Technology

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510
B-Tech II - Mid Examinations, APRIL-2023
Year \&Branch: II -ECE-A, B
Date: 31-03-2023(FN)
Subject: DSD

ANSWER KEY

Descriptive paper key link:
https://drive.google.com/file/d/1kaQU5UaJY9VavOiwCHPLPu6BKPcHqo0V/view?usp=sh aring

Objective Key Paper

I.Choose The Correct Answers

II.Fill In The Blanks:
1)B
2)B
3)B
4)C
5)A
6)C
7)C
8)D
9) D
10)B

1) Toggle
2) Faster
3) Sequential circuits
4) Present state of the flipflop
5) Decade Counter
6) Fan-in
7) High
8) Power dissipation*Propagation delay
9) State Reduction
10) Shift Register

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

ASSIGNMENT- 1

SUBJECT: DIGITAL SYSTEM DESIGN
1.State and proof the De-Morgan's theorem. C213.1 Knowledge
2. Define Universal gates and Properties of X-OR gates. C213.1 Knowledge
3. A) Write 7 -bit hamming code, for a given 4 -bit data 1110 by using even parity.
B) Write 12 -bit hamming code, for a given 8 -bit data 01011011 by using even parity. C213.1

Knowledge

4. A) Solve the binary subtraction using 1's and 2's complement method. (110011) $)_{2}-(1110011)_{2}$
B) Design all the basic gates using only NAND gates C213.1 Evaluation
5. A)Design and explain 3 to 8 decoder with necessary truth table and logic diagram

C213.1Synthesis

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY
Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

ASSIGNMENT- II

SUBJECT: DIGITAL SYSTEM DESIGN

1	A)Write the characteristic equations and excitation tables of JK, SR, D and T flip-flops. B) Explain the Race around condition in flip-flops in detail.	C 213.3	Comprehension Knowledge
2	Explain in detail Universal Shift Register.	C 213.3	Comprehension
3	Design a 4-bit up/down ripple counter and explain its timing diagrams.	C 213.3	Synthesis
4	Define sequence detector? Design a mealy type sequence detector to detect a serial input sequence of 101.	C 213.4	Knowledge
5	Design and construct MOD-10 synchronous counter using JK flip flops.	C 213.4	Synthesis
6	Design a serial adder for moore circuit	C 213.4	Synthesis

S.NO	Unit	TOPIC	Number of Sessions Planned	Teaching method/Aids
1.		Write 12-bit hamming code,for a given 8 bit data 01011011	1	BB
2.	1	Change the Expression $\mathbf{X}\left(\mathbf{X}+\mathbf{Y}^{\prime}\right)\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right)$ into sum of products and product of sums	1	BB
3.		Apply the K-Map method to simplify the Boolean functions $\mathbf{Y}=\mathbf{A B}+\mathbf{C}+\mathbf{A C D}+\mathbf{A B C D}+\mathbf{C D}$	1	BB
4.	2	Solve the given expression using De-Morgan's Theoram ((AB)'+A'+AB)'	1	BB

5.		Explain in detail Universal Shift register	1	BB
6.	3	Define Sequence Detector? Design a Mealy type sequence detector to detect a serial input sequence of 101	1	BB
7.	4	Difference between logic families and Explain in detail TTL logic family (C213.2) (5M) (Knowledge)	1	BB
8.			1	BB
9.	5	Explain about Read and Write cycles of a static RAM with neat timing waveforms	1	BB
10.		Convert an SR Flip-Flop into JK Flip-Flop.	1	BB

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/
2.2.1: Assess Learning Levels, Special programs for advance\& Slow learners

Result Analysis:

Course Title	DIGITAL SYSTEM DESIGN
Course Code	EC303PC
Programme	B.Tech
Year \& Semester	IIyear I-semester.
Regulation	R18
Course Faculty	Mrs.G.Anusha ,Assistant Professor, ECE

Slow learners:

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	21 X 31 A 0402	3 S	16	16
2	21 X 31 A 0403	3 S	16	17
3	21 X 31 A 0408	3 S	18	18
4	21 X 31 A 0409	4 S	14	15
5	21 X 31 A 0412	3 S	21	14
6	21 X 31 A 0414	3 S	21	16
7	21 X 31 A 0417	3 S	18	18
8	21 X 31 A 0422	3 S	17	19
9	21 X 31 A 0433	3 S	22	19
10	21 X 31 A 0435	3 S	19	17
11	21 X 31 A 0436	3 S	14	19
12	21 X 31 A 0441	4 S	15	17
13	21 X 31 A 0443	3 S	25	19

14	21X31A0445	3 S	22	14
15	21X31A0449	3 S	19	19
16	21X31A0450	3 S	19	14
17	21X31A0453	3 S	21	20
18	21X31A0455	3 S	16	18
19	21X31A0457	3 S	20	18
20	21X31A0458	3 S	19	18
21	21X31A0460	$3 S$	22	17

Advanced learners:

S.NO	ROLL.NO.	Percentage	GATE MATERIAL
1	21X31A0401	71	Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flip-flops, counters, shift-registers and finite state machines
2	21X31A0413	72	
3	21X31A0415	70.875	
4	21X31A0418	73.755	
5	19X31A0420	82.625	
6	21X31A0423	72.255	
7	21X31A0426	78.755	
8	21X31A0442	71.62	
9	21X31A0444	70.625	
10	21X31A0446	74.12	
11	21X31A0447	71.12	

12	21X31A0451	73.75

BATCH ECE-II BTECH I SEM ECE-A RESULT ANALYSIS

$\begin{aligned} & \text { ACADAMIC } \\ & \text { YEAR } \end{aligned}$	$\begin{aligned} & \text { COURSE } \\ & \text { NAME } \end{aligned}$	NUMBER OF STUDENTS		QUESTION PAPER SETTING		PASS\%
		APPEARED	PASSED	INTERNAL	EXTERNAL	
2022-23	DIGITAL SYSTEM DESIGN	54	35	$\underset{\text { FACULTY }}{\text { COURSE }}$	JNTUH	63.33

DIGITAL SYSTEM DESIGN (C213) RESULT ANALYSIS

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)
Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501510
Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING REMEDIAL CLASSES TIME TABLE
A.Y 2022-23

SEMESTER-I

$\begin{aligned} & \text { BRANCH/ } \\ & \text { SEC } \end{aligned}$	$\begin{gathered} \text { MON } \\ \text { 4.00 PM- } \\ \text { 5.00 PM } \end{gathered}$	$\begin{gathered} \text { TUE } \\ \text { 4.00 PM-5.00 } \\ \text { PM } \end{gathered}$	$\begin{aligned} & \text { WED } \\ & \text { 4.00 PM- } \\ & \text { 5.00 PM } \end{aligned}$	$\begin{gathered} \text { THUR } \\ \text { 4.00 PM- } \\ \text { 5.00 PM } \end{gathered}$	$\begin{gathered} \text { FRI } \\ \text { 4.00 PM- } \\ \text { 5.00 PM } \end{gathered}$
II ECE-A	EDC	NATL	DSD	PTSP	SS
II ECE-B	NATL	DSD	PTSP	SS	EDC
III ECE-A	MPMC	DCCN	CS	BEFA	EMI
III ECE-B	DCCN	CS	BEFA	EMI	MPMC
III ECE-C	CS	BEFA	EMI	MPMC	DCCN
IV ECE-A	MW\&OC	DIP	PPLE	NS\&C	JAVA
IV ECE-B	DIP	PPLE	NS\&C	JAVA	MW\&OC
IV ECE-C	PPLE	NS\&C	JAVA	MW\&OC	DIP

ead of TheDDepartmen Electronics and Communication Engg. Dept

Sri indd insititute of Engineenng \& Tech
Sheriguda (vili). Brahimpatnam
RR Dist fêlàngana -501 gta

RI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Electronics and Communication Engineering
Course Outcome Attainment (Internal Examination-1)

Name of the faculty G. Anusha
Branch \& Section: ECE - A
Course Name: DIGITAL SYSTEM DESIGN

Academic Year: 2022-23
Examination: I Internal
Year: II Semester: I

S.NO	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max	Marks ==>	5		5		5		5		10	5
1	21X31A0401	3				3				2	5
2	21X31A0402	3		2						6	5
3	21X31A0403		4	3						5	5
4	21X31A0404	3				3				5	5
5	21X31A0405	5		4						6	5
6	21X31A0406	3				2				6	5
7	21X31A0407	3		3						7	5
8	21X31A0408	3				3				6	5
9	21X31A0409	5								5	5
10	21X31A0410	3				3				7	5
11	21X31A0412	2		2			2			7	5
12	21X31A0413	4		2						7	5
13	21X31A0414			4		2				7	5
14	21X31A0415		3			3				8	5
15	21X31A0416	3								8	5
16	21X31A0417	2		2						9	5
17	21X31A0418	4								9	5
18	21X31A0420	5		4						9	5
19	21X31A0421	5				4				6	5
20	21X31A0422	5						3		6	5
21	21X31A0423		4			3				9	5
22	21X31A0424	5								10	5
23	21X31A0425	3		3						10	5
24	21X31A0426	4				1				10	5
25	21X31A0427	5								10	5
26	21X31A0428	5		2						8	5
27	21X31A0429	3				1				8	5
28	21X31A0431	2		2						10	5
29	21X31A0432	5								10	5
30	21X31A0433	4			2					10	5
31	21X31A0434	4		4						10	5
32	21X31A0435		4			3				7	5
33	21X31A0436	5			2					4	5
34	21X31A0437	4					2			4	5
35	22X35A0401	5		4						9	5
36	22X35A0402		5	4						9	5
37	22X35A0403	4					4			9	5
38	22X35A0404	3				4				6	5
39	22X35A0405	4		3						8	5
40	22X35A0406		5	2						8	5

CO Mapping with Exam Questions:

$\mathrm{CO}-4$										
$\mathrm{CO}-5$										
$\mathrm{CO}-6$										

$>$ Target $\%$	94%	100%	69%	100%	76%	100%	100%		89%	100%

CO Attainment based on Exam Questions:

CO -	94%		69%		76%				89%	100%
CO -2							100%		89%	100%
CO -3									89%	100%
CO -4										
CO -5										
CO -6										

CO	Subj	obj	Asgn	Overall	Level
CO-1	80%	89%	100%	90%	3.00
CO-2	100%	89%	100%	96%	3.00
CO-3		89%	100%	94%	3.00
CO-4					
CO-5					
CO-6					
Attainment (Internal 1 Examination)					
A.00					

Attainment Level	
1	40%
2	60%
3	$>60 \%$

Faculty Signature

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Electronics and Communication Engineering
Course Outcome Attainment (Internal Examination-2)

Name of the faculiG. Anusha	Academic Year:	2022-23	
Branch \& Section:ECE - A	Examination:	II Internal	
Course Name: \quad DIGITAL SYSTEM DESIGN	Year: II	Semester:	I

S.No HT No. Max. Marks ==>		Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj4	A4
		3	2	5		5		5		10	5
1	21X31A0401	3				3				6	5
2	21X31A0402	3		2						8	5
3	21X31A0403		4	3						8	5
4	21X31A0404	3				3				8	5
5	21X31A0405	5		4						4	5
6	21X31A0406	3				2				8	5
7	21X31A0407	3		3						4	5
8	21X31A0408	3				3				7	5
9	21X31A0409	5								7	5
10	21X31A0410	3				3				7	5
11	21X31A0412	2		2			2			5	5
12	21X31A0413	4		2						8	5
13	21X31A0414			4		2				7	5
14	21X31A0415		3			3				8	5
15	21X31A0416	3								5	5
16	21X31A0417	2		2						8	5
17	21X31A0418	4								4	5
18	21X31A0420	5		4						9	5
19	21X31A0421	5				4				8	5
20	21X31A0422	5						3		8	5
21	21X31A0423		4			3				10	5
22	21X31A0424	5								10	5
23	21X31A0425	3		3						10	5
24	21X31A0426	4				1				10	5
25	21X31A0427	5								10	5
26	21X31A0428	5		2						9	5
27	21X31A0429	3				1				4	5
28	21X31A0431	2		2						5	5
29	21X31A0432	5								4	5
30	21X31A0433	4			2					9	5
31	21X31A0434	4		4						8	5
32	21X31A0435		4			3				9	5
33	21X31A0436	5			2					7	5
34	21X31A0437	4					2			8	5
35	22X35A040	5		4						10	5
36	22X35A040		5	4						10	5
37	22X35A040	4					4			10	5
38	22X35A040	3				4				10	5
39	22X35A040	4		3						10	5
40	22X35A040		5	2						9	5
41	22X35A040	5					5			9	5
42	22X35A040	3	2							9	5
43	22X35A040	5		3						9	5
44	22X35A041	4				3				9	5

45	22X35A041	5		3						10	5
46	22X35A041	4		4						10	5
47	22X35A041	5				4				9	5
48	22X35A041	4		3						9	5
49	22X35A041	4		2						6	5
50	22X35A041	5		4						9	5
51	22X35A041	4				4				10	5
52	22X35A041	4		5						10	5
53	22X35A041	5				4				10	5
54	22X35A042	5		4						10	5
	et set by the ty / HoD	1.80	1.20	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
$\begin{aligned} & \text { Numb } \\ & \text { perfor } \\ & \text { target } \end{aligned}$	ber of students ormed above the \qquad	47	7	17	2	13	4	1	0	46	54
Num	ber of students pted	47	7	25	2	17	4	1	0	54	54
	ntage of nts scored than target	100\%	100\%	68\%	100\%	76\%	100\%	100\%		85\%	100\%

CO Mapping with Exam Questions:

$\mathrm{CO}-1$										
$\mathrm{CO}-2$										
$\mathrm{CO}-3$		y								
$\mathrm{CO}-4$	\mathbf{y}								y	y
$\mathrm{CO}-5$			\mathbf{Y}						y	y
$\mathrm{CO}-6$					\mathbf{y}		\mathbf{y}		y	y

CO Attainment based on Exam Questions:

\square

$\mathrm{CO}-2$										
$\mathrm{CO}-3$										
$\mathrm{CO}-4$	100%								85%	100%
$\mathrm{CO}-5$			68%						85%	100%
$\mathrm{CO}-6$					76%		100%		85%	100%

CO	Subj	obj	Asgn	Overall	Level
CO-1					
CO-2					
CO-3					
CO-4	100%	85%	100%	95%	3.00
CO-5	68%	85%	100%	84%	3.00
CO-6	88%	85%	100%	91%	3.00

Attainment Level	
1	40%
2	60%
3	$>60 \%$

Faculty Signature

RI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Electronics and Communication Engineering

Course Outcome Attainment (University Examinations)

Name of the faculty: G. Anusha
Branch \& Section:
Course Name:

S.No	Roll Number	Marks Secured
1	21X31A0401	36
2	21X31A0402	10
3	21X31A0403	19
4	21X31A0404	22
5	21X31A0405	23
6	21X31A0406	34
7	21X31A0407	5
8	21X31A0408	0
9	21X31A0409	4
10	21X31A0410	35
11	21X31A0412	8
12	21X31A0413	23
13	21X31A0414	8
14	21X31A0415	11
15	21X31A0416	6
16	21X31A0417	11
17	21X31A0418	17
18	21X31A0420	16
19	21X31A0421	8

Academic Year:
Year / Semester: 2022-23
II / I

S.No	Roll Number	Marks Secured
36	22X35A0402	40
37	22X35A0403	20
38	22X35A0404	30
39	22X35A0405	17
40	22X35A0406	13
41	22X35A0407	30
42	22X35A0408	17
43	22X35A0409	19
44	22X35A0410	29
45	22X35A0411	7
46	22X35A0412	39
47	22X35A0413	29
48	22X35A0414	40
49	22X35A0415	37
50	22X35A0416	53
51	22X35A0417	15
52	22X35A0418	23
53	22X35A0419	19
54	22X35A0420	23

20	21X31A0422	4			
21	21X31A0423	23			
22	21X31A0424	4			
23	21X31A0425	16			
24	21X31A0426	14			
25	21X31A0427	52			
26	21X31A0428	11			
27	21X31A0429	29			
28	21X31A0431	12			
29	21X31A0432	21			
30	21X31A0433	14			
31	21X31A0434	40			
32	21X31A0435	11			
33	21X31A0436	11			
34	21X31A0437	36			
35	22X35A0401	35			
			35	Attainment Level	\% students
Number of students performed above the			1	1	40\%
Number of successful students			54	2	60\%
Percentage of students scored more than			2\%	3	$>60 \%$
Attainment level			1		

Course Outcome Attainment

Name of the facult G. Anusha
Branch \& Section: ECE - A
Course Name:
DIGITAL SYSTEM DESIGN

Academic Ye: 2022-23
Examination: I Internal
Year: II
Semester: I

Semester:					
Course Outcomes		2nd Internal Exam	Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	1.00	2.40
CO2	3.00		3.00	1.00	2.40
CO 3	3.00		3.00	1.00	2.40
CO4		3.00	3.00	1.00	2.40
$\mathrm{CO5}$		3.00	3.00	1.00	2.40
CO6		3.00	3.00	1.00	2.40
Internal \& University Attainment:			3.00	1.00	
		Weightage	70\%	30\%	
ttainment for the course (Internal, Unive			2.10	0.30	
Attainment for the course (Direct Meth			2.40		

Overall course attainment level

SRI INDU INSTITUTE OF ENGINEERING \& TECHNOLOGY

Department of Electronics and Communication Engineering

Program Outcome Attainment (from Course)

Name of Faculty:
Branch \& Section:
Course Name:
G. Anusha

ECE - A
DIGITAL SYSTEM DESIGN

Academic Yea
Year:
Semester:

2022-23
II
I

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	2	3
CO 2	3	3	3	-	-	-	-	-	-	-	2	3	3	3
CO 3	3	2	3	-	-	-	-	-	-	-	-	-	2	3
CO 4	3	1	3	-	-	-	-	-	-	-	3	-	3	3
CO 5	3	-	3	-	-	-	-	-	-	-	-	2	3	3
CO 6	2	-	3	-	-	-	-	-	-	-	-	-	3	3
Course	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$								$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5}$

CO	Course Outcome Attainment
CO1	2.40
CO2	2.40
CO3	2.40
CO4	2.40
CO5	2.40
CO6	2.40
Overall course attainment level	

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C0 Attainme nt	$\mathbf{2 . 4 0}$	$\mathbf{1 . 6 0}$	$\mathbf{2 . 4 0}$											

CO contribution to PO-33\%, 67\%, 100\% (Level 1/2/3)

ASSIGNMENTS AND REGISTERS

Assignment 1 script link:

https://drive.google.com/file/d/1CPIgpbRpZ2wXd5y0iLHC35pyhJEcz2B/view? usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/1M1kr-
GYOMyYjZT4HLNprGp3PizAF260S/view? usp=sharing

Attendance register link:

https://drive.google.com/file/d/1VT Gh60 k9gfDsx-MfiEYJ82A8-
1yib5/view? $u s p=$ sharing

[^0]: Sri Indu Institute of Engineering \& Tect Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

