

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

ELECTRONIC CIRCUIT ANALYSIS

CourseCode-EC405PC

II B.Tech II-SEMESTER

A.Y.:2022-2023

Prepared by

Mrs.G.NIRMALA Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sherguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	ELECTRONIC CIRCUIT ANALYSIS
Course Code	EC405PC
Programme	B.Tech
Year & Semester	II year II-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mrs.G.NIRMALA, Assistant Professor

Index of Course File

S.No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes(CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Timetable-highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysistoidentifyweakandadvancedlearners-3timesinasemester
19	Result Analysis at the end of the course
20	Remedial class for weak students -schedule and evidences
21	CO,PO/PSO attainment sheets
22	Attendance register
23	Course file(Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stake holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatham(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1 :** To facilitate an academic environment that enables student's centric learning.
- **DM2 :** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- **DM3 :** To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH shenguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- PEO3: Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in inter disciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of

Embedded system & VLSI design.

PSO2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501510

PRINCIPAL Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problemsreachingsubstantiatedconclusionsusingfirstprinciplesofmathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

II YEAR COURSE STRUCTURE AND SYLLABUS (R18) Applicable From 2018-19Admitted Batch

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	т	Р	Credits
1	EC301PC	Electronic Devices and Circuits	3	1	0	4
2	EC302PC	Network Analysis and Transmission Lines	3	0	0	3
3	EC303PC	Digital System Design	3	1	0	4
4	EC304PC	Signals and Systems	3	1	0	4
5	EC305PC	Probability Theory and Stochastic Processes	3	0	0	3
6	EC306PC	Electronic Devices and Circuits Lab	0	0	2	1
7	EC307PC	Digital System Design lab	0	0	2	1
8	EC308PC	Basic simulation Lab	0	0	2	1
9	*MC309	Constitution of India	3	0	0	0
		Total Credits	18	3	6	21

II YEAR II SEMESTER

S. No.	Course Code	Course Title L T				Credits
1	MA401BS	Laplace Transforms, Numerical Methods & Complex Variables	3	1	0	4
2	EC402PC	Electromagnetic Fields and Waves	3	0	0	3
3	EC403PC	Analog and Digital Communications	3	1	0	4
4	EC404PC	Linear IC Applications	3	0	0	3
5	EC405PC	Electronic Circuit Analysis	3	0	0	3
6	EC406PC	Analog and Digital Communications Lab	0	0	3	1.5
7	EC407PC	IC Applications Lab	0	0	3	1.5
8	EC408PC	Electronic Circuit Analysis Lab	0	0	2	1
9	*MC409	Gender Sensitization Lab	0	0	2	0
		Total Credits	15	2	10	21

*MC-Satisfactory/Unsatisfactory

EC405PC: ELECTRONIC CIRCUIT ANALYSIS

B. Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives:

 \Box Learn the concepts of high frequency analysis of transistors.

 \Box To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.

 $\hfill\square$ To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback

□ To construct various multivibrators using transistors and sweep circuits.

Course Outcomes: Upon completing this course, the student will be able to

 \Box Design the multistage amplifiers and understand the concepts of High Frequency Analysis of Transistors.

□ Utilize the Concepts of negative feedback to improve the stability of amplifiers and Positive feedback to generate sustained oscillations

□ Design and realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.

Design Multivibrators and sweep circuits for various applications.

UNIT – I

Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling Schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Cascade RC Coupled amplifiers, Cascode amplifier, Darlington pair.

Transistor at High Frequency: Hybrid - model of Common Emitter transistor model, $f\alpha$, $f\beta$ and unity gain bandwidth, Gain-bandwidth product.

UNIT II

Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – GeneralCharacteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics –Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

UNIT -III

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and WienbridgeOscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and ColpittsOscillators, Frequency and amplitude stability of Oscillators, Crystal Oscillator.

UNIT -IV

Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class –C Amplifiers. **Tuned Amplifiers:** Introduction, single Tuned Amplifiers – Q-factor, frequency response of tuned amplifiers, Concept of stagger tuning and synchronous tuning.

UNIT –V

Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement.

TEXT BOOKS:

1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education.

2. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, Pearson.

REFERENCE BOOKS:

1. Electronic Devices and Circuits, David A. Bell – 5th Edition, Oxford.

2. Electronic Devices and Circuits theory– Robert L.Boylestead, Louis Nashelsky, 11th Edition, 2009, Pearson

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501510 Website: https://siiet.ac.in/

COs and Mapping with PO/PSO

Course: Electronic Circuits Analysis (C225)

Class: II ECE-A

Course Outcomes

After completing this course, the student will be able to:

C225.1	Design the multistage amplifiers and develop& analyze transistor amplifier circuits using Hybrid π model at high frequencies.	Synthesis, Analysis, Knowledge
C225.2	Design of Feedback amplifiers and their frequency Response.	Synthesis
C225.3	To Understand the design of various oscillators such as RC Phase Shift Oscillator, Wien-Bridge Oscillator, Crystal, LC oscillator	Knowledge ,Synthesis
C225.4	Design and compare various Power amplifiers such as Class A, Class B, Class AB amplifiers.	Synthesis
C225.5	Analysis of various tuned amplifiers and their frequency Response.	Analysis
C225.6	Design Multivibrators and sweep circuits for various applications.	Application

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO / CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P 0 9	P 0 10	P 0 11	P O 12	PS O1	PS O2
C225.1	3	3	2	1	-	-	-	-	-	-	-	-	3	3
C225.2	2	3	2	1	-	-	-	-	2	-	-	-	2	3
C225.3	2	3	2	1	-	-	-	-	-	2	-	-	3	3
C225.4	1	3	2	-	-	-	-	-	-	-	-	-	3	3
C225.5	3	2	1	-		-	-	-	-	-	2	-	2	2
C225.6	2	3	2	-	-	-	-	-	-	-	-	2	1	1

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501510 Website: <u>https://siiet.ac.in/</u>

CO- PO/PSO Mapping – Justification

Course: Electronic Circuits Analysis (C225)

Class: II ECE-A

P01. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

P02. PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

P03. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate considerations for the public health and safety and the cultural, societal and environmental considerations.

PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO9. INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

CO-PO mapping Justification

C225.1: Design the multistage amplifiers and develop& analyze transistor amplifier circuits using Hybrid π model at high frequencies (Synthesis, Analysis, Knowledge).

	Justification
PO1	Students get the knowledge on design of low frequency & high frequency amplifiers and apply the knowledge of mathematics and engineering fundamentals in analysis of amplifier.
PO2	Students can analyses the voltage gain, current gain, input resistance, output resistance of various multi stage amplifiers.
PO3	Students able to design solutions for various multistage amplifiers and analyse the circuit by using Hybrid π model at high frequencies.
PO4	Students can understand the design of experiments, analysis and interpretation of data.
PSO1	The application of design skills to create efficient and economical electronic systems.
PSO2	The alignment of multistage amplifier design and analysis with the competency of Software Usage, specifically the use of MATLAB, Keil, and Xilinx, underscores the importance of leveraging advanced software tools to investigate and solve engineering problems in a comprehensive and efficient manner.

C225.2: Design of Feedback amplifiers and their frequency Response (Synthesis)

	Justification
PO1	Students get the knowledge of designing of Amplifiers, develop and analyse the transistor amplifiers
PO2	Students Analyse various tuned amplifiers and their frequency Response.
PO3	Design solutions for complex engineering problems and design system components or process.
PO4	Students can understand the design of experiments, analysis and interpretation of data.
PO9	The design of feedback amplifiers and their frequency response demands a combination of individual technical skills and effective collaboration within diverse teams
PSO1	The design of feedback amplifiers and their frequency response aligns seamlessly with the competency of designing, analyzing, and developing economical systems in the field of Embedded Systems and VLSI design.
PSO2	The alignment of feedback amplifier design with the competency of Software Usage, specifically using MATLAB, Keil, and Xilinx, underscores the importance of leveraging advanced software tools for comprehensive analysis, simulation, and implementation.

C225.3: To Understand the design of various oscillators such as RC Phase Shift Oscillator, Wien-Bridge Oscillator, Crystal, LC oscillator (Knowledge, Synthesis).

	Justification
PO1	Students get the knowledge of designing of Oscillators develop and analyse the transistor amplifiers as an oscillators.
PO2	Students Analyse various oscillators and their frequency Response.
PO3	Students can design the solutions for complex engineering problems and design system components.
PO4	Students can understand the design of experiments, analysis.
PO10	By combining a deep technical understanding with effective communication skills, you'll be able to share your knowledge of oscillator design within the engineering community and society at large.
PSO1	The knowledge and understanding of oscillator designs align with the Design Skills competency, specifically in the context of designing, analyzing, and developing economical systems in Embedded Systems and VLSI design.
PSO2	The alignment of oscillator design with the competency of Software Usage, specifically using MATLAB, Keil, and Xilinx, underscores the importance of leveraging advanced software tools for comprehensive analysis, simulation, and implementation.

C225.4: Design and compare various Power amplifiers such as Class A, Class B, Class AB amplifiers (Synthesis).

	Justification
PO1	Students get the knowledge of designing various Power amplifiers such as Class
	A, Class B, Class AB amplifiers,
PO2	Students Analyse various tuned amplifiers and their frequency Response.
PO3	Students design the analysis of various power amplifiers.
PSO1	The design and comparison of various power amplifiers align with the competency of Design Skills, emphasizing the ability to create efficient, cost-effective, and reliable amplifiers within the broader context of embedded systems and VLSI design.
PSO2	The alignment of power amplifier design and comparison with the competency of Software Usage, specifically using MATLAB, Keil, and Xilinx, underscores the importance of leveraging advanced software tools for comprehensive analysis, simulation, and implementation.

	Justification
PO1	Students get the knowledge of designing of Multistage Amplifiers, develop and
	analyse the transistor amplifiers
PO2	Students Analyse various tuned amplifiers and their frequency Response.
PO3	Design solutions for complex engineering problems and design system components
	or process
PO11	By aligning the analysis of tuned amplifiers with project management and finance
	principles, engineers can demonstrate their ability to apply a holistic approach to
	project execution.
PSO1	The analysis of various tuned amplifiers and their frequency responses aligns with
	the competency of Design Skills, emphasizing the ability to create efficient, cost-
	effective, and reliable amplifiers within the broader context of embedded systems
	and VLSI design.
PSO2	The alignment of tuned amplifier analysis with the competency of Software Usage,
	specifically using MATLAB, Keil, and Xilinx, underscores the importance of
	leveraging advanced software tools for comprehensive analysis, simulation, and
	implementation.

C225.5: Analysis of various tuned amplifiers and their frequency Response. (Analysis)

C225.6: Design Multivibrators and sweep circuits for various applications (Applications).

	Justification
PO1	Students get the knowledge of designing of Multivibrators and sweep circuits.
PO2	Students Analyse various sweep generator and their frequency Response.
PO3	Students design the analysis of various sweep circuits.
PO12	By demonstrating a commitment to life-long learning in the context of designing
	multivibrators and sweep circuits, an engineer ensures they remain relevant, adaptable, and
	capable of addressing evolving challenges in the field of electronics and circuit design.
PSO1	The design of multivibrators and sweep circuits aligns with the competency of Design
	Skills, emphasizing the ability to create efficient, cost-effective, and reliable circuits within
	the broader context of embedded systems and VLSI design.
PSO2	The alignment of multivibrator and sweep circuit design with the competency of Software
	Usage, particularly using MATLAB, Keil, and Xilinx, emphasizes the importance of
	leveraging advanced software tools for comprehensive analysis, simulation, and
	implementation.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ACADEMIC CALENDAR 2022-23

B. Tech./B.Pharm. II YEAR I & II SEMESTERS

I SEM

S. No	Description	Duration		
		From	То	
1	Commencement of I Semester classwork		28.11.2022	
2	1 st Spell of Instructions	28.11.2022	21.01.2023 (8 Weeks)	
3	First Mid Term Examinations	23.01.2023	30.01.2023 (1 Week)	
4	Submission of First Mid Term Exam Marks to the University on or before	04.02.2023		
5	2 nd Spell of Instructions	31.01.2023	29.03.2023 (8 Weeks)	
6	Second Mid Term Examinations	31.03.2023	08.04.2023 (1 Week)	
7	Preparation Holidays and Practical Examinations	10.04.2023	15.04.2023 (1 Week)	
8	Submission of Second Mid Term Exam Marks to the University on or before	15.04.2023		
9	End Semester Examinations	17.04.2023	29.04.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 93

II SEM

S. No	Description	Duration		
~		From	То	
1	Commencement of II Semester classwork		01.05.2023	
2	1 st Spell of Instructions (including Summer Vacation)	r 01.05.2023 08.07.2023 (10		
3	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)	
4	First Mid Term Examinations	10.07.2023	15.07.2023 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before	22.07.2023		
6	2 nd Spell of Instructions	18.07.2023	11.09.2023 (8 Weeks)	
7	Second Mid Term Examinations	12.09.2023	16.09.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	19.09.2023	23.09.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	23.09.2023		
10	End Semester Examinations	25.09.2023	07.10.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 92

REGISTRAR

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous, Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delbi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatoam, Sheriguda(V), Ibrahimpatoam(M), Ranga Reddy Dist., Telangana - 501 510

https://silet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING **Class Timetable**

CLASS: II-B.Tech ECE-A		A.Y:2022-23		SEMESTER: II		LH: C-101		
TIME/ DAY	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	IV 12:10-1:00	1:00-	V 1:30-2:20	VI 2:20-3:10	VII
MON	LTNM	LICA	EMF&W	A&DC	1.00	ECA	EMF&W	3:10-4:00 A&DC(T)/LTNM(T)
TUE	A&DC	LICA	COUN	ECA	L	LTNM		and the second se
WED	LICA	A&DC	EMF&W	LTNM	Ũ	CO-COIDAA		Den al de la construction de
THU	ECA	EMF&W	A&DC	LICA	N	ICA LAB / A&DC LAB		1
FRI	LTNM	ECA	ECA LAB		СН	A&DC LAB / ICA LAB		
SAT	EMF&W	ECA	LIB			LTNM(T)/A&DC(T)	LICA	SPORTS
*(T)	- Tutorial Conc		LID	A&DC		LTNM	GS L.	AB/ECA LAB

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the	
MA401BS	i i i i i i i i i i i i i i i i i i i	T.Thirupathi Reddy	EC406PC	A&DC LAB-Analog and Digital Communications Lab	Faculty B.Jyothirmai/K.Rajender/T.Bhavani	
-	Complex Variables	Reduy	EC407PC	ICA LAB-IC Applications Lab	A.Vaani/G.Anitha/T.Divya	
EC402PC	EMF&W-Electromagnetic Fields and Waves	K.Rajender	EC408PC	ECA LAB-Electronic Circuit Analysis Lab	G.Nirmala/G.Anusha/Y.Rajani	
EC403PC	A&DC-Analog and Digital Communications	B.Jyothirmai	*MC409	GS LAB-Gender Sensitization	G.Ananda Rao	
EC404PC	LICA-Linear IC Applications	C Asithe	COUN	- A CONTRACTOR OF A CONTRACTOR OFTA		
			SPORTS	Counseling Sports	I. Venu/G. Nirmala/A. Swetha	
	ECA-Electronic Circuit Analysis	G.Nirmala	CO- CU/DAA	Co-Curricular/Dept.	Dr.S.Suresh/I.Venu G.Nirmala/D.Aruna Kumari/K.Bhask Reddy	
	40)		LIB	Library	S.Alekhva/M.Srilatha	

Claffintenarge

Head Communication Eng. Dept Electronics and Communication Engg. Dept SRI INDVINSTITUTE OF ENGG & TECH Principal Principal Sn Indu Institute of Engineering & Tex Sheriguda(Vill), Ibrahimpatnam Sheriguda(Vill), Ibrahimpatnam Sheriguda(Vill), Ibrahimpatnam

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSONPLAN

Programme: B.Tech	Academic Year: 2022-23
Year: II	Semester :II
Course Title: Electronic Circuit Analysis	Course Code:EC405PC
Name of Faculty: G. Nirmala	

Unit-I Syllabus

Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling Schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Cascade RC Coupled amplifiers, Cascode amplifier, Darlington pair.

Transistor at High Frequency: Hybrid - model of Common Emitter transistor model, $f\alpha$, $f\beta$ and unity gain bandwidth, Gain-bandwidth product.

No. of	Topics	Reference	Teaching			
Sessions			Method/ Aids			
Planned						
1	Classification of Amplifiers	T1	Black Board			
1	Distortion in amplifiers	T1	Black Board			
1	Different coupling Schemes used in amplifiers	T1	PPT			
2	Frequency response and Analysis of multistage amplifiers	T1	Black Board			
2	Cascade RC Coupled amplifiers	T1	Black Board			
1	Darlington pair	T1	Black Board			
2	Hybrid - model of Common Emitter transistor model	T1	Black Board			
2	f α , f β and unity gain bandwidth	T1	Black Board			
1	Gain-bandwidth product	T1	Black Board			
Gap beyo	Gap beyond syllabus(if any):					
Gap with in the syllabus(if any)						
Course Outcome1: Describe the multistage amplifiers of different coupling schemes, including frequency response, and analyze multistage amplifiers using a hybrid model.						

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-II Syllabus

Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – General Characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

No.of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	Concepts of feedback	T1,R1	Black Board	
1	Classification of feedback amplifiers	T1,R1	Black Board	
2	General Characteristics of Negative feedback amplifiers	T1,R 1	Black Board	
2	Effect of Feedback on Amplifier characteristics	T1,R 1	Black Board	
2	Voltage series	T1	Black Board	
1	Voltage shunt	T1,R1	Black Board	
2	Current series	T1,R2	Black Board	
2	Current shunt Feedback configurations	T1	Black Board	
2	Simple problems	T1	Black Board	
Gap beyond syllabus(if any):				
Gap with in the syllabus(if any)				
Course Outcome1: Discuss the general characteristics of negative feedback amplifiers in				

Course Outcome1: Discuss the general characteristics of negative feedback amplifiers in voltage series, voltage shunt, current series, and current shunt feedback configurations.

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-III Syllabus

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude stability of Oscillators, Crystal Oscillator.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids			
2	Condition for Oscillations	T1,R1	Black Board			
1	RC type Oscillators	T1	Black Board			
2	RC phase shift and Wien-bridge Oscillators	T1,R1	Black Board			
1	LC type Oscillators	T1,R1	Black Board			
1	Generalized analysis of LC Oscillators	T1,R1	Black Board			
2	Hartley and Colpitts Oscillators	T1,R2	Black Board			
2	Frequency and amplitude stability of Oscillators	T1,R1	Black Board			
2	Crystal Oscillator	T1,R2	Black Board			
Gap beyond syllabus(if any):						
Gap with in the syllabus(if any)						
Course Outcome1: Discuss the RC phase-shift and Wien-bridge oscillators.						

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-IV Syllabus

Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class – C Amplifiers.

Tuned Amplifiers: Introduction, single Tuned Amplifiers – Q-factor, frequency response of tuned amplifiers, Concept of stagger tuning and synchronous tuning.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
1	Class A Power Amplifier	T2,R2	Black Board		
1	Series fed and Transformer coupled	R2	Black Board		
1	Conversion Efficiency	T2,R1	Black Board		
1	Class B Power Amplifier	T2,R2	Black Board		
1	Frequency-domain methods of design.	T2,R1	Black Board		
	Push Pull and Complimentary Symmetry		Black Board		
2	configurations	T2			
1	Principle of operation of Class AB Amplifiers	T2	Black Board		
2	Principle of operation of Class C Amplifiers	T1	Black Board		
1	single Tuned Amplifiers	T2,R1	Black Board		
1	Q-factor	T2,R2	Black Board		
1	frequency response of tuned amplifiers	R2	Black Board		
1	Concept of stagger tuning and synchronous tuning.	T2,R2	Black Board		
Gap beyond syllabus(if any):					
Gap with in the syllabus(if any)					
Course Outcome1: Principle of operation of Class AB Amplifiers, Class C Amplifiers,					
Class B Power Amplifier, single Tuned Amplifiers.					

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-V Syllabus

Multi vibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
2	Analysis and Design of Bistable	T2,R2	Black Board		
1	Mono stable Multi vibrators	T2,R2	Black Board		
1	Astable Multi vibrators	T2	Black Board		
1	Schmitt trigger using Transistors.	T1, R1	Black Board		
2	General features of a Time base Signal	T1, R1	Black Board		
2	Methods of Generating Time Base Waveform	T1	Black Board		
1	concepts of Transistor Miller Time Base Generator	T2	Black Board		
1	Bootstrap Time Base Generator	T1, R1	Black Board		
2	Methods of Linearity improvement	T2, R1	Black Board		
Gap beyond syllabus(if any):					
Gap with in the syllabus(if any)					
CourseO	CourseOutcome1: Discuss Mono stable & Astable Multi vibrators.				

*Session Duration: 50minutes

*Total Number of Hours/Unit: 13

TEXTBOOKS:

T1.M.Gopal, "ControlSystems:PrinciplesandDesign", McGrawHillEducation, 1997 T2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

REFERENCEBOOKS:

R1. K.Ogata, "ModernControlEngineering", PrenticeHall, 1991.

R2. I.J.NagrathandM.Gopal, "ControlSystemsEngineering", NewAgeInternational, 2009.

WEB REFERENCES:

<u>+</u>	
S.No.	Web Link
1	https://www.electronics-tutorials.ws/transistor/darlington-transistor.html
2	
	https://pressbooks.bccampus.ca/basicelectricity/chapter/fuses-and-circuit-breakers/
3	https://www.electronics-tutorials.ws/oscillator/rc_oscillator.html
4	https://www.tutorialspoint.com/amplifiers/class_b_power_amplifier.htm
5	https://www.electronics-tutorials.ws/waveforms/astable.html

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

Lecture Notes

Unit1 link:

https://drive.google.com/file/d/1OJ8pdz2bh7wwBe_riBqBU2BsHIWgISob/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1ZXeWDEyItYp1Smf6C_x1sjg0-

ZjOUO_l/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1pS8DcxVEdS0UmNIY65fDdQh2tzznfG1G/view?us

p=sharing

Unit 4 link:

https://drive.google.com/file/d/1DCVlZhAWkVnq11z-azJ-AcDztXDPzKS4/view?usp=sharing Unit5 link:

https://drive.google.com/file/d/1Ndi1iVK8tdV-5_qSsxnAilX0qubD63fW/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act (Approved by AICTE, NewDelhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

Power point presentation

PPT link:

https://docs.google.com/presentation/d/11fU6MD5YG4slHRx2JIgJZhoTDlegGfnW/edit?usp=sharing &ouid=107122273852189527807&rtpof=true&sd=true Code No: 154AW

R18

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations,March-2022 ELECTRONIC CIRCUIT ANALYSIS (Common to ECE,EIE)

Time: 3 Hours

Max. Marks: 75

Answer any five questions Allquestionscarryequalmarks

1.a)	Derive expressionforcurrentgain, voltagegain and input impedance of Darlington pai	r Emitter follower. [10+5]
b)	Explain the need of cascading amplifiers.	
2.a) b)		[10+5]
3.a)	Derive the input resistance, output resistance and voltage gain with feedback for Voltage	e shunt
b)	negative feedback amplifier using block diagram.List out the advantages of negative feedback amplifiers.[1]	0+5]
4.a)	A negative feedback of 0.005 is applied to an amplifier whose open loop gain is loop gain gets reduced by 12%, how much the overall gain gets altered?	60dB. If the open
b)	A Hartley Oscillator is designed with $L_1=2mH$, $L_2=20\mu$ H and avariable capacitate of capacitor values if the frequency of oscillation is varying between 950KHzand	
5.a)	Obtain the expression for frequency of oscillations and condition of oscillations for A colpitt's oscillator has $C_1=0.16 \ \mu\text{F}$, $C_2=15.8 \ \mu\text{F}$ and its frequency of oscillation the value of L.	-
b)		8+7]
6.a)	With a neat diagram, explain the principle of operation of class B push-pull amplifind its efficiency.	ifier and
b)	Explain a crossover distortion in power amplifiers, how it can be eliminated?[104	-5]
7.a)	Draw the class-A transformer coupled power amplifier and explain its operation a	and derive the equation
b)	for its efficiency and explain its working. Compare Astable and Mono stable multi vibrators in terms of their operation.[10-	+5]

- 8.a) Design Schmitt trigger circuit using Transistor and explain its working with necessary waveforms.
- b) Perform the analysis of Bistable multi vibrator using transistors with neat sketch.[7+8]

---00000----

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, August/September-2022 **ELECTRONIC CIRCUIT ANALYSIS** (Common to ECE,EIE)

Time: 3 Hours

Max.Marks:75

Answer any five questions All questions carry equal marks

1.a) Draw the equivalent circuit of RC coupled amplifier for Mid-band, Low frequency range,

high frequency range and derive the expressions for current gain, voltage gain.

- b) With a neat sketch explain Bootstrap Emitter Follower. [8+7]
- 2.a) Derive the expressions for higher and lower cut-off frequency of a multistage amplifier. Explain about the validity of hybrid- π model. Also give typical values of hybrid- π b) conductances and capacitances. [7+8]
- Show that the bandwidth increases in negative feedback amplifiers. 3.a)
 - b) Derive the expression for input and output resistance of voltage series feedback amplifier with a neat diagram. [7+8]
- 4.a) Draw the block diagrams of four types of negative feedback amplifier circuits and explain the advantages and disadvantages with necessary derivations.
 - b) An amplifier requires an input signal of 70mV to produce a certain output with a negative feedback to get the same output the required signal is 0.6V. The voltage gain with feedback is 100. Find the open loop gain and feedback factor. [7+8]
- 5.a) Derive the expression for frequency of oscillation of Hartley oscillator using BJT.
- b) Explain Barkhausen criterion for oscillation in feedback oscillator. [8+7]
- 6.a) Derive the oscillation condition for LC circuits.
- b) With the help of suitable schematic, explain the operation of a Wien Bridge oscillator and derive an expression for its frequency of operation. [7+8]
- 7.a) Explain the operation of Direct coupled class-A power amplifier with a neat circuit. Show that the maximum conversion efficiency is 25%.
- b) Draw the circuit of single tuned capacitance coupled amplifier and explain its operation.
- [8+7]
- 8.a) Draw and explain the circuit of Astable Multivibrator with necessary waveforms.
- b) With neat sketches and necessary expressions, explain the transistor Miller time-base generator. [7+8]

---00000----

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, July/August – 2021 ELECTRONIC CIRCUIT ANALYSIS (Common to ECE, EIE)

Time: 3 Hours

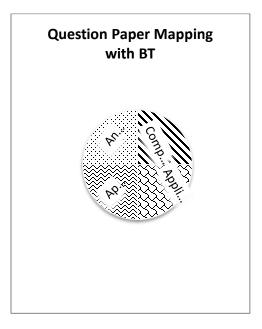
Max. Marks: 75

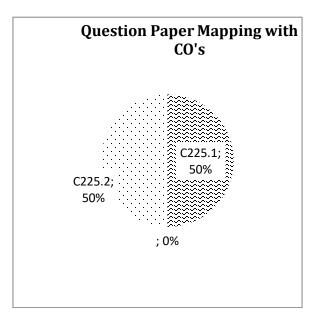
Answer any five questions All questions carry equal marks

1.a) b)	Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? Give itsadvantages and disadvantages.	[8+7]
2.a) b)	Show that bandwidth increases in negative feedback amplifiers. An amplifier has an input resistance of 200 K ohms, with a certain negative feedb introduced in the above amplifier the input resistance is found to be 20 M ohms a gain is found to be 1000. Calculate the loop gain and feedback factor.	
3.a) b)	Derive the expression for frequency of oscillation of Hartley oscillator. Discuss about Frequency and amplitude stability of oscillators.	[9+6]
4.a) b)	Describe the operation of Class B Push pull amplifier and show how even harm Derive the expression for conversion efficiency of class-B amplifier.	onics areeliminated. [10+5]
5.a) b)	Draw the neat diagram of monostable multivibrator using external connection a it in detail. Determine the frequency of oscillation for the astable multivibrator using IC-555 $R_A=R_B=1K\Omega$ and C=1000PF.	-
6.a) b)	Discuss in detail about the Validity of hybrid- π model. Also give typical hybrid- π conductance and capacitances. Draw the four types of feedback amplifiers and explain them briefly.	values of [7+8]
7.a) b)	Establish the condition for frequency of oscillation in an RC phase shift oscillator. Derive the expression for maximum conversion efficiency for a Transformer amplifier.	

- 8.a) With the help of a neat circuit diagram, explain the working of a simple current sweep.
 - b) What are the techniques used to improve the Linearity of current sweeps? Explain.[8+7]

---00O00----




Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

Set – I

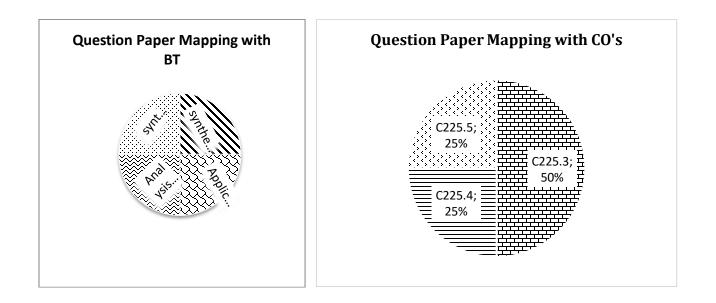
I - Mid Examinations,	JULY-2023
-----------------------	-----------

Year &Branch: II ECE-A &B		Date: 12-07-2023(FN)		
Subject: ECA Max. Marks: 10		Time: 60mins		18
Answer any TWO Questions. All Question Carry Equal Marks		2*5=10 marks		
	(This question paper is prepared with Course Outcome and	BT's ma	apping)	
			1	1
1	Sketch Two RC coupled CE transistor stages. Show the middle and low frequency model for one stage.	(5)	C225.1	(Comprehension)
2.	Draw the circuit diagram of darlington pair circuit. Deriving its important characteristics.	(5)	C225.1	(Application)
3	Draw the practical circuit for current series feedback. And find the voltage gain, input impendance & output impendence.	(5)	C225.2	(Application)
4	Draw the frequency response of an amplifier without and with feedback & show the bandwidth for each case & how these two curves are related to gain bandwidth product.	(5)	C225.2	(Analysis)

Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 Set – I

II - Mid Examinations, SEP-2023

Year &Branch: II ECE-A &B Subject: ECA


Max. Marks: 10

Date:13-09-2023(FN)

Time: 60mins

Answer any **TWO** Questions. All Question Carry Equal Marks 2*5=10 marks (This question paper is prepared with Course Outcome and BT's mapping)

1	Derive an expression for frequency oscillations of transistorized Colpitts oscillators.	(5)	C225.3	(synthesis)
2.	Draw the circuit diagram of class-B complementary symmetry push pull amplifier and explain its working	(5)	C225.4	(Application)
3	With the help of a neat circuit diagram & waveforms, explain the working of a collector-coupled Mono stable Multivibrator	(5)	C225.5	(Analysis)
4	Derive an expression for frequency oscillations of transistorized Hartely oscillators.	(5)	C225.3	(synthesis)

Sri Indu Institute of Engineering & Technology Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

	B-Tech I - Mid Examinations, JULY -2023		
	Objective Type ExamYear &Branch: II –ECE-A& BDate: 12-07-20Subject: ECAMax. Marks: 10Time: 20 minorName:	ins	
	se the correct answers.		
1.	The type of combination used in cascode amplifier is	[]
2	a) CB-CC b) CB-CE c) CE-CB d)CC-CB	r	1
2.		l]
	a) Frequency distortion c) Phase distortion		
	b) Delay distortion d) Amplitude distortion	_	
3.		[]
	a) A/1+A β b) A/1-A β c) 1/1+A β d) A β /1+A β		
4.	The phase difference between input signal and feedback in a negative feed	back amp	olifier is
	[]		
	a) 180^{0} b) 90^{0} c) 270^{0} d) 0^{0}		
5.	A transistor converts []		
	a) Ac power into dc power b) Low resistance into high resistance		
	c) High resistance into low resistance d) Dc power into ac power		
6.	Using negative feedback bandwidth and gain	[]
	a) Increases , decreases c) Increases , increases		
	b) decreases, increases d)decreases, decreases		
7.	In negative feedback is reduced	[]
	a) Gain b) bandwidth c) distortion d) both a) & c)		
8.	Trans conductance (G_M) of the feedback amplifier is	[]
	a) I_0/V_0 b) I_0/V_S c) I_S/V_0 d) I_0/V_I		
9.	In a series mixing Input resistance is	[]
	a) increases b) decreases c) constant d) none		
10). The input resistance (R_{if}) of current series feedback amplifier is	[]
	a) $R_{if} = (1+\beta R_M)$ c) $R_{if=}R_{i/}(1+\beta R_M)$		
	b) $R_{if=}R_i (1+\beta R_M)$ d) $R_{if=}(1+\beta R_M)/R_i$		

I. Fill in the Blanks

- 11. The input resistance of shunt mixing is_____
- 12. The output resistance of voltage sampling is ------
- 13. Input resistance R_{if} of Voltage series feedback amplifier _____.
- 14. What are the Different types of coupling techniques used in amplifiers _____
- 15. In hybrid π model $g_m =$ _____
- 16. In RC phase shift oscillator F=_____
- 17. In voltage series feedback amplifier $R_{of} =$ _____
- 18. What are the different types of distortions generated in amplifiers _____
- 19. In CE short circuit model Unity gain bandwidth (f_T) =_____
- 20. In a hybrid- π model $g_{b'e} =$ _____

Sheriguda(V),Ibrahimpatnam(M),R.R.Dist-501510 **B-Tech II - Mid Examinations, SEP-2023 Objective Type Exam**

	<u>Objective Type Exam</u>	
Year &Branch: II –ECE-A&B		Date:13/09/23(FN)
Subject: ECA	Max. Marks: 10	Time: 20 mins
Name:	RollNo)

I.

 Choose the correct answers. An oscillator type of LC type having a spilt capacitor in the tank circuit is
a) Hartley b) Colpitts c) Ttuned d) Wein bridge []
2. An important limitation of a crystal oscillator is []
a) its low output b) its high Q c) less availability of quartz crystal d) its high output
3. With transformer connection to load the maximum efficiency of the class A amplifier
will go up to a maximum of []
a) 78.5% b) 25% c) 50% d) 66%
4. Inpower amplifier, the output signal varies for a full 360' of the cycle. []
a) Class A b) Class B c) Class AB d) None of the above
5. In tuned amplifiers, harmonic distortion is []
a) Infinite b) More c) Less d) None
6. Tuned amplifiers can be used in []
a) Radar b) IF amplifiers c) Both a and b d) None
7. Which of the following is the function of capacitor. []
a) Charges b) Stores c) Discharges d) All of the above.
8. How many stages of a tuned amplifier does a staggered tuned amplifier comprises of []
a) Single b) Double c) Dual d) Multiple 9. Miller integrator voltage sweep generator uses []
 a) Negative feedback b) Positive feedback c) both negative and positive feedback d) No feedback 10. Darlington emitter follower has []
 a) high input resistance and unity voltage gain b) low input resistance and unity voltage gain c) low input resistance and high voltage gain d) high input resistance and voltage gain less than unity but close to unity

II. Fill in the Blanks

- 11. The frequency stability of LC oscillator is ______than RC oscillators.
- 12. The oscillator which uses inductive feedback is _____
- 13. In a RC phase shift oscillator, each RC section provides a phase shift of _____
- 14. Small signal tuned amplifiers are operated in _____ mode.
- 15. Non sinusoidal oscillators are also called _____
- 16. LC circuit in a tuned amplifier is also called_____
- 17. _____ is a combination of tuned amplifiers.
- 18. Which oscillator is characterized by a split capacitor in its tank circuit_____
- 19. The oscillator that gives good frequency stability _____
- 20. The gain of an operational amplifier will be maximum at _____

Sheriguda(V),Ibrahimpatnam(M),R.R.Dist-501510 B-Tech I-Mid Examinations, July-2023

Year &Branch: II-ECE-A&B

Subject: ECA

Date:12/07/23(FN)

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1nMqVdL1T6E9SD00cT5g3_PWqsBUciNXO/view?usp=sharing

I. Choose the correct alternative:

- 1) c
- 2) d
- 3) a
- 4) a
- 5) b
- 6) a
- 7) d
- 8) b
- 9) a
- 10) c

Fill in the blanks Answers

- 11. Decreases
- 12. Decreases
- 13. $R_{if} = R_i^*(1+\beta A)$
- 14. RC coupled, Transformed coupled, Direct coupled
- 15. $g_m = I_C / V_T$
- 16. F=1/2 π RC $\sqrt{6}$
- 17. $R_{of} = R_o / (1 + \beta A)$
- 18. Amplitude distortion, Frequency distortion, Phase distortion
- 19. $f_T = g_m/2\pi C_e$
- 20. $g_{b'e}=g_m/h_{fe}$

Sheriguda(V),Ibrahimpatnam(M),R.R.Dist-501510 B-Tech II-Mid Examinations, SEP-2023

Year &Branch: II-ECE-A&B Subject: ECA Date:13/09/2023

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1ilUYkSptGanw53XA6mgkG5c0Z3cZIxCz/view?usp=sharing

Objective/Quiz Key Paper

I. Choose the correct alternative:

- **1**) B
- 2) A
- 3) C
- 4) A
- 5) C
- 6) C
- 7) B
- 8) C
- 9) B
- 10) D_

II. Fill in the blanks:

- 11) Less
- 12) Hartley
- 13) 60 Degree
- 14) Class A
- 15) Multivibrators
- 16) Tank circuit
- 17) RLC
- 18) Colpitts oscillator
- 19) Crystal oscillator
- 20) 1HZ

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

ASSIGNMENT-1

SUBJECT: ELECTRONIC CIRCUIT ANALYSIS

- 1. Explain two-stage RC coupled amplifier. (C225.1) (Understanding)
- 2. Define f_{α}, f_{β} and derive the expressions for $f_{\alpha}, f_{\beta} \& f_{T.}$ (C225.1) (Remembering)
- 3. Draw the circuit diagram of darlington pair circuit & derive its important characteristics. (C225.1) (Applying)
- 4. Draw the frequency response of an amplifier with & without feedback and show the BW for each case & how its are related to gain BW product. (C225.2) (Applying)
- 5. Draw the practical circuit for current series feedback and find the voltage gain input impedance and output impendance. (C225.2) (Applying)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

ASSIGNMENT-2

SUBJECT: ELECTRONIC CIRCUIT ANALYSIS

- 1. Derive an expression for frequency oscillations of transistorized colpitt's oscillator. (C225.3) (Creating)
- 2. Draw the circuit diagram of class-B complementary symmetry push pull amplifier and explain its working. (C225.4) (Applying)
- 3. Derive an expression for frequency oscillations of transistorized hartelly oscillator. (C225.3) (Creating)
- 4. With the help of a neat circuit diagram & waveforms, explain the working of a collector -coupled monostable multivibrator. (C225.5) (Applying)
- 5. Derive an expression for frequency oscillations & transistorized RC phase shift oscillations. (C225.4) (Creating)
- 6. Explain the principle of stagger tuning technique of transformer coupled amplifier. (C225.5) (Understanding)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

Result Analysis:

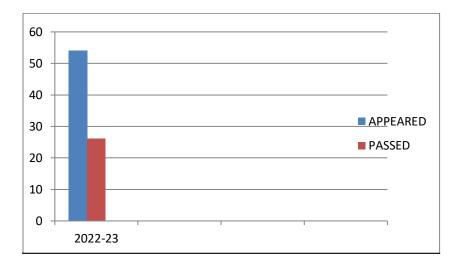
Course Title	ELECTRONIC CIRCUIT ANALYSIS
Course Code	EC405PC
Programme	B.Tech
Year &Semester	II year II- semester, A sec
Regulation	R18
Course Faculty	G.NIRMALA, Assistant Professor, ECE

Slow learners:

S No	Roll No	No of backlogs	Internal-I Status	Internal-II Status
1	21X31A0402	3	14	16
2	21X31A0403	4	14	16
3	21X31A0407	5	19	17
4	21X31A0408	5	19	17
5	21X31A0412	5	14	17
6	21X31A0416	3	17	19
7	21X31A0428	3	20	19
8	21X31A0433	5	19	20

Advanced learners:

S.NO	ROLL.NO.	GATE MATERIAL
1	21X31A0404	
2	21X31A0405	
3	21X31A0406	
4	21X31A0410	
5	21X31A0413	Cascade RC Coupled amplifiers, Cascode amplifier, Darlington
6	21X31A0415	pair, Hartley and Colpitts
7	21X31A0418	Oscillators, Crystal Oscillator, Bistable, Monostable, Astable
8	21X31A0420	Multivibrators and Schmitt trigger using Transistors.
9	21X31A0422	
10	21X31A0424	
11	21X31A0426	
12	21X31A0427	
13	21X31A0429	



Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

BATCH ECE-II B.TECH IISEM ECE-A RESULT ANALYSIS

ACADAMIC	COURSE	NUMBE STUDE	-	QUESTIO SETI		
YEAR	NAME	APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%
2022-23	ELECTRONIC CIRCUIT ANALYSIS	54	26	COURSE FACULTY	JNTUH	48.14%

ELECTRONIC CIRCUIT ANALYSIS (C225) RESULT ANALYSIS

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-II

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM- 5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EMF&W	LTNM	A&DC	LICA	ECA
II ECE-B	LICA	A&DC	EMF&W	ECA	LTNM
III ECE-A	DSP	VLSID	A&P	ESD	IM
III ECE-B	A&P	ESD	DSP	IM	VLSID
III ECE-C	IM	A&P	ESD	VLSID	DSP
IV ECE-A	WSN	ML	LPVLSID	84	w a r
IV ECE-B	ML	LPVLSID	WSN	1 2	-
IV ECE-C	LPVLSID	WSN	ML	(1	

Head of the Department Electronics and Communication Engly. Dept col word internation or encodered Electronics and Communication Engg. Jepi SRI INDU INSTITUTE OF ENGG & TECH SherigudalVI, brahimpatham(M), R.R.Dist-501514

PRI PRINGPAL sin Indu Institute of Engineering & Teci Sheriguda(Vill). Ibrahimpatnam R R Dist Telangana -501 510

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Name of the faculty : Branch & Section: Course Name: G.Nirmala ECE - A Electronic Circuit Analysis Academic Year: Examination: Year: II

II

2022-23

I Internal

Semester:

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max. Marks ==>		5		5		5		5		10	5
1	21X31A0401	3		5				-		7	5
2	21X31A0402			2						7	5
3	21X31A0403			2		5				7	5
4	21X31A0404	2		2						7	5
5	21X31A0405	5		3						8	5
6	21X31A0406	5						5		10	5
7	21X31A0407	3				3				8	5
8	21X31A0408	3						3		8	5
9	21X31A0409	4				3				7	5
10	21X31A0410	5				5				7	5
11	21X31A0412	5								5	5
12	21X31A0413	5				4				7	5
13	21X31A0414	4								7	5
14	21X31A0415	4								7	5
15	21X31A0416	5								7	5
16	21X31A0417	3						2		7	5
17	21X31A0418	5				5		3		9	5
18	21X31A0420	5						5		9	5
19	21X31A0421	5				2				8	5
20	21X31A0422	5								8	5
21	21X31A0423	4		5						9	5
22	21X31A0424	3								9	5
23	21X31A0425	4		3						8	5
24	21X31A0426	3		3						8	5
25	21X31A0427	5				5				9	5
26	21X31A0428	3				3				9	5
27	21X31A0429	4				2				9	5
28	21X31A0431			5		1				8	5
29	21X31A0432	4				2				8	5
30	21X31A0433	4				2				8	5
31	21X31A0434	5				2				9	5
32	21X31A0435	4								8	5
33	21X31A0436	5								7	5
34	21X31A0437	4						2		6	5
35	22X35A0401	4		5						7	5
36	22X35A0402	4		3						7	5
37	22X35A0403	4		2						7	5
38	22X35A0404	3								6	5
39	22X35A0405	4		2						5	5

40	22X35A0406	4		2						7	5
41	22X35A0407	4		3						8	5
42	22X35A0408	4								6	5
43	22X35A0409	5								8	5
44	22X35A0410	5		4						7	5
45	22X35A0411	4						4		7	5
46	22X35A0412	5		3						7	5
47	22X35A0413	4		4						8	5
48	22X35A0414			5						8	5
49	22X35A0415	4						4		7	5
50	22X35A0416	5								7	5
51	22X35A0417	4		1						7	5
52	22X35A0418	5		3						9	5
53	22X35A0419	4						3		9	5
54	22X35A0420	5						4		9	5
Target set by	the faculty / HoD	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Number of st above the tar	udents performed get	48	0	14	0	8	0	8	0	52	54
Number of s	Number of students attempted		0	21	0	14	0	10	0	54	54
Percentage of more than tar	f students scored get	96%		67%		57%		80%		96%	100%

CO Mapping with Exam Questions:

	CO - 1	Y	Y	Y		Y	Y
	CO - 2				Y	Y	Y
	CO - 3					Y	Y
	CO - 4						
	CO - 5						
	CO - 6						
% Students Sco	ored >Target %	96%	67%	57%	80%	96%	100%

CO Attainment based on Exam Questions:

CO - 1	96%	67%	57%		96%	100%
CO - 2				80%	96%	100%
CO - 3					96%	100%
CO - 4						
CO - 5						
CO - 6						

СО	Sub	obj	Asgn	Overall	Level
CO-1	73%	96%	100%	90%	3.00
CO-2	80%	96%	100%	92%	3.00
CO-3		96%	100%	98%	3.00
CO-4					
CO-5					
CO-6					

Attainment Level								
1	40%							
2	50%							
3	60%							

Attainment (Internal 1 Examination) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination)

Name of the fa	Name of the faculty :		mala				Academ	nic Year	:	2022-23		
Branch & Sec	tion:	ECE -	A				Examir	nation:		II Inter	nal	
Course Name:	:	Electr	onic Ci	rcuit A	nalysis		Year::	II		Semest	er:	II
S.No	HT No.	01	011	00		01	031	0.1	0.0	Obj4	A4	7
Max. Marks	111 110.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	ObjŦ	AT	-
==>		5		5		5		5		10	5	
1	21X31A0401	5				5				4	5	
2	21X31A0402	5								6	5	
3	21X31A0403	5								6	5	
4	21X31A0404	5				4				7	5	
5	21X31A0405	5		5						6	5	
6	21X31A0406			5				5		7	5	
7	21X31A0407	5								7	5	
8	21X31A0408	5								7	5	
9	21X31A0409			4						5	5	
10	21X31A0410	4				3				6	5	
11	21X31A0412	5		1						6	5	1
12	21X31A0413			5				5		6	5	
13	21X31A0414	4				3				7	5	1
14	21X31A0415			3				4		6	5	1
15	21X31A0416	4				3				7	5	1
16	21X31A0417	5								6	5	1
17	21X31A0418			5						7	5	1
18	21X31A0420	5				5				7	5	-
19	21X31A0421			5				4		7	5	-
20	21X31A0422			5				4		9	5	-
21	21X31A0423	5								8	5	1
22	21X31A0424	5								9	5	1
23	21X31A0425			4		4				8	5	1
24	21X31A0426	4		3						7	5	-
25	21X31A0427			5		5				8	5	1
26	21X31A0428			4				4		6	5	1
27	21X31A0429	4				4				6	5	1
28	21X31A0431			5				4		6	5	1
29	21X31A0432	4		4						6	5	1
30	21X31A0433			4		4				7	5	1
31	21X31A0434	5						4		7	5	-
32	21X31A0435	4				4				6	5	
33	21X31A0436	5								6	5	1
34	21X31A0437	5		1	İ				1	7	5	1
35	22X35A0401	5	1		1	5			1	8	5	1
36	22X35A0402		1	5	1			4	1	8	5	1
37	22X35A0403	5								8	5	1
38	22X35A0404					5				8	5	

		1			1						
39	22X35A0405	4		3						8	5
40	22X35A0406			4		3				7	5
41	22X35A0407			3		4				7	5
42	22X35A0408	4		4						6	5
43	22X35A0409	5				4				8	5
44	22X35A0410	5						5		6	5
45	22X35A0411	5		4						7	5
46	22X35A0412			5		4				6	5
47	22X35A0413					5		4		6	5
48	22X35A0414	5								7	5
49	22X35A0415	5		3						7	5
50	22X35A0416			5		4				7	5
51	22X35A0417	4		3						7	5
52	22X35A0418	5						5		6	5
53	22X35A0419			4		4				6	5
54	22X35A0420	5		4						6	5
Target set by th	e faculty / HOD	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Number of stud above the target		34	0	27	0	20	0	12	0	52	54
Number of stud	dents attempted	34	0	29	0	20	0	12	0	54	54
Percentage of summer than target		100%		93%		100%		100%		96%	100%

CO Mapping with Exam Questions:

	CO - 1							
	CO - 2							
	CO - 3		у					
	CO - 4	у					у	у
	CO - 5			у			у	у
	CO - 6				у	у	y	у
% Students Sc	cored >Target %	100%		93%	100%	100%	96%	100%

CO Attainment based on Exam Questions:

CO - 1						
CO - 2						
CO - 3						
CO - 4	100%				96%	100%
CO - 5		93%			96%	100%
CO - 6			100%	100%	96%	100%

СО	Sub	obj	Asgn	Overall	Level	Att
CO-1						1
CO-2						2
CO-3						3
CO-4	100%	96%	100%	99%	3.00	
CO-5	93%	96%	100%	96%	3.00	
CO-6	100%	96%	100%	99%	3.00	

Attainment Level						
1	40%					
2	50%					
3	60%					

Attainment (Internal Examination-2) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Name of the faculty:	G.Nirmala	Academic Year:	2022-23
Branch & Section:	ECE - A	Year / Semester:	II / II
Course Name:	Electronic Circuit Analysis		

1 2 3 4 5 6 7 8 9 10 11	21X31A0401 21X31A0402 21X31A0403 21X31A0404 21X31A0405 21X31A0406 21X31A0407 21X31A0408 21X31A0409 21X31A0410	26 5 12 32 30 26 2 9 26
3 4 5 6 7 8 9 10 11	21X31A0403 21X31A0404 21X31A0405 21X31A0406 21X31A0407 21X31A0408 21X31A0409 21X31A0410	12 32 30 26 2 9
4 5 6 7 8 9 10 11	21X31A0404 21X31A0405 21X31A0406 21X31A0407 21X31A0408 21X31A0409 21X31A0410	32 30 26 2 9
5 6 7 8 9 10 11	21X31A0405 21X31A0406 21X31A0407 21X31A0408 21X31A0409 21X31A0410	30 26 2 9
6 7 8 9 10 11	21X31A0406 21X31A0407 21X31A0408 21X31A0409 21X31A0410	26 2 9
7 8 9 10 11	21X31A0407 21X31A0408 21X31A0409 21X31A0410	2 9
8 9 10 11	21X31A0408 21X31A0409 21X31A0410	9
9 10 11	21X31A0409 21X31A0410	
10 11	21X31A0410	26
11		
	01W01 A0410	42
	21X31A0412	4
12	21X31A0413	32
13	21X31A0414	10
14	21X31A0415	30
15	21X31A0416	12
16	21X31A0417	26
17	21X31A0418	26
18	21X31A0420	42
19	21X31A0421	26
20	21X31A0422	26
21	21X31A0423	38
22	21X31A0424	26
23	21X31A0425	29
24	21X31A0426	26
25	21X31A0427	42
26	21X31A0428	9
27	21X31A0429	26
28	21X31A0431	34
29	21X31A0432	29
30	21X31A0433	15
31	21X31A0434	26
32	21X31A0435	16
33	21X31A0436	29
34	21X31A0437	26
Max Ma	arks 75	

S.No	Roll Number	Marks Secured
35	22X35A0401	42
36	22X35A0402	33
37	22X35A0403	28
38	22X35A0404	29
39	22X35A0405	27
40	22X35A0406	29
41	22X35A0407	44
42	22X35A0408	26
43	22X35A0409	26
44	22X35A0410	42
45	22X35A0411	39
46	22X35A0412	26
47	22X35A0413	35
48	22X35A0414	33
49	22X35A0415	26
50	22X35A0416	54
51	22X35A0417	30
52	22X35A0418	26
53	22X35A0419	37
54	22X35A0420	38

	02/0
Percentage of students scored more than target	81%
Number of successful students	54
Number of students performed above the target	44
Class Average mark	26

	26]	Attainment Level	% students
arget	44		1	40%
	54		2	50%
arget	81%		3	60%
	3			

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty :	G.Nirmala	Academic Year:	2022-23
Branch & Section:	ECE - A	Year:	II
Course Name:	Electronic Circuit Analysis	Semester:	II

Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level
C01	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
C03	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Internal &	& University	Attainment:	3.00	3.00	
	Weightage			75%	
CO Attainment for t Unive		internal,	0.75	2.25	
CO Attainment for the	course (Dire	ect Method)		3.00	

Overall course attainment level

3.00

Department of Electronics and Communication Engineering

Program Outcome Attainment(from Course)

Name of Faculty:	G.Nirmala	Academic Year:	2022-23
Branch & Section:	ECE - A	Year:	II
Course Name:	Electronic Circuit Analysis	Semester:	II

CO-PO mapping

		PO		PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	PO1	2	PO3	4	5	6	7	8	9	10	11	12	01	O2
CO1	3	3	2	1	-	-	-	-	-	-	-	-	3	3
CO2	2	3	2	1	-	-	-	-	2	-	-	-	2	2
CO3	2	3	2	1	-	-	-	-	-	2	-	-	3	3
CO4	1	3	2	-	-	-	-	-	-	-	-	-	3	3
CO5	3	2	1	-	-	-	-	-	-	-	2	-	2	2
CO6	2	3	2	-	-	-	-	-	-	-	-	2	1	1
	2.17	1.8	1.83	0.5	-	-	-	-	2.0	2.0	2.0	2.0	2.3	2.3
Course		3		0					0	0	0	0	3	3

СО	Course Outcome Attainment
CO1	3.00
CO2	3.00
CO3	3.00
CO4	3.00
CO5	3.00
CO6	3.00
Overall course attain	nment level 3.00

PO-

ATTAINMEN T

	PO 1	PO 2	PO3	P O 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O 12	PS O1	PS O2
CO Attainment	2.1 7	1.8 3	1.83	0. 50	-	-	-	-	2.0 0	2.00	2.0 0	2. 00	-	-

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana–501510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTERS

Assignment1 script link:

https://drive.google.com/file/d/1gtyVYy0ukm1ytfII279y--esrSM7U9SP/view?usp=sharing

Assignment2 script link:

https://drive.google.com/file/d/1nSGQ4m6dP0KBvOP6wB44eF8EZi2pKo5h/view?usp=sharing

Attendance register link:

https://drive.google.com/file/d/1Xgifr_lF4WLSOE3P2CqhFT8Qm22g0WqP/view?usp=sharing