

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

VLSI DESIGN

Course Code – EC603PC

III B.Tech II-SEMESTER

A.Y.: 2022-2023

Prepared by

Mr. K. SRIKANTH Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH sheriguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	VLSI DESIGN
Course Code	EC603PC
Programme	B.Tech
Year & Semester	III year II-semester
Branch & Section	ECE-B
Regulation	R18
Course Faculty	Mr. K. SRIKANTH, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- DM3: To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- **PEO3:** Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-Sut 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING III YEAR COURSE STRUCTURE AND SYLLABUS (R18)** Applicable From 2018-19 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC501PC	Microprocessors & Microcontrollers	3	1	0	4
2	EC502PC	Data Communications and Networks	3	1	0	4
3	EC503PC	Control Systems	3	1	0	4
4	SM504MS	Business Economics & Financial Analysis	3	0	0	3
5		Professional Elective - I	3	0	0	3
6	EC505PC	Microprocessors & Microcontrollers Lab	0	0	3	1.5
7	EC506PC	Data Communications and Networks Lab	0	0	3	1.5
8	EN508HS	Advanced Communication Skills Lab	0	0	2	1
9	*MC510	Intellectual Property Rights	3	0	0	0
		Total Credits	18	3	8	22

III YEAR II SEMESTER

S. No.	Course	Course Title	L	Т	Р	Credits
	Code					
1	EC601PC	Antennas and Propagation	3	1	0	4
2	EC602PC	Digital Signal Processing	3	1	0	4
<mark>3</mark>	EC603PC	VLSI Design	<mark>3</mark>	1	0	<mark>4</mark>
4		Professional Elective - II	3	0	0	3
5		Open Elective - I	3	0	0	3
6	EC604PC	Digital Signal Processing Lab	0	0	3	1.5
7	EC605PC	e – CAD Lab	0	0	3	1.5
8	EC606PC	Scripting Languages Lab	0	0	2	1
9	*MC609	Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

*MC - Environmental Science - Should be Registered by Lateral Entry Students Only.

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective – 1					
EC511PE	Computer Organization & Operating Systems				
EC512PE	Error Correcting Codes				
EC513PE	Electronic Measurements and Instrumentation				
Professional Elective – II					
EC611PE	Object Oriented Programming through Java				
EC612PE	Mobile Communications and Networks				
EC613PE	Embedded System Design				

Professional Flectiv

EC603PC: VLSI DESIGN

B.Tech. III Year II Semester

L T P C

3104

Prerequisite: Electronic Circuit Analysis; Switching Theory and Logic Design

Course Objectives: The objectives of the course are to:

- 1. Give exposure to different steps involved in the fabrication of ICs.
- 2. Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- 3. Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- 4. Provide design concepts to design building blocks of data path of any system using gates.
- 5. Understand basic programmable logic devices and testing of CMOS circuits.

Course Outcomes: Upon completing this course, the student will be able to

1. Acquire qualitative knowledge about the fabrication process of integrated circuits using MOS transistors.

2. Draw the layout of any logic circuit which helps to understand and estimate parasitic effect of any logic circuit

3. Design building blocks of data path systems, memories and simple logic circuits using PLA, PAL, FPGA and CPLD.

4. Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system.

UNIT – I

Introduction: Introduction to IC Technology - MOS, PMOS, NMOS, CMOS & BiCMOS

Basic Electrical Properties: Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, Figure of merit; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

UNIT – III

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out.

UNIT - IV

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT - V

Programmable Logic Devices: Design Approach – PLA, PAL, Standard Cells FPGAs, CPLDs.

CMOS Testing: CMOS Testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

TEXT BOOKS:

1. Essentials of VLSI circuits and systems – Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition

2. CMOS VLSI Design – A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.

REFERENCE BOOKS:

1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective – Ming-BO Lin, CRC Press, 2011

2. CMOS logic circuit Design - John. P. Uyemura, Springer, 2007.

3. Modern VLSI Design - Wayne Wolf, Pearson Education, 3rd Edition, 1997.]

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course: VLSI Design (C323)

Class: III ECE-A

Course Outcomes

After completing this course, the student will be able to:

- C323.1: Identify the various Fabrication techniques of IC using various MOS circuits and be able to Solve the electrical properties associated with MOS circuits. (Knowledge Evaluation)
- C323.2: Infer the steps involved in the VLSI design flow and apply the design rules of IC layout for designing stick, layout diagrams of various gates. (Comprehension Synthesis)
- C323.3: Apply Gate level design principles for the design of various logic gates and complex gates (Application Synthesis)
- C323.4: Contrast on the various techniques like Alternate gate circuits, Time delays, driving large capacitive loads and wiring capacitance (Analysis)
- C323.5: Construct various data path and array subsystems for complex logic circuits and memory devices (Synthesis)
- C323.6: Develop semiconductor IC design such as PLA's, PAL, FPGA, CPLDs and also assess the differential strategies for testing of IC's and CMOS. (Synthesis Evaluation)

Mapping of course outcomes with program outcomes:

PO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C323.1	3	3	3	3	-	-	-	-	1	1	1	2	3	-
C323.2	3	3	3	3	2	-	-	-	1	1	1	2	3	2
C323.3	3	3	3	3	2	-	-	-	1	1	1	2	3	2
C323.4	3	2	2	2	-	-	-	-	1	1	1	2	3	1
C323.5	3	3	3	3	2	-	-	-	1	1	1	2	3	2
C323.6	3	3	3	3	2	-	-	2	1	1	1	2	3	2
C323	3.00	2.83	2.83	2.83	2.00	-	-	2.00	1.00	1.00	1.00	2.00	3.00	1.80

High -3 Medium -2 Low-1

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

CO- PO/PSO Mapping - Justification

Course: VLSI Design (C323)

Class: III ECE-A

	ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science,
PO1.	engineering fundamentals, and an engineering specialization to the solution of
	PROBLEM ANALYSIS: Identify formulate research literature and analyze
PO2.	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	DESIGN/DEVELOPMENT OF SOLUTIONS: Design solutions for complex
PO3	engineering problems and design system components or processes that meet the
105.	specified needs with appropriate considerations for the public health and safety, and
	the cultural, societal, and environmental considerations.
	CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-
PO4.	based knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
	MODERN TOOL USAGE: Create select and apply appropriate techniques
PO5	resources and modern engineering and IT tools including prediction and modelling
105.	to complex engineering activities with an understanding of the limitations
	ETHICS: Apply ethical principles and commit to professional ethics and
PO8.	responsibilities and norms of the engineering practice.
DOD	INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as
PO9.	a member or leader in diverse teams, and in multidisciplinary settings.
	COMMUNICATION : Communicate effectively on complex engineering activities
DO10	with the engineering community and with society at large, such as, being able to
PO10.	comprehend and write effective reports and design documentation, make effective
	presentations, give and receive clear instructions.
	PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and
D011	understanding of the engineering and management principles and apply these to
PO11.	one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
	LIFE-LONG LEARNING: Recognize the need for, and have the preparation and
PO12.	ability to engage in independent and life-long learning in the broadest context of
	technological change.
PSO1	Design Skills: Design, analysis and development a economical system in the area of
	Embedded system & VLSI design.
PSO2.	Software Usage: Ability to investigate and solve the engineering problems using
	MAILAD, KEII and Allinx.

JUSTIFICATION

C323.1: Identify the various Fabrication techniques of IC using various MOS circuits and be able to Solve the electrical properties associated with MOS circuits. (Knowledge – Evaluation)

PO1	Students apply the knowledge of science and engineering fundamentals to understand IC
	fabrication techniques
PO2	Students analyze the problems on various properties of IC
PO3	Students compute complex electrical properties of MOS circuits.
PO4	Students analyze and interpret the fabrication methods and properties of various semiconductor
	devices
PO9	Students perform individually to complete all assignments allotted on the topic
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the Basics of VLSI in managing project work.
PO12	Students apply design principles and properties of various semiconductor devices for
	continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.

C323.2: Infer the steps involved in the VLSI design flow and apply the design rules of IC layout for designing stick, layout diagrams of various gates. (Comprehension – Synthesis)

	Justification
PO1	Students acquire knowledge on various types of methods and rules for IC design.
PO2	Students analyze the problems on the design of various semiconductor devices
PO3	Students are able to provide solution to design layout of IC using design rules
PO4	Students analyze and interpret the stick and layout diagrams of various devices
PO5	Students can use Xilinx vivado, micro wind and mentor graphics tool for design of layouts of
	CMOS inverter.
PO9	Students perform individually to complete all assignments allotted on the topic
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the concept of VLSI Layout in managing project work.
PO12	Students apply the concepts of stick and layout diagrams for the design of various
	semiconductor devices as outcome based education on continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.
PSO2	Students can able to investigate and solve the engineering problems using Xilinx and micro
	wind.

C323.3: Apply Gate level design principles for the design of various logic gates and complex gates. (Application – Synthesis)

PO1	Students get the knowledge on analytical perspective on the design and analysis on IC
	fabrication.
PO2	Students analyze the problems on design principles
PO3	Students design and develop various circuits based on design rules for stick diagrams and
	layouts of an IC.
PO4	Students analyze and interpret the design of logic gates and complex gates
PO5	Students can use Xilinx vivado, micro wind and mentor graphics tool for design of layouts
	of logic gates.
PO9	Students perform individually to complete all assignments allotted on the topic
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the concept of Gate level design in managing project work.
PO12	Students apply design principles for various semiconductor devices as continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.
PSO2	Students can able to investigate and solve the engineering problems using Xilinx and micro
	wind.

C323.4: Contrast on the various techniques like Alternate gate circuits, Time delays, driving large capacitive loads and wiring capacitance (Analysis)

PO1	Students get the knowledge on analytical perspective on the design and analysis on IC
	fabrication.
PO2	Students analyze the problems on various concepts
PO3	Students design and develop solutions for various circuits
PO4	Students analyze and interpret various techniques involved in design of IC
PO9	Students perform individually to complete all assignments allotted on the topic
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the concept of Time delays and capacitive loads in managing project
	work.
PO12	Students apply the concepts of various design techniques for semiconductor devices as
	outcome based education on continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.
PSO2	Students can able to investigate and solve the engineering problems using Xilinx and micro
	wind.

C323.5: Construct various data path and array subsystems for complex logic circuits and memory devices (Synthesis)

PO1	Students get the basic knowledge which helps to understand and estimate the
	construction of logic circuit.
PO2	Students analyze the problems on the construction of various sub systems
PO3	Students design and develop solutions for complex logic circuits
PO4	Students analyze and interpret the construction of complex circuits and memory
	devices
PO5	Students can use Xilinx vivado, micro wind and mentor graphics tool for design of
	layouts.
PO9	Students perform individually to complete all assignments allotted to them
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the concept of complex logic circuits and memory in managing
	project work.
PO12	Students apply the concepts of constructing various memory devices as outcome based
	education on continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.
PSO2	Students can able to investigate and solve the engineering problems using Xilinx and
	micro wind.

C323.6: Develop semiconductor IC design such as PLA's, PAL, FPGA, CPLDs and also assess the differential strategies for testing of IC's and CMOS. (Synthesis – Evaluation)

PO1	Students acquire knowledge on the development and testing of various semiconductor IC
	devices
PO2	Students analyze the problems on the development and testing of IC's
PO3	Students able to design different types of logic gates using CMOS inverter and analysis of
	their transfer characteristics and can also design building blocks of data paths using gates.
PO4	Students analyze and interpret the solutions for the development of testing of IC's
PO5	Students can use Xilinx vivado, micro wind and mentor graphics tool for design of layouts.
PO8	Understand different types of faults that can occur in a system and learn concept of testing
	and adding extra hardware to improve testability systems
PO9	Students perform individually to complete all assignments allotted on the topic
PO10	Students can share information about the complex problems on VLSI and assignments.
PO11	Students can use the concept of FPGA, CPLD in managing project work.
PO12	Students apply steps for development and testing of IC's as continuous learning
PSO1	Student can design, analysis and development a system in the area of VLSI design.
PSO2	Students can able to investigate and solve the engineering problems using Xilinx and micro
	wind.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD <u>ACADEMIC CALENDAR 2022-23</u>

B. Tech./B. Pharm. III YEAR I & II SEMESTERS

I SEM

	8	Duration		
S. No	Description	From	То	
1	Commencement of I Semester classwork		09.09.2022	
2	1 st Spell of Instructions (including Dussehra Recess)	09.09.2022	10.11.2022 (9 Weeks)	
3	Dussehra Recess	03.10.2022	08.10.2022 (1 Week)	
4	First Mid Term Examinations	11.11.2022	17.11.2022 (1 Week)	
5	Submission of First Mid Term Exam Marks to the University on or before		24.11.2022	
6	2 nd Spell of Instructions	18.11.2022	12.01.2023 (8 Weeks)	
7	Second Mid Term Examinations	16.01.2023	21.01.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	23.01.2023	28.01.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	,	30.01.2023	
10	End Semester Examinations	30.01.2023	11.02.2023 (2 Weeks)	

Note: No. of Working/ instructional days: 92

II SEM

		Duration		
S. No	Description	From	То	
1	Commencement of II Semester classwork		13.02.2023	
2	1 st Spell of Instructions	13.02.2023	08.04.2023 (8 Weeks)	
3	First Mid Term Examinations	10.04.2023	15.04.2023 (1 Week)	
4	Submission of First Mid Term Exam Marks to the University on or before	22.04.2023		
5	2 nd Spell of Instructions (including Summer Vacation)	17.04.2023	24.06.2023 (10 Weeks)	
6	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)	
7	Second Mid Term Examinations	26.06.2023	01.07.2023 (1 Week)	
8	Preparation Holidays and Practical Examinations	03.07.2023	08.07.2023 (1 Week)	
9	Submission of Second Mid Term Exam Marks to the University on or before	08.07.2023		
10	End Semester Examinations	10.07.2023	22.07.2023 (2 Weeks)	

Note: No. of Working/ instructional days: 90

REGISTRAR

Bing An or

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous, Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Dethi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510

https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING **Class Timetable**

CLASS: III-B.Tech ECE-B		A.¥	:2022-23		SI	EMESTER: I	r	T	H. C 202		
TIME/ DAY	9:40	I -10:30	II 10:30 -11:20	III 11:20-12	:10	IV	1:00-	v		VI	VII
MON	1	IM	VLSID	DSP		EAT	1:50	1:30-2:20		2:20-3:10	3:10-4:00
TUE	A	&P	ESD	IM		FAI		ESD		A&P	SPORTS
WED	F	AI	A&P(T)/DSP(T)		SLIAD	DSP	L		DS	PLAB/e-CAD	LAB
THU	VI	LSID	A&P		SL LAB		UN	COUN		VLSID	A&P
FRI	E	SD	IM	1.8.0	J-CU/DA/	A	C	DSP		ESD	DSP(T)/VI SID(T)
SAT	E	OSP	VLSID	A & P	DUDUD	FAI	н		e-(CAD LAB / DSP LAP	
*(T	r) – Tu	torial C	Concern Faculty	VLSI	DIADION	CT)		ESD	VLS	ID(T)/A&P(T)	LIB
Course C	Code		Course Name	Nan Fa	ne of the aculty	Course Code	e Course Name		me of the		
EC6011	PC	A&P-A	ntennas and Propaga	tion Dr.	T.Rama rishna	EC604PC	DSP LAB-Digital Signal Processing Lab		Faculty A.Apsara/M.Srilatha/Y.Rajani		
EC6021	PC	DSP-Di	igital Signal Processi		A =====	ECOUSPC	e-CAD	LAB-e-CAI) Lab	K.Srikanth/A.Swetha/T.Naresh	
Econ				-15 A.	Adsara	EC606PC	Langua	ges Lab		D.Nagaraju/K Bhaskas/G A-ith	
ECOUSE	<i>.</i> C	VLSID	-VLSI Design	K.5	rikanth	-	FAI-Fundamentals of		T.Divva		
EC013P	Ϋ́E	Design(Professional Elective	-ID M.S	Srilatha	COUN	Course	line			
VLSID		VLSID(ADJUNCT)	G.C	Chandra	SPORTS	Counseling		K.Srikanth/K.Mallaiah/M.Srilat		fallaiah/M.Srilatha
		M Indi	interial Man	S	ekhar	LIB	Library		1.1	T.Divya/M.Sril	atha
MT600O	DE (Open E	lective-I)	K.V.1	Vagamani	CU/DAA	Co-Cu	ricular/Dept.		Y.Raju/P.Rajer	ndra
		Class	Incharge		н	lead of The D	ASSOC.	Activities	m	G.Anusha/S.Na	uesh/G.Swathi

YS .

of The Department Department Head of the Department Department Head of the Communication Engg. Devi Head of the Communication Engg. TECH

Principal CIPAL Sn Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN

Programme: B.Tech	Academic Year: 2022-23
Year: III	Semester: II
Course Title: VLSI DESIGN	Course Code: EC603PC
Name of Faculty: K.SRIKANTH	

Unit-I Syllabus

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS. **Basic Electrical Properties:** Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, Figure of merit ωο; Pass -Transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	Introduction to VLSI	T1, R1	BB	
1	Introduction to IC Technology	T2, R2	BB	
1	MOS Transistor, Enhancement and Depletion Mode	T1, R3	BB	
1	MOS Fabrication Process	T1, R1	BB	
1	Fabrication Process: NMOS, PMOS	T2, R2	BB	
1	Fabrication Process: CMOS	T1, R3	BB	
1	Fabrication Process: BICMOS	T1, R1	BB	
1	Oxidation, Lithography, Diffusion	T1, R3	BB	
1	Ion implantation, Metallization, Encapsulation		BB	
1	Ids-Vds relationships	T1, R1	BB	
1	MOS transistor threshold Voltage, Latch up	T2, R2	BB	
1	gm, gds, figure of merit, Pass transistor,	T1, R3	BB	
1	NMOS Inverter	T1, W1	BB	
1	Various pull ups (2:1)	T2, W1	BB	
1	CMOS Inverter analysis and design	T1, R1	BB	
1	Bi-CMOS Inverters	T2, R2	BB	
Gap beyo	ond syllabus (if any):			
Gap with	in the syllabus (if any)			
Course Outcome 1: Identify the various Fabrication techniques of IC using various MOS circuits and be able to Solve the electrical properties associated with MOS circuits.				

(Knowledge – Evaluation)

*Session Duration: 50 minutes

Unit-II Syllabus

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	VLSI Design Flow	T1, R3	BB	
1	MOS Layers, Stick Diagrams	T1, R1	BB	
2	Stick Diagrams	T1, R1	BB	
1	Examples of Layout	T1, R1	BB	
2	Design Rules and Layout	T2, R2	BB	
1	Examples of Layout	T2, R2	BB	
1	2 nm CMOS Design rules for wires	T1, R3	BB	
1	Contacts and Transistors Layout Diagrams for NMOS	T2, w1	BB	
1	and CMOS Inverters and Gates			
1	Scaling of MOS circuits	T1, R1	BB	
Gap beyond syllabus (if any):				
Gap within the syllabus (if any)				
Course Outcome 1: Infer the steps involved in the VLSI design flow and apply the design				

rules of IC layout for designing stick, layout diagrams of various gates, adders.

(Comprehension – Synthesis)

*Session Duration: 50 minutes

*Total Number of Hours/Unit: 11

Unit-III Syllabus

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out, Choice of layers.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
2	Logic Gates	T2, R2	BB		
2	Different complex gates	T2, R2	BB		
1	Some Examples	T2, R2	BB		
1	Switch logic	T1, R3	BB		
1	Alternate gate circuits	T1, R1	BB		
1	Time Delays	T2, R2	BB		
1	Driving large Capacitive Loads, Wiring Capacitances,	T1, R3	BB		
1	Fan-in and fan-out, Choice of layers	T1, R1	BB		
Gap beyond syllabus (if any):					
Gap with	Gap within the syllabus (if any)				

Course Outcome 1: Apply Gate level design principles for the design of various logic gates and complex gates (Application - Synthesis)

COURSE OUTCOME 2: Contrast on the various techniques like Alternate gate circuits, Time delays, driving large capacitive loads and wiring capacitance (Analysis)

Unit-IV Syllabus

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity - generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
1	Subsystem Design, Shifters	T2, R2	BB	
1	Adders	T1, R3	BB	
1	ALUs	T1, R3	BB	
2	Multipliers, Parity generators	T1, R3	BB	
1	Comparators, Zero/One Detectors, Counters	T1, R3	BB	
1	Counters	T1, R3	BB	
1	Array Subsystems: SRAM, DRAM	T1, R1	BB	
1	ROM, Serial Access Memories	T2, R2	BB	
1	Content Addressable Memory	T1, R3	BB	
Gap beyond syllabus (if any):				
Gap within the syllabus (if any)				
Course Outcome 1: Construct various data path and array subsystems for complex logic circuits and memory devices (Synthesis)				

*Session Duration: 50minutes

*Total Number of Hours/Unit: 10

Unit-V Syllabus

Programmable Logic Devices: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

CMOS Testing: CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

No. of	Topics	Reference	Teaching	
Sessions			Method/ Aids	
Planned				
1	Design Approach	T2, R2	BB	
2	Standard Cells, Programmable Array Logic, PLA	T2, R2	BB	
2	FPGAs, CPLDs	T2	BB	
1	CMOS TESTING: CMOS Testing	T1	BB	
1	Need for testing	T2	BB	
1	Test Principles	T1, T2	BB	
1	Design Strategies for test	T2	BB	
1	Chip level Test Techniques	T1	BB	
Gap beyond syllabus (if any):				
Gap within the syllabus (if any)				
Course Outcome 1: Develop semiconductor IC design such as PLA's, PAL, FPGA, CPLDs				
and also assess the differential strategies for testing of IC's and CMOS.				

(Synthesis – Evaluation)

*Session Duration: 50minutes

Text Books	
Text-1.	Essentials of VLSI circuits and systems – Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHL2005 Edition.
Text-2.	Principles of CMOS VLSI Design - Weste and Eshraghian, Pearson Education, 1999.
Suggested /	Reference Books
Ref-1.	Modern VLSI Design - Wayne Wolf, Pearson Education, 3rd Edition, 1997.
Ref-2.	VLSI Technology – S.M. SZE, 2nd Edition, TMH, 2003.
Ref-3.	Digital Integrated Circuits - John M. Rabaey, PHI, EEE, 1997.

WEB REFERENCES

Web Sites	
W1	www.cmosedu.com
W2	https://nptel.ac.in/courses/117106092
W3	https://nptel.ac.in/courses/117101058
W4	https://archive.nptel.ac.in/courses/117/106/117106093/
W5	https://archive.nptel.ac.in/courses/117/106/117106149/
W6	https://archive.nptel.ac.in/courses/117/103/117103125/
W7	https://nptel.ac.in/courses/117106092

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/13P4AhyHcOdgJwPfccmrwKnBTJ8 KWaEIs/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1GcXeKIvvO74m5Tpfzr9Z60Oprc5S TSsI/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1LXskNSMy-Tj1C1zGbcp2UAqMeVuSLRCg/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1FNhuzxEe_RA2ys3hqjbfNRa1ewW ud0PR/view?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/1hjAJEvQpxiy9T8WrAB3Z2-IMG7IKAUbZ/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Power point presentation

PPT link 1:

https://docs.google.com/presentation/d/15Hgbe4sfN3A5zJvpsWZ1LXP9ZOiQ2Zh/edit?usp=sharing&ouid=1096 92577134569542336&rtpof=true&sd=true

PPT link 2:

https://docs.google.com/presentation/d/1HVFnL4qTAaCAWfE8xly wMXV6si2fK0iZ/edit?usp=sharing&ouid=109692577134569542336 &rtpof=true&sd=true

R13 Code No: 126EN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, December - 2017 **VLSI DESIGN**

(Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART – A

(25 Marks)

1.a)	What is pull up and pull down device?	[2]
b)	Why NMOS technology is preferred more than PMOS technology?	[3]
c)	What are the uses of Stick diagram?	[2]
d)	What is the fundamental goal in Device modeling?	[3]
e)	List out the sources of static and dynamic power consumption.	[2]
f)	Define Fan-in and Fan-out.	[3]
g)	Why is barrel shifter very useful in the designing of arithmetic circuits?	[2]
h)	Write the principle of any one fast multiplier.	[3]
i)	What is programmable logic array?	[2]
j)	What are feed-through cells? State their uses.	[3]

PART – B

(50 Marks)

2.a)	What is meant by latch up problem? How will you prevent.	
b)	Define threshold voltage? Drive the Vt equation for MOS transistor.	[5+5]
	OR	
3.a)	Explain with neat diagrams the various NMOS fabrication technology.	
b)	Draw and explain BiCMOS inverter circuit.	[5+5]
4.	Draw the circuit diagram, stick diagram and layout for CMOS inverter.	[10]
	OR	
5.a)	Explain about the various layout design rules.	
b)	Draw the static CMOS logic circuit for the following expression	
	i) $Y = (ABCD)'$	
	ii) $Y = [D(A+BC)]'$	[5+5]
6.a)	Explain different capacitances present in CMOS design.	
b)	Explain the concept of MOSFET as switches with suitable example.	[5+5]
	OR	
7.	Write short notes on:	
	a) Ratioed Circuits	
	b) Dynamic Circuits.	[5+5]

8.a)	Explain the operation of a basic 4 bit adder.	
b)	Explain the operation of booth multiplication with suitable example.	[5+5]
	OR	
9.a)	Design a 1:16 demultiplexer using 1:8 demultiplexers.	
b)	Draw the structure of a 4×4 static RAM and explain it's operation.	[5+5]
10.a)	Discuss any two types of programming technology used in FPGA design.	
b)	Explain ATPG fault models.	[5+5]
	OR	
11.a)	What is programmable devices? How it differs from ROM?	
b)	Explain fault models of VLSI Design.	[5+5]

---00000----

R15 Code No: 126VN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech III Year II Semester Examinations, December - 2018 VLSI DESIGN (Common to ECE, ETM) **Fime: 3 hours** Max. Marks: 75 Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PARTA (25 Marks) Write about the Pass transistor. 1.a) [2] b) Distinguish between Enhancement and Depletion mode transistor action in N-MOS. [3] Write about contacts and vias in layout design. c) [2] Write about the 1.2 µm double metal single poly CMOS rules. d) [3] Mention the different forms of Time delays in gate level circuits. e) [2] f) Explain about Switch logic and its usage. [3] g) Distinguish a synchronous and an asynchronous counters. [2] h) Write a note on Content Addressable Memory. [3] i) What is the need for testing of IC? [2] j) What are the different chip-level Test Techniques? [3] PART - B (50 Marks) Explain the CMOS fabrication process in p-well using suitable diagrams. 2.a) b) Discuss the effect of threshold voltage on MOSFET current Equations. [5+5] OR Discuss the MOS transistor Characteristics in Depletion and enhancement modes. 3.a) b) Write about Alternative forms of pull-up and describe about the NMOS pull-ups. [5+5] Write about the stick diagrams and design a stick diagram for two input N-MOS 4. NAND and NOR gates. [10] OR 5.a) Distinguish between the Lambda-base rules and Double metal MOS process rules. b) Draw the neat layout diagrams for NMOS shift register cell. [5+5] Explain the formal estimation of CMOS inverter delay rise-time estimation and Fall-6.a) time estimation. b) Write a note on the Wiring capacitance in detail. [5+5] OR 7.a) Write about the different Alternate gate circuits in detail. b) Discuss about the Choice of layers for the gate level design. [5+5]

Explain the working principle of Ripple carry adder using Transmission Gates. 8.a) Explain about the configurations and applications of SRAM and DRAM cells. [5+5] b) OR Explain the Principle and structure of Serial-Parallel multiplier. Describe the design procedure for design of a asynchronous counter. 9.a) b) [5+5] 10.a) Design a PAL to realize a full Adder circuit. [5+5] Explain the detailed Architecture of CPLD and its Implementations. b) OR Write a short note on the following: 11. a) CMOS Testing [5+5] b) Strategies for testing. ----00000----

Sheriguda (V), Ibrahimpatnam (M), R.R. Dist-501 510

I - Mid Examinations, MAY -2023

Year &Branch: III ECE A, B&C	,	Date: 10-05-2023 (FN)
Subject: VLSID	Max.Marks: 10	Time:60 mins

Answer any **TWO** Questions. All Question Carry Equal Marks 2*5=10 marks

1	With neat diagrams explain the n-well fabrication process	5	(C323.1)	(Comprehension)
	steps			
2	Derive the I_{ds} vs V_{ds} relation of MOS in non-saturation and	5	(C323.1)	(Evaluation)
	saturation region.			
3	Explain clearly about Dynamic CMOS logic with Example.	5	(C323.3)	(Comprehension)
4	Draw the circuit diagram and corresponding stick diagram of	5	(C323.2)	(Application)
	CMOS inverter.			

Sheriguda (V), Ibrahimpatnam (M), R.R. Dist-501 510

II - Mid Examinations, June -2023

Year & Branch: III ECE A, B&C		Date: 28-06-2023(FN)
Subject: VLSID	Max.Marks: 10	Time:60 mins

Answer any **TWO** Questions. All Question Carry Equal Marks 2*5=10 marks

1	Write about the different alternate gate circuits in detail	5	C323.4	KNOWLEDGE
2	Describe the design procedure of Synchronous / Asynchronous Counter	5	C323.5	KNOWLEDGE
3	Explain the architecture of FPGA in detail	5	C323.6	COMPREHENSION
4	Explain the principle of PLA and realize any combinational or sequential logic circuit using PLA.	5	C323.6	COMPREHENSION

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B. Tech III Year II Sem I Mid – Term Examination, May-2023

VLSI Design

DATE:10-05-2023 (FN)		(Obje TIME	ective Exam) : 20 Min		MAX.MA	RKS: 10	
NAME	2:		ROLL NO	:	MARKS		
I. Cho	oose The Co	orrect Alter	native:				
1.	VLSI techno	ology uses	to form	integrated circuit.		[]
	a) transistors	b) switches	c) diodes	d) buffers			
2.	nMOS device a) p-type sub b) n-type sub c) p-type sub d) n-type sub	es are formed i strate of high c strate of low d strate of moder strate of high c	n loping level oping level rate doping lev loping level	el		[]
3.	The Zpu/Zpd	ratio of an inv	erter driven di	rectly from the output	of another is	[]
	a) ≥8/1	b) ≤8/1	c) 4/1	d) ≤4/1			
4.	What is the c	ondition for no	on saturated reg	gion?		[]
	a) Vds = Vgs	– Vt b) Vgs	lesser than Vt	c) Vds lesser than Vg	gs – Vt d) Vds gre	ater than V	/gs-Vt
5.	In NMOS dea	sign style impl	ant is in	colour		[]
	a) Brown	b) Black	c) Bl	ue d) Yellow			
6.	is used to	separate N-ty	pe and P-type t	ransistors		[]
	a) Demarcati	on line b) sep	paration line	c) both a & b d) l	None of above		
7.	In MOS trans	sistors	is u	sed for their gate.		[]
	a) metal	b) silicon-di-	oxide c) po	lysilicon d) gallium			
8.	Which has hi	gh input resist	ance?			[]
	a) nMOS	b) CMOS	c) pMOS	d) BiCMOS			
9.	Ids can be give	ven by				[]
	a) Qc x Ţ	b) Qc / Ţ	c) Ţ / Qc	d) Qc / 2Ţ			
10.	Transit time	can be given by	У			[]
	a) L / v	b) v / L	c) v x L	d) v x d			

II. Fill in The Blanks:

- 11. Velocity can be given as _____
- 12. Eds is given by _____

13. For depletion mode transistor, gate should be connected to _____

14. In nMOS inverter configuration depletion mode N type device is used in _____

15. What is the ratio of Zp.u/Zp.d------

16. Pass transistors are transistors used as _____

17. Which colour is used for n-diffusion ------

18. Which colour is used for Demarcation line-----

- 19. Total gate capacitance Cg=_____
- 20. Figure of merit W_O = -----

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B.Tech III Year II Sem II Mid – Term Examination, June-2023

VLSI Design (Objective Exam)DATE: /06/2023TIME: 20 MinMAX.MARI					
NAME :		ROLL NO:		S:	
I. Choose The C	orrect Alternati	ve:			
1) Which are the fo	llowing memories r	equire fuses for a standa	ard CMOS process	[]	
a. EPROM	b.EEPROM	c. PROM	d. Flash		
2 Decoder in simpl	lest form consist of			[]	
a. NOR Gates	b. OR Gates	c. AND Gates	d. Inverter		
 The heart of ALU a. Silicon 	is b.Adder	c. Control bus	d. I/O port	[]	
4) Is defines a	s number of inputs to t	he gate	-	[]	
a. Fan-In	b. Fan-out	c. Inverter dalay	d.None		
5) For a poly silico	n layer ,the value of	R and C are		[]	

a. Low, Low b. High, moderate c. High, Low d. Low, High
6) 6-Transister SRAM cell uses ____ number of word lines []
a. 1 b.2 c.0 d. 3

7) The logic cells in FPGA Contains

a. only combinational circuitsb. Only sequential circuitsc. Both aand bd. Only Flip-Flop circuits

8) The number of product terms in PAL depends on []
a. Number of AND gates b. Number of OR gates c. Number of addition of both AND& OR
d. Number of independent gates

[]

9) Logic gates are placed in Rows of standard cells of []
a. Equal height b. Equal width c. Varaible height d.constant width
10) VHDL. Verilog description languages are used for testing of []
a. Manufacturing test b. Functionality test c. Design test d.None

II. Fill In The Blanks:

- 1. There are ______types of super buffer.
- 2.Total wire capacitance, Cw= _____.

3.In order to avoid significant delay problems due to asymmetry of conventional

inverters _____ are used .

4. Dynamic RAM's store their content as_____ on a capacitor.

5. The standard cell for a N-Bit parity generator is _____.

6. The level of any particular design can be measured by _____.

7. Large memories are partitioned in to multiple smaller memory arrays known as ______.

8. The general arrangements of PLA is ______ structure.

- 9. On chip Testing is obtained by ______.
- 10. CPLD devices are used for design modification, because these are _____.

Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 B-Tech I - Mid Examinations, MAY-2023

ch I - Miu Examinations, MAY-2

<u>Objective Type Exam</u>

Year &Branch: III – ECE-A, B&C Subject: VLSI Design Max. Marks: 10 Date: 10-05-2023 (FN) Time: 20 mins

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1nasxoFU_9ld29aDSeNcomlSqiQ-YrSX0/view?usp=sharing

Objective/Quiz Key Paper

I. Choose the correct alternative:

- 1) a) transistors
- 2) c) p-type substrate of moderate doping level
- 3) c) 4/1
- 4) c) Vds lesser than Vgs Vt
- 5) d) Yellow
- 6) a) Demarcation line
- 7) c) polysilicon
- 8) b) CMOS
- 9) b) Qc / T
- 10) a) L / v

Fill in the blanks:

1) µEds

2) Vds / L

3) Source

- 4) Pull up
- 5) 4/1
- 6) Switches or Logic functions
- 7) Green
- 8) brown
- 9) $C_g = CoWL$

10) $W_{0} = g_m/c_g$

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B.Tech III Year II Sem II Mid – Term Examination, JUNE-2023

<u>VLSI Design</u>

DATE: 28-06-2023(FN)

TIME: 20 Min

MAX.MARKS: 10

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/1iVp7Mm2yYZscxDeFyIHNHuxbeXaFpmzw/view?usp=sharing

Objective/Quiz Key Paper

I. Choose The Correct Alternative:

- 1) c. PROM
- 2 c. AND Gates
- 3) c. Control bus
- 4) a. Fan-In
- 5) b. High, moderate
- 6) a. 1
- 7) b.Only sequential circuits
- 8) a. Number of AND gates
- 9) a. Equal height
- 10) a. Manufacturing test

II. Fill In The Blanks:

1.(2)

2. (Carea+Cf)

3.(super buffer)

4. (Charge)

5. (1 Bit cell)

- 6. (Regularity)
- 7. (Banks or Sub Arrays)
- 8. (AND /OR)
- 9. Self test circuitry)
- 10. (Reprogrammable)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

	ASSIGNMENT- 1	<u>SUBJECT</u>	: VLSI DESIGN
1	With neat diagrams explain the n-well fabrication process	(C323.1)	(Comprehension)
	steps		
2	Derive the $I_{ds} \mbox{ vs } V_{ds}$ relation of MOS in non-saturation and	(C323.1)	(Evaluation)
	saturation region.		
3	Explain clearly about Dynamic CMOS logic with Example.	(C323.3)	(Comprehension)
4	Draw the circuit diagram and corresponding stick diagram of	(C323.2)	(Application)
	CMOS inverter.		
5	With neat diagrams explain the NMOS Fabrication process	(C323.1)	(Comprehension)
	steps.	× ,	
6	Draw the circuit diagram and corresponding Layout of	(C323.2)	(Application)
	NMOS inverter.		
7	Explain clearly about pseudo NMOS logic with Example.	(C323.3)	(Comprehension)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

VLSI DESIGN ASSIGNMENT –II

1.	Write about the different alternate gate circuits in detail	C323.4	KNOWLEDGE
2.	Describe the design procedure of Synchronous / Asynchronous Counter	C323.5	KNOWLEDGE
3.	Explain the architecture of FPGA in detail	C323.6	COMPREHENSION
4.	Explain the principle of PLA and realize any combinational or sequential logic circuit using PLA.	C323.6	COMPREHENSION
5.	Explain about the configurations and applications of SRAM and DRAM Cells	C323.6	COMPREHENSION

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

TUTORIAL TOPICS

SUBJECT: VLSI DESIGN

S.NO	Unit	ΤΟΡΙϹ	Number of Sessions Planned	Teaching method/Aids
1.	1	Discussion on MOSFET Concept?	1	BB
2.		Discussion on TWIN TUB Process?	1	BB
3.		Discussion on pull ups (4:1)?	1	BB
4.	2	Bi-CMOS inverter Stick Diagram?	1	BB
5.		Layout Diagram for 3 input NAND gate?	1	BB
6.	3	Gate level design of 3 input CMOS NOR gate?	1	BB
7.		Clocked CMOS logic with example	1	BB
8.	4	Concept on parity generators?	1	BB
9.		Design of DRAM?	1	BB
10.	5	Discussion on CPLD Concept?	1	BB
11.		Chip level techniques?	1	BB

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title	VLSI DESIGN
Course Code	EC603PC
Programme	B.Tech
Year & Semester	III year II-semester, B sec
Regulation	R18
Course Faculty	K. SRIKANTH, Assistant Professor, ECE

Slow learners:

Slow Learners (From III-I Result Analysis having >=3 backlogs) : Total 22 slow learners are identified. Remedial classes are held for improvement of slow learners

S No	Roll no	No of backlogs	Internal-I Status	Internal-II Status
1	20X31A0465	5	14	14
2	20X31A0471	4	23	21
3	20X31A0474	5	21	20
4	20X31A0477	5	21	16
5	20X31A0479	4	20	16
6	20X31A0481	3	21	18
7	20X31A0484	5	17	16
8	20X31A0485	3	14	14
9	20X31A0491	5	18	14
10	20X31A0495	4	18	14
11	20X31A0497	5	16	20
12	20X31A0498	3	21	22
13	20X31A0499	3	18	19
14	20X31A04A5	3	15	16
15	20X31A04A6	5	21	16
16	20X31A04A7	4	19	16
17	20X31A04A8	4	19	17
18	20X31A04B4	4	14	18
19	20X31A04B5	5	15	14
20	20X31A04B6	5	20	18
21	20X31A04C2	5	19	14

22	20X31A04C4	8	15	14

Advanced learners:

S.NO	ROLL.NO.	Assigned work
1	20X31A0463	
2	20X31A0464	
3	20X31A0468	
4	20X31A0469	
5	20X31A0472	
6	20X31A0473	
7	20X31A0475	
8	20X31A0478	
9	20X31A0480	
10	20X31A0482	
11	20X31A0486	
12	20X31A0489	
13	20X31A0492	Advanced Concepts material
14	20X31A0496	learners, Subject seminars are
15	20X31A04A0	presented by advanced learners in the class and
16	20X31A04A1	Advanced learners are
17	20X31A04A2	learners.
18	20X31A04A3	
19	20X31A04A4	
20	20X31A04A9	
21	20X31A04B1	
22	20X31A04B2	
23	20X31A04B3	
24	20X31A04B8	
25	20X31A04B9	
26	20X31A04C0	
27	20X31A04C3	
28	20X31A04C6	

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

BATCH ECE-III BTECH II SEM ECE-B RESULT ANALYSIS

ACADAMIC	COURSE	NUMBE STUDE	CR OF	QUESTIO SETI		
YEAR	NAME	APPEARED	PASSED	INTERNAL	EXTERNAL	PASS%
2022-23	VLSI DESIGN	61	42	COURSE FACULTY	JNTUH	68.85

CONTROL SYSTEM (C323) RESULT ANALYSIS

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510

Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-II

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM- 5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EMF&W	LTNM	A&DC	LICA	ECA
II ECE-B	LICA	A&DC	EMF&W	ECA	LTNM
III ECE-A	DSP	VLSID	A&P	ESD	IM
III ECE-B	A&P	ESD	DSP	IM	VLSID
III ECE-C	IM	A&P	ESD	VLSID	DSP
IV ECE-A	WSN	ML	LPVLSID	-	-
IV ECE-B	ML	LPVLSID	WSN	-	-
IV ECE-C	LPVLSID	WSN	ML	-	-

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpalham(M), R.R.Dist-501 514

PRINCIPAL Sin Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam

R R Dist Telangana -501 510

Scanned by CamScanner

20X31A04B1

20X31A04B2

20X31A04B3

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Electronics and Communication Engineering

Nam	ne of the faculty ·	KONG	ARISR	IKANT	TH	Inter		mic Ye	ar.	2022-	23	
Dror	where Socion:	ECE	D				Evomi	notion.		Lintor		
Com		ECE -	D				Exam V	1111011.		T IIItel	11a1	п
Cou	rse Name:	VLSID	ESIGN				Y ear:	111		Semes	ster:	11
S.No	HT No	019	Olb	029	O2h	039	O3h	049	O4h	Ohi1	A 1	٦
Max	Marks>	5	210	~=« 5	~-~	- 2 04	200	- <u>-</u> -	210	10	5	-
Max	. Marks>	5		3		5		5		10	5	_
1	20X31A0463			-		5		4		10	5	_
2	20X31A0464			5				4		10	5	_
3	20X31A0465			5				2		4	5	_
4	20X31A0400	-		4		4		5		10		-
5	20/21/0467	-		4		4		2		°	5	-
0	2072170400	+		3	ł – –	-	-	3		9	5	_
0	20/31/0409	1		4	ł – –	-	-	4		9	5	_
0	20/31/04/0	4						3		10	5	-
9	20/31/0471	4		5		5		4		10	5	-
10	20X31A0472	-		5		5		F		10		-
12	20/31/0473	-		3				2		10	5	-
12	20/31/0474	4		4				2		10	5	-
13	20/21/04/2	4		3	<u> </u>	-	-			01	5	_
14	20/31/0477	4		4				F		0	5	-
15	20X31A0476	5		2		4		5		10		-
10	20X31A0479	-		5		4		F		8	5	_
1/	20X31A0480	5		4				5		10	5	_
10	2072170401	4		4		4		4		8	5	_
19	20/21/0402	4		1		4		4		10	5	-
20	20/21/0402	4		-	<u> </u>	-	-			/	5	_
21	20/21/0404	2								°	5	-
22	20/31/0485	4				2				9		-
23	2072170490	4				5		4		9	5	_
24	2072170409	5		2	<u> </u>	-	-	4		10	5	_
25	20/31/0490	2		2	ł – –	-	-			9	5	_
20	20/31/0491	2		5		E				9 10	5	-
27	20X31A0492			5		J 1				10	5	-
20	20/31/0493	1		5		4		4		9	5	-
29	20X31A0494	4						-		9	5	-
31	20X31A0/96	5						3		10	5	-
32	20X31A0490	5		4				5		7	5	-
32	20/31/0497			5		2				, 9	5	-
34	20X31A0498			5		2		4		9	5	-
35	20X31A0455			4	1			4		10	5	-
36	20X3140441	3		4	1					9	5	-
37	20X31A04A2			4	1	5				9	5	-
32	20/31/04/2	5			<u> </u>		<u> </u>	5		10	5	-
20	20X31A04A4	5		5	<u> </u>			5		10	5	-
<u>40</u>	20/31/04/4							5		10	5	-
<u>⊿1</u>	20/31/04/04	Л				4				8	5	-
42	20/31/04/04	4		3	<u> </u>	3				8	5	-
42	20X31A04A8	2		2	<u> </u>					9	5	-
44	20X31A04A9			3	1		1	3		10	5	1
45	20X31A04B0	4		Ť	1		1	-		5	5	1
			1		1	1	1		1		-	1

Course Outcome Attainment (Internal Examination-1)

49 20X31A04B4	5								4	5
50 20X31A04B5									10	5
51 20X31A04B6	5						5		10	5
52 20X31A04B7					2		5		8	5
53 20X31A04B8			5				5		10	5
54 20X31A04B9			3				2		9	5
55 20X31A04C0	5						3		10	5
56 20X31A04C1			4				4		10	5
57 20X31A04C2			4						10	5
58 20X31A04C3	3				2				10	5
59 20X31A04C4			2						8	5
60 20X31A04C5	5								4	5
61 20X31A04C6			5		2				10	5
Farget set by the faculty	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
HoD	3.00	0.00	5.00	0.00	5.00	0.00	3.00	0.00	0.00	5.00
Number of students										
performed above the	23	0	30	0	11	0	26	0	56	61
arget							ļ			
Number of students	25	0	35	0	16	0	28	0	61	61
ittempted		Ű		Ŭ		Ŭ		Ŭ		
Percentage of students	92%		86%		69%		93%		92%	100%
scored more than target										
CO <u>Mapping with Exan</u>	n Questio	ons:								
CO - 1	Y		Y						Y	Y
CO - 2							Y		Y	Y
CO - 3					Y				Y	Y
CO - 4					-				-	-
CO - 5										
CO - 6										
Ĺ	1	1	1		1		1	г г	1	
% Students Scored										
>Target %	92%		86%		69%		93%		92%	100%
CO Attainment based of	n Exam (Question	1 <u>s:</u>							
CO - 1	92%		86%						92%	100%
CO - 2							93%		92%	100%
CO - 3	1				69%				92%	100%
CO - 4					0770				12/0	10070
CO - 5										
CO - 6										
~~ ~	1	1	1		1	L	I	L	L	
0	Subi	obi	Ason	01/	erall	Ι	evel	T	Atta	inment L
<u>CO-1</u>	80%	92%	100%	0/	10/2	2	00	1	1	40%
CO 1	020/	020/	10070		:0/2	2	00	ł	2	
LU-2	93%	92%	100%	95	/0	3	.00	┦	2	50%
CO-3	69%	92%	100%	87	%	3	.00	ļ	3	60%
CO-4								l		
CO-5										
			1					t		

 CO-6
 Attainment (Internal 1 Examination) = 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the faculty :	KONGARI SRIKANTH	Academic Year:	2022-23	
Branch & Section:	ECE - B	Examination:	II Internal	
Course Name:	VLSI DESIGN	Year: III	Semester:	II

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj2	A2
Max	. Marks ==>	5		5		5		5		10	5
1	20X31A0463					5		5		9	5
2	20X31A0464					5		5		9	5
3	20X31A0465	5								4	5
4	20X31A0466	4		3						9	5
5	20X31A0467					3				9	5
6	20X31A0468	5		4						9	5
7	20X31A0469					4		5		9	5
8	20X31A0470					4		3		9	5
9	20X31A0471	4				3				9	5
10	20X31A0472					5		5		9	5
11	20X31A0473			5		5				9	5
12	20X31A0474			3		3				9	5
13	20X31A0475			5		5				9	5
14	20X31A0477			3						8	5
15	20X31A0478					5		5		9	5
16	20X31A0479	2								9	5
17	20X31A0480					5		5		9	5
18	20X31A0481							4		9	5
19	20X31A0482					5		5		8	5
20	20X31A0483					5		3		8	5
21	20X31A0484							2	1	9	5
22	20X31A0485			5						4	5
23	20X31A0486	4		4					1	9	5
24	20X31A0489			5		5			1		5
25	20X31A0490	4		3					1	9	5
26	20X31A0491					5				6	5
27	20X31A0492					5		5	1	9	5
28	20X31A0493	3				5				9	5
29	20X31A0494	3		5						7	5
30	20X31A0495					5				4	5
31	20X31A0496					5		4		7	5
32	20X31A0497	3		3						9	5
33	20X31A0498	4				4			1	9	5
34	20X31A0499	3		3						8	5
35	20X31A04A0	4						4		9	5
36	20X31A04A1	5								4	5
37	20X31A04A2			5				5		9	5
38	20X31A04A3					5		5		8	5
39	20X31A04A4					5		5		9	5
40	20X31A04A5	1								10	5
41	20X31A04A6	1						3		7	5
42	20X31A04A7	3							1	8	5
43	20X31A04A8	2		2					1	8	5
44	20X31A04A9					5		4	1	8	5
45	20X31A04B0	3						2		9	5

46	20X31A04B1	4		4						9	5
47	20X31A04B2					5		5		9	5
48	20X31A04B3			3		3				9	5
49	20X31A04B4			4						9	5
50	20X31A04B5										5
51	20X31A04B6					4				9	5
52	20X31A04B7	3				4				9	5
53	20X31A04B8	5						5		9	5
54	20X31A04B9	4				4				8	5
55	20X31A04C0	4				5				9	5
56	20X31A04C1	3						5		9	5
57	20X31A04C2					5				6	5
58	20X31A04C3					4				7	5
59	20X31A04C4							5		6	5
60	20X31A04C5			4		2				7	5
61	20X31A04C6	2						5		9	5
Targ / Hol	et set by the faculty D	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Num	ber of students										
perfc	ormed above the	21	0	18	0	32	0	23	0	55	61
Num	ber of students										
atten	npted	26	0	19	0	33	0	25	0	59	61
Perce	entage of students ed more than target	81%		95%		97%		92%		93%	100%

CO Mapping with Exam Questions:

CO - 1						
CO - 2						
CO - 3					Y	Y
CO - 4	Y				Y	Y
CO - 5		Y			Y	Y
CO - 6			Y	Y	Y	Y

CO Attainment based on Exam Questions:

CO - 1						
CO - 2						
CO - 3					93%	100%
CO - 4	81%				93%	100%
CO - 5		95%			93%	100%
CO - 6			97%	92%	93%	100%

со	Subj	obj	Asgn	Overall	Level
CO-1					
CO-2					
CO-3		93%	100%	97%	3.00
CO-4	81%	93%	100%	91%	3.00
CO-5	95%	93%	100%	96%	3.00
CO-6	94%	93%	100%	96%	3.00

Attainment Level									
1	40%								
2	50%								
3	60%								

Attainment (Internal Examination-2) = 3.00

Department of Electronics and Communication Engineering <u>Course Outcome Attainment (University Examinations)</u>

Name	of the faculty :	I Academic Year:						
Branch	h & Section:	ECE - B		Year / Semester:				
Course	Name:	VLSI DESIGN						
S.No	Roll Number	Marks Secured		S.No	Rol			
1	20X31A0463	45		36	20X			
2	20X31A0464	48		37	20X			
3	20X31A0465	0	1	38	20X			
4	20X31A0466	37	1	39	20X			
5	20X31A0467	14	1	40	20X			
6	20X31A0468	42	1	41	20X			
7	20X31A0469	34		42	20X			
8	20X31A0470	27		43	20X			
9	20X31A0471	27		44	20X			
10	20X31A0472	37		45	20X			
11	20X31A0473	51		46	20X			
12	20X31A0474	11	1	47	20X			
13	20X31A0475	27	1	48	20X			
14	20X31A0477	26	1	49	20X			
15	20X31A0478	34	1	50	20X			
16	20X31A0479	1	1	51	20X			
17	20X31A0480	32	1	52	20X			
18	20X31A0481	7	1	53	20X			
19	20X31A0482	28		54	20X			
20	20X31A0483	14	1	55	20X			
21	20X31A0484	0		56	20X			
22	20X31A0485	9		57	20X			
23	20X31A0486	15		58	20X			
24	20X31A0489	30	1	59	20X			
25	20X31A0490	16	1	60	20X			
26	20X31A0491	0		61	20X			
27	20X31A0492	33						
28	20X31A0493	15						
29	20X31A0494	30	1					
30	20X31A0495	26	1					
31	20X31A0496	26	1					
32	20X31A0497	14	1					
33	20X31A0498	26	1					
34	20X31A0499	26	1					
35	20X31A04A0	35	1					
Max M	arks	75						
Class A	verage mark	26		Attain				
Numbe	r of students per	formed above the target	42					
Numbe	r of successful st	udents	61					
Percent	age of students s	cored more than target	69%					
Attai	inment leve		3					

S.No	Roll Number	Marks Secured
36	20X31A04A1	30
37	20X31A04A2	40
38	20X31A04A3	46
39	20X31A04A4	58
40	20X31A04A5	27
41	20X31A04A6	0
42	20X31A04A7	7
43	20X31A04A8	8
44	20X31A04A9	40
45	20X31A04B0	30
46	20X31A04B1	29
47	20X31A04B2	37
48	20X31A04B3	26
49	20X31A04B4	26
50	20X31A04B5	0
51	20X31A04B6	27
52	20X31A04B7	32
53	20X31A04B8	50
54	20X31A04B9	26
55	20X31A04C0	48
56	20X31A04C1	36
57	20X31A04C2	0
58	20X31A04C3	26
59	20X31A04C4	0
60	20X31A04C5	30
61	20X31A04C6	39
	-	-

2022-23 III / II

Attainment Level	% students
1	40%
2	50%
3	60%

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty	KONGAR	I SRIKANTH	-	Academic Year:	2022-23	
Branch & Section:	ECE - B			Examination:	I Internal	
Course Name:	VLSI DESI	GN		Year:	III	
				Semester:	II	
Course Outcomes	1st Internal 2nd Internal Exam		Internal Exam	University Exam	Attainment Level	
C01	3.00		3.00	3.00	3.00	
CO2	3.00		3.00	3.00	3.00	
CO3	3.00	3.00	3.00	3.00	3.00	
CO4		3.00	3.00	3.00	3.00	
CO5		3.00	3.00	3.00	3.00	
CO6		3.00	3.00	3.00	3.00	
Internal	& Universit	y Attainment:	3.00	3.00		
		Weightage	25%	75%		
D Attainment for the	course (Inte	ernal, Universi	0.75	2.25]	
CO Attainment for t	he course (D	Direct Method)		3.00		

Overall course attainment level3.00

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

Name of Faculty:KONGARI SBranch & Section:ECE - BCourse Name:VLSI DESIG

KONGARI SRIKANTH ECE - B VLSI DESIGN

Academic Year: 2022-23 Year: III Semester: II

CO-PO mapping

Course	3.00	2.83	2.83	2.83	2.00	-	-	2.00	1.00	1.00	1.00	2.00	3.00	1.80
CO6	3	3	3	3	2	-	-	2	1	1	1	2	3	2
CO5	3	3	3	3	2	-	-	-	1	1	1	2	3	2
CO4	3	2	2	2	-	-	-	-	1	1	1	2	3	1
CO3	3	3	3	3	2	-	-	-	1	1	1	2	3	2
CO2	3	3	3	3	2	-	-	-	1	1	1	2	3	2
CO1	3	3	3	3	-	-	-	-	1	1	1	2	3	-
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

со	Course Outcome Attainment
	3.00
CO1	
	3.00
CO2	
	3.00
соз	
	3.00
CO4	
	3.00
CO5	
CO6	3.00
Overall course attainment level	3.00

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
со														
Attainme														
nt	3.00	2.83	2.83	2.83	2.00			2.00	1.00	1.00	1.00	2.00	3.00	1.80

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTER

Assignment 1 script link:

https://drive.google.com/file/d/1qCjvB8XaHZAwq-BXCLCuhkACsWqWHanF/view?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/1gr6GyuFaflaE6vtrsXH2OJkI_x-3s_UW/view?usp=sharing

Attendance register link:

https://drive.google.com/file/d/1WV0Fl15kTfneFYi7dqCMcZ74eqjlLw3o/view ?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COURSE FILE (DIGITAL FORM)

Digital Form Link:

https://drive.google.com/file/d/1lA1iRtvuyhoDxZJjdEA3dYweozpx6Osm/view ?usp=sharing