

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON PROBABILITY THEORY STOCHASTIC PROCESS

Course Code – EC305ES II B.Tech I-SEMESTER

A.Y.: 2022-2023

Prepared by

Mr. T .NARESH Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	PROBABILITY THEORY AND STOCHASTIC PROCESS
Course Code	EC305ES
Programme	B.Tech
Year & Semester	II year I-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mr. T.NARESH, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH shenguda(V), Ibrahimpatnam(M), R.R.Dist-501510

PRINCIPAL Sri Indu Institute of Engineering & Tech

Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- DM3: To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- PEO3: Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech

Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABADB.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE & SYLLABUS (R18) Applicable From 2018-19 Admitted Batch

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC301PC	Electronic Devices and Circuits	3	1	0	4
2	EC302PC	Network Analysis and Transmission	3	0	0	3
		Lines				
3	EC303PC	Digital System Design	3	1	0	4
4	EC304PC	Signals and Systems	3	1	0	4
5	EC305ES	Probability Theory and Stochastic	3	0	0	3
		Processes				
6	EC306PC	Electronic Devices and Circuits Lab	0	0	2	1
7	EC307PC	Digital System Design Lab	0	0	2	1
8	EC308ES	Basic Simulation Lab	0	0	2	1
9	*MC309	Constitution of India	3	0	0	0
		Total Credits	18	3	6	21

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits		
1	MA401BS	Laplace Transforms, Numerical Methods &	Laplace Transforms, Numerical Methods & 3 1 0					
		Complex Variables						
2	EC402PC	Electromagnetic Fields and Waves	3	0	0	3		
3	EC403PC	Analog and Digital Communications	3	1	0	4		
4	EC404PC	Linear IC Applications	3	0	0	3		
5	EC405PC	Electronic Circuit Analysis	3	0	0	3		
6	EC406PC	Analog and Digital Communications Lab	0	0	3	1.5		
7	EC407PC	IC Applications Lab	0	0	3	1.5		
8	EC408PC	Electronic Circuit Analysis Lab	0	0	2	1		
9	*MC409	Gender Sensitization Lab		0	2	0		
		Total Credits	15	2	10	21		

* MC-Satisfactory/Unsatisfactory

Т

L

3

P C

0 0 3

EC305ES: PROBABILITY THEORY AND STOCHASTIC PROCESSES

B.Tech. II Year I Sem.

Pre-requisite: Nil

Course Objectives:

- This gives basic understanding of random signals and processes sing
- Utilization of Random signals and systems in Communications and Signal Processing areas.
- To know the Spectral and temporal characteristics of Random Process.
- To Learn the Basic concepts of Noise sources

Course Outcomes: Upon completing this course, the student will be able to

- Understand the concepts of Random Process and its Characteristics.
- Understand the response of linear time Invariant system for a Random Processes.
- Determine the Spectral and temporal characteristics of Random Signals.
- Understand the concepts of Noise in Communication systems.

UNIT - I

Probability & Random Variable: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, Total Probability, Bay's Theorem, Independent Events, *Random Variable*- Definition, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Methods of defining Conditioning Event, Conditional Distribution, Conditional Density and their Properties.

UNIT - II

Operations on Single & Multiple Random Variables – Expectations: Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic and Non-monotonic Transformations of Continuous Random Variable, Transformation of a Discrete Random Variable.

Vector Random Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence.

Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions. Expected Value of a Function of Random Variables: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT - III

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process. Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output.

UNIT - IV

Random Processes – Spectral Characteristics: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function. Spectral

Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

UNIT - V

Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade -off between bandwidth and SNR.

TEXT BOOKS:

- 1. Probability, Random Variables & Random Signal Principles Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Principles of Communication systems by Taub and Schilling (TMH),2008

REFERENCE BOOKS:

- 1. Random Processes for Engineers-Bruce Hajck, Cambridge unipress, 2015
- 2. Probability, Random Variables and Stochastic Processes Athanasios Papoulis and S. Unnikrishna Pillai, PHI, 4th Edition, 2002.
- 3. Probability, Statistics & Random Processes-K. Murugesan, P. Guruswamy, Anuradha Agencies, 3rd Edition, 2003.
- 4. Signals, Systems & Communications B.P. Lathi, B.S. Publications, 2003.
- 5. Statistical Theory of Communication S.P Eugene Xavier, New Age Publications, 2003

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

CO'S AND CO PO MAPPING

Course: Probability Theory and Stochastic Processes (C215)

Class: II ECE-A

Course Outcomes

After completing this course, the student will be able to:

C215.1: Attain the knowledge of Probability theory and random variables (Knowledge)

C215.2: Explain the Vector Random variables and joint distribution function (Comprehension)

C215.3: Understand the response of linear time Invariant system for a Random Processes.(Knowledge)

C215.4: Analyze the random variable and random process, its properties. (Analysis)

C215.5: Determine the Spectral and temporal characteristics of Random Signals. (Knowledge)

C215.6: Analyze the concepts of Noise in Communication systems. (Analysis)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/	PO1	P	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
CO		02								0	1	2	1	2
C215.1	3	-	-	2	1	-	-	-	-	2	-	-	-	-
C215.2	-	2	3	-	-	1	-	-	-	3	-	3	-	-
C215.3	3	-	-	2	1	-	-	-	-	-	2	-	-	3
C215.4	2	3	-	1	-	-	-	-	-	-	-	-	-	2
C215.5	3	-	-	2	1	-	-	-	-	-	-	2	-	3
C215.6	2	3	-	1	-	-	-	-	-	-	3	-	-	-
C215	2.6	2.6	3	1.6	1	1	-	-	-	2.5	2.5	2.5	-	2.6

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course: Probability Theory and Stochastic Processes (C215) Class: II ECE-A

P01.ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

P02.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

P03. DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. THE ENGINEER AND SOCIETY: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO10. COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effectivereports and design documentation, make effective presentations, give and receive clear instructions.

PO11. PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PSO2: SOFTWARE USAGE: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

<u>CO-PO mapping Justification</u>

C215.1: Attain the knowledge of Probability theory and random variables (Knowledge)

	Justification
PO1	By applying the knowledge of probability theory and random variables, engineers can enhance their
	problem-solving capabilities, make more informed decisions, and design systems that are robust in
	the face of uncertainty.
PO4	A solid understanding of Probability theory and random variables is crucial for conducting
	investigations of complex problems. It provides the necessary tools and methodologies to design
	experiments.
PO5	By providing a robust framework for prediction, modeling, decision-making under uncertainty,
	reliability analysis, simulation, and statistical inference. These tools empower engineers to navigate
	the complexities of modern systems and make informed decisions within the limitations of the
	systems they are working on.
PO10	By providing a structured and precise way to express uncertainties, articulate risks,
	facilitate interdisciplinary communication, and present data-driven insights. Engineers
	equipped with a solid understanding of probability can communicate complex information
	more clearly and transparently to both the engineering community and society at large.

C215.2: Explain the Vector Random variables and joint distribution function (Comprehension)

	Justification
PO2	The use of vector random variables and joint distribution functions enhances problem
	analysis capabilities in engineering by providing a sophisticated framework to model,
	analyze, and draw substantiated conclusions about complex systems.
PO3	the use of vector random variables and joint distribution functions enhances the design and
	development of solutions in engineering by providing a systematic way to model and
	analyze complex systems with multiple interrelated variables
PO6	By incorporating probabilistic models, engineers can make informed decisions that
	demonstrate a sense of responsibility and consideration for the broader societal context in
	which their professional practice occurs.
PO10	a structured and transparent approach to conveying the complexities of interconnected
	variables and uncertainties. This enhances the effectiveness of communication in reports,
	design documentation, presentations, and instructions, ensuring that the engineering
	community and society at large can comprehend and engage with complex engineering
	activities more effectively.
PO12	By continually exploring and mastering advanced analytical tools, engineers can stay
	adaptable, enhance their problem-solving skills, and effectively address the evolving
	challenges in the broad context of technological change.

C215.3: Understand the response of linear time Invariant system for a Random Processes.(Knowledge)

	Justification
PO1	Applying the principles of linearity and time invariance to analyze the response of an LTI
	system to a random process involves using mathematical and scientific knowledge.
PO4	Engineers conduct thorough investigations to provide valid conclusions about the complex
	problem at hand, contributing to the advancement of knowledge in the field of systems and
	signal processing.

PO5	These tools are indispensable for predicting and modeling the behavior of complex systems,
	and engineers must be mindful of their limitations to ensure accurate and reliable results in
	the analysis of random processes within LTI systems.
PO11	The knowledge of the response of LTI systems to random processes contributes to effective
	project management and financial decision-making by applying engineering and
	management principles.
PSO2	Understanding the response of LTI systems to random processes aligns with PSO2 -
	Software Usage by highlighting the ability to use MATLAB for investigating and solving
	engineering problems related to randomness.

C215.4: Analyze the random variable and random process, its properties. (Analysis)

	Justification
PO1	The analysis of random variables and processes in engineering involves the application of
	mathematical, scientific, and engineering knowledge.
PO2	The analysis of random variables and processes in engineering aligns with P02 - Problem
	Analysis by requiring engineers to identify, formulate, and analyze complex problems
	related to randomness.
PO4	The analysis of random variables and processes aligns with by emphasizing the use of
	research-based knowledge and research methods, including the design of experiments,
	analysis and interpretation of data, and synthesis of information.
PSO2	These software tools provide engineers with a comprehensive set of capabilities for
	statistical analysis, mathematical modeling, and simulation of systems affected by random
	variables and processes.

C215.5: Determine the Spectral and temporal characteristics of Random Signals. (Knowledge)

	Justification
PO1	This process involves predicting and modeling signal behavior while maintaining an
	understanding of the limitations associated with the tools employed. Overall, the use of
	modern tools enhances the efficiency and accuracy of analyzing complex engineering
	activities related to random signals.
PO4	The determination of spectral and temporal characteristics of random signals aligns with by
	emphasizing the use of research-based knowledge and research methods, including the
	design of experiments, analysis and interpretation of data, and synthesis of information
PO5	The determination of spectral and temporal characteristics of random signals aligns with by
	highlighting the creation, selection, and application of appropriate techniques using modern
	engineering and IT tools.
PO12	Engineers in this field recognize the necessity of staying informed, prepared for
	independent exploration, and engaged in life-long learning to effectively contribute to the
	evolving landscape of signal processing.
PSO2	Determining the spectral and temporal characteristics of random signals aligns with
	Software Usage by emphasizing the ability to use MATLAB for efficient investigation and
	solution of engineering problems related to random signals

	Justification
PO1	Engineers leverage this knowledge to comprehend, model, and address the challenges
	posed by noise, ultimately contributing to the effective design and operation of
	communication systems in real-world, noisy environments.
PO2	By emphasizing the comprehensive process of identifying, formulating, researching
	literature, and analyzing complex engineering problems related to noise.
PO4	The use of research methods, design of experiments, analysis and interpretation of data, and
	synthesis of information collectively contribute to conducting thorough investigations into
	the complexities posed by noise in communication systems.
PO11	Analyzing the concepts of noise in communication systems aligns with Project
	Management and Finance by emphasizing the application of engineering principles,
	management strategies, and leadership skills in addressing noise-related challenges within
	the context of communication projects.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ACADEMIC CALENDAR 2022-23

B. Tech./B.Pharm. II YEAR I & II SEMESTERS

I SEM

S. No	Description	Duration		
		From	То	
1	Commencement of I Semester classwork		28.11.2022	
2	1 st Spell of Instructions	28.11.2022	21.01.2023 (8 Weeks)	
3	First Mid Term Examinations	23.01.2023	30.01.2023 (1 Week)	
4	Submission of First Mid Term Exam Marks to the University on or before	04.02.2023		
5	2 nd Spell of Instructions	31.01.2023	29.03.2023 (8 Weeks)	
6	Second Mid Term Examinations	31.03.2023	08.04 2023 (1 Week)	
7	Preparation Holidays and Practical Examinations	10.04.2023	15.04.2023 (1 Week)	
8	Submission of Second Mid Term Exam Marks to the University on or before	15.04.2023		
9	End Semester Examinations	17.04.2023	29.04.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 93

II SEM

S. No	Description	Duration		
		From	То	
1	Commencement of II Semester classwork		01.05.2023	
2	1 st Spell of Instructions (including Summer Vacation)	01.05.2023	08.07.2023 (10 Weeks)	
3	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)	
4	First Mid Term Examinations	10.07.2023	15.07.2023 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before	22.07.2023		
6	2 nd Spell of Instructions	18.07.2023	11.09.2023 (8 Weeks)	
7	Second Mid Term Examinations	12.09.2023	16.09.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	19.09.2023	23.09.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	23.09.2023		
10	End Semester Examinations	25.09.2023	07.10.2023 (2 Weeks)	

Note: No. of Working / Instructional Days: 92

REGISTRAR

(An Autonomous Institution under UGC)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510

https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING **Class** Timetable

CLASS	S: II-B.Tech E	CE-A	Α	.Y:2022-23		SEMESTER:	I	LH: C-101	
TIME/ DAY	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	IV 12:10-1:00	1:00-1:30	V 1:30-2:20	VI 2:20-3:10	VII 3:10-4:00	
MON	EDC	COI	EDC LAB	/DSD LAB		DSD	NATL	SPORTS	
TUE	PTSP	NATL	DSD	COI		EDC	SS	DSD(T)/SS(T)	
WED	SS	PTSP	DSD LA	B/BSLAB	Ŭ	DSD	SS(T)/EDC(T)	EDC	
THU	NATL	PTSP	COI	EDC(T)/DSD(T)	C N	SS	DSD	COUN	
FRI	SS	EDC	COI	PTSP	н	LIB	CO-CI	J/DAA	
SAT	EDC	DSD	SS	NATL		PTSP	BS LAB /	EDC LAB	
*(T) – Tutorial Concern Faculty									
Course Code	2	Course Name	Name of the Faculty	Course Code	Co	ourse ame	Name	of the	
EC301P	C EDC-Elect and Circui	tronic Devices ts	K.Rajender	EC306PC	EDC LAB - E Devices and C	Electronic Circuits Lab	K.Rajender/B.Ashwini/M.Srilatha		
EC302P	C NATL-Ne and Transr	twork Analysis	M.Nagaraju	EC307PC	DSD LAB - D Design Lab	DSD LAB - Digital System Design Lab		G.Anusha/T.Divya/P.Krishna Rao	
EC303P	C DSD-Digit Design	tal System	G.Anusha	EC308ES	BS LAB - Basic Simulation Lab		P.Rajendra/T.Naresh		
EC304P	C SS-Signals	and Systems	P.Rajendra	LIB	Library	B.Ashwini/Dr K Srinivasa		rinivasa Reddy	
EC305E	S PTSP-Pro	bability Theory	T.Naresh	COUN	Counseling		K Rajender/G Anusha/G Anitha		

*MC309 COI-Constitution of India

and Stochastic Processes

Class Incharge

Head of The Department

Sports

Co-Curricular/Dept.Assc.Act.

CO-CU/DAA

SPORTS

S.Swapna

PRINCIPAL Sri Indu Institute Breitigitedrog & Tech Sheriguda(Vill), Ibrahimpatham R R Dist Telanoana -501 510

K.Rajender/G.Anusha/G.Anitha

K.Rajender/T.Naresh/D.Aruna

G.Anitha/P.Sumana

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN

Programme: B. Tech	Academic Year: 2022-23
Year: II	Semester: I
Course Title:Probability Theory and Stochastic	Course Code: EC305ES
Processes	
Name of Faculty:T NARESH	Number of lectures per week:5

Unit-ISyllabus

Probability & Random Variable: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional Probability, Total Probability, Bay's Theorem, Independent Events, Random Variable- Definition, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Methods of defining Conditioning Event, Conditional Distribution, Conditional Density and their Properties.

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Introduction to Probability & Random Variable	T1	Blackboard
2	Probability introduced through Sets and Relative Frequency	T2	Blackboard
3	Experiments and Sample Spaces	T2	Blackboard
4	Discrete and Continuous Sample Spaces	T1	Blackboard
5	Events	T2	Blackboard
6	Probability Definitions and Axioms	T2	Blackboard
7	Joint Probability	T1	Blackboard

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

8	Conditional Probability	T1	Blackboard
9	Total Probability	T1	Blackboard
10	Bay's Theorem	T2	Blackboard
11	Independent Events	T1	Blackboard
12	Introduction to Random Variable	T1	Blackboard
13	Conditions for a Function to be a Random	T2	Blackboard
	Variable		
14	Discrete, Continuous and Mixed Random	T2,W2	Blackboard
	Variable		
15	Distribution and Density functions	T1,W1	Blackboard
16	Properties, Binomial, Poisson	T2, W1	Blackboard
17	Uniform, Gaussian, Exponential	T2,W1	Blackboard
18	Rayleigh, Methods of defining Conditioning	T1,W1	Blackboard
	Event		
19	Conditional Distribution	T2	Blackboard
20	Conditional Density and their Properties	T1	Blackboard

*Session Duration:50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title: PTSP	Course Code:EC305ES

Unit-II Syllabus

Operations On Single & Multiple Random Variables – Expectations: Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic and Non-monotonic Transformations of Continuous Random Variable, Transformation of a Discrete Random Variable. Vector Random Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence. Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions. Expected Value of a Function of Random Variables: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Operations On Single & Multiple Random	T1, W2	Blackboard
	Variables		
2	Expectations: Expected Value of a Random	T1,W1	Blackboard
	Variable		
3	Function of a Random Variable	T1	Blackboard
4	Variance and Skew	T1	Blackboard
5	Chebychev's Inequality	T1	Blackboard
6	Moment Generating Function	T1	Blackboard
7	Transformations of a Random Variable	T1	Blackboard
8	Monotonicand Non-monotonic Transformations	T1	Blackboard
	of Continuous Random Variable		
9	Transformation of a Discrete Random Variable	T1	Blackboard
10	Vector Random Variables	T1	Blackboard
11	Joint Distribution Function and its Properties	T1	Blackboard
12	Marginal Distribution Functions	T1	Blackboard
13	Conditional Distribution and Density	T1, W1	Blackboard
14	Point Conditioning	T1	Blackboard
15	Conditional Distribution and Density	T1	Blackboard
16	Interval conditioning	T1	Blackboard
17	Statistical Independence	T1	Blackboard
18	Sum of Two Random Variables	T1	Blackboard
19	Sum of Several Random Variables	T1	Blackboard
20	Central Limit Theorem	T1	Blackboard
21	Unequal Distribution, Equal Distributions	T1, W1	Blackboard
22	Expected Value of a Function of Random	T1	Blackboard

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

	Variables		
23	Joint Moments about the Origin	T1	Blackboard
24	Joint Central Moments	T1	Blackboard
25	Joint Characteristic Functions	T1	Blackboard
26	Jointly Gaussian Random Variables	T1	Blackboard
27	Two Random Variables case	T1	Blackboard
28	N Random Variable case	T1	Blackboard
29	Transformations of Multiple Random Variables	T1	Blackboard
30	Linear Transformations of Gaussian Random	T1	Blackboard
	Variables		

*Session Duration:50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title: PTSP	Course Code: : EC305ES

Unit-III Syllabus

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process. Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output.

No. of	Topics	Reference	Teaching
Sessions			Method/ Aids
Planned			
1	The Random Process Concept	T1	Blackboard
2	Classification of Processes	T1	Blackboard
3	Deterministic and Nondeterministic Processes	T1,W4	Blackboard
4	Distribution and Density Functions	T1	Blackboard
5	conceptofStationarityandStatisticaIndependence	T1	Blackboard
6	First-Order Stationary Processes	T1	Blackboard
7	SecondOrder and Wide-Sense Stationarity	T1	Blackboard
8	(N-Order) and Strict-Sense Stationarity	T1	Blackboard
9	Time Averages and Ergodicity	T1,W4	Blackboard
10	Mean-Ergodic Processes	T1,W4	Blackboard
11	Correlation-Ergodic Processes	T1	Blackboard
12	Autocorrelation Function and Its Properties	T1	Blackboard

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

13	Cross-Correlation Function and Its Properties,	T1	Blackboard
14	Covariance Functions	T1	Blackboard
15	Gaussian Random Processes	T1	Blackboard
16	Poisson Random Process	T1	Blackboard
17	System Response – Convolution	T1	Blackboard
18	Mean and Mean-squared Value of system response	T1	Blackboard
19	autocorrelation Function of Response	T1	Blackboard
20	Cross-Correlation Functions of Input and output	T1	Blackboard

*Session Duration:50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title: PTSP	Course Code: : EC305ES

Unit-IV Syllabus

Random Processes – Spectral Characteristics: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function. Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Spectral Characteristics	T1	Blackboard
2	The Power Spectrum: Properties	T1	Blackboard
3	Relationship between Power Spectrum and	T1	Blackboard
	Autocorrelation Function		
4	The Cross-Power Density Spectrum, properties	T1	Blackboard
5	Relationship between Cross-Power Spectrum	T1,W4	Blackboard
	and Cross-Correlation Function		
6	Spectral Characteristics of System Response	T1	Blackboard
7	Power Density Spectrum of Response	T1	Blackboard
8	Cross-Power Density Spectrums of Input and	T1	Blackboard
	Output.		

*Session Duration:50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title: PTSP	Course Code: EC305ES

Unit-V Syllabus

Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade -off between bandwidth and SNR.

No. of	Topics	Reference	Teaching
Sessions			Method/
Planned			Aids
1	Resistive/Thermal Noise Source	T1, W3	Blackboard
2	Arbitrary Noise sources	T1, W3	Blackboard
3	Effective Noise Temperature	T1	Blackboard
4	Noise equivalent bandwidth	T1	Blackboard
5	Average Noise Figures, Average Noise Figure	T1	Blackboard
	of cascaded networks		
6	Narrow Band noise,	T1, W3	Blackboard
7	Quadrature representation of narrow band noise	T1	Blackboard
	& its properties.		
8	Entropy, Information rate, Source coding	T1	Blackboard
9	Huffman coding, Shannon Fano coding,	T1,	Blackboard
10	Mutual information, Channel capacity of	T1	Blackboard
	discrete channel		
11	Shannon-Hartley law; Trade -off between	T1	Blackboard
	bandwidth and SNR.		

*Session Duration:50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

T1:Probability, Random Variables & Random Signal Principles - Peyton Z. Peebles, TMH, 4th Edition, 2001.

T2:Principles of Communication systems by Taub and Schilling (TMH),2008Digital Satellite Communications-Tri.T.Ha, 2nd Edition, 1990, Mc.Graw Hill.

Web References

- W1: https://www.egwald.ca/statistics/samplemean.php
- W2: http://www.egwald.ca/statistics/
- W3: https://analog.intgckts.com/noise/thermal-noise-of-a-resistor/
- W4: <u>https://en.lntwww.de/Theory_of_Stochastic_Signals</u>

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1nwCJIRKPBgtQSY_kLaCc4b4z-Ru3e0rS/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1O68MhL3kgRnJ8gGehH3cyhBMx27oWZe/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/16A9wKRe2umHyesR09BkBIeEhBzntXtN/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1EAaJYBKfXCDuzWJ3KQBAHn72 WOWhK_m1/view?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/1jIH3nFrU3Gc9oNADa7OxSbkGctc BwQdK/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Power Point Presentation

PPT:

https://drive.google.com/file/d/1HwYG74Yc1Fepc6JbLQcw_s3Wdb VcmX9T/view?usp=sharing

Code No: 123BT JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM)

Time: 3 Hours

Max. Marks: 75

R15

(50 Marks)

[5+5]

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.Each question carries 10 marks and may have a, b, c as sub questions.

$\mathbf{PART} - \mathbf{A}$

		(25 Marks)
1.a)	Define Random variable.	[2]
b)	Write about the continuous and mixed random variables.	[3]
c)	Mention the difference between the Variance and Skew.	[2]
d)	Write about the Rayleigh density and distribution function.	[3]
e)	Explain the equal and unequal distributions.	[2]
f)	Write about linear transformations of Gaussian random variables.	[3]
g)	Mention the properties covariance.	[2]
h)	Show that $S_{xx}(\omega) = S_{xx}(-\omega)$.	[3]
i)	State wiener-Khinchin relation.	[2]
j)	Express the relationship between power spectrum and autocorrelation.	[3]

PART - B

- 2.a) Discuss the mutually exclusive events with an example.
- b) Define probability, set and sample spaces.

OR

- 3. Write the classical and axiomatic definitions of Probability and for a three digit decimal number chosen at random, find the probability that exactly K digits are greater than and equal to 5, for 0 < K < 3. [10]
- 4.a) Obtain the relationship between probability and probability density function.
- b) Find the moment generating function of the random variable whose moments are $m_r = (r + 1)!2^r$. [5+5]

OR

- 5.a) Write about Chebychev's inequality and mention about its characteristic function.
- b) Determine the moment generating function about origin of the Poisson distribution. [5+5]
- 6.a) Differentiate between the marginal distribution functions, conditional distribution functions and densities.
- b) Given the transformation $y = \cos x$ where x be a uniformly distributed random variable in the interval $(-\pi, \pi)$. Find $f_y(y)$ and E[y]. [5+5]

OR

www.ManaResults.co.in

7. Let X be a random variable defined, Find E [3X] and E[X²] given the density function as $f_x(x) = \frac{(\pi/16)\cos(\pi x/8)}{2}, \quad -4 \le x \le 4$ [10]

- 8.a) State and prove properties of cross correlation function.
- b) If the PSD of X(t) is $S_{xx}(\omega)$. Find the PSD of dx(t)/dt. [5+5]

OR

- 9. A random process Y(t) = X(t)- X(t +τ) is defined in terms of a process X(t). That is at least wide sense stationary.
 a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 b) If Y(t) = X(t) + X(t + τ) find E[Y(t)] and σY². [5+5]
- 10. The auto correlation function of a random process X(t) is $R_{XX}(\tau) = 3+2 \exp(-4\tau^2)$. a) Evaluate the power spectrum and average power of X(t). b) Calculate the power in the frequency band $-1/\sqrt{2} \le \omega \le 1/\sqrt{2}$ [5+5] **OR**

11. Derive the relation between PSDs of input and output random process of an LTI system. [10]

---00000----

www.ManaResults.co.in

Code No: 123BT JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM)

Time: 3 Hours

Max Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 Marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 Marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
1.a)	Write the conditions for a function to be a random variable.	[2]
b)	Explain the significance of mathematical model of experiments.	[3]
c)	Write short notes on Chebychev's inequality.	[2]
d)	Define Characteristic function and present generation of moments us	sing it.[3]
e)	State central limit theorem for the case of equal distributions.	[2]
f)	Write the properties of jointly Gaussian random variables.	[3]
g)	What is a WSS random process?	[2]
h)	Write short notes on Gaussian random process.	[3]
i)	Write the expression for power spectral density.	[2]
j)	Write any three properties of cross-power density spectrum.	[3]

PART - B

(50 Marks)

[5+5]

- 2. A missile can be accidentally launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.01 and 0.03, respectively. It is also known that B is more likely to fail (probability 0.06), if A has failed.
 - a) What is the probability of an accidental missile launch?
 - b) What is the probability that A will fail, if B has failed?
 - c) Are the events "A fails" and "B fails" statistically independent? [10]

OR

- 3. You (A) and two others (B and C) each toss a fair coin in a two-step gambling game. In step1 the person whose toss is not a match to either of other two is "odd man out". Only the remaining two whose coins match go on to step2 to resolve the ultimate winner.
 - a) What is the probability that you will advance to step2 after the first toss?
 - b) What is the probability you will be out after the first toss?
 - c) What is the probability that no one will be out after the first toss? [10]
- 4.a) Obtain the moment generating function of a uniformly distributed random variable.
- b) Obtain the variance of Raleigh random variable. [5+5]

OR

- 5.a) A random variable X uniformly distributed in the interval (0, $\pi/2$). Consider the transformation Y=sinx, obtain the pdf of Y.
 - b) Obtain the variance of Gaussian random variable.

www.manaresults.co.in

- 6.a) The joint characteristic function of two random variables is given by $\phi_{XY}(\omega_1, \omega_2) = \exp(-\omega_1^2 4\omega_2^2)$. Check whether X and Y are uncorrelated or not.
- b) X and Y are statistically independent random variables and W = X+Y obtain the pdf of W. [5+5]

OR

- 7.a) Write the properties of joint distribution function.
- b) Prove that the variance of weighted sum of N random variables equals the weighted sum of all their covariances. [5+5]
- 8. Define autocorrelation function of a random process. Write properties of auto correlation function of a WSS process and prove any three of them. [10]

OR

- 9.a) A random process $X(t) = A\cos(\omega_0 t) + B \sin(\omega_0 t)$ where ω_0 is a constant and A, B are uncorrelated zero mean random variables with same variances. Check whether X(t) is WSS or not?
 - b) Classify random processes and explain. [5+5]
- 10. Derive the relationship between cross-power spectrum and cross-correlation function. [10]

OR

- 11.a) The autocorrelation function of a random process $R_{XX}(\tau) = 4 \cos(\omega_0 \tau)$, where ω_0 is a constant. Obtain its power spectral density.
 - b) Obtain the average power in the random process $X(t) = A\cos(\omega_0 t + \theta)$ where A, ω_0 are real constants and θ is a random variable uniformly distributed in the range $(0, 2\pi)$. [5+5]

--00000--

Code No: 123BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM)

Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) A discrete random variable can be defined on a continuous sample space. State whether it is true or false. Give an example to support your claim. [2] Write the conditions to be satisfied by a function to be a random variable. [3] b) Write the properties of probability density function. c) [2] Determine whether the following function is a valid probability distribution d) function or not? Write the properties used. $G_x(x) = \frac{x}{[u(x-a) - u(x-2a)]}$.[3] Write two properties of joint distribution function of random variables. e) [2] State Central limit theorem. f) [3] Give an example of a deterministic random process. [2] **g**) Auto correlation function of a stationary random process is $R_{xx}(\tau) = 25 + \frac{4}{1+6\tau^2}$. h) Find its variance. [3] Check whether the function below is a valid power density spectrum or not. i) $\frac{\omega}{i\omega^6 + \omega^2 + 3}$ [2] Autocorrelation function of a random process is given by $R_{xx}(\tau) = 3\delta(\tau)$. Find j)

PART-B

2.a) State and prove Bayes Theorem.

and sketch its power density spectrum.

b) Define the terms outcome, event, sample space, mutually exclusive events. Consider the experiment of rolling of two fair dice simultaneously and represent its sample space. Also give examples of terms mentioned above related to this experiment. [5+5]

OR

- 3.a) Discuss the relative frequency approach and axiomatic approach of probability.
- In a box there are 100 resistors whose resistances and tolerances are as shown in b) the table below. Let A be the event of drawing a 47Ω resistor, B be the event of drawing a resistor with 5% tolerance, and C be the event of drawing a 100Ω resistor. Find P(A/B), P(A/C) and P(B/C). [5+5]

www.ManaResults.co.in

(50 Marks)

[3]

Max. Marks: 75

R15

(25 Marks)

	Tole		
Resistance (Ω)	5%	10%	Total
22	10	14	24
47	28	16	44
100	24	8	32
Total	62	38	100

- 4.a) Find the mean of Binomial random variable.
- b) In a sports event javelin throw distances are well approximated by a Gaussian distribution for which mean is 30m and standard deviation is 5m. In a qualifying round, contestants must throw farther than 27m to qualify. In the main event the record throw is 44m.

i) What is the probability of being disqualified in the first round?

ii) In the main event what is the probability the record will be broken? [5+5]

OR

- 5.a) Obtain the characteristic function of Poisson random variable.
- b) X and Y are two statistically independent random variables related to W as W=X+Y. Obtain the probability density function of Y in terms of probability density functions of X and Y. [5+5]
- 6.a) Obtain the expression for conditional density $f_X(X|B)$ where event B is defined as { $y_a \le Y \le y_b$ }.
- b) Write short notes on jointly Gaussian random variables. [5+5] OR
- 7.a) Two random variables X and Y have joint characteristic function $\varphi_{XY}(\omega_1,\omega_2) = \exp(-2\omega_1^2 8\omega_2^2)$. Show that X and Y are uncorrelated zero mean random variables.
- b) Two statistically independent random variables X and Y have mean values E[X] = 2 and E[Y] = 4. They have second moments $E[X^2] = 8$ and $E[Y^2] = 25$. Find Variance of W = 3X-Y. [5+5]
- 8.a) A random process is defined as $X(t) = ACos(\omega_o t + \Theta)$, where Θ is a uniformly distributed random variable in the interval $(0, \pi/2)$. Check for its wide sense stationarity? A and ω_o are constants.
- b) Classify random processes and explain. [6+4]

OR

- 9.a) Define autocorrelation function of a random process. Write its properties and prove any two of them.
 - b) Explain the concept of time average and ergodicity. Write the conditions for a random process to be ergodic in mean and autocorrelation. [5+5]
- 10.a) Derive the expression for power density spectrum of a random process.
 - b) Write the properties of power spectral density. [6+4]
- 11.a) Prove $S_{YY}(\omega) = |H(\omega)^2| S_{XX}(\omega)$. Where X(t) is input random process of an LTI system and Y(t) its output. $|H(\omega)|$ is the transfer function of the LTI system.
 - b) Define cross power density spectrum and write its properties. [5+5]

---00000----

Code No: 123BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech II Year I Semester Examinations, November/December - 2017** PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM)

Time: 3 Hours

Max. Marks: 75

(25 Marks)

R15

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) A box contains nine cards numbered through 1 to 9, and B contains five cards numbered through 1 to 5. If a box is chosen at random, and a card is drawn which even numbered, what is the probability for the card to be from box A. [2]

Let a die be weighted such that the probability of getting numbers from 2 to 6 is b) that number of times of probability of getting a1. When the die thrown, what is the probability of getting an even or prime number occurs. [3] [2]

- Find the CDF of a random variable X, uniform over (-3, 3). c)
- The density of a random variable X is given as $f(x) = K[U(x)-U(x-4)]+0.25\delta(x-2)$. d) Find the probability of $X \leq 3$. [3]
- X and Y are discrete random variables and their joint occurrence is given as e)

X\Y	1	2	3
1	1/18	1/9	1/6
2	1/9	1/18	1/9
3	1/6	1/6	1/18

Find the Conditional Mean of X, given Y=2. [2]

- f) X and Y are two uncorrelated random variables with same variance. If the random variables U=X+ kY and V=X+($\sigma x/\sigma y$)Y are uncorrelated, find K. [3]
- State and prove the Periodicity Property of Auto Correlation function of a g) Stationary Random Process.
- If X(t) is a Gaussian Random Process with a mean 2 and exp $(-0.2|\tau|)$. Find the h) Probability of $X(1) \leq 1$. [3]
- Verify that the cross spectral density of two uncorrelated stationary random i) processes is an impulse function. [2]
- The output of a filter is given by Y(t)=X(t+T)+X(t-T), where X(t) is a WSS **i**) process, power spectral density $S_{xx}(w)$, and T is a constant. Find the power spectrum of Y(t). [3]

PART-B

(50 Marks)

[2]

- 2.a) Consider the experiment of tossing two dice simultaneously. If X denotes the sum of two faces, find the probability for $X \leq 6$.
 - A fair coin is tossed 4 times. Find the probability for the longest string of heads b) appearing to be three as a result of the above experiment.
- In certain college, 25% of the boys and 10% of the girls are studying c) Mathematics. The MW constitute of the Student Body IQ student is selected at random and studying mathematics, determine the probability that the student is [3+3+4]a girl.

- 3.a) Coin A has a probability of head =1/4 and coin B is a fair coin. Each coin is flipped four times. If X is the number of heads resulting from coin and Y denotes the same from coin B, what is the probability for X=Y?
 - b) A dice is thrown 6 times. Find the probability that a face 3 will occur at least two times. [6+4]
- 4.a) Find the Moment generating function of a uniform random variable distribute over (A, B) and find its first and second moments about origin, from the Moment generating function.
 - b) A random variable X has a mean of 10 and variance of 9. Find the lower bound on the probability of (5<X<15). [5+5]

OR

5.a) Find the Moment generating function of a random variable X with density function

$$f(x) = \begin{cases} x, \text{ for } 0 \le x \le 1\\ 2-x, \text{ for } 1 \le x \le 2\\ 0, \text{ else where} \end{cases}$$

- b) If X is a Gaussian random variable $N(m, \sigma^2)$, find the density of Y=PX+Q, where P and Q are constants. [5+5]
- 6.a) If $X_1, X_2, X_3, \dots, X_n$ are 'n' number of independent and Identically distributed random variables, such that $X_k = 1$ with a probability 1/2; = -1 with a probability 1/2. Find the Characteristic Function of the random Variable $Y = X_1 + X_2 + X_3 + \dots + X_n$.
 - b) If Independent Random Variables X and Y both of zero mean, have variance 20 and 8 respectively, find the correlation coefficient between the random Variables X+Y and X-Y. [5+5]

OR

- 7.a) Let X=Cos θ and Y=Sin θ , be two random variables, where θ is also a uniform random variable over $(0,2\pi)$. Show that X and Y are uncorrelated and not independent.
- b) If X is a random variable with mean 3 and variance 2, verify that the random Variables 'X' and Y = -6X+22 are orthogonal. [6+4]
- 8.a) X(t) is a random process with mean =3 and Autocorrelation function $R_{xx}(\tau) = 10.[exp(-0.3|\tau|)+2]$. Find the second central Moment of the random variable Y=X(3)-X(5).
- b) $X(t)=2ACos(Wct+2\theta)$ is a random Process, where ' θ ' is a uniform random variable, over $(0,2\pi)$. Check the process for mean ergodicity. [5+5]

OR

- 9.a) A Random Process $X(t)=A.Cos (2\pi \text{ fc } t)$, where A is a Gaussian Random Variable with zero mean and unity variance, is applied to an ideal integrator, that integrates with respect to 't', over (0,t). Check the output of the integrator for stationarity.
 - b) A random Process WW defined $a = X(t) = SCds(2\pi t+S)$, where Y is a random Variable with $p(Y=0)=p(Y=\pi)=1/2$. Find the mean and Variance of the Random Variable X(2). [5+5]

- 10.a) Find and plot the Autocorrelation function of (i) Wide band white noise (ii) Band Pass White noise.
 - b) Derive the expression for the Cross Spectral Density of the input Process X(t) and the output process Y(t) of an LTI system in terms of its Transfer function.

[5+5]

OR

- 11.a) Compare and contrast Auto and cross correlations.
 - b) If $Y(t) = A.Cos(w_0t+\theta)+N(t)$, where ' θ ' is a uniform random variable over $(-\pi,\pi)$, and N(t) is a band limited Gaussian white noise process with PSD=K/2. If ' θ ' and N(t) are independent, find the PSD of Y(t). [4+6]

---00000----

www.ManaResults.co.in

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

I - Mid Examinations, JAN -2023 Set -II Date: 23/01/23(FN) Year & Branch: II – ECE(A,B,C) Subject:PT&SP Max. Marks: 10 Time: 60 mins Answer any **TWO** Questions. All Question Carry Equal Marks 2*5=10 marks 1. A Continuous Random Variable X has the distribution function F(x) = 0 if $x \le 1$, $= k(x-1)^4$ if $1 \le x \le 3$, =1 if x>3; then find k and f(x)C215.1 (Knowledge) 2. A Random variable X has the following probability distribution Х 0 1 2 3 4 5 6 7 0 2K 2K 3K K^2 $2K^2$ $7K^2+K$ P(X=x)Κ ii) Evaluate $P(X \le 6)$, $P(X \ge 6)$, $P(0 \le X \le 5)$ and $P(0 \le X \le 4)$ i)Determine k C215.1 (Knowledge)

- 3. Define Binominal Distribution, obtain its mean and variance. C215.2 (Comprehension)
- 4. The Random variables X has the characteristic function and is given by $\Phi(t)=1-|t|, |t| \le 1$

$$= 1 - |t|, |t| \le 0$$

= 0, |t|>1

Find the density function of the Random variable X. C215.2 (J

(Evaluation)

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

II- Mid Examinations, APR-2023

Set– I

Year &Branch: II ECE(A&B) Subject: PTSP mins

Max. Marks: 10

Time: 60

An	Answer any TWO Questions. All Question Carry Equal Marks2*5=10 marks				
1	Define cross power density spectrum and write its properties	5	C215.4	(Evaluation)	
2	Obtain the average power in the random process X(t) = $A\cos(\omega ot+\theta)$ where A, ωo are real constants and θ is a random variable uniformly distributed in the range (0, 2π).	5	C215.4	(Application)	
3	a) Define Gaussian random process and explain.	2	C215.3	(Knowledge)	
	b)Define poisson random process and explain	3	C215.3	(Knowledge)	
4	a)Define strict sense stationary process and explain	2	C215.3	(Knowledge)	
	b) Define joint wide sense stationary process and explain	3	C215.3	(Analysis)	

Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510		
H	3-Tech I - Mid Exam	inations, JAN-2023
Year & Branch: II – ECE	-A, B&C	Date: 23 -01-2023 (FN)
Subject: PTSP	Max. Marks: 10	Time: 20 mins

Name:Roll No.....

I.Choose the correct alternative:

1) The condit	ional probability of	f event A, given	B is expressed as	[]
$(a)P(A\cap B)/P(a)$	A) (b)P(AUB)/P(A	.) (c) P(AUB)/P(B) (d) $P(A \cap B)/P(B)$	
2) $P(S) =$				[]
a) 0 b) 1 c)) Both a & b d) r	none		
3) P (A) =1,	P(B) = 3 Then $P(A)$	UB) if A and B	are independent	[]
a) 1	b) 0	c) 4	d) 5	
4) $F(\infty)=$				[]
a)0	b) 1	c) 2	d) 3	
5)If two dice	are thrown then the	e probability of g	getting a sum as 7	[]
a) 1/6	b) 5/36	c) 7/36	d) none	
() The DDE f	w(w) is defined as			r 1
0) The PDF L	x(x) is defined as			Ĺ
(a) Integra	al of CDF (b) Deriv	vative of CDF (c)	Equal to CDF (d) Partial de	erivative of CDF
				r i
/) For $n = 1, 2$	$2, \dots N P(Bn / A) =$	Ξ		
a)P (Bn/A)P(A	A)/ P(A/B1)P(B2) -	+P(A)P(B)	b)P (An/Bn)P(Bn)/P(A/Bn).	P(B1) + + P(B)
c)P(A/Bn)P(A	.n)/P(A/B1)P(B1) -	++P (A/B)I	P(B) d)P(A/Bn).P(Bn)/P(A/Bn)	A/B1).P
(B1)++P(A)	A/Bn).P(Bn)			

8) A transformation T is called monotonically decreasing if []
(a) T(X1) > T(X2) for X1<X2 b) T(X1) = T(X2) for X1<X2 c) T(X1) < T(X2) for X1=X2

d) T(X1) < T(X2) for X1<X2

9) probability of getting either a queen or king card from the pack of playing cards is []

a)2/13 b) 2/26 c) 5/52 d) None

10) The mean and variance of a binomial distribution are 2 and 8/5 respectively then n= []
a) 16
b) 10
c) 2
d) None

Fill in the blanks:

- 1. If n and p are parameters of binomial distribution then the standard deviation of ------
- 2. The probability of getting 2 heads in tossing 5 coins is -----
- 3. E(X+a)= -----.
- 4. The uniform probability density function in the range { a, b } can be expressed as
- 5. Characteristic function is defined as -----
- 6. If X and Y are independent random variables, then E(XY) = _____
- 7. if $\omega = 0$, $\phi x (\omega) =$
- 8. COV (X,Y)=____
- 9. If y=ax+b, the covariance of x and y is
- 10. The distribution function of Gaussian RV is_____

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE B.Tech II Year I Sem II Mid –Term Examination, April-2023

PROBABILITY THEROY AND STOCHASTIC PROCESS

(Objective Exam)

TIME:	20 Min	MAX.MARKS: 10	
NAME :	ROLL NO:	MARKS	
I.Choose The Correct Ar	iswers		
1. The mean square value a) λt b). $(\lambda t)^2$ c) $\lambda t + (\lambda t)^2$	for the poission process x(λ^2 d). $\lambda t - (\lambda t)^2$	(t) with parameter λ t is	[]
2. The cross spectral densi a) $S_{XY}(\omega)$ b) $S_{XY}(-\omega)$	ty Syx (ω) = c) S _{yx} (- ω)	d) -Syx(ω)	[]
3. If x and y are two indep a). $\Phi_{xy}(\omega)b$). $\Phi_x(\omega)\Phi_y(\omega)c$	endent random variables ,). $\Phi_x(\omega) + \Phi_y(\omega) d$). $\Phi_{yx}(\omega)$	then $\Phi_{X+Y}(\omega)$ is	[]
4 For PSD which of the fo	llowing is not correct	a positiva d DCD is add	[]
a. PSD is a real b. P 5 For a random process we	sD is even c.PSD is alway e can calculate b. Ensemble aver	ages	[]
 c. Co-relation functions 6. E[X(t1).X(t2)] gives a. cross co-relation function 	d. All of these	process	[]
c. auto co-relation function 7. The Averagre power of t a) $\int_{-\infty}^{\infty} Sxx(\omega) d\omega$	h d. Average value the random process having b) $2\pi \int_{-\infty}^{\infty} Sxx(\omega) d\omega$	e of random process g psd $S_{xx}(\omega)$ is P_{xx}	[]
c) $1/2\pi \int_{-\infty}^{\infty} Sxx(\omega) d\omega$	d)0		
8. The PSD of WSS is always a) negative b) non-neg	ays	0(b	[]
9.The mean square value of	of a WSS process equals	4,0	[]
a) the area under the graphb) the area under the graph	n of the PSD h of the Autocorrelation		
c)0 d)mean	n of the process		
10.Information rate equal (a)rH b)IH c)HH	to R= H d)None of the above		[]

II.Fill In The Blanks:

.

11The time average of the product x(t) and $x(t+\tau)$ is called ______ of x(t)

12If x(t) is periodic, then its autocorrelation function is _____

3. IM[S_{xy}(w)] is an _____function.
 4. Re[S_{xy}(w)] is an _____function.

5. The autocorrelation function of a WSS random process is used to study _____ Characteristics.

6. The expected value of a time function is called the ______ of that function.

7. Wide sense stationary process is also called stationary process _____

8.Poisson random process formula _____

9. gaussian random process formula _____

10.entropy formula _____

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

B-Tech I - Mid Examinations, JAN-2023

Year &Branch: II – ECE-A, B&C

Date: 23-01-2023(FN)

Subject: PTSP

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1sSnmXQWr5Icw3EGlrpnAf3daVW 7FwuaB/view?usp=sharing

Objective Key Paper

I. Choose the correct alternative:

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 B-Tech II - Mid Examinations, APR-2023

Year &Branch: II – ECE-A, B&C

Subject: PTSP

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1Q33XVKXSbCBj4L02YmOc5bzeXi IADDJu/view?usp=sharing

Objective/Quiz Key Paper

I. (Choose	the	correct	alternative:
------	--------	-----	---------	--------------

- 1.C
- 2.B
- 3.B
- 4.C
- 5.D
- 6.C
- 7.C

8.B

9.C

10.A

Fill in the blanks:

11.AUTO CORRELATION

12.PERIODIC

13.ODD

14.EVEN

15.TEMPORIAL

16.AVERAGE MEAN

17.WEAK SENSE STATIONARY

18. P (z) = $12 \pi \sigma e - (z - \mu) 2/2 \sigma 2$

19. $f(x) = (e^{-\lambda} \lambda^x)/x!$

 $20.H=P_ILOG_2(1/P_I)$

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 1

SUBJECT: Probability Theory and Stochastic Processes

C215.1

C215.1

(Evaluation)

(Knowledge)

(Knowledge)

1. A Random variable X has the probability distribution ?

x:	0	1	2	3	4	5	6	
p(x)	k	3k	5k	7k	9k	11k	13k	

I)Find k II) Evaluate $P(X \le 4), P(X \ge 5)$ and $P(3 \le X \le 6)$

III)What is the smallest value of x for which $p(X \le x) > 1/2$

2. Given the following table

X=x	-3	-2	-1	0	1	2	3
p(x)	0.05	0.1	0.3	0	0.3	0.15	0.1

Compute i) E(X) ii) E(4X + 5) iii) $E(X^2)$ iv) Var(X) v) Var(2X + 3)3. Define PDF and write its properties?C215.2(Comprehension)

4. State and prove Baye's theorem of probability? C215.2

5.A Continuous Random Variable X has the distribution function

 $\begin{aligned} F(x) &= 0 & \text{if } x \leq 1, \\ &= k(x-1)^4 & \text{if } 1 < x \leq 3, \\ &= 1 & \text{if } x > 3; \text{ then find } k \text{ and } f(x) \end{aligned}$

6.A Random variable X has the following probability distribution

Х	0	1	2	3	4	5	6	7	
P(X=x)	0	К	2K	2K	3K	K ²	2K ²	7K ² +K	
i)Determ	nine k		ii) Eva	luate	P(X<6	$\mathbf{P}(\mathbf{X})$	≥6), P(0	<x<5) and<="" td=""><td>P(0≤X≤4)</td></x<5)>	P(0≤X≤4)

C215.1 (Knowledge)

7. Define Binominal Distribution, obtain its mean and variance. C215.2 (Comprehension)

8. The Random variables X has the characteristic function and is given by

$$\Phi(t) = 1 - |t|, |t| \le 1 = 0, |t| > 1$$

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT- 2 SUBJECT: Probability Theory and Stochastic Processes

1. Define weak sense stationary process and explain C215.3 (Knowledge)

2. Define PDF, CDF and explain C215.3 (Knowledge)

3. A random process is defined as $X(t) = ACos(\omega ot + \Theta)$, where Θ is a uniformly

distributed random variable in the interval (0, Pi/2). Check for its wide sense

stationarity? A and ωo are constants C215.4 (Evaluation)

4. Derive the relationship between cross-power spectrum and cross-correlation function.. C215.4 (Comprehension)

5. Derive the relationship between cross-power spectrum and auto-correlation function C215.4 (Knowledge)

6. The autocorrelation function of a random process $RXX(\tau) = 4 \cos(\omega o \tau)$, where ωo is a constant. Obtain its power spectral density. C215.4 (Evaluation)

7. Define cross power density spectrum and write its properties C215.5 (Knowledge)

8. Define Gaussian random process and explain.. C215.5 (Evaluation)

9. Define poisson random process and explain.. C215.5 (Evaluation)

10. Define strict sense stationary process and explain C215.5 (Knowledge)

11. Define joint wide sense stationary process and explain C215.6 (Evaluation)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title	PROBABILITY THEORY AND STOCHASTIC PROCESS
Course Code	EC305ES
Programme	B.Tech
Year & Semester	II year I-semester, A sec
Regulation	R18
Course Faculty	T. NARESH, Assistant Professor, ECE

Slow learners:

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	21X31A0402	3	20	14
2	21X31A0403	3	20	15
3	21X31A0408	3	18	19
4	21X31A0409	4	14	14
5	21X31A0412	3	18	14
6	21X31A0414	3	18	14
7	21X31A0417	3	15	18
8	21X31A0422	3	21	17
9	21X31A0433	3	22	16
10	21X31A0435	3	18	16
11	21X31A0436	3	14	17

S.NO	ROLL.NO.	GATE MATERIAL
1	21X31A0401	Probability and Statistics:
2	2172140405	Mean, median, mode and
2	2172140402	standard deviation
3	21X31A0410	;combinatorial probability,
4	2183100/13	probability distribution
•	21/21/0412	functions - binomial, Poisson,
5	21X31A0415	exponential and normal; Joint
6	2172100/18	and conditional probability;
0	21731A0410	Correlation and regression
7	21X31A0420	analysis. Random processes:
8	2172100421	autocorrelation and power
0	ZIA51A0421	spectral density, properties of
9	21X31A0423	white noise, filtering of
10	21/21 0 0 4 2 4	random signals through L11
10	Z1X31A0424	systems;
11	21X31A0426	
10	21/21 00427	
12	21X31A0427	
13	21X31A0429	
11	24/24 4 0 4 2 4	
14	21X31A0431	
15	21X31A0432	
10		
16	21X31A0434	
17	21X31A0437	

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-II BTECH I SEM ECE-A RESULT ANALYSIS

ACADAMIC	COURSE	NUMBE STUDE	CR OF	QUESTIO SETT		
YEAR	NAME	APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%
2022-23	PROBABILITY THEORY AND STOCHASTIC PROCESS	54	37	COURSE FACULTY	JNTUH	68.51

PROBABILITY THEORY AND STOCHASTIC PROCESS (C215) RESULT ANALYSIS

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-I

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM-5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM	
II ECE-A	EDC	NATL	DSD	PTSP	SS	
II ECE-B NATL		DSD	PTSP	SS	EDC	
III ЕСЕ-А МРМС		DCCN	CS	BEFA	EMI	
III ECE-B DCCN		CS	BEFA	EMI	МРМС	
III ECE-C	CS	BEFA	EMI	MPMC 🔥	DCCN	
IV ECE-A	MW&OC	DIP	PPLE	NS&C	JAVA	
IV ECE-B	DIP	PPLE	NS&C	JAVA	MW&OC	
IV ECE-C	PPLE	NS&C	JAVA	MW&OC	DIP	

Head of HnDDepartment Electronics and Communication Engg. Dept. SRI INDU INSTITUTE OF ENGG & TECH, Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510.

Sil Indu Institute of Engineering & Tech.

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	THEDDU NARESH	Academic Year:	2022-23	
Branch & Section:	ECE - A	Examination:	I Internal	
Course Name:	PTSP	Year: II	Semester:	I

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max	. Marks ==>	5		5		5		5		10	5
1	21X31A0401	5		5		3				5	5
2	21X31A0402	4				2				7	5
3	21X31A0403	4		4		3				7	5
4	21X31A0404	4		4		3		4		6	5
5	21X31A0405	4		3		1				8	5
6	21X31A0406	5		5		3				8	5
7	21X31A0407	4				2				7	5
8	21X31A0408	4		1		2				7	5
9	21X31A0409	5								4	5
10	21X31A0410	4		3		2				6	5
11	21X31A0412	4				3				6	5
12	21X31A0413	4		3		2				7	5
13	21X31A0414	4		1				2		7	5
14	21X31A0415	3				2				7	5
15	21X31A0416	5								4	5
16	21X31A0417			2						8	5
17	21X31A0418	3		2						10	5
18	21X31A0420	5				3		5		10	5
19	21X31A0421	5				3				9	5
20	21X31A0422			5		3				8	5
21	21X31A0423	4		2		2		5		6	5
22	21X31A0424	5		1		1		4		6	5
23	21X31A0425	4		2		2				6	5
24	21X31A0426	4		2		1		3		6	5
25	21X31A0427	4						3		10	5
26	21X31A0428	4		2				3		6	5
27	21X31A0429	4				3				10	5
28	21X31A0431	5								8	5
29	21X31A0432	3								7	5
30	21X31A0433	5				3		2		9	5
31	21X31A0434	4		2		4		4		8	5
32	21X31A0435	5		2						6	5
33	21X31A0436	1								8	5
34	21X31A0437	2								7	5
35	22X35A0401	4						4		10	5
36	22X35A0402	3						5		10	5
37	22X35A0403	5				2		4		10	5
38	22X35A0404	3		3						9	5
39	22X35A0405	4						2		9	5
40	22X35A0406	4						4		9	5

41 22X35A0407	4						4		9	5	
42 22X35A0408	4				3				9	5	
43 22X35A0409	5				2		3		9	5	
44 22X35A0410	5				2		5		9	5	
45 22X35A0411	4						4		8	5	
46 22X35A0412	4						3		8	5	
47 22X35A0413	5						5		9	5	
48 22X35A0414	4				3				9	5	
49 22X35A0415	3		4						9	5	
50 22X35A0416			5				4		9	5	
51 22X35A0417	4				3				8	5	
52 22X35A0418	4						4		9	5	
53 22X35A0419	4						4		9	5	
54 22X35A0420	5				4		5		9	5	
Target set by the faculty	3 00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00	
/ HoD	2.00	0.00	5100	0.00	5.00	0.00	2.00	0.00	0.00	2.00	
Number of students	10	0	10	0				<u>^</u>			
terrest	49	0	12	0	15	0	22	0	51	54	
Number of students											
attempted	51	0	23	0	29	0	25	0	54	54	
attempted											
Percentage of students	96%		52%		52%		88%		94%	100%	
scored more than target	9070		5270		5270		0070		7470	10070	
CO Monning with Ever		0.000									
UU Madding with Exa	n Quesu	IOHS:									
	V						V	1	V	V	
CO - 1	Y						Y		Y	Y	
CO - 1 CO - 2	Y		Y		Y		Y		Y Y	Y Y	
CO - 1 CO - 2 CO - 3	Y		Y		Y		Y		Y Y	Y Y	
CO - 1 CO - 2 CO - 3 CO - 4	Y		Y		Y		Y		Y Y	Y Y	
CO - 1 CO - 2 CO - 3 CO - 4 CO - 5	Y		Y		Y		Y		Y Y	Y Y	
CO - 1 CO - 2 CO - 3 CO - 4 CO - 5 CO - 6	Y		Y		Y		Y		Y Y	Y Y	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $	Y		Y		Y		Y		Y Y	Y Y	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ % Students Scored $ \begin{array}{c} \hline > Target \% \end{array} $	96%		Y		Y		¥		Y Y 94%	Y Y 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target } \% \\ \hline \textbf{CO Attainment based of } \end{array} $	Y 96% n Exam	Questio	Y 52%		Y 52%		¥ 		Y Y 94%	Y Y 100%	
$\frac{\text{CO} - 1}{\text{CO} - 2}$ $\frac{\text{CO} - 3}{\text{CO} - 4}$ $\frac{\text{CO} - 5}{\text{CO} - 6}$ % Students Scored >Target % CO Attainment based of CO - 1	Y 96% n Exam	Questio	Y 52% ns:		Y 52%		Y 88%		Y Y 94%	Y Y 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target \%} \\ \hline \hline CO \text{ Attainment based o} \\ \hline \hline CO - 1 \\ \hline \hline CO - 2 \\ \hline \end{array} $	Y 96% n Exam 96%	Questio	Y 52% ns:		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ % Students Scored $ \begin{array}{c} \hline > Target \% \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline \hline \hline \end{array} $	Y 96% n Exam 96%	Questio	Y 52% 52%		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100% 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ % Students Scored $ \begin{array}{c} \hline > Target \% \\ \hline \hline CO & Attainment based o \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline \hline CO - 3 \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \\ \hline \\ \hline \hline$	Y 96% n Exam 96%	Questio	Y 52% 52%		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100% 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target }\% \\ \hline \hline CO \text{ Attainment based of } \\ \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline \hline CO - 5 \\ \hline \hline \end{array} $	Y 96% n Exam 96%	Questio	Y 52% 52%		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100% 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target \%} \\ \hline \hline CO \text{ Attainment based o} \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $	96% n Exam 96%	Questio	Y 52% 52%		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100% 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ % Students Scored $ \begin{array}{c} \hline > Target \% \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $	Y 96% n Exam 96%	Questio	Y 52% 52%		Y 52%		Y 88%		Y Y 94% 94%	Y Y 100% 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target }\% \\ \hline \hline CO \text{ Attainment based of } \\ \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $	Y 96% 96% 96%	Questio	Y 52% 52%		Y 52%		Y 88% 88%		Y Y 94% 94%	Y Y 100%	
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target } \% \\ \hline \hline CO \text{ Attainment based o} \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \\ \hline \\$	Y 96% n Exam 96% Subj	Questio	Y 52% 52% 52%	 Ove	Y 52% 52%		Y 88% 88%		Y Y 94% 94% 94%	Y Y 100% 100%	Level
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target \%} \\ \hline \hline CO \text{ Attainment based o} \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \hline \\ \hline$	Y 96% n Exam 96% Subj 92%	Ouestio	Y 52% ns: 52% 52%		Y 52% 52%		Y 88% 88% 88%		Y Y 94% 94% 94%	Y Y 100% 100% 100%	Level %
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ $ \begin{array}{c} \hline & Students Scored \\ \hline & Students Scored \\ \hline & Students Scored \\ \hline & CO - 6 \\ \hline \hline \\ \hline CO - 1 \\ \hline & CO - 2 \\ \hline & CO - 1 \\ \hline & CO - 2 \\ \hline & CO - 3 \\ \hline & CO - 4 \\ \hline & CO - 5 \\ \hline & CO - 6 \\ \hline \hline \\ \hline \\$	Y 96% n Exam 96% Subj 92% 52%	Questio	Y 52% ns: 52% 52% Asgn 100% 100%		Y 52% 52%		Y 88% 88% 88% 		Y Y 94% 94% 94% Atta 1 2	Y Y 100% 100% 100%	Level %
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target } \% \\ \hline \hline CO \text{ Attainment based of } \\ \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \\ \hline \\ CO - 5 \\ \hline \\ CO - 6 \\ \hline \\ \hline$	Y 96% n Exam 96% 96% 52%	Ouestio	Y 52% 52% 52% 52% Asgn 100% 100%	Ove 95 82	Y 52% 52% 52%		Y 88% 88% 88% 		Y Y 94% 94% 94% 94% 1 2 3	Y Y 100% 100% 100%	Level % %
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \% \text{ Students Scored} \\ \hline > \text{Target \%} \\ \hline \hline CO \text{ Attainment based o} \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \\ \hline \\$	Y 96% n Exam 96% 96% Subj 92% 52%	Ouestio	Y 52% 52% 52% 52% Asgn 100% 100%		Y 52% 52%		Y 88% 88% 88% 		Y Y 94% 94% 94% 94% 94% 1 2 3	Y Y 100% 100% 100%	Level % %
$ \begin{array}{c} \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \end{array} $ $ \begin{array}{c} \hline Students Scored \\ \hline >Target \% \\ \hline \hline CO Attainment based o \\ \hline \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 4 \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \hline CO \\ \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 6 \\ \hline \hline \hline CO \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline \hline CO \\ \hline CO \\ \hline CO - 1 \\ \hline CO - 2 \\ \hline CO - 3 \\ \hline CO - 6 \\ \hline \hline \hline CO \\ \hline CO \\ \hline CO - 5 \\ \hline CO - 6 \\ \hline \hline CO \\ \hline CO \\ \hline CO - 5 \\ \hline \hline CO - 5 \\ \hline CO - 5 \\ \hline \hline CO - 5 \\ \hline CO - 5 \\ \hline \hline CO - 5 \\ \hline CO - 5 \\ \hline \hline CO - 5 $	Y 96% n Exam 96% 52%	Ouestio	Y 52% 52% 52% Asgn 100% 100%		Y 52% 52%		Y 88% 88% 88% evel .00 .00		Y Y 94% 94% 94% Atta 1 2 3	Y Y 100% 100% 100%	Level % %

Attainment (Internal 1 Examination) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the faculty :	THEDDU NARESH	Academic Year:	2022-23	
Branch & Section:	ECE - A	Examination:	II Internal	
Course Name:	PTSP	Year: II	Semester:	I

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj2	A2
Max	. Marks ==>	5		5		2	3	2	3	10	5
1	21X31A0401	4				1	3			8	5
2	21X31A0402	5								4	5
3	21X31A0403			2						8	5
4	21X31A0404			2						8	5
5	21X31A0405	4								5	5
6	21X31A0406	5						1	3	9	5
7	21X31A0407	5								4	5
8	21X31A0408			2				1	2	9	5
9	21X31A0409	1								7	5
10	21X31A0410	3		1						8	5
11	21X31A0412	4								5	5
12	21X31A0413			4			3	1	2	8	5
13	21X31A0414			1						8	5
14	21X31A0415	3		3						7	5
15	21X31A0416	4								5	5
16	21X31A0417	3		3						7	5
17	21X31A0418			5						4	5
18	21X31A0420	4		3						8	5
19	21X31A0421	3		4						7	5
20	21X31A0422	3		3						6	5
21	21X31A0423	4								9	5
22	21X31A0424	3								8	5
23	21X31A0425			4		2	1			9	5
24	21X31A0426	3		3						9	5
25	21X31A0427	5		5						9	5
26	21X31A0428	3		3						9	5
27	21X31A0429					2		2	2	8	5
28	21X31A0431	3				1	2			6	5
29	21X31A0432	3		2						6	5
30	21X31A0433	4								7	5
31	21X31A0434	4				2	1			6	5
32	21X31A0435	4								7	5
33	21X31A0436	3		3						6	5
34	21X31A0437	4								7	5
35	22X35A0401	5				2	2			7	5
36	22X35A0402	3				2	2			7	5
37	22X35A0403	3				2				7	5
38	22X35A0404	1								6	5
39	22X35A0405	2								6	5
40	22X35A0406	3				2				7	5
41	22X35A0407	3								7	5
42	22X35A0408					2				7	5
43	22X35A0409					2				7	5
44	22X35A0410	5				2	3			7	5

45	22X35A0411					2	2			8	5
46	22X35A0412	5				2	2			7	5
47	22X35A0413	5				2	3			8	5
48	22X35A0414	5						2	2	8	5
49	22X35A0415			3				1	1	8	5
50	22X35A0416	5						2	2	8	5
51	22X35A0417					2	2	1	2	7	5
52	22X35A0418			5		2	2			8	5
53	22X35A0419	4				2	2			8	5
54	22X35A0420	4				2	3			8	5
Targ / Hol	et set by the faculty D	3.00	0.00	3.00	0.00	1.20	1.80	1.20	1.80	6.00	3.00
Num perfo targe	ber of students ormed above the et	37	0	14	0	17	13	3	7	48	54
Num atten	ber of students	40	0	20	0	19	15	8	8	54	54
Perco	entage of students ed more than target	93%		70%		89%	87%	38%	88%	89%	100%

CO Mapping with Exam Questions:

CO - 1								
CO - 2								
CO - 3	у						у	У
CO - 4		У					У	У
CO - 5			У	У	У	У	У	у
CO - 6							У	У

CO Attainment based on Exam Questions:

CO - 1								
CO - 2								
CO - 3	93%						89%	100%
CO - 4		70%					89%	100%
CO - 5			89%	87%	38%	88%	89%	100%
CO - 6							89%	100%

со	Subj	obj	Asgn	Overall	Level
CO-1					
CO-2					
CO-3	93%	89%	100%	94%	3.00
CO-4	70%	89%	100%	86%	3.00
CO-5	75%	89%	100%	88%	3.00
CO-6		89%	100%	94%	3.00

Attainment Level					
1	40%				
2	50%				
3	60%				

Attainment (Internal Examination-2) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Name of the faculty : THEDDU NARESH Academic			Year:		
Branch	n & Section:	ECE - A		Year / Sem	nester:
Course	e Name:	PTSP			
S.No	Roll Number	Marks Secured		S.No	Ro
1	21X31A0401	47		36	22X3
2	21X31A0402	22		37	22X3
3	21X31A0403	27		38	22X3
4	21X31A0404	47		39	22X3
5	21X31A0405	62		40	22X3
6	21X31A0406	52		41	22X3
7	21X31A0407	28		42	22X3
8	21X31A0408	34		43	22X3
9	21X31A0409	14		44	22X3
10	21X31A0410	60		45	22X3
11	21X31A0412	42		46	22X3
12	21X31A0413	57		47	22X3
13	21X31A0414	23		48	22X3
14	21X31A0415	44		49	22X3
15	21X31A0416	40		50	22X3
16	21X31A0417	34		51	22X3
17	21X31A0418	46		52	22X3
18	21X31A0420	52		53	22X3
19	21X31A0421	54		54	22X3
20	21X31A0422	30			
21	21X31A0423	53			
22	21X31A0424	47			
23	21X31A0425	63			
24	21X31A0426	48			
25	21X31A0427	70			
26	21X31A0428	31			
27	21X31A0429	55			
28	21X31A0431	45			
29	21X31A0432	46			
30	21X31A0433	28			
31	21X31A0434	49			
32	21X31A0435	29			
33	21X31A0436	30			
34	21X31A0437	32			
35	22X35A0401	30			
Max M	larks	75			
Class A	verage mark		32		Atta
Numbe	r of students per	formed above the target	29]	
Numbe	r of successful st	tudents	54		
			-		

S.No	Roll Number	Marks Secured
36	22X35A0402	29
37	22X35A0403	11
38	22X35A0404	20
39	22X35A0405	14
40	22X35A0406	38
41	22X35A0407	31
42	22X35A0408	10
43	22X35A0409	26
44	22X35A0410	34
45	22X35A0411	26
46	22X35A0412	29
47	22X35A0413	26
48	22X35A0414	33
49	22X35A0415	26
50	22X35A0416	44
51	22X35A0417	31
52	22X35A0418	16
53	22X35A0419	13
54	22X35A0420	37

2022-23

II / I

Attainment Level	% students
1	40%
2	50%

Percentage of students scored more than target	54%
Attainment level	2

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty	THEDDU	NARESH		Academic Year:	2022-23
Branch & Section:	ECE - A			Examination:	I Internal
Course Name:	PTSP			Year:	II
				Semester:	Ι
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	2.00	2.25
CO2	3.00		3.00	2.00	2.25
CO3		3.00	3.00	2.00	2.25
CO4		3.00	3.00	2.00	2.25
CO5		3.00	3.00	2.00	2.25
CO6		3.00	3.00	2.00	2.25
Internal	& Universit	ty Attainment:	3.00	2.00	
		Weightage	25%	75%	
D Attainment for the	course (Inte	ernal, Universi	0.75	1.50	
CO Attainment for t	he course (I	Direct Method)		2.25	

Overall course attainment level2.25

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

2022-23

П

Т

Name of Faculty:	THEDDU NARESH	Academic Year:
Branch & Section:	ECE - A	Year:
Course Name:	PTSP	Semester:

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	2	1	-	-	-	-	2	-	-	-	-
CO2	-	2	3	-	-	1	-	-	-	3	-	3	-	-
CO3	3	-	-	2	1	-	-	-	-	-	2	-	-	3
CO4	2	3	-	1	-	-	-	-	-	-	-	-	-	2
CO5	3	-	-	2	1	-	-	-	-	-	-	2	-	3
CO6	2	3	-	1	-	-	-	-	-	-	3	-	-	-
Course	2.6	2.6	3	1.6	1	1				2.5	2.5	2.5		2.6

со	Cou	Course Outcome Attainment							
		2.25							
CO1									
		2.25							
CO2									
		2.25							
CO3									
		2.25							
CO4									
		2.25							
CO5									
CO6		2.25							
Overall course attainment level		2.25							

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
со														
Attainme														
nt	1.95	1.95	2.25	1.20	0.75	0.75				1.88	1.88	1.88		1.95

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS

Assignment 1 script link:

https://drive.google.com/file/d/1bQRsw82okpQ3U5wEd3jvY4CiYF R6ZPjH/view?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/1qtq5XiKWTixKcYoevreAE9haYype OJwo/view?usp=sharing

Attendance Register link:

https://drive.google.com/file/d/1wMYzHMMR6yhorUvS-HVa_VqWPdpcJxXU/view?usp=sharing