

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

NETWORK ANALYSIS & TRANSMISSION LINES

Course Code - EC301PC

II B.Tech I-SEMESTER A.Y.: 2022-2023

Prepared by

Mr. M.Nagaraju Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Sneriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	NETWORK ANALYSIS & TRANSMISSION LINES
Course Code	EC302PC
Programme	B.Tech
Year & Semester	II year I-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mr. M.Nagaraju, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech

Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- DM3: To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Snerguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- PEO3: Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatham(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits	
1	EC301PC	Electronic Devices and Circuits	4				
2	EC302PC	Network Analysis and Transmission3003Lines					
3	EC303PC	Digital System Design	3	1	0	4	
4	EC304PC	Signals and Systems	3	1	0	4	
5	EC305ES	Probability Theory and Stochastic Processes	3	0	0	3	
6	EC306PC	Electronic Devices and Circuits Lab	0	0	2	1	
7	EC307PC	Digital System Design Lab	0	0	2	1	
8	EC308ES	Basic Simulation Lab	0	0	2	1	
9	*MC309	Constitution of India	titution of India 3 0 0 0				
		Total Credits	18	3	6	21	

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA401BS	Laplace Transforms, Numerical	3	1	0	4
		Methods&				
		Complex Variables				
2	EC402PC	Electromagnetic Fields and Waves	3	0	0	3
3	EC403PC	Analog and Digital Communications	3	1	0	4
4	EC404PC	Linear IC Applications	3	0	0	3
5	EC405PC	Electronic Circuit Analysis	3	0	0	3
6	EC406PC	Analog and Digital Communications	0	0	3	1.5
		Lab				
7	EC407PC	IC Applications Lab	0	0	3	1.5
8	EC408PC	Electronic Circuit Analysis Lab	0	0	2	1
9	*MC409	Gender Sensitization Lab002				0
		Total Credits	15	2	10	21

*MC–Satisfactory/Unsatisfactory

EC302PC : NETWORK ANALYSIS AND TRANSMISSION LINES

B. Tech. II Year I Sem.

LTPC

3 0 0 3

Pre-Requisites : Nil

Course Objectives:

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states in RLC circuits.
- To understand the two port network parameters.
- To study the propagation, reflection and transmission of plane waves in bounded and unbounded media.

Course Outcomes: Upon successful completion of the course, students will be able to:

- Gain the knowledge on basic RLC circuits behavior.
- Analyze the Steady state and transient analysis of RLC Circuits.
- Know the characteristics of two port network parameters.
- Analyze the transmission line parameters and configurations.

UNIT-I

Network Topology, Basic cutset and tie set matrices for planar networks, Magnetic Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for Magnetically coupled circuits, Ideal Transformer.

UNIT-II

Transient and Steady state analysis of RC, RL and RLC Circuits, Sinusoidal, Step and Square responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves.

UNIT-III

Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros. Standard T, \Box , L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network.

UNIT-IV

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization, Types of Distortion, Condition for Distortion less line, Minimum Attenuation, Loading - Types of Loading.

UNIT-V

Transmission Lines– II: Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations, Smith Chart – Configuration and Applications, Single Stub Matching.

TEXT BOOKS:

- 1. Network Analysis and Transmission Lines by S Salivahanan
- 2. Network Analysis Van Valken burg, 3rd Ed., Pearson, 2016.
- 3. Networks, Lines and Fields-JD Ryder, PHI, 2ndEdition, 1999

REFERENCE BOOKS:

- 1. Electric Circuits J. Edminister and M. Nahvi Schaum's Outlines, Mc Graw Hills Education, 1999.
- Engineering Circuit Analysis–William Hayt and Jack E Kemmerly, MGH, 8thEdition, 1993.
- 3. Electro magnetic with Applications JD. Kraus, 5thEd., TMH
- 4. Transmission Lines and Networks Umesh Sinha, Satya Prakashan,2001,(Tech.India Publications), New Delhi.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COURSE OUTCOMES

Course Name: Network Analysis & Transmission Lines (C212)

At the End of the course, student will be able to

CO No	DESCRIPTION
C212.1	Gain the knowledge on basic network elements and magnetic circuits.(Knowledge)
C212.2	Analyze the steady state and transient analysis of RLC circuits.(Analysis)
C212.3	Gain the knowledge on characteristics of two port network parameters (Z, Y, ABCD, h & g) (Knowledge)
C212.4	Gain the knowledge on network function, driving point and transfer functions using S-variables, poles and zeros) (Knowledge)
C212.5	Analyze the transmission line parameters. (Analysis)
C212.6	Analyze the transmission line configurations and applications. (Analysis)

COs and Mapping with PO's/PSO's

PO, PSO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
/ CO														
C212.1	3	2	-	-	-	-	-	-	-	-	-	-	-	2
C212.2	3	3	-	-	2	-	-	-	-	-	-	1	-	-
C212.3	3	2	-	1	-	-	-	-	-	-	-	1	-	-
C212.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
C212.5	3	2	-	-	2	-	-	-	-	-	-	_	-	2
C212.6	3	-	2	-	-	-	-	-	-	-	-	_	-	2
	2.8	2.4	2	1	2	-	-	-	-	-	-	1	-	2

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

<u>CO- PO/PSO Mapping – Justification</u>

COURSE NAME: Network Analysis & Transmission Lines (C212)

P01. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

P02. PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

P03. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

P05. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

P12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO2. SOFTWARE USAGE: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

<u>CO-PO mapping Justification</u>

C212.1 : Gains the knowledge on basic network elements and magnetic circuits.

	Justification
PO1	Apply the knowledge of mathematics and science in network elements and magnetic circuits. (level 3)
PO2	Students can find network topology and behavior of network elements (level 2)
PSO2	Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.(level 2)

C212.2 : Analyze the steady state and transient analysis of RLC circuits.

	Justification
PO1	Apply the knowledge of engineering fundamentals (level 3)
PO2	Students can find R,L,C elements behavior in steady state and transient state (level 3)
PO5	Students able to create the different circuit designs (MATLAB). (level 2)
P12	Students able to apply different circuit configurations modern electrical system .(level 1)

C212.3 : Gain the knowledge on characteristics of two port network parameters (Z, Y, ABCD, h & g)

	Justification
PO1	Students get the knowledge on analyzing the periodic waveforms.(level 3)
PO2	Evaluating the Laplace transform techniques (level 2)
PO4	Students able to solve the problems on different circuit designs. (level 1)
P12	Students able to apply different circuit configurations modern electrical system .(level 1)

C212.4 : Gain the knowledge on network function, driving point and transfer functions using S-variables, poles and zeros)

	Justification
PO1	Student get the knowledge in of two port networks .(level 2)
PO2	Students calculate the network parameters for all types of networks. (level 3)
G010 -	

C212.5 : Analyze the transmission line parameters.

	Justification
PO1	Student get the knowledge on transmission line concept .(level 3)
PO2	Evaluating the different transmission lines (level 2)
PO5	Students able to create the different circuit designs (MATLAB). (level 2)
PSO2	Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.(level 2)

-	
	Justification
PO1	Student get the knowledge on designing the transmission lines(level 3)
PO3	Student able to develop the different transmission line configurations (level 2)
PSO2	Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.(level 2)

C212.6 : Analyze the transmission line configurations and applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ACADEMIC CALENDAR 2022-23

B. Tech./B.Pharm. II YEAR I & II SEMESTERS

I SEM

S. No	Description	Duration		
	· · · · · · · · · · · · · · · · · · ·	From	То	
1	Commencement of I Semester classwork		28.11.2022	
2	1 st Spell of Instructions	28.11.2022	21.01.2023 (8 Weeks)	
3	First Mid Term Examinations	23.01.2023	30.01.2023 (1 Week)	
4	Submission of First Mid Term Exam Marks to the University on or before			
5	2 nd Spell of Instructions	31.01.2023	29.03.2023 (8 Weeks)	
6	Second Mid Term Examinations	31.03.2023	08.04.2023 (1 Week)	
7	Preparation Holidays and Practical Examinations	10.04.2023	15.04.2023 (1 Week)	
8	Submission of Second Mid Term Exam Marks to the University on or before	15.04.2023		
9	End Semester Examinations	17.04.2023	29.04.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 93

II SEM

S. No	Description	Duration		
~	•	From	То	
1	Commencement of II Semester classwork		01.05.2023	
2	1 st Spell of Instructions (including Summer Vacation)	01.05.2023	08.07.2023 (10 Weeks)	
3	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)	
4	First Mid Term Examinations	10.07.2023	15.07.2023 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before	22.07.2023		
6	2 nd Spell of Instructions	18.07.2023	11.09.2023 (8 Weeks)	
7	Second Mid Term Examinations	12.09.2023	16.09.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	19.09.2023	23.09.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before		23.09.2023	
10	End Semester Examinations	25.09.2023	07.10.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 92

REGISTRAR

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution under UGC)

.

(An Autonomous Institution under UGC) Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Class Timetable

CLASS	: II-B.Tech E	CE-A	А	.Y:2022-23		SEMESTER	: I	LH: C-101
TIME/ DAY	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	IV 12:10-1:00	1:00-1:30	V 1:30-2:20	VI 2:20-3:10	VII 3:10-4:00
MON	EDC	COI	EDC LAI	3 / DSD LAB		DSD	NATL	SPORTS
TUE	PTSP	NATL	DSD	COI	L	EDC	SS	DSD(T)/SS(T
WED	SS	PTSP	DSD LA	B/BSLAB	U	DSD	SS(T)/EDC(T)	EDC
THU	NATL	PTSP	COI	EDC(T)/DSD(T)	N C	SS	DSD	COUN
FRI	SS	EDC	COI	PTSP	C H	LIB	CO-CL	A CONTRACTOR OF
SAT	EDC	DSD	SS	NATL		PTSP	BS LAB /	
*(T) -	- Tutorial Co	ncern Faculty						LOC LITE
Course Code		Course Name	Name of the Faculty	Course	111123	urse	Concerne and Concerne	of the
EC301PC	EDC-Elec	tronic Devices	K.Rajender	EC306PC	EDC LAB - E Devices and C	lectronic	K.Rajender/B.Ash	wini/M.Srilatha
EC302PC		twork Analysis mission Lines	M.Nagaraju	EC307PC	DSD LAB - D Design Lab		G.Anusha/T.Divy	a/P.Krishna Rao
EC303PC	Design	tar system	G.Anusha	EC308ES	BS LAB - Bas Lab	ic Simulation	P.Rajendra/T.Nard	esh
EC304PC	SS-Signals	and Systems	P.Rajendra	LIB	Library		B.Ashwini/Dr.K.S	rinivasa Reddy
EC305ES	PTSP-Pro and Stocha	bability Theory astic Processes	T.Naresh	COUN	Counseling		K.Rajender/G.Ant	
*MC309 COI-Constitution of India		titution of India	S.Swapna	CO-CU/DAA	Co-Curricular/	Dept.Assc.Act.	K.Rajender/T.Nar	esh/D.Aruna
0.000000000	H	ref	o.owapna	SPORTS	Sports		G.Anitha/P.Suman	<u>ل</u> م ا

P R Dist Telanoana -501 510

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN				
Programme: B.Tech	Academic Year: 2022-23			
Year: II	Semester: I			
Course Title: Network Analysis&Transmission Lines	Course Code: EC302PC			
Name of Faculty: M.NAGARAJU				

Unit-I Syllabus

Network Topology, Basic cutset and tie set matrices for planar networks, Magnetic Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for Magnetically coupled circuits, Ideal Transformer.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids
1	Review of R, L,C, RC, RL, RLC circuits	T1, R2	BB
1	Network topology, definations	T1, R2	BB
1	Incidance matrix, complete & reduced incidence matrix	T1, R2	BB
1	Basic cutest matrix	T1, R2	BB
1	Tie set matrices for planar networks	T1, R2	BB
1	Problems	T1, R2	BB
1	Problems	T1, R2	BB
1	Magnetic circuits self and mutual inductances	T1, R2	BB
1	Dot convention in coupled circuits	T1, R2	BB
1	Co-efficient of coupling	T1, R2	BB
1	Equivalent T for Magnetically coupled circuits	T1, R2	BB
1	Impedance, reactance concept	T1, R2	BB
1	Impedance transformation	T1, R2	BB
1	Ideal transformer.	T1, R2	BB
1	Problems	T1, R2	BB
1	Problems	T1, R2	BB
	ond syllabus(if any):		-
	nin the syllabus(if any)	1	•••
Course (Dutcome 1 : Gain the knowledge on basic network elements	and magnetic	circuits.

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-II Syllabus

Transient and Steady state analysis of RC, RL and RLC Circuits, Sinusoidal, Step and Square responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves.

No. of Sessions	Topics	Reference	Teaching Method/		
Planned			Aids		
1	Steady state and transient analysis of RC,RL & RLC	T2, R 2	BB		
	Circuits				
1	Transient and steady state responses	T2, R 2	BB		
1	Initial and final conditions of RLC elements	T2, R2	BB		
1	Transient analysis of series RL circuit	T2, R2	BB		
1	Transient analysis of series RC circuit	T2, R2	BB		
1	Linear differential equations of RL&RC circuits	T2, R2	BB		
1	Problems	T2, R2	BB		
1	RC circuit as differentiator & integrator	T2, R2	BB		
1	Sinusoidal response of series RL circuit	T2, R2	BB		
1	Sinusoidal response of series RC circuit	T2, R2	BB		
1	DC response of RLC series circuit	T2, R2	BB		
1	DC response of RL& RC series circuits	T2, R2	BB		
1	Resonance in series & parallel RLC circuits	T2, R2	BB		
1	Resonant frequency, Bandwidth & Quality factor	T2, R2	BB		
1	Problems & Root locus	T2, R 2	BB		
1	Time response of first order system for unit step input	T2, R2	BB		
1	Time response of Second order system for unit step input	T2, R2	BB		
1	Damping ratio, undamped, under damped, over damped and critically damped cases	T2, R2	BB		
Gap beyond syllabus (if any):					
Gap with	in the syllabus (if any)				
0	Juteoma 2: Analyza the standy state and transient analysis	f DI Calara	·4 -		

Course Outcome 2: Analyze the steady state and transient analysis of RLC circuits.

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-III Syllabus

Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros. Standard T, \Box , L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network.

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Two-port network parameters	T1, R1	BB
1	Z-parameters	T1, R1	BB
1	y-parameters	T1, R1	BB
1	A,B,C,D - parameters	T1, R1	BB
1	h,g parameters	T1, R1	BB
1	Problems	T1, R1	BB
1	Characteristic impedance, image transfer constant,	T1 D1	BB
1	iterative impedance	T1, R1	
1	network function	T1, R1	BB
1	driving point and transfer functions	T1, R1	BB
1	Poles and Zeros.	T1, R1	BB
1	Problems	T1, R1	BB
1	Standard T, II, L Sections	T1, R1	BB
1	Design of Attenuators	T1, R1	BB
1	Impedance matching network	T1, R1	BB
Gap beyo	ond syllabus(if any):	•	

Gap within the syllabus(if any)

Course Outcome 3: Gain the knowledge on characteristics of two port network parameters (Z, Y, ABCD, h & g)

Course Outcome 4: Gain the knowledge on network function, driving point and transfer functions using S-variables, poles and zeros)

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-IV Syllabus

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization, Types of Distortion, Condition for Distortion less line, Minimum Attenuation, Loading - Types of Loading.

No. of Sessions Planned	Topics	Reference	Teaching Method/ Aids		
1	Transmission Lines-I	T1,R4	BB		
1	Types, Parameters & Transmission line equations	T1,R4	BB		
1	Primary & Secondary constants	T1,R4	BB		
1	Characteristic impedance, Propagation constant	T1,R4	BB		
1	Phase and group velocities	T1,R4	BB		
1	Infinite line concepts	T1,R4	BB		
1	Lossless characterization	T1,R4	BB		
1	Types of Distortion, Condition for Distortion less line	T1,R4	BB		
1	Minimum attenuation, Types of loading	T1,R4	BB		
1	Problems	T1,R4	BB		
Gap beyond syllabus(if any):					
Gap within the syllabus(if any)					
	Putcome 5 : Analyze the transmission line parameter	ers.			

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510

Website: https://siiet.ac.in/

Unit-V Syllabus

Transmission Lines– II: Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations, Smith Chart – Configuration and Applications, Single Stub Matching.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
1	Transmission Lines-II	T1,R4	BB		
1	Input impedance in Short circuit and open circuit	T1,R4	BB		
1	lines				
1	Reflection coefficient	T1,R4	BB		
1	Voltage standing Wave Ratio $\lambda/4$, $\lambda/2$, $\lambda/8$ lines	T1,R4	BB		
1	Impedance transformations	T1,R4	BB		
1	Smith-chart configuration & Applications	T1,R4	BB		
1	Single stub matching	T1,R4	BB		
1	Problems	T1,R4	BB		
Gap beyond syllabus(if any):					
Gap with	in the syllabus(if any)				

Course Outcome 6: Analyze the transmission line configurations and applications.

*Session Duration: 50 minutes

*Total Number of Hours/Unit: 8

TEXT BOOKS:

- 1. Network Analysis and Transmission Lines by S Salivahanan
- 2. Network Analysis Van Valken burg, 3rd Ed., Pearson, 2016.
- 3. Networks, Lines and Fields-JD Ryder, PHI, 2ndEdition, 1999

REFERENCE BOOKS:

- 1. Electric Circuits J. Edminister and M. Nahvi Schaum's Outlines, Mc Graw Hills Education, 1999.
- Engineering Circuit Analysis–William Hayt and Jack E Kemmerly, MGH, 8thEdition, 1993.
- 3. Transmission Lines and Networks Umesh Sinha, Satya Prakashan, 2001

WEB REFERENCES:

1	https://archive.nptel.ac.in/courses/108/104/108104139/
2	https://archive.nptel.ac.in/courses/108/102/108102146/
3	https://youtu.be/s2Nh0z67Pno?si=5IFGxsDlBAzdoXfJ
4	https://youtu.be/1crTSC4dSEo?si=r9mbRB4JiSUJbdjF
5	https://youtu.be/GasWAllvvD8?si=55dnnIYhj8Kb4B5c
6	https://youtu.be/5FMrf9kS-Go?si=mEfk5xl1bJeNI6hg
7	https://youtu.be/b_VCIdXEK2I?si=PXT_pRSLjqQnEUwq
8	https://youtu.be/QhABic_PhDs?si=BR4H-21AMDTbauh2
9	https://youtu.be/ITVQctVWS9U?si=CfLK4gbX83BFYNNK
10	https://youtu.be/VzGnb2K4RGQ?si=ilAD33JICCL1HIGV

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1YmcYpYpfGh7zxJ7Ih7uIn08CGnsJ PiQ_/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1vAEugwRPacmGvcawoWJYqfcc-G9S2PS7/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1LCYpT6Mdw_uG4ACMNWPF8sy0 veha53Qh/view?usp=sharing

Unit 4 link:

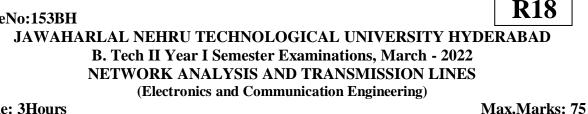
https://drive.google.com/file/d/127coFLMJ6vlpa09dV3s4bH1bnly3CSn/view?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/1QfDCPCmRxMgYaeiPEvnJTRvzI-_r6XdE/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

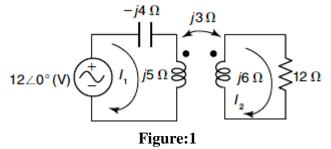
Power point presentations

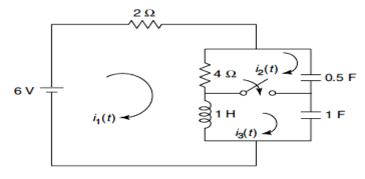

PPT link 1:

https://docs.google.com/presentation/d/1dYsTSdsj1mFLMEdx2_XY jEk5hXrxpwI7/edit?usp=sharing&ouid=111085833290731553716&r tpof=true&sd=true

PPT link 2:

https://docs.google.com/presentation/d/1XT4JLbg852rkOiwyTqOpr 3w7JqG_H5yW/edit?usp=sharing&ouid=111085833290731553716& rtpof=true&sd=true


CodeNo:153BH


Time: 3Hours

Answer any five questions All questions carry equal marks ---

- 1. Explain the following terms: a) Graph of a network b) Oriented Graph c) Rank of a Graph d) Planar and non-planar graph and e) Sub graph. [15]
- 2. Calculate the currents I_1 and I_2 for the following circuit shown in figure 1. [15]

- 3.a) Prove that the active power consumed in any purely reactive circuit is zero.
- For the following network shown in figure2, a steady state is reached with switch open. b) At t = 0, switch is closed. Find the three loop currents at t = 0^+ . [6+9]

Figure:2

4. For the circuit shown in figure3, find $i_1(t)$ for $\omega = 100$ rad /sec. [15]

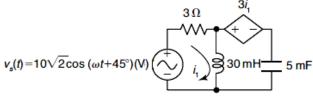
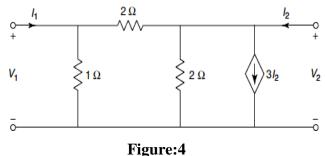



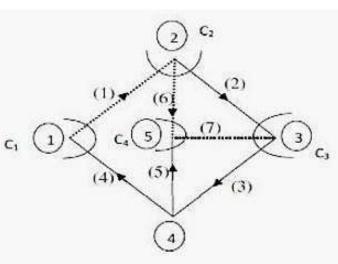
Figure:3

- 5.a) Explain the condition for symmetry in a two port network with a proper example.
- b) For the following network shown in figure 4, find the Y– parameters. [6+9]

- 6. What are image parameters? Derive expression of image parameters in terms of:
 a) ABCD parameters
 b) open-circuit and short-circuit impedances. [7+8]
- 7. The values of primary constants of an open-wire line per km are $R = 10 \Omega$, L = 3.5 mH,C= 0.008 μ F and G = 0.7 μ O. For a signal frequency of 1000 Hz, calculate the characteristic impedance, Propagation constant, attenuation constant, phase constant, wavelength and phase velocity v_p . [15]
- 8.a) List and explain the characteristics of impedance smith chart.
- b) Explain the significance and design of single stub impedance matching and discuss the factors on which stub length depends. [7+8]

R18 Code No: 153BH JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, August/September - 2022 NETWORK ANALYSIS AND TRANSMISSION LINES (Electronics and Communication Engineering)

Time: 3 Hours


Answer any five questions All questions carry equal marks

- 1.a) Explain the concepts basic cut set and basic tie set matrices for planar networks.
- Formulate the fundamental cut set matrix for the graph shown in figure 1. b) [7+8]

(2)(1)(5) (3)

Figure 1

- 2.a) Define self and mutual inductance. Explain the elementary theory of ideal transformer.
 - A long solenoid has 500 turns. When a current of 2 A is passed through it, the resulting b) magnetic flux linked with each turn of the solenoid is 4×10^{-3} Wb, find self-inductance. [9+6]
- 3.a) In a series RLC circuit, with $R = 2\Omega$, L = 2 mH, and $C = 10 \mu$ F. Find the resonant frequency, half power frequencies, band width, quality factor.
 - b) Explain how does a series R-C circuit acts as integrator? [8+7]
- 4.a) Show that the resonant frequency is the geometric mean of two half power frequencies.
- A series RLC circuit consists of a resistance of 25 Ω , inductance 0.4 H, capacitance of b) 250 µF is connected a supply of 230V, 50 Hz. Find the total impedance, current, power, power factor, voltage across coil and capacitance. [7+8]

Max.Marks:75

- 5.a) Derive the condition for a two port network to be symmetrical in terms of ABCD parameters.
 - b) What is two-port network? Obtain the Z, Y and parameters of a network given below figure 2. [6+9]

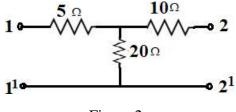


Figure 2

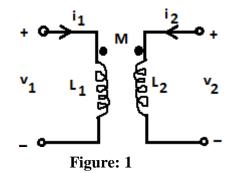
- 6.a) Design an attenuator in Pi configuration with 50 Ω characteristic impedance and attenuation of 6 dB. Transform the same to a T network. Explicitly show the S-Matrix calculations.
 - b) Explain the concept of poles, zeros, their significance and necessary conditions for driving point functions and transfer functions? [8+7]
- 7.a) Derive an expression for the velocity and characteristic impedance in distortion less transmission line.
 - b) Explain the conditions which are used for minimum attenuation in transmission lines.

[8+7]

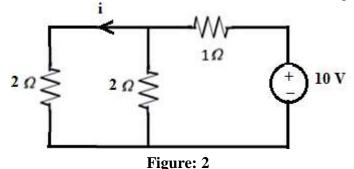
- 8.a) Derive the relation between reflection coefficient and characteristic impedance in a transmission line.
- b) Explain the principal of single stub matching. [7+8]

---00000----

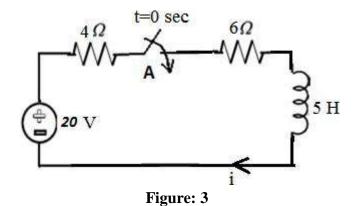
Code No: 153BH R18 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2021 NETWORK ANALYSIS AND TRANSMISSION LINES (Electronics and Communication Engineering)


Time: 3 hours

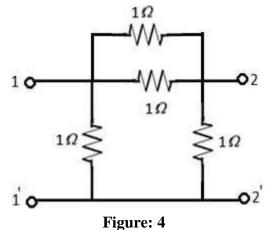
Answer any five questions All questions carry equal marks

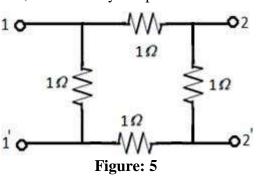

Max. Marks: 75

[7+8]


- 1.a) What is a cutset? How to obtain the basic cutset matrix?
 - b) In the circuit shown in figure 1, $L_1 = L_2 = 5 \mu H$ and $M = 1 \mu H$. Compute v_1 and v_2 , If
 - $i_1 = 3 \cos 150 t \, mA$, $i_2 = 4 \sin 150 t \, mA$

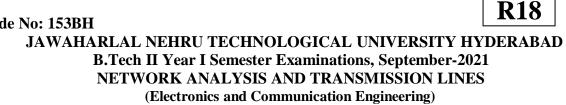
- 2.a) What is dot convention? Why do we use it?
 - b) Using basic tieset matrix, find current 'i' in the circuit shown in figure 2. [7+8]


- 3.a) Draw the impedance and current curves for the series RLC resonant circuit. Explain about it?
- b) An inductive circuit draws 5 A and 500 W from a 200-V, 50 Hz AC supply, determine
 (i) the impedance (ii) the power factor (iii) the reactive power (iv) the apparent power.
- 4.a) Draw the step response of a second order system for critically damped case and Explain.
 - b) In the circuit shown in figure 3, find current ' i' at t = 3 sec. [8+7]


- 5.a) Write short notes on driving point and transfer functions.
- b) For the network shown in figure 4, determine impedance parameters.

[7+8]

[7+8]


- 6.a) Draw the structure of standard T section and explain in detail.
- b) For the network figure 5, determine hybrid parameters.

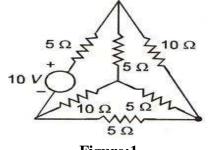
- 7.a) Define loading. Explain different types of loading.
- b) Discuss in detail about phase and group velocities. [7+8]
- 8.a) What is single stub matching? Explain in detail.
 - b) Explain about input impedance relations for various cases of transmission lines. [7+8]

---00000----

Code No: 153BH

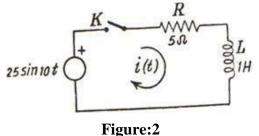
Time: 3hours

Answer any five questions All questions carry equal marks


- 1.a) Discuss the dot convention used in magnetically coupled coils.
- b) An iron ring of 0.25 meter diameter and 2×10^{-3} sq.m. in cross section with a saw cut 1.5 mm wide is wound with 150 turns of copper wire. The air gap flux density is 0.7 Tesla. The relative permeability of iron is 800. Calculate the exciting current. Ignore the leakage.

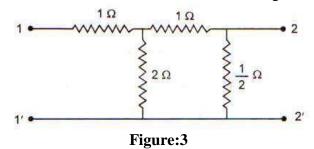
[7+8]

[6+9]


Max.Marks:75

- 2.a) Define the following: (i) node (ii) branch (iii) tree.
 - b) For the network shown in figure1, obtain the incidence matrix and determine the relationship between loop and branch currents.

A sinusoidal voltage 25 sin10t is applied at time t=0 to a series R-L circuit shown in figure 3. 2, consisting of $R = 5\Omega$ and inductor L = 1 Henry. Find the value of i (t). Assume no current through the inductor before application of voltage. [15]



- 4.a) Obtain an expression for transient current in a R-L circuit is suddenly connected with a unit step function by closing the switch at t = 0.
- A series RLC circuit has a quality factor of 5 at 50 rad/sec. The current flowing through the b) circuit at resonance is10A and the supply voltage is 100V.Find the circuit constants.

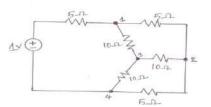
[8+7]

- 5.a) Explain different parameters to be considered for design of attenuators.
 - b) Draw the symmetrical T and π sections and their decomposition into L sections.[8+7]

- 6.a) The network equations for two-port network k give the current I_1 and I_2 at the two ports as $I_1 = 0.25V_1 0.2 V_2$ and $I_2 = -0.2V_1 + 0.1 V_2$ Determine the Y and ABCD parameters for the network.
 - b) Find the Z-parameters for the resistive network shown in figure 3. [7+8]

- 7. Derive the equation of attenuation constant and phase constant of Transmission Line in terms of R, L, C and G. [15]
- 8.a) Find the reflection coefficient of a 50 Ω transmission line when it is terminated by a load impedance of (60+j 40) Ω .
 - b) Mention the disadvantages of single stub matching. [8+7]

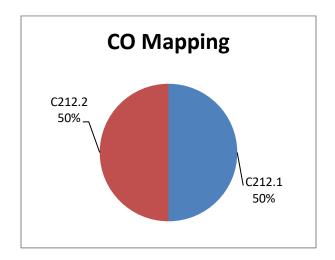
--00000----

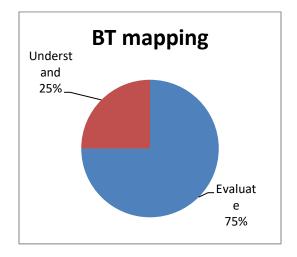

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 I - Mid Examinations, JAN -2023

Year & Branch: II ECE A&B Subject: NATL

Max. Marks: 10

SET-I Date: 23-01-2023(AN) Time: 60 mins

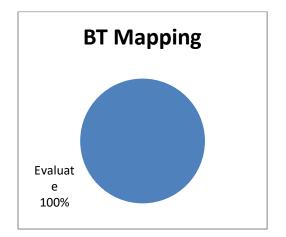

1. Determine the branch currents and loop currents by using Tie Set Matrix for the network shown below. [5M] [C212.1]

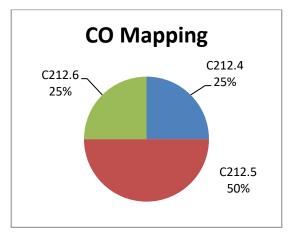


2. a) Obtain an expression for coefficient of coupling. [Evaluate] [2M] [C212.1]

b) A coil of 800µH is magnetically coupled to another coil of 200µH. The Coefficient of Coupling between two coils is 0.05. Calculate the equivalent inductance if the two coils are connected in: a) Series Aiding b) Series Opposing c) Parallel Aiding and d) Parallel Opposing. [3M] [C212.1] [Evaluate]

- 3. What is Time Constant? Explain time constant in case of series RL and RC series circuits. [5M] [C212.2] [Understand]
- 4. A series RC circuit with R=25 ohms, C=0.02F has a constant voltage V=50V applied at t=0. Determine the current I, V_R and V_C . [5M] [C212.2] [Evaluate]


[Evaluate]


Sri Indu Institute of Engineering & Technology Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

II - Mid Examinations, MAR - 2023

	Year &Branch: II ECE- A&B		Date: 31-03-2023(A	N)
	Subject: NATL	Max. Marks: 10	Time: 60 mins	
	Answer any TWO Questions	. All Question Carry Equal Marks	2*5=10 m	arks
	(This question paper is p	repared with Course Outcome and	BT's mapping)	
1.	Derive the characteristic impedar	ce of a symmetrical T-network ha	ving characteristic im	pedance
	(Z_o) , terminated with a load (Z_o) .	[Evaluation] [C212.4]		[5M]
2.	Derive the general solution of Tra	ansmission Line Equations. [Evalua	ation] [C212.5]	[5M]
3.	Derive the following terms: (i) P	ropagation constant (γ), (ii) Attenu	ation constant (α), (i	ii) phase
	shift constant (β) . [Evaluation]	[C212.5]		[5M]
4.	Derive the input impedance by	using voltage and current equation	ons at the sending e	end of a

transmission line. [Evaluation] [C212.6]

Set – I

[5M]

		riguda (V), Ibrahimpatnam (M)	, R.R.Dist-501 510			
	B-Tech I - Mid Examinations, JAN -2023					
	V OD 1 H	Objective Type Ex				
	Year &Branch: II – Subject: NATL	ECE-A&B Max. Marks: 10	Date: 23-01-2023(AN) Time: 20 min			
	Subject. IAIL		Time. 20 min			
	Name:	Roll No.				
(Choose the correct a	nswers.				
1.	In a Parallel magnet	ic circuit across parallel bran	nches is same []			
	a) Reluctance	b) MMF				
	c) Flux	d) none of these				
2.	If b is the number of	of branches and n is no of nodes	in a connected graph, the no of			
	links corresponding	to any tree of the graph is	[]			
	a) n+1-b	b) b-n+1				
	c) b-n-1	d) n-b-1				
3.	The Flux linkage be	tween the coils is maximum, w	hen M =? []			
	a) L1L2	b) √L1*L2				
	c) L1=L2	d) L1/L2				
4.	Two networks are s	aid to be dual of each other if -	[]			
	a) both are identical		b) both are equivalent			
	c) mesh equation of	one network are same as node	equation of other d) All			
5.	Resonance is a pher	omenon in which	[]			
	a) resultant current	lags applied voltage				
	·	and applied voltage are in phase	2			
	c) resultant current	leads applied voltage				
	d) none					
6.		of capacitor is given by Qc	[]			
	a) wC/R	b) r/wC				
_	c) 1/wCR	d) wCR				
7.		between resonant frequency an	d half power frequencies			
	(f1 and f2)		[]			
	a) fr= $f1*f2$	b) $fr = f1 - f2$				
	c) fr= $\sqrt{f1*f2}$	d) fr=f1/f2				
8.	e e	raph present in a tree are called	[]			
	a) twig	b) link				
-	c) chord	d) none of the above				
9.		uit, if value of C is decreased, t	he resonant frequency []			
	a) becomes Zero	b) Remains Same				
	c) Decreases	d) Increases				

10. The measure of duration of transient interval is []			
a) time period	b) time constant		
c) time interval	d) none of the above		
Fill in the blanks.			
11. The unit of magnetic flux density is			
12. The ratio of total flux to the useful flux in a circuit is called coefficient.			
13. A tree of an oriented graph consists at all nodes but no			
14. If two coils are connected in series opposition, then the effective inductance is			
15. Under resonance the power factor of series RLC circuit is			
16. The bandwidth of series resonant circuit is given by			
17. In steady state capacitor acts as			
18. The parallel resonance circuit is also called as			
19. The current throughcannot change instantaneously.			
20. If there consist n number of nodes then the rank R of a graph is			

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 B-Tech II - Mid Examinations, MAR -2023

Objective Type Exam

Year &Branch: II –ECE-A&B		Date: 31-03-2023(AN)
Subject: NATL	Max. Marks: 10	Time: 20 min

[]

Name:Roll No.....

Choose the correct answers.

1. Find V1 and V2. 100 V V_1 $[y] = \begin{bmatrix} 10 & -5 \\ 50 & 20 \end{bmatrix}$ V_2 $V_$

a) -68.6 V, 114.3 V b) 68.6 V, -114.3 V c) 114.3 V, -68.6 V d) -114.3 V, 68.6 V

- A 2-port resistive network satisfy the condition A = D = 3/2B = 4/3C. The z11 of the network is
 - a) 4/3 b) 3/4 c) 2/3 d) 3/2
- 3. two port network is said to be symmetrical when the following equalities hold good
- a) Z₁₁=Z₂₂ and Z₁₂=Z₂₁ b) Z₁₁=Z₂₂ c) Y₁₂=Y₂₁ d) Y₁₂=Y₂₁ and Y₁₁=Y₂₂
 4. ABCD parameters are used in analysis of []
 a) short circuit b)electronic circuit c) open circuit d)transmission line
 5. The two port network is reciprocal if []
 - a) $Y_{11}=Y_{21}$ b) $Y_{12}=Y_{21}$ c) $Y_{22}=Y_{21}$ d) $Y_{11}=Y_{22}$

6. The roots of the denominator polynomial of the transfer function of the system are called []

a) zeros b) poles c) gain constant d) parameters

- 7. If the received signal is not the exact replica of the transmitted signal is called []a) distorted signal b)analog signal c) digital signal d) none of the above
- 8. The received waveform will not be identical with the input waveform is known as []a) voltage distortion b) current distortion
 - c) frequency distortion d) none of the above

9. The inductance of a transmission lin	ne can be increased by the introduc	ction of loading
coil at uniform intervals is called		[]
a) continuous loading	b) lumped loading	
c) patch loading	d) none of the above	
10. Phase velocity is also called as		[]
a) velocity of light	b) group velocity	
c) velocity of propagation	d) none of the above	

Fill in the blanks.

11. In hybrid parameters, h ₁₂ is called as	
12. Y parameters are also called as	
13. Condition for symmetry of ABCD parameters is	
14. For symmetrical network, image transfer constant is called as 15. Characteristic impedance of a symmetrical network, $Z_{0=}$	
16. The ratio between the transform of voltage to the transform of current at one	
particular port is called as	
17. The ratio of the maximum and minimum magnitude of current or voltage on a line having standing waves is called	
18. The energy delivered to the load may be less than that of energy delivered if impedances Z_1 and Z_2 are matched it resulting in a	
19. Product of group velocity and phase velocity is equals to	
20. Applications of smith chart	

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech I - Mid Examinations, JAN-2023

Year &Branch: II –ECE- A

Date: 23-01-2023(AN)

Subject: NATL

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1VeTssjTwDO4jHXtSdc5BcjHe1meKDdzx/view?usp=sharing

Objective Key Paper

I. Choose the correct alternative:

- 1) a. Reluctance
- 2) b. b-n+1
- 3) b. √L1*L2
- 4) b. both are equivalent
- 5) b. resultant current and applied voltage are in phase
- 6) c. 1/wCR
- 7) c. fr= $\sqrt{f1*f2}$
- 8) a. twig
- 9) d. Increases
- 10) b. time constant

II. Fill in the blanks:

- 11) wb/m²
- 12) coefficient.
- 13) closed path
- 14) L=L1+L2-2M
- 15) unity
- 16) R/L
- 17) open circuit
- 18) rejector circuit
- 19) transient circuits
- 20) N-1

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech II - Mid Examinations, MAR-2023

Year &Branch: II –ECE-A Subject: NATL Date: 31/03/2023 (AN)

ANSWER KEY

Descriptive paper key link:

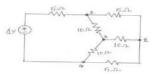
https://drive.google.com/file/d/1CUivXxArS91a7A4HO1xRRSnJAty0VV1-/view?usp=sharing

Objective/Quiz Key Paper

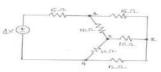
I. Choose the correct alternative:

- 1) b.
- 2) a.
- 3) b.
- 4) d.
- 5) b.
- 6) b.
- 7) a.
- 8) c.
- 9) b.
- 10) c.

Fill in the blanks:


- 1) Reverse voltage gain
- 2) Short circuit admittance parameter
- 3) AD-BC=1
- 4) Propagation constant
- 5) Square root of $Z_{OC}^*Z_{SC}$
- 6) Driving point impedance
- 7) Standing wave ratio
- 8) Reflection loss
- 9) Square of velocity of light
- 10) Convert impedance to admittance

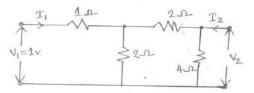
Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 I - Mid Assignment Questions


Year & Branch: II ECE A&B

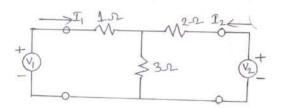
Subject: NATL

- 1. Explain the terms i.node, ii.branch, iii.loop, iv.oriented graph, v.tree, vi.co-tree, vii.twigs & viii.links [5M] [Understand]
- 2. Draw the graph of the network shown in figure and write the incidence matrix.[5M] [create]
- 3. Determine the branch currents and loop currents by using Tie set matrix for the network shown below. [5M] [Evaluate]

4. Determine the branch currents and loop currents by using Cut set matrix for the network shown below. [5M] [Evaluate]


5. Explain the Dot convention Rule in coupled circuits. [2M]

- 6. Explain the parallel connection in coupled circuit.[5M] [Understand]
- 7. Obtain the equivalent conductively coupled circuit for magnetically coupled circuit. [5M] [Evaluate]
- 8. What is Ideal Transformer, derive the input impedance in the Ideal Transformer. [5M] [Evaluate]
- 9. Determine the currents I_1 & I_2 in circuit shown below.[5M] [Evaluate]
- 10. A coil of 800µH is magnetically coupled to another coil of 200µH. The Coefficient of Coupling between two coils is 0.05. Calculate the equivalent inductance if the two coils are connected in:
 a) Series Aiding b) Series Opposing c) Parallel Aiding and d) Parallel Opposing. [5M] [Evaluate]
- 11. A coil of 50 ohm and inductance 0.1H is connected in series with capacitor of 150µf across a 200v, 50Hz supply, calculate current, power factor ,power, voltage across the inductor & capacitor & impedance.[5M] [Evaluate]
- Two identical coupled coils are connected in series and have an equivalent inductance of 0.08H and 0.0354H when connected in series aiding & series opposing. Find the value of inductance L,mutual inductance M. [5M] [Evaluate]


[Understand]

Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 II – Mid Assignment Questions

	Year &Branch: II ECE A&B	Subject: NATL					
1.	Explain the four types of two-port network parameters. (Understand)	[5M]				
2.	Find Y-parameters for the network of figure shown below	v. (Create)	[5M]				

3. Determine the h-parameters for the 2-port network shown in figure. (Create) [5M]

- 4. Derive the characteristic impedance for symmetrical π -network. [Evaluation] [5M]
- 5. Derive the Propagation constant (γ) in a symmetrical T-network . [Evaluation] [5M]
- 6. Derive the Attenuation constant (α), R₁, R₂ and characteristic impedance R₀ in symmetrical T-attenuator . [Evaluation] [5M]

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

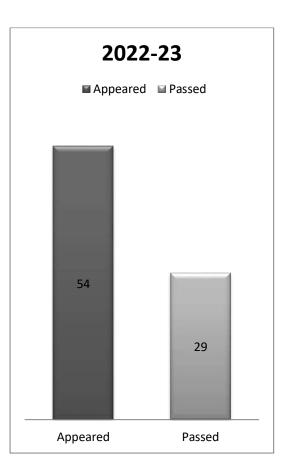
Course Title	NETWORK ANALYSIS & TRANSMISSION LINES
Course Code	EC302PC
Programme	B.Tech
Year & Semester	II year I-semester
Regulation	R18
Course Faculty	M.NAGARAJU, Assistant Professor, EEE

Slow learners: (Section-A)

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	21X31A0402	3	16	17
2	21X31A0403	3	18	19
3	21X31A0408	3	19	15
4	21X31A0409	4	15	18
5	21X31A0412	3	19	14
6	21X31A0414	3	18	17
7	21X31A0417	3	16	17
8	21X31A0422	3	20	14
9	21X31A0433	3	21	19
10	21X31A0435	3	22	20
11	21X31A0436	3	15	22

Advanced learners: (Section-A)

0.	ROLL.NO.	GATE MATERIAL
1.	21X31A0401	
2.	21X31A0404	Network Transform Davis and stand the
3.	21X31A0405	Network Topology : Basic cut set and tie set matrices for planar networks, Magnetic
4.	21X31A0406	circuits, Self and Mutual inductances, dot
5.	21X31A0407	convention, co-efficient of coupling,
6.	21X31A0410	equivalent T for Magnetically coupled circuits.
7.	21X31A0413	Chourds.
8.	21X31A0415	Transient analysis of RL, RC and RLC
9.	21X31A0416	circuits: Sinusoidal, step and square
10.	21X31A0418	responces, damping factor, quality factor and bandwidth for series and parallel resonance
11.	21X31A0420	circuits.
12.	21X31A0421	
13.	21X31A0423	Transmission Lines-I : Types, Parameters, Transmission line equations, primary &
14.	21X31A0424	secondary constants, Propagation constant,
15.	21X31A0425	Attenuation constant, Phase shift constant.
16.	21X31A0426	
17.	21X31A0427	
18	21X31A0428	
19	21X31A0429	
20	21X31A0431	
21	21X31A0432	
22	21X31A0434	
23	21X31A0437	



Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-II BTECH I SEM ECE-A RESULT ANALYSIS

ACADAMIC	COURSE	NUMBE STUDE	-	QUESTIO SETT		
YEAR	NAME	APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%
2022-23	NETWORK ANALYSIS & TRANSMISSION LINES	54	29	COURSE FACULTY	JNTUH	53.70

NETWORK ANALYSIS & TRANSMISSION LINES (C212) RESULT ANALYSIS

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-I

BRANCH/ MON SEC 4.00 PM 5.00 PM		TUE 4.00 PM-5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM	
II ECE-A	EDC	NATL	DSD	PTSP	SS	
II ECE-B NATL		DSD	PTSP	SS	EDC	
III ECE-A	МРМС	DCCN	CS	BEFA	EMI	
III ECE-B	DCCN	CS	BEFA	EMI	MPMC	
III ECE-C	CS	BEFA	EMI	МРМС	DCCN	
IV ECE-A	MW&OC	DIP	PPLE	NS&C	JAVA	
IV ECE-B DIP		PPLE	NS&C	JAVA	MW&OC	
IV ECE-C PPLE		NS&C	JAVA	MW&OC	DIP	

Head of the Department Electronics and Communication Engg. Dept. SRI INDU INSTITUTE OF ENGG & TECH, Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

Sh Indu institute of Engineering & Tech. Shefiguda(Vill), Ibrahimpathara, R R Dist Telangana -501 310

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the fact M.NAGARAJU Branch & Sectio ECE - A Course Name: Network analysis&transmission lines Academic Year:2022-23Examination:I InternalYear:IISemester:I

S.N	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2C	Q3A	Q3b	Q3c	Q4a	Q4b	Q4c	Obj1	A1
Ma	x. Marks ==	5			2	3		5			5			10	5
1	21X31A0401	5			1	3								9	5
2	21X31A0402	3												8	5
3	21X31A0403	5												8	5
4	21X31A0404	5			1	3								9	5
5	21X31A0405	5						2						9	5
6	21X31A0406	5			1	3								10	5
7	21X31A0407	5				2								7	5
	21X31A0408					2								8	5
9	21X31A0409	4												6	5
10	21X31A0410	5			1	3								9	5
11	21X31A0412	2				3								9	5
12	21X31A0413	5				3								10	5
13	21X31A0414	2				2								9	5
14	21X31A0415	4				3								9	5
	21X31A0416	4			1	3								6	5
16	21X31A0417					2					1			8	5
	21X31A0418				1	3								9	5
18	21X31A0420	5			2	3								10	5
19	21X31A0421	5			1	3								9	5
20	21X31A0422	4						2						9	5
21	21X31A0423	5			1	3								9	5
22	21X31A0424	5			1	3								9	5
23	21X31A0425	4			1	3								9	5
24	21X31A0426	4			1	3								9	5
25	21X31A0427	5			1	3								10	5
	21X31A0428					3								9	5
	21X31A0429	4			1	2								6	5
	21X31A0431	5				2								9	5
	21X31A0432	5				3								9	5
	21X31A0433	5				3								8	5
-	21X31A0434	5			1	3								10	5
-	21X31A0435	_				3								9	5
	21X31A0436													5	5
	21X31A0437	5												4	5
	22X35A0401	3				3								9	5
	22X35A0402					3		5						8	5
	22X35A0403	5				3								8	5
	22X35A0404				2	3								8	5
	22X35A0405				2	3		1						8	5
40	22X35A0406				2	3					4			8	5

42 22X35A0408 5 1 3 9 5 43 22X35A0409 5 3 8 5 44 22X35A0410 5 2 3 8 5 45 22X35A0411 3 3 9 5	5 5 5 5 5
43 22X35A0409 5 3 8 5 44 22X35A0410 5 2 3 8 5 45 22X35A0411 3 3 9 5	5 5 5
44 22X35A0410 5 2 3 8 5 45 22X35A0411 3 9 5	5 5
45 22X35A0411 3 3 9 5	5
46 22X35A0412 4 1 3 9 5	5
	5
	5
	5
	5
	5
	5
	5
	5
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70 70 70 70 70 70 70 70 70 70 70 70 70 7	
Target set by the 3.00 0.00 0.00 1.80 0.00 3.00 0.00 3.00 0.00 6.00 3.00	.00
faculty / HoD	
students 45 0 0 10 46 0 2 0 0 2 54	54
performed above	
Number of Image: Comparison of the second	
	54
)4
attempted	
Percentage of	
	0%
more than target	

<u>CO Mapping with Exam Questions:</u>

СС) - 1	Y		Y	Y					Y	Y
CC) - 2	Y				Y		у		Y	Y
CC) - 3									Y	Y

CO - 4							
CO - 5							
CO - 6							

CO Attainment based on Exam Questions:

CO - 1	94%		38%	100%					96%	100%
CO - 2	94%				40%		67%		96%	100%
CO - 3									96%	100%
CO - 4										
CO - 5										
CO - 6										

СО	Subj	obj	Asgn	Overall	Level
CO-1	77%	96%	100%	91%	3.00
CO-2	67%	96%	100%	88%	3.00
CO-3		96%	100%	98%	3.00
CO-4					
CO-5					
CO-6					

Attair	nment Level
1	40%
2	50%
3	60%

Attainment (Internal 1 Examination) =

3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the facult M.NAGARAJUAcademic Year:2022-23Branch & Section: ECE - AExamination:II InternalCourse Name:Network analysis&transmission linesYear: IISemester:IIISemester:II

S.N	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Obj2	A2
Max	. Marks ==>	5			5			5			5			10	5
1 2	1X31A0401				5									9	5
2 2	1X31A0402	2												10	5
3 2	1X31A0403										5			9	5
4 2	1X31A0404				3						2			10	5
5 2	1X31A0405	4												5	5
6 2	1X31A0406				5						5			10	5
7 2	1X31A0407	5												5	5
8 2	1X31A0408				1									9	5
9 2	1X31A0409										4			9	5
10 2	1X31A0410				5									9	5
11 2	1X31A0412	5												4	5
12 2	1X31A0413				5			5						10	5
13 2	1X31A0414				3									9	5
14 2	1X31A0415							4						7	5
	1X31A0416	5												4	5
	1X31A0417							4						8	5
	1X31A0418	4												5	5
	1X31A0420				5						5			10	5
	1X31A0421	2												7	5
	1X31A0422				1									8	5
	1X31A0423				5			2						10	5
	1X31A0424				3									10	5
	1X31A0425				2						5			9	5
	1X31A0426				4						4			10	5
	1X31A0427				5						5			10	5
	1X31A0428				3						4			10	5
	1X31A0429										5			9	5
	1X31A0431				4						3			9	5
	1X31A0432				2						4			10	5
	1X31A0433										5			9	5
	1X31A0434	5									5			10	5
54	1X31A0435										5			10	5
	1X31A0436				4						4			9	5
	1X31A0437							4			4			10	5
	2X35A0401	3						4						9	5
	2X35A0402							3						9	5
57	2X35A0403	2									4			9	5
00	2X35A0404							4						9	5
0,	2X35A0405							3						10	5
	2X35A0406	3												9	5
	2X35A0407				5			5						10	5
	2X35A0408				2									8	5
15	2X35A0409				5									8	5
44 2	2X35A0410				5						5			10	5

45 22X35A0	411				4						3			8	5
46 22X35A0					5						3			10	5
40 22X35A0 47 22X35A0					5						5			10	5
					5			4			5			9	5
)414				5			5			5			10	5
					5			5			5			10	5
					4			5			3			9	5
					4						3				
52 22X35A0					5			2						10	5
53 22X35A0					5			3						9	5
54 22X35A0	0420				4			4						9	5
55															
56															
57															
58															
59															
60															
61															
62															
63															
64															
65															
66															
67															
68															
69															
70															
71															
72															
73															
15															
Target set by	the	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
faculty / HoD		5.00	0.00	0.00	5.00	0.00	0.00	5.00	0.00	0.00	5.00	0.00	0.00	0.00	5.00
Incurry / IIOD															
Number of		8	0	0	25	0	0	14	0	0	24	0	0	49	54
students perfo	ormed	Ũ	Ũ	Ŭ		Ŭ	Ũ	•••	Ũ	Ũ		Ŭ	Ũ	.,	υ.
above the targ	get														
Number of		11	0	0	30	0	0	15	0	0	25	0	0	54	54
		11	0	0	50	0	0	15	0	0	23	0	0	57	7
students atten															
Percentage of															
students score		73%			83%			93%			96%			91%	100%
more than targ	get														

CO Mapping with Exam Questions:

CO - 1									
CO - 2									
CO - 3									
CO - 4	У	У						у	У
CO - 5				у				у	У
CO - 6						У		У	У
		 				-			
% Students Scored									
>Target %	73%	83%		93%		96%		91%	100%

CO Attainment based on Exam Questions:

CO - 1										
CO - 2										
CO - 3										
CO - 4	73%		83%						91%	100%
CO - 5					93%				91%	100%
CO - 6							96%		91%	100%

CO	Subj obj	Asgn	Overall	Level
CO-1				
CO-2				
CO-3				
CO-4	78% 91%	100%	90%	3.00
CO-5	93% 91%	100%	95%	3.00
CO-6	96% 91%	100%	96%	3.00
• · · · ·		· •		2.00

Att	Attainment Level						
1	40%						
2	50%						
3	60%						

Attainment (Internal Examination-2) =

3.00

AND CONTRACTOR OF THE PARTY OF

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

		ourse Outcome Attain	ment (Uni			
Name	of the faculty :	M.NAGARAJU		Academ	nic Year: 2022-2.	3
Branc	h & Section:	ECE - A		Year / S	Semester: II/I	
Cours	e Name:	Network analysis&tran	smission li	nes		
S.No	Roll Number	Marks Secured		S.No	Roll Number	Marks Secured
1	21X31A0401	30		36	22X35A0402	26
2	21X31A0402	0		37	22X35A0403	29
3	21X31A0403	7		38	22X35A0404	20
4	21X31A0404	4		39	22X35A0405	17
5	21X31A0405	40		40	22X35A0406	26
6	21X31A0406	26		41	22X35A0407	29
7	21X31A0407	0		42	22X35A0408	10
8	21X31A0408	4		43	22X35A0409	13
9	21X31A0409	10		44	22X35A0410	28
10	21X31A0410	10		45	22X35A0411	10
11	21X31A0412	0		46	22X35A0412	34
12	21X31A0413	31		47	22X35A0413	26
13	21X31A0414	15		48	22X35A0414	30
14	21X31A0415	30		49	22X35A0415	26
15	21X31A0416	11		50	22X35A0416	32
16	21X31A0417	16		51	22X35A0417	15
17	21X31A0418	44		52	22X35A0418	32
18	21X31A0420	26		53	22X35A0419	14
19	21X31A0421	30		54	22X35A0420	31
20	21X31A0422	9		55		
21	21X31A0423	26		56		
22	21X31A0424	11		57		
23	21X31A0425	16		58		
24	21X31A0426	31		59		
25	21X31A0427	35		60		
26	21X31A0428	5		61		
27	21X31A0429	26		62		
28	21X31A0431	30		63		
29	21X31A0432	26		64		
30	21X31A0433	7		65		
31	21X31A0434	26		66		
32	21X31A0435	13		67		
33	21X31A0436	9		68		
34	21X31A0437	30		69		
35	22X35A0401	30		70		
Max N	Iarks	75				
Class A	Average mark					
			21		Attainment Level	% students
Numbe	er of students per	formed above the target	29		1	40%

Number of successful students	54
Percentage of students scored more than target	54%
Attainment level	3

2	50%
3	60%

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the facult	M.NAGA	RAJU		Academic Ye	ar:2022-23
Branch & Section:	ECE - A			Examination:	
Course Name:	Network	analysis&transn	nission	Year: II	
				Semester:	Ι
	1st				
Course Outcomes	Internal	2nd Internal	Internal	University	
	Exam	Exam	Exam	Exam	Attainment Level
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Inte	ernal & Univ	versity Attainment:	3.00	3.00	
		Weightage	25%	75%]
CO Attainment for th	e course (In	ternal, University)	0.75	2.25]
CO Attainment for	the course (Direct Method)		3.00]

Overall course attainment level

3.00

Department of Electronics and Communication Engineering <u>CO-PO Attainment (from Course)</u>

Name of Faculty:	M.NAGARAJU	Academic Y	ear: 2022-23
Branch & Section:	ECE - A	Year:	II
Course Name:	Network analysis&transmi	Ι	

CO-PO,PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	2
CO2	3	3	-	-	2	-	-	-	-	-	-	1	-	-
CO3	3	2	-	1	-	-	-	-	-	-	-	1	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	2	-	-	-	-	-	-	-	-	2
CO6	3	-	2	-	-	-	-	-	-	-	-	-	-	2
Course	2.8	2.4	2	1	2	-	-	-	-	-	-	1	-	2

СО	Course Outcome Attainment	
	3.00	
CO1		
	3.00	
CO2		
	3.00	
CO3		
	3.00	
CO4		
	3.00	
CO5		
CO6	3.00	
Overall course attainmer	nt level 3.00	

CO-PO,PSO -ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO Attainm ent	2.80	2.40	2.00	1.00	2.00							1.00		2.00

CO contribution to PO, PSO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTERS

Assignment 1 script link:

https://drive.google.com/file/d/1XSDJ9xo8yWp1ajv4OXbplyyFi7aUSH6n/vie w?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/133qpJM8rsw6JhqWtP-nftwJseAv1xxg/view?usp=sharing

Attendance register link:

https://drive.google.com/file/d/1nGd6DjJ3YluVoozrYToT-CioR0h_ZF3D/view?usp=sharing