

COURSE FILE

ON

BASIC ELECTRICAL ENGINEERING

Course Code – EE201ES

I B. Tech Semester-II A.Y. 2022-2023

> Prepared by M.P.REENA Asst. Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH Periouda[M] Ibrahimoatnam (M) R.R. Dist-501 51(

Sri Indu Institute of Engineering & Tech Sheriguda(VIII), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

EAMCET CODE: INDI

Sur

ESTD: 2007

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Programme outcomes
3	Course Syllabus with Structure
4	Course Outcomes (CO)
5	COs and POs Mapping and justification
6	Academic Calendar
7	Time table
8	Lesson plan
9	Web references & e-books
10	Lecture notes
11	PPTs
12	University Question papers
13	Internal Question papers, Key with CO and BT
14	Assignment Question papers mapped with CO and BT
15	Scheme of evaluation with CO and BT mapping
16	Result analysis
17	CO, PO attainment sheets.
18	Remedial class time table
19	Mid answer scripts ,assignments and class register

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- IM2: To Continuous assess of teaching-learning process through institute-industry collaboration.
- IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda(M lbrahimoatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

PROGRAMME OUTCOMES

PO1: ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: DESIGN / DEVELOPMENT OF SOLUTIONS: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: THE ENGINEER & SOCIETY: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: ENVIRONMENT & SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: ETHICS: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: INDIVIDUAL & TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: PROJECT MANAGEMENT & FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH veriouda(1/) Ibrahimpatnam (M) R.R. Dist-501 51(

(An Autonomous Institution under UGC)

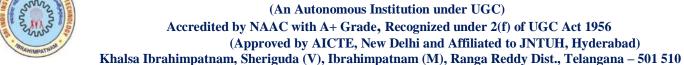
Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations) Applicable from Academic Year: 2022-23 Batch


I Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

(An Autonomous Institution under UGC)

Website: https://siiet.ac.in/

BASIC ELECTRICAL ENGINEERING (Course Code: EE201ES) (Common to ECE, CSE (AI&ML), CSE (IOT), AI&DS)

B.Tech. I Year I Sem.	
-----------------------	--

LTPC 2002

Prerequisites: Mathematics

Course Objectives:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and • Transformers.
- To import the knowledge of various electrical installations and the concept • of power, power factor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers
- Introduce components of Low Voltage Electrical Installations. •

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current KVL&KCL, analysis of simple circuits with dc excitation. sources. Superposition, Thevenin and Norton Theorems. Time-domain analysis of firstorder RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Threephase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

- D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

- 1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1stEdition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

COURSE OUTCOMES

Course Name: Basic Electrical Engineering (C124)

At the End of the course, student will be able to

CO No	DESCRIPTION
C124.1	Understanding basic concepts of electrical components, network analysis and transient analysis of DC circuits. (Understanding)
C124.2	Acknowledge of AC quantities, sinusoidal analysis of single phase and three phase circuits. (Understanding)
C124.3	Analysis of phasors for a single-phase transformer, recognize energy transfer in electromagnetic circuits, and calculate its efficiency (Analysis)
C124.4	Gains the knowledge about auto transformer and 3- transformer connections (Understanding)
C124.5	Study the working principles of Electrical Machines(Understanding)
C124.6	Application of different devices used in electrical installation (fuse, MCB, MCCB, ELCB, Earthing. etc) and power factor improvement. (Application)

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

Course outcome	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C124.1	3	2	1	2	1	1	-	-	-	-	-	-	-	-
C124.2	3	3	1	-	-		-	-	-	-	-	-	-	-
C124.3	3	2	-	-	-	1	1	-	-	-	-	2	-	-
C124.4	3	1	-	-	-	-	-	-	-	-	-	2	-	-
C124.5	3	1	-	-	-	-	-	-	-	-	-	2	-	-
C124.6	3	-	-	-	-	2	-	-	-	-	-	2	-	-
PO Average	3	2	1	2	1	1	1					2		

COs and POs Mapping

CO PO MAPPING AND JUSTIFICATION

COURSE NAME: Basic Electrical Engineering (C124)

C124.1: Understanding basic concepts of electrical components, network

analysis and transient analysis of DC circuits. (Understanding)

Mapped POs/PSOs: PO1, PO2, PO3, PO4, PO5, and PO6

PO	JUSTIFICATION/EXPLANATION
PO1	Gains knowledge on electrical engineering and network analysis
PO2	Reducing the complexity of the problems
PO3	Develop a solution by using mesh and nodal analysis
P04	Student can solve the complicated network problems to simple network problems.
PO5	Develop a solution to complex circuit by using network theorems.
P06	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues

C124.2: Acknowledge of AC quantities, sinusoidal analysis of single phase and three phase circuits. (Understanding)

Mapped POs/PSOs: PO1, PO2 and PO3.

РО	JUSTIFICATION/EXPLANATION
PO1	Gains knowledge about AC quantities
PO2	Analysing the phasor representation
PO3	Developing the AC circuits with single basic network elements

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

C124.3: Analysis of phasors for a single-phase transformer, recognize energy transfer in electromagnetic circuits, and calculate its efficiency (Analysis) Mapped POs/PSOs: PO1,PO2,PO6,PO7,PO12

PO	JUSTIFICATION/EXPLANATION
PO1	The device transformer is used to transfer electrical energy in electrical system
PO2	Gains knowledge on basic electrical circuits with which students can apply to real world electrical and electronics problems and applications
PO6	This device is used to reduce the wastage of power
PO7	It is lifelong usage with minimum loss
PO12	The device transformer placed in society for day to day usage

C124.4: Gains the knowledge about auto transformer and 3- transformer connections. (Understanding) Mapped POs: PO1 PO2 and PO12

	Mapped 105.101,102 and 1012.				
PO	JUSTIFICATION/EXPLANATION				
PO1	Gains the knowledge about regulation ,auto transformer and 3 phase transformer				
PO2	Phasor analysis is used in determination of regulation				
PO12	This devices has lifelong usage				

C124.5: Study the working principles of Electrical Machines. (Understanding) Mapped POs/PSOs: PO1, PO2 and PO12

PO	JUSTIFICATION/EXPLANATION
PO1	Gains the knowledge about electrical motors and generators
PO2	Determination of emf and torque with help of first principles of
	engineering sciences
PO12	This devices has lifelong usage

C124.6: Application of different devices used in electrical installation(fuse, MCB, MCCB, ELCB, Earthing.. etc) and power factor improvement. (Application) Mapped POs: PO1. PO6 and PO12

PO	JUSTIFICATION/EXPLANATION					
PO1	Gains knowledge about basic installation of electrical systems and power factor improvement					
PO6	MCB, MCCB, ELCBs used for safety of electrical equipments.					
PO12	It is lifelong usage.					

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510

Website: https://siiet.ac.in/

Academic calendar

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR <u>I B.TECH FOR THE ACADEMIC YEAR 2022-23</u> (BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

To, All the HOD's

Sir.

Sub: SIIET (Autonomous)-Academic & Evaluation-Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for IB.Tech - I & II Semesters for the academic year 2022-23 is given below.

I-SEMESTER

		Per	iod	Duratio		
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)		03.11.2022			
2.	1 st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	16.03.2023				
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

II-SEMESTER

		Per	Duration			
S. NO	Description	From	То	Duration		
1.	Commencement of II Semester class work		03.04.2023			
2.	1 st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks		
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks		
3.	I Mid Examinations	`12.06.2023	17.06.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023				
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks		
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week		
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023				
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks		

ommencement of Class Work for II B. Tech I Semester - II

indu Institute of Engineering and Technology

Convertion Sri Indu Institute of Engineering and Technology (An Autonomous Institution under JNTUH) Sheriouda (V). Ibrahimpatnam, B.B. Dist-501510 PRINCIPAL

Sri Indu Institute o **PHARMEELATY SAE** Technology (An Autonomous Institution Under JNTUH) Sheriquda (V), Ibrahimpatnam, R.R. Dist-501510.

(An Autogophous Institution Under JN 101) (An Autogophous Institution under JN 101) Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

<u>Class</u> :	ass: ECE <u>Semester</u> : II <u>W.</u>			<u>C.F</u> -03-04-	2023		<u>LH</u> :-D-	-209		
	I 9:40- 10:30	II 10:30 - 11:20	III 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00		
MON	EC	BEE	ODE			EDC LAB		EC(T)/ODE(T)		
TUE	ODE	EC	EDC	L U	CAEG PRACTICE			LIBRARY		
WED		EC/BEE LA	В	N C	EDC	BEE	BEE(T)/EDC(T)			
THU	APPLIED PYTHON LAB			Н	ODE	BEE	EC	APPLIED PYTHON(T)		
FRI	ODE	EC	EDC		EC/BEE LAB			ODE(T)/EC(T)		
SAT	CAEG PRACTICE			1	EDC	BEE	BEE	EDC(T)/BEE(T)		

Course Code	Course Name	Name of the Fa	culty	Course Code	Course Name	Name of the Faculty		
MA201BS	ODE- Ordinary Differential Equations & Vector Calculus	T.THIRUPAT REDDY	ні	CH206BS	EC LAB- Engineering Chemistry Lab	O.SHUBHASHINI/K.MO UNIKA		
CH203BS	EC- Engineering Chemistry	O.SHUBHASHINI MVB.KALYAN		eering		EE202ES	BEE LAB- Basic Electrical Engineering	MP.REENA/G.BHARGA VI
ME201ES	CAEG- Computer Aided			CS202ES	APPLIED PYTHON Programming	B.RAJASHWARI/D.SWAPN A		
EE201ES	BEE-Basic Electrical Engineering	MP.REENA		EC202ES	EDC LAB- Electronic Devices & Circuits Laboratory	G.ANUSHA/P.RAJENDR A		
EC201ES	EDC- Electronic Devices & Circuits	G.ANUSHA						

Class In-Charge

ch. Sautha Time Table Coordinator

Sri **Head of The Department** Main Road, Sheriguda(V) Ibrahimpatnam(M), R.R. Dist. Telangana-501 510

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

LESSON PLAN

S.NO	Unit	TOPIC	Number of Sessions Planned	Teaching method/Aids	Reference
1		Introduction -Basic circuit components, Ohms law, Kirchhoff's law-	1	Black Board	T1
2		Kirchhoff's current law, Kirchhoff s voltage law and problems	1	Black Board	T1
3		Basic definitions, types of elements, Types of sources	1	Black Board	R1
4		RLC series and parallel, Problems on RLC series and parallel	1	Black Board	T1
5	I	Node analysis, problems on node analysis	1	Black Board	T2
6		Mesh analysis, problems on mesh analysis	1	Black Board	T1
7		Star-delta and delta-star transformation	1	Black Board	R1
8		network theorems: Superposition	1	Black Board	T1
9		Thevenin's and Norton's theorem	1	Black Board	T2
10		Simple problems on theorems	2	Black Board	T1
11		Time domain analysis of RL and RC circuits	2	Black Board	T1
12		Introduction Basic definitions, Principle of AC voltage and waveforms	1	Black Board ,PPT	T1
13		Average value, Root mean square value, Form factor and Peak factors of alternating currents and voltage	1	Black Board	R1
14	п	phasor representation of alternating quantities, J operator and phasor algebra	1	Black Board	T1
15		1-φ series circuit (RL,RC,RLC)	2	Black Board	T1
16		1-φ parallel circuit (RL,RC,RLC)	2	Black Board	T1,T2
17		series resonance in RLC circuit	2	Black Board	R1
18		three phase circuits	2	Black Board	T1

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

20		Principle& operation of transformer	1	Nptel video	W2,W4
21		Construction details of transformer	2	Nptel video	W2,W4
22		Ideal and Practical Transformer, Losses,	1	Black Board	T1
23	III	Efficiency of transformer, maximum efficiency condition, problems	2	Black Board	T2
24		Regulation of transformer, simple problems	2	Black Board	T1
25		auto transformer and 3 phase transformer connections	2	Black Board	T1
26		Introduction to electrical machines, Generation of rotating magnetic fields	1	Black Board	T1
27		Construction and working of a three-phase induction motor	2	PPT,Black board	R1
28		Significance of torque-slip characteristic.	2	Black board	T1
29		Loss components and efficiency	1	Black board	T1,W3
30		slip and torque characteristics	2	Black board	T1
31	IV	starting and speed control of induction motor	2	Black board	T2
32		Single-phase induction motor	1	Black board	T1
33		Construction of separately excited dc motor	1	Black board	T1
34		working & torque-speed characteristic of separately excited dc motor	2	Black board	R1
35		speed control of separately excited dc motor	1	Black board	T2
36		Construction and working of synchronous generators.	2	Black board	T1
37		Electrical Installation: : switch fuse unit MCB,ELCB,MCCB	2	Black Board	T1
38		Types of wires, cables, Earthling.	2	Black Board	T1
39	V	Types of Batteries, important characteristics for batteries	2	Black Board	T1
40		Elementary calculations for energy consumption	2	Black Board	T1
41		Power factor improvement and battery backup.	2	Black Board	R1

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

TEXT BOOKS:

- D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

- P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic ElectricalEngineering", 2nd Edition, McGraw Hill, 2021.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Website: https://siiet.ac.in/

WEB REFERENCES & E-BOOKS :

- 1 https://archive.nptel.ac.in/courses/108/104/108104139/
- 2 https://archive.nptel.ac.in/courses/108/102/108102146/
- 3 <u>https://archive.nptel.ac.in/courses/108/105/108105053/</u>
- 4 https://archive.nptel.ac.in/courses/108/108/108108076/
- 5 https://ocw.mit.edu/courses/6-002-circuits-and-
- electronics-spring-2007/resources/lecture-22/
- 6 <u>https://www.electrical4u.com/</u>
- 7 https://ocw.mit.edu/courses/6-01sc-introduction-toelectrical-engineering-and-computer-science-i-spring-
- 2011/pages/unit-3-circuits/circuits/
- 8 <u>https://www.youtube.com/watch?v=mq2zjmS8UMI</u>
- 9 <u>https://nptel.ac.in/courses/108105112</u>
- 10 https://archive.nptel.ac.in/courses/108/105/108105112/
- 11 https://youtu.be/hRYEJNJNYsg?si=EaevkijP9karBbm7
- 12 <u>https://youtu.be/YBJLaEqIjOI?si=wfQAW6pwmOHec6k2</u>
- 13 <u>https://youtu.be/c76CnTH8_y4?si=UtHhUNzWxxnHR-Y3</u>

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link: <u>https://drive.google.com/file/d/10F6Ik2zVV7BST8h35eEbd</u> <u>LKBbYtmSvX1/view?usp=sharing</u>

Unit 2 link:

https://drive.google.com/file/d/1PsvygXzVh9nMU1ul8Cscxd cLB5ex9tKS/view?usp=sharing

Unit 3 link: <u>https://drive.google.com/file/d/160-</u> <u>ukzS5_DdRY4_vquNX7qsgVxFBT2Oo/view?usp=sharing</u>

Unit 4 link: <u>https://drive.google.com/file/d/1BatVxO3gsXIuWEKjD--</u> <u>trkwsM9vckyw8/view?usp=sharing</u>

Unit 5 link: <u>https://drive.google.com/file/d/1A7v58LXuprWBhGZUiDprQ</u> <u>qbDiPKzAopU/view?usp=sharing</u>

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

List of PPTs

PPT-1 link:

https://docs.google.com/presentation/d/10GfSstdEMQk52YFcqnj-fSwnX-Ys81NFKrgnlw5J9ys/edit?usp=sharing

PPT-2 link:

https://docs.google.com/presentation/d/1rwcPYg_UCX179PliYVOu85pO5F34JR gw8VjsFziGoJM/edit?usp=sharing

Course Code: EE201ES

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous Institution and Affiliated to JNTUH, Hyderabad B.Tech I Year II Semester Examinations, August/ September -2023

BASIC ELECTRICAL ENGINEERING

(Common to ECE, CSE (AI&ML), CSE(IOT), AI&DS)

Time: 3 Hours

Max. Marks: 60 Marks

BR22

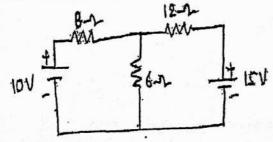
X3

Note: This question paper contains two parts A and B. i) Part- A for 10 marks, ii) Part - B for 50 marks.

- Part-A is a compulsory question which consists of ten questions from all units carrying equal marks.
- Part-B consists of **ten questions** (numbered from 11 to 20) **carrying 10 marks each**. From each unit, there are two questions and the student should answer one of them. Hence, the student should answer five questions from Part-B.

PART-A

10x1=10Marks


1. Find the equivalent resistance when two resistors $R1=100\Omega$ and $R2=150\Omega$ connected in series?

- 2. State Ohm's Law?
- 3. Define the peak value?
- 4. Define resonant frequency?
- 5. Define efficiency of a transformer?
- 6. Write the EMF equation of transformer.
- 7. What is back emf?
- 8. Define slip?
- 9. Mention the Components of LT Switchgear?
- 10. State differences between wire and cable?

PART-B

5x10=50 Marks

11) Find the value of the current across 6 ohm resistor.?

12) Explain KVL & KCL by considering with suitable Examples.

[10]

[10].

13) Explain the Analysis of single-phase ac circuits consisting of RL, RC and RLC combinations?

OR

14)	A resistance of 300 ohms and inductance of 0.26Henrys connected in series across a supply of 220V,50Hz. Determine i) Impedance ii) current iii) phase angle between current and voltage	ies
	 iii) phase angle between current and voltage iv) power factor v) active power 	[10]
15)	Explain in detail about the different losses occurred in a transformer?	[10]
	OR	[10]
16)	Discuss the various three phase transformer connections?	[10]
17)	Explain the constructional details of DC machine OR	[10]
18)	Explain the Construction and working of a three-phase induction motor.	[10]
19)	Explain MCB and MCCB with neat diagrams? OR	[10]
20)	What do you mean by power factor, explain its improvement methods?	[10]

Course Code: EE101ES

Time: 3 Hours

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous Institution and Affiliated to JNTUH, Hyderabad B.Tech I Year I Semester Examinations, August/ September -2023

BASIC ELECTRICAL ENGINEERING

(Common to CSE, CSE (CS), CSE (DS))

Max. Marks: 60

Note: This question paper contains two parts A and B.

i) Part- A for 10 marks, ii) Part - B for 50 marks.

- Part-A is a compulsory question which consists of ten questions from • all units carrying equal marks.
- Part-B consists of ten questions (numbered from 11 to 20) carrying 10 marks each. From each unit, there are two questions and the student should answer one of them. Hence, the student should answer five questions from Part-B.

PART-A

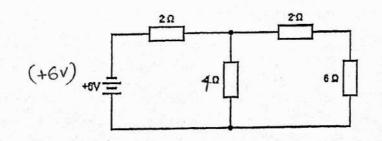
10x1=10 Marks

- 1. State Kirchhoff's Current law?
- 2. Discuss resistor with relevant V-I expression
- 3. Define Power factor?
- 4. Define the Peak and RMS values.
- 5. Define voltage regulation of the transformer?
- 6. Write down emf equation of transformer?

7. Define synchronous speed.

- 8. What are the different types of motors?
- 9. What is ELCB?
- 10. What are Different types of Batteries?

PART-B


5x10=50 Marks [10]

11. Explain Norton's theorem. With one example.

(OT)

[5+5]

12. a) Explain about different types of circuit elements. b) Calculate the Thevenin's equivalent resistance across load (6 ohms Resistance) for the network shown in below terminal

BR22

X3

13. A series RLC circuit has $R = 15 \Omega$, $L = 100 \text{mH} \& C = 29 \mu F$. Calculate [10]

i)the resonant frequency, ii)the Q factor, iii) Bandwidth of the circuit.

(or)

14	 A wound coil that has an inductance of 180mH and a resistance connected to a 100V, 50Hz supply. Calculate i) The impedance of the coil ii) The current iii) The power factor iv) The apparent power consumed v) the Real Power and Reactive Power consumed 	of 35Ω is [10]
	. Explain the principle and operation of single phase transformer? (or)	[10]
16	. a) Explain the operation of an auto transformer with a neat diagram. b) What are the advantages of 3-phase Transformers?	[5+5]
	Explain the constructional details of DC machine (or)	[10]
18.	 a) A 10-pole, 3-phase induction motor runs at a speed of 500 rpm supply. Determine i) synchronous speed and ii) slip. b) Explain the principle of operation of 3phase induction Motor. 	at 50 Hz [5+5]
19.	 a) Explain the operation of ELCB with its schematic diagram. b) Explain the operation of MCCB with its schematic diagram. (or) 	[5+5]
20.	What do you mean by Earthing? Explain its types	[10]

Course Code: EE101ES

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous Institution and Affiliated to JNTUH, Hyderabad

B .Tech I Year I Semester Regular Examinations, March-2023

BASIC ELECTRICAL ENGINEERING

(Common to CSE, CSE (CS), CSE (DS))

Time: 3 Hours

Max. Marks: 60

Note: This question paper contains two parts A and B. Part A is compulsory which carries10 marks. All Question Carry Equal Marks in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

10x1=10 Marks

BR22

XЗ

- 1. Define current and voltage
- State Kirchhoff's voltage law?
- 3. State Super position Theorem
- 4. What is meant by Reactive power?
- 5. Define transformer.
- 6. What is meant by equivalent resistance of single phase transformer referred to primary?
- 7. Define slip
- 8. What are the different types of generators?
- 9. List out the types of wires.
- 10. What are the different types of secondary Batteries?

PART-B

5x10=50 Marks

[10]

[10]

11. Explain superposition theorem with one example?

(or)

12. Explain in detail the volt-ampere relationship of R, L and C elements with neat [10] diagrams.

13. A coil having a resistance of 10ohms and an inductance of 0.2H is connected in series with 100 μ F capacitor across a230v,50hzsupply.find: [10] i)impedence

ii)current

- iii)Apprent Power, real power, reactive power.
- iv) power factor.

(or)

14. Define the following terms:

i) Frequency

- ii) Peak factor
- iii) Form factor
- iv) Peak value of an alternating quantity.
- v) RMS value of an alternating quantity.

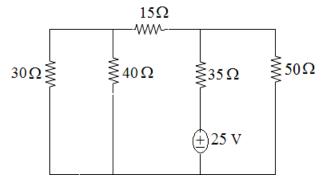
- 15. Explain single phase transformer on no load and full load conditions. (or) 16. a) Determine the condition for maximum efficiency in a single phase transformer. b) What is a transformer? How does it transfer electrical energy from one circuit [5+5] to another?
- 17. a) Derive the torque equation of a DC motor. b) Explain the constructional details of DC generator. [5+5] (or) [10]
- 18. Explain the working principle of synchronous generator.
- 19. a) What is the difference between MCB and MCCB, describe their schematic diagrams?
 - b) What are the drawbacks of low power factor, describe how it is improved? [5+5]

(or)

20. What are the types of batteries? Explain

--

[10]


· [10]

R18 Code No: 152AC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech I Year II Semester Examinations, June - 2022 BASIC ELECTRICAL ENGINEERING** (Common to ECE, EIE, ECM, CSBS, CSE(AI&ML), CSE(IOT)) Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks - - -

- Two resistances when they are in series have an equivalent resistance of 9 ohms and 1.a) when connected in parallel have an equivalent resistance of 2 ohms. Find the two resistances?
- State and explain Kirchhoff's laws using an example. b) [7+8]
- 2.a) State and explain Thevenin's theorem.
- Find the current 'i' in the circuit below shown in figure using Nortan's theorem. b) [7+8]

- 3.a) Explain about Series Resonance in a series RLC circuit and derive an expression for resonance frequency and quality factor.
 - Each phase of a balanced three phase delta connected load has an impedance of $(4-i3) \Omega$. b) If a 3-phase voltage of 220 V supply is applied to this load, find the line and phase currents in the delta-connected load and the power delivered to the load. [7+8]
- Define RMS value, Average value. Find Average value and RMS value of sinusoidal 4.a) wave.
 - A Resistor of 100 Ω in series with a capacitance of 50 μ F is connected to a supply of **b**) 200V, 50Hz. Find: (i) impedance (ii) current (iii) phase angle (iv) voltage across resistance and capacitance. [7+8]
- 5.a) What is voltage regulation of a transformer and develop an expression for calculating the voltage regulation in the transformer.
 - Calculate efficiency at half and full load of a 100 kVA transformer for power factor of b) (i) unity (ii) 0.8. The copper loss is 1000 W at full load and the iron loss is 1000 W. [8+7]
- 6.a) With neat constructional details, explain principle and operation of a synchronous generators.
 - b) A 3-phase delta connected 440 V, 3-phase 50 Hz, 4-pole induction motor has a rotor standstill e.m.f per phase of 150 V. If the motor is running at 1450 rpm, determine for this speed (i) the slip (ii) the frequency of rotor induced e.m.f (iii) the rotor induced e.m.f per phase. [8+7]

- 7.a) Briefly describe the construction and principal of operation of single-phase induction motor.
 - b) Describe briefly torque-slip characteristics of induction motor. Based on characteristics what are its applications? [8+7]
- 8.a) With the help of schematic diagram, explain the working principle of ELCB (Earth-Leakage Circuit Breaker). Discuss applications of ELCB.
 - b) Write short note on Switch Fuse Unit (SFU). [10+5]

--00000--

Code No: 151AG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, June - 2022 BASIC ELECTRICAL ENGINEERING (Common to EEE, CSE, IT, CSIT, ITE, CE(SE), CSE(CS), CSE(DS), CSE(Networks), CSED)

Time: 3 Hours

Answer any five questions All questions carry equal marks

Max. Marks: 75

- 1.a) Explain in detail the passive elements and active elements.
- b) By using Thevenin's theorem shown in figure 1, find the current in 6Ω resistor. [8+7]

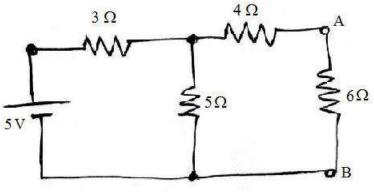


Figure 1

- 2.a) State Kirchhoff's voltage and current laws, Explain in detail.
 - b) By using superposition theorem, find the current flowing through 2 ohms resistor. (Figure 2) [8+7]

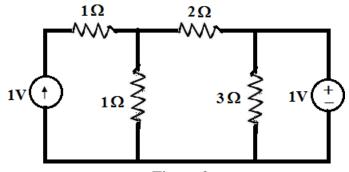


Figure 2

Explain the following terms of AC circuits

- (i) rms value(ii) average value(iii) peak value(iv) formfactor(v) phasor(vi) phase difference
- b) Analyze the series RL circuit with a neat sketch and also draw the phasor diagram. [8+7]
- 4.a) Derive the relation between phase voltage and line voltage of a balanced three phase star connected system.
 - b) A circuit consisting of three branches, Z₂ is in parallel with Z₃ the combination is in series with Z₁ having the values Z₁=5+j15, Z₂ =2.5+j5 and Z₃=2-j8 connected across single phase, 100 V, 50 Hz supply. Find i) I₁, I₂ and I₃ ii) V₁ and V₂. [8+7]

b)	Calculate i) The number of primary and secondary turns, and ii) The net cross-sectional area of core for a maximum flux density of 1.5 T? Explain the losses in a Transformer; also derive the maximum efficiency condition transformer.	on of a [8+7]
6.a) b)	Explain the significance of torque-slip and characteristics of 3-phase induction motor Why three phase induction motor not rotating at synchronous speed, explain.	or. [8+7]
7.a) b)	Explain the types of batteries and its important characteristics. Define earthing also explain the purpose of earthing.	[7+8]
8.a) b)	Explain the constructional details of synchronous generators. Why single phase induction motors are not self starting motors? Explain.	[7+8]

The emf per turn of a 1- ϕ , 2200/220 V, 50 Hz transformer is approximately 12V.

--00000--

Code No: 152AC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, September/October - 2021 BASIC ELECTRICAL ENGINEERING (Common to ECE, EIE, ECM, CSBS, CSE(AI&ML), CSE(IOT))

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Explain the V-I relation of circuit elements R, L and C.

Time: 3 Hours

b) Find the value of current I_1 , I_2 and I_3 from the circuit given below figure 1. [6+9]

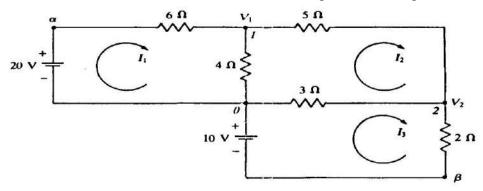
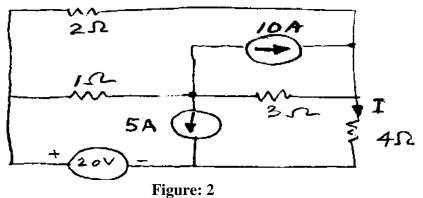



Figure: 1

- 2.a) Obtain an expression for transient current flowing through R-C series circuit excited by D.C source at $t = o^+$.
 - b) Find the current flowing through 4 ohm resistance shown in figure 2 below using superposition theorem. [7+8]

- 3.a) Obtain an expression for active power in a single phase R-L circuit excited by sinusoidal voltage.
 - b) Determine the power factor and the input power for a circuit with $v = 50 \sin (\omega t + 10^0)$ and $I = 2 \sin (\omega t + 20^0) A$. [8+7]
- 4.a) A coil with inductance and resistance of 1 mH and 2 Ω respectively, is connected in series with a capacitor and this whole arrangement is connected across 120 V, 5 kHz A.C supply. Determine the value of capacitance that will cause the system to be in resonance.
 - b) A star connected load has $5 \perp 30^{\circ} \Omega$ impedance per phase and is connected across 400 V three phase balanced source. Calculate the line current and the phase current. [8+7]

- 5.a) Give the applications of auto transformer.
 - b) Calculate the values of R₀, X₀, R₀₁ and X₀₁ for the equivalent circuit of a single phase, 4 KVA, 200/400 V, 50 Hz transformer of which the following are the test results:
 O.C. test: 200V, 0.7A, 70W
 S.C. test: 15V, 10A, 80W
- 6.a) State the advantages of 3-phase transformers.
- b) The iron and full load copper losses in a 80KVA single phase transformer are 500 and 1000W respectively. Calculate the efficiency at half full load, 0.8 p.f. lag. Find, also the load at which the efficiency is maximum?
- 7.a) Explain why the rotor is forced to rotate in the direction of rotating magnetic field in a 3 phase Induction motor?
- b) A 3 phase, 50 Hz induction motor has a full load speed of 970 rpm. Calculate (i) number of the poles (ii) slip frequency. [9+6]
- 8. What is the need for earthing? Explain different types of earthing. [15]

---00000----

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana - 501 510

I B.Tech II SEM I - Mid Examinations, June-2023

Set – II

Marks: 20

Branch: ECE, CSE (AI&ML), CSE (IOT) & AI&DS

Subject: Basic Electrical Engineering

Answer any FOUR Questions. All Question Carry Equal Marks

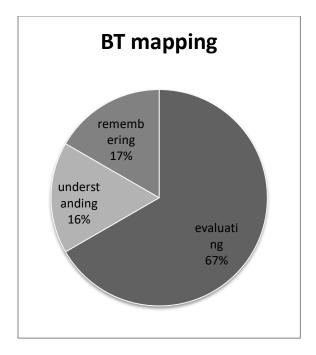
1. In the circuit shown in below, Determine the current flowing through 5 ohms using Thevenin's theorem C124.1 Evaluating (L5)

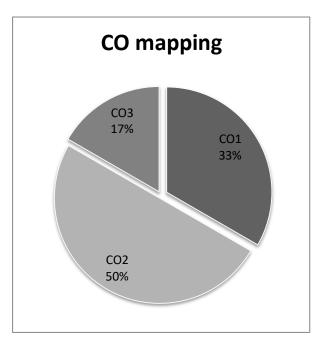
Part-B

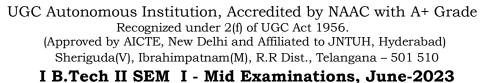
2. State and explain Norton's theorem. C124.1 understandingL2)

- 3. Derive the relation between line and phase quantities of voltage and current for a star connection and draw the phasor diagram. C124.2 Evaluating (L5)
- 4. A resistance of 10ohms and inductance of 0.1Henrys connected in series across a supply of 220V,50Hz.
 - Determine
 - i) Impedance
 - ii) current
 - iii) phase angle between current and voltage
 - iv) power factor
 - v) active power C124.2 Evaluating (L5)
- 5. Define the following terms: i) Cycle ii) Amplitude iii) R.M.S value and iv) Average value C124.2 of an alternating quantity Remembering (L1)
- 6. A 220/440 V single phase transformer has 1000 turns on primary. The maximum flux density in the core is 1.2 tesla. Calculate the number of turns on secondary, area of cross section and maximum flux in the core. C124.3 Evaluating (L5)

12 kΩ 8 kΩ 4 kΩ 5 kΩ 48 V


	X 3
1	


BR22


Date: 14-06-2023 (FN)

Time: 2 Hours

4*5=20 Marks

X3

BR22

I B.Tech II SEM I - Mid Examinat

Branch: ECE, CSE (AI&ML), CSE (IOT) & AI&DS

Subject: Basic Electrical Engineering

Date: 14-06-2023 (FN)

Marks: 10

Student Name:	H.T.No.:								
---------------	----------	--	--	--	--	--	--	--	--

<u>Part-A</u>

Objective/Quiz Paper

The objective/quiz paper is set with multiple choice, fill-in the blanks and match the following type of questions for a total of 10 marks.

Multiple choices:

1. Super position theorem is valid only for 1 ſ A. Linear circuits B. Both linear and non linear circuits C. Non linear circuits D. Neither of the two 2. Kirchhoff's current law is based on 1 A. Law of conservation of energy B. Law of conservation of electric charge D. Law of conservation of power C. Law of conservation of voltage 3. Apparent power is expressed in 1 ſ A. Volt ampere **B.** Watts C. Both A and B D. Volt Ampere Reactiv 4. Electric power is transformed upon one coil to other coil in a transformer [1 A. Electrically **B.** Electromagnetically C. Magnetically D. Physically

Fill in the blanks:

- 5. The no of mesh equations required for an electrical network with 'n' nodes is _____.
- 6. The RMS value of a sine wave with peak value of 311 V is _____.
- 7. If phase angle is 45⁰, the power factor is ______

8. Step up transformer is used to increase ______.

Match the following:

- 9.
- i active element a. resistor) passive element) b. transmission lines ii iii distributed element c. diode () unilateral element iv d. battery)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510

I B.Tech II SEM I - Mid Examinations, June-2023

Answer key

Descriptive paper key link

https://drive.google.com/file/d/1tGWL5pt030p3f1Qo-ndv-

aDRBz7MblRN/view?usp=sharing

Objective/Quiz Paper

Match the following:

- 1. <u>A</u>
- 2. <u>B</u>
- 3. <u>B</u>
- 4. <u>B</u>

Fill in the blanks:

- 5. <u>n-1</u>
- 6. <u>220v</u>
- 7. <u>0.707</u>
- 8. Voltage

Multiple choices:

9. <u>I-D</u>

<u>II-A</u>

III-B

<u>IV-C</u>

STATISTICS OF THE STATISTICS O

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana - 501 510

I B.Tech II SEM II - Mid Examinations, August -2023

Set – I

Branch: ECE, CSE (AI&ML), CSE (IOT) & AI&DS

Subject: Basic Electrical Engineering

Marks: 20

<u>Part-B</u>

Answer any **FOUR** Questions. All Question Carry Equal Marks

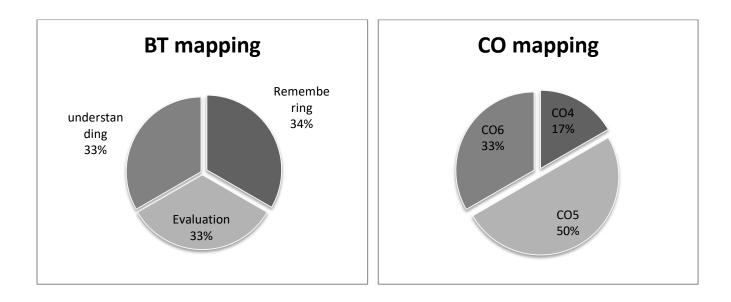
- 1. Derive the condition for maximum efficiency in a single phase transformer? C124.4 (Evaluation) (L4)
- 2. A three-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate
 - i. slip at full load
 - ii. frequency of rotor voltage

speed of rotor at a slip of 10%

- 3. Explain the constructional features of alternator? C124.5 (Understand)(L2)
- 4. Explain torque slip characteristics of 3 phase induction motor?

C124.5 (Understand)(L2)

C124.6


C124.5

5. What is ELCB? Explain the working principle of ELCB?

(Remember)(L1)

(Evaluation) (L4)

6. Explain the working principle of MCB and MCCB with neat sketch? C124.6 (Remember)(L1)

Х3

BR22

Date: 17-08-2023 (FN)

4*5=20 Marks

Time: 2 Hours

SRI	INDU INSTITUTE OF ENGINEER	ING AND TECHNOLOGY	
A CONTRACTOR OF THE PARTY OF TH	UGC Autonomous Institution, Accredited by I Recognized under 2(f) of UGC Act 19 (Approved by AICTE, New Delhi and Affiliated to C Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Tel I B.Tech II SEM II - Mid Examinati	56. X3 INTUH, Hyderabad) BR22	
Branch: I	ECE, CSE (AI&ML), CSE (IOT) & AI&DS	Date: 17-08-2023 (FI	N)
Subject: I	Basic Electrical Engineering	Marks: 10	

Student Name:	H.T.No.:											
---------------	----------	--	--	--	--	--	--	--	--	--	--	--

<u>Part-A</u>

Objective/Quiz Paper

The objective/quiz paper is set with multiple choice, fill-in the blanks and match the following type of questions for a total of 10 marks.

Multiple choices:

1	. Transformer core is laminated with							[]		
	a) Low carbon steel			b) Silicon steel							
	c) Nickel alloy steel			d) Chromium sheet steel							
2	2. An induction motor works with			h					[]	
	a) D	C only	b)AC only		c)AC &	DC	d)j	pulsating DC			
3	3. In equipment grounding, the enclosure is connected to wire								[]	
	a) Gi	round	b) neutral		c) both		d)	none			
4	. The positive plate of lead acid cell is							[]		
	a) N	ickel	b)Iron		c)Lead		d)2	Zinc			
		<u>blanks:</u>	n of a transf		is to sh	ongo th		of or			
	5. The basic function of a transformer is to change the level ofor										
6	. Sync	chronous spe	ed N _s =								
7	7. Slip rings are usually made of										
8	8. Pipe earthing used inareas										
		following:									
9		No of paral	lel paths A=I								

- II. No of parallel paths A=2 () b)Lap winding
- III. Earth resistance
 ()
 c) MCB
- IV. Short circuit protection () d) Wave winding

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510 I B.Tech II SEM II - Mid Examinations, August -2023

BR22

ANSWER KEY

Descriptive paper key

https://drive.google.com/file/d/1lmhZxOrbLSTpzq0kv_fhZHpCPxObsI6x/view?usp=sharing

Objective/Quiz key Paper

Multiple choices:

- 1. B
- 2. B
- 3. A
- 4. c

Fill in the blanks:

- 5. voltage, current
- 6. 120f/p
- 7. Hard drawn copper
- 8. Domestic

Match the following:

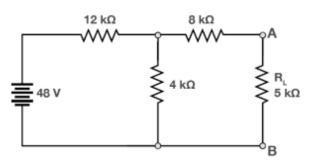
- 9. I-b
 - II-D
 - III-A
 - IV-C

UGC Autonomous Institution, Accredited by NAAC with A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510

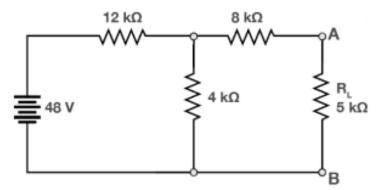
I B.Tech II SEM I - Mid Examinations, June-2023

	X 3
Ì	


BR22

Assignment questions

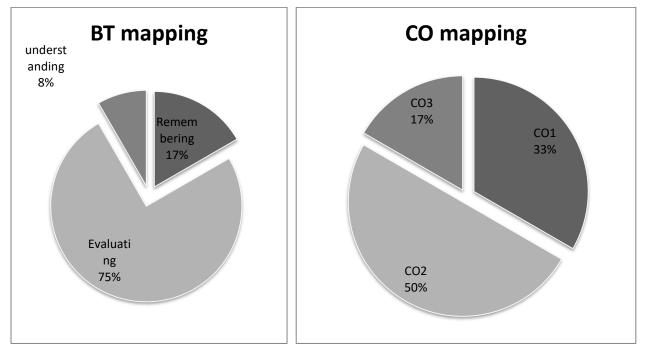
Subject: Basic Electrical Engineering


1. In the circuit shown in below, Determine the current flowing through 5 ohms using
Thevenin's theoremC124.1Evaluating

(L5)

- 2. State and explain Norton's theorem.C124.1understandingL2
- In the circuit shown in below, Determine the current flowing through 5 ohms using Thevenin's theorem
 C124.1
 Evaluating

(L5)


- 4. State and explain Norton's theorem. C124.1 Evaluating (L5)
- Derive the relation between line and phase quantities of voltage and current for a star connection and draw the phasor diagram. C124.2 Evaluating (L5)
- 6. A resistance of 10ohms and inductance of 0.1Henrys connected in series across a supply of 220V,50Hz.
 - Determine
 - i) Impedance
 - ii) current
 - iii) phase angle between current and voltage
 - iv) power factor
- v) active power C124.2 Evaluating (L5) 7. Define the following terms: i) Cycle ii) Amplitude iii) R.M.S value and iv) Average value

of an alternating quantity

C124.2

Remembering (L1)

- 8. A 220/440 V single phase transformer has 1000 turns on primary. The maximum flux density in the core is 1.2 tesla. Calculate the number of turns on secondary, area of cross section and maximum flux in the core. C124.3 Evaluating (L5)
- Derive the relation between line and phase quantities of voltage and current for a star connection and draw the phasor diagram. C124.2 Evaluating (L5)
- 10. A resistance of 10ohms and inductance of 0.1Henrys connected in series across a supply of 220V,50Hz.
 - Determine
 - vi) Impedance
 - vii)current
 - viii) phase angle between current and voltage
 - ix) power factor
 - x) active power C124.2 Evaluating (L5)
- Define the following terms: i) Cycle ii) Amplitude iii) R.M.S value and iv) Average value of an alternating quantity C124.2 Remembering (L1)
- 12. A 220/440 V single phase transformer has 1000 turns on primary. The maximum flux density in the core is 1.2 tesla. Calculate the number of turns on secondary, area of cross section and maximum flux in the core. C124.3 Evaluating (L5)

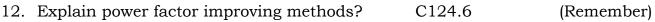
UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

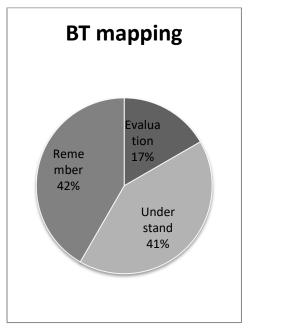
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

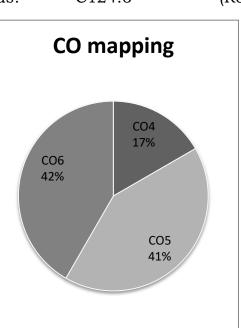
Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510

X 3	

I B.Tech II SEM II - Mid Examinations, August-2023


BR22


ASSIGNMNET QUESTIONS


Subject: Basic Electrical Engineering

- 1. Derive the condition for maximum efficiency in a single phase transformer? C124.4 (Evaluation) 2. A three-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate slip at full load i. ii. frequency of rotor voltage speed of rotor at a slip of 10% C124.5 (Evaluation) Explain the constructional features of alternator? C124.5 (Understand) 3. Explain about various losses of Single phase transformer? How to minimize them? 4. C124.4 (Understand) 5. With neat sketches, explain the construction and functions of the various parts of a DC machine C124.5 (Understand) 6. Explain working of single phase induction motor with diagram? neat (Understand) C124.5 7. What are the different types of wires and cables? Explain? C124.6 (Remember) Explain torque slip characteristics of 3 phase induction motor? C124.5 (Understand) 8. What is ELCB? Explain the working principle of ELCB? 9. C124.6 (Remember)
 - 10. Explain the working principle of MCB and MCCB with neat sketch? C124.6 (Remember)
 - 11. With a neat sketch, explain earthing methods and give its applications?

C124.6 (Remember)

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

SCHEME OF EVALUATION

MID -I

S.NO	DESCRIPTION	MARKS	BLOOMS	CO
			TAXONONMY	
1	Calculation of Vth,	3	Evaluation(L4)	C124.1
	Calculation of Rth,I	2	Evaluation(L4)	C124.1
2	Statement	1	Understanding(L2)	C124.1
	Explanation of Norton's theorem	4	Understanding(L2)	C124.1
3	Phasor diagram	3	Evaluation(L4)	C124.2
	Relation between line and phase quantities	2	Evaluation(L4)	C124.2
4	Calculation of impedence,current	2	Evaluation(L4)	C124.2
	Calculation of phase angle,power,power factor	3	Evaluation(L4)	C124.2
5	Defination of cycle,amplitude	1	Remembering (L1)	C124.2
	Determination of RMS value	2	Remembering (L1)	C124.2
	Determination of Average value	2	Remembering (L1)	C124.2
	Calculation of turns N1	1	Evaluation(L4)	C124.3
6	Calculation of area	2	Evaluation(L4)	C124.3
	Calculation of maximum flux	2	Evaluation(L4)	C124.3

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

MID -II

S.NO	DESCRIPTION	MARKS	BLOOMS TAXONONMY	СО
1	Derivation of maximum efficiency	4	Evaluation(L4)	C124.4
	Condition of maximum efficiency	1	Evaluation (L4)	C124.4
	Slip at full load	3	Evaluation (L4)	C124.5
2	Frequency of rotor emf	2	Evaluation (L4)	C124.5
	Constructional	3	Understanding	C124.5
3	diagram of alternator		(L2)	
	Explanation of each	2	Understanding	C124.5
	part		(L2)	
4	Torque slip characteristics	2	Understanding (L2)	C124.5
	Explanation of each region	3	Understanding (L2)	C124.5
5	ELCB definition	1	Remembering (L1)	C124.6
	working principle of ELCB	4	Remembering (L1)	C124.6
6	Sketch of MCB	1	Remembering (L1)	C124.6
	Sketch of MCCB	1	Remembering(L1)	C124.6
	Working of MCB,MCCB	3	Remembering(L1)	C124.6

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

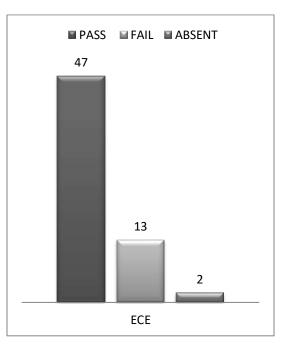
Branch : ECE

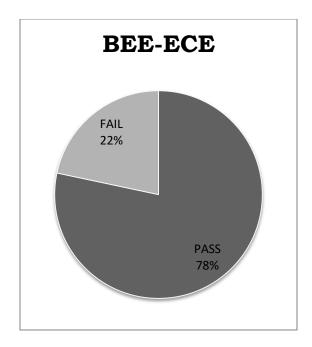
Subject: Basic Electrical Engineering

S.No	Roll no	No of backlogs in I Sem	MID1 MARKS	MID2 MARKS
1	22X31A0401	3	23	21
2	22X31A0407	3	31	23
3	22X31A0417	3	22	21
4	22X31A0418	3	20	22
5	22X31A0420	3	20	25
6	22X31A0424	4	21	23

List of slow learners

List of Advance learners


S.No	Roll no	Percentage in I Sem	MID1 MARKS	MID2 MARKS
1	22X31A0402	88.63	34	33
2	22X31A0409	87.37	31	35
3	22X31A0410	83.05	35	35
4	22X31A0414	84.42	33	30
5	22X31A0449	80.63	35	35
6	22X31A0455	86.63	35	35



(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Branch : ECE Subject: Basic Electrical Engineering

RESULT ANALYSIS

Department of Humanities & Sciences

Course Outcome Attainment (Internal Examination-1)

Ι

Name of the faculty : <u>M P REENA</u> Branch & Section: Course Name:

ECE

BASIC ELECTRICAL ENGINEERING Year:

Academic Year: Examination:

2022-2023 I Internal

Semester: II

S.No	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c	Obj1	A1
	. Marks ==>	5			5			5			5			5			5			10	5
1	22X31A0401	2			3			-			5			-						9	5
2	22X31A0402	5			5									5			4			10	5
3	22X31A0403	4			4						4						4			10	5
4	22X31A0404	2			2						1						4			9	5
5	22X31A0405	5			2									3			5			10	5
6	22X31A0406	4			4						4			-			4			10	5
7	22X31A0400				4						3						5			7	5
8	22X31A0407							4			5			3			5			8	5
9	22X31A0409				5			5			-			3			5			8	5
10	22X31A0410	5			5			-			5			-			5			10	5
11	22X31A0410	5			5						-			3			5			10	5
12	22X31A0411 22X31A0412	5			4									-			5			10	5
13	22X31A0412 22X31A0413	-			5												5			9	5
14	22X31A0413 22X31A0414	4			5						5						5			9	5
15	22X31A0414 22X31A0415	3			4						5						5			10	5
16	22X31A0415 22X31A0416	-			4									4			0			10	5
17	22X31A0410 22X31A0417				4									3						10	5
18	22X31A0417 22X31A0418				5									U						10	5
19	22X31A0418 22X31A0419				5						5			3			5			9	5
20	22X31A0419 22X31A0420				3			3			5			5			3			6	5
20	22X31A0420 22X31A0421	5			2			5			5						5			10	5
21	22X31A0421 22X31A0423				5						5			5			5			6	5
22		2			5			1						2			1			10	5
23	22X31A0424	5			1			1						4			1			10	5
	22X31A0425	5			4						5			т			5			7	5
25	22X31A0426	5			5						5			1			5			9	5
26 27	22X31A0427	5			2									1			1			6	5
27	22X31A0428 22X31A0429	5			5			3						2			5			9	5
$\frac{28}{29}$	22X31A0429 22X31A0430	2			5			5			3			3			5			7	5
30	22X31A0430 22X31A0431	5									5			5						10	5
31	22X31A0431 22X31A0432	4															5			10	5
32	22X31A0432 22X31A0433	5			5									5			2			10	5
33	22X31A0433 22X31A0434	5			5						5			5			5			10	5
34	22X31A0434 22X31A0435	5			5						5						5			10	5
35	22X31A0435 22X31A0436	-			5												5			10	5
36	22X31A0430 22X31A0438				3												5			10	5
37	22X31A0438 22X31A0439	5			5						4			5			5			10	5
37	22X31A0439 22X31A0440	-			5						-			5			5			10	5
39	22X31A0440 22X31A0441				5			5			5			4			5			10	5
40	22X31A0441 22X31A0442	4			5									5			5			10	5
40	22X31A0442 22X31A0443	5			2									5			5			10	5
41	22X31A0443 22X31A0444	5			-						3			2			-			10	5
42	22X31A0444 22X31A0445	5			5									3			5			10	5
43	22X31A0443 22X31A0446	5			2						3			5			5			10	5
44	22X31A0440 22X31A0447	5			5						2						5			10	5
46	22X31A0447 22X31A0448	-			5						1			3			5			10	5
40	22X31A0448 22X31A0449	5			5						5			5			5			10	5
47	22X31A0449 22X31A0450	-			5						4			2			5			7	5
40	22X31A0430 22X31A0451	3			5						3			-			1			8	5
50	22X31A0431 22X31A0452	-			2						5			5			4			4	5
51	22X31A0452 22X31A0453	4			5						3			5						6	5
51	22A31A0433	<u> </u>	I	L	5			L	L		5			5	ı I					U	-

52	22X31A0454	5			3												2			6	5
53	22X31A0455				5			5			5						5			10	5
54	22X31A0456	3																		8	5
55	22X31A0457				5						3			3			5			7	5
56	22X31A0458	4			5						5						5			10	5
57	22X31A0459	4			2									4			4			10	5
58	22X31A0460	2			1									2			5			10	5
59	22X31A0461				4									3			4			10	5
60	22X31A0462	5			3						3						5			10	5
61	22X31A0463	5			4						5			4						10	5
62	22X31A0464	3			3			2									2			10	5
Targe / HoI	et set by the faculty)	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
	ber of students ormed above the t	36	0	0	42	0	0	6	0	0	26	0	0	25	0	0	42	0	0	61	62
Numl attem	ber of students	41	0	0	52	0	0	8	0	0	29	0	0	31	0	0	48	0	0	62	62
	entage of students d more than target	88%			81%			75%			90%			81%			88%			98%	100%

CO Mapping with Exam Questions:

CO - 1	Y		Y										Y	Y
CO - 2					Y		Y		Y				Y	Y
CO - 3											Y		у	У
CO - 4														
CO - 5														
CO - 6														

	>Target %	88%		8	81%	75%		90%		81%		88%		98%	100%
CO	Attainment based o	n Exan	n Ques	stions:											
	CO - 1	88%		8	81%									98%	100%
	CO - 2					75%		90%		81%				98%	100%
	CO - 3											88%		98%	100%
	CO - 4														
	CO - 5														
	CO - 6														

со	Subj	obj	Asgn	Overall	Level
CO-1	84%	84%	100%	90%	3.00
CO-2	82%	86%	100%	89%	3.00
CO-3	88%	88%	100%	92%	3.00
CO-4					
CO-5					
CO-6					

Attainment (Internal 1 Examination) = **3.00**

Attair	nment Lo	evel
1	40%	
2	50%	
3	60%	

15 mg

Department of Humanities & Sciences Course Outcome Attainment (Internal Examination-2)

Branck Scelic EE Examination Image: Association of the state	Nam	e of the faculty :	MP	REEN	A					Acad	lemic	Year	:							20	22-202	23	
										Exan	ninati	ion:								II Internal		al	
NM H1 No. Dual Dub Dic Q2a Q2bQ2c Q3a Q3b Q3c Q4a Q4b Q5c Q5a Q5c Q	Cour	se Name:	BAS	IC ELF	ECTRI	CAL E	NGI	NEER	ING	Year	:	Ι								S	emeste	r:	II
NM H1 No. Dual Dub Dic Q2a Q2bQ2c Q3a Q3b Q3c Q4a Q4b Q5c Q5a Q5c Q																							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S No	HT No																			Ohi	12	viva/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.110	HI INO.	-	Q1b	Q1c	~	Q2b	Q2c	-	Q3b	Q3c		Q4b	Q4c	-	Q5b	Q5c	-	Q6b	Q6c			ppt
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Max.		-			-			5						5			5					
3 22X31A0403 5 6 5 7 00 5 5 4 22X31A0405 2 3 3 2 0 10 5 5 5 22X31A0405 5 5 5 5 5 10 5 5 7 22X31A0407 5 5 5 10 5 5 8 22X31A0407 5 5 5 10 5 5 9 22X31A0407 5 5 5 10 5 5 10 22X31A0409 5 5 5 5 10 5 5 11 2X31A0413 4 <td></td> <td>-</td> <td></td> <td></td>																					-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2		5			3						5											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									5			_			5								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									3						_						-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5			5									5								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4			4			5						~								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4						~						5			~					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5			-						-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5						~						5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5									2			3								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						4						4											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4						4									~					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									2														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									2			2											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															1			3					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2						-						1						-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-									5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2						5									3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									3									2			-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5						-						5			2			-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						2						4			5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4									4			5			5					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			5			5			5			5			5			5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									5			5						5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5						Δ														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-						2			4								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5			-														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												2									-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															5			5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5									_			-			5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4			4																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5																		10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																					А	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1			5						5			5			5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						2												5			10	5	5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39					5						5			5			2			10	5	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5									3						10	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2			3						5						2			10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						2			2						2							5	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									5			5			2			5			10	5	5
46 22X31A0448 2 2 5 3 10 5 5 47 22X31A0449 5 5 5 5 5 10 5 5 48 22X31A0450 2 4 2 4 10 5 5 49 22X31A0451 2 1 5 5 10 5 5 50 22X31A0451 2 1 5 5 10 5 5 50 22X31A0452 5 5 5 5 10 5 5 51 22X31A0453 2 5 5 5 10 5 5						5									3							5	5
47 22X31A0449 5 5 5 5 10 5 5 48 22X31A0450 2 4 2 4 10 5 5 49 22X31A0451 2 1 5 5 10 5 5 50 22X31A0452 5 5 5 10 5 5 51 22X31A0453 2 5 5 5 10 5 5 51 22X31A0453 2 5 5 5 5 10 5 5	45	22X31A0447	2																		10	5	5
48 22X31A0450 2 4 2 4 10 5 5 49 22X31A0451 2 1 5 5 10 5 5 50 22X31A0452 5 5 5 5 10 5 5 51 22X31A0453 2 5 5 5 10 5 5	46					2																	
19 22X31A0451 2 1 5 5 10 5 5 50 22X31A0452 5 5 5 5 10 5 5 51 22X31A0453 2 5 5 5 5 10 5 5	47	22X31A0449													5						10	5	5
50 22X31A0452 5 <th< td=""><td>48</td><td>22X31A0450</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>5</td><td>5</td></th<>	48	22X31A0450							2			4									10	5	5
51 22X31A0453 2 5 5 5 10 5 5	49	22X31A0451				2												5			10		5
	50	22X31A0452										5									10		
52 22X31A0454 5 5 10 5 5						2			5									5					
	52	22X31A0454	5									5			5						10	5	5

					-			-			1		1	1					1			
	22X31A0455	5			5			5									5			10	5	5
	22X31A0456	~	-		5			5						5						A	5	5
	22X31A0457 22X31A0458	5			3			5						3						10 10	5	5
	22X31A0458 22X31A0459	5			3			5			5			5			5			10	5	5
	22X31A0459	2			5			5			5			5			2			10	5	5
	22X31A0461	5			2			4			4			-						10	5	5
	22X31A0462	4			3						2									10	5	5
	22X31A0463	5			5			5			2									10	5	5
	22X31A0464	5			3			5									5			10	5	5
Target s HoD	set by the faculty	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	3.00
	er of students ned above the	22	0	0	36	0	0	24	0	0	24	0	0	22	0	0	26	0	0	60	62	62
Numbe	er of students ted	30	0	0	44	0	0	29	0	0	32	0	0	26	0	0	31	0	0	62	62	62
	tage of students more than target	73%			82%			83%			75%			85%			84%			97%	100%	100%
CO Ma	apping with Exar	n Que	stions:								1		1	1			1		1			
	o 1																					
	0 - 1																					
	0 - 2																					
	O - 3																					
	0 - 4	Y			• 7															Y	Y	у
	0 - 5				Y			Y			Y			X 7						Y	Y Y	<u>y</u>
C	0 - 6													Y			у			Y	Ĭ	у
% St	tudents Scored																					
	>Target %	73%			82%			83%			75%			85%			84%			97%	100%	100%
	tainment based o		m Que	stions:																		
CO	0 - 1																					
CO	0 - 2																					
	O - 3																					
	O - 4	73%																		97%	100%	100%
	0 - 5				82%			83%			75%									97%	100%	100%
CO	0 - 6													85%			84%			97%	100%	100%
	0	a	1.							T -	1	1										
C		Subj	obj	aasgn	ppt		Overa	11		Leve	1										ainment	
	0-1																			1		0%
	0-2								ļ											2	-	0%
	O-3																			3	6	0%
	0-4	73%	97%	100%	100%		93%			3.00												
CO	O-5	80%	97%	100%	100%		94%			3.00												
CO	O-6	84%	97%	100%	100%		95%			3.00												
А	Attainment (Inte	rnal	Exar	nina	tion	-2)	=		3.00)											

Department of Humanities & Sciences Course Outcome Attainment (University Examinations)

Name (of the faculty :	<u>Course Outcome At</u> M P REENA		Academic Y		2022-2023
	•	ECE		Year / Sem		<u>I / II</u>
		BASIC ELECTRICAL H	ENGINEEI			<u>17 11</u>
	Roll Number		1	S.No	Roll Number	Marks Secured
1	22X31A0401	21		36	22X31A0438	Α
2	22X31A0402	44		37	22X31A0439	22
3	22X31A0403	24		38	22X31A0440	14
4	22X31A0404	27		39	22X31A0441	29
5	22X31A0405	40		40	22X31A0442	29
6	22X31A0406	46	1	41	22X31A0443	23
7	22X31A0407	А		42	22X31A0444	7
8	22X31A0408	51		43	22X31A0445	28
9	22X31A0409	35		44	22X31A0446	22
10	22X31A0410	32		45	22X31A0447	32
11	22X31A0411	38		46	22X31A0448	6
12	22X31A0412	24		47	22X31A0449	25
13	22X31A0413	30		48	22X31A0450	21
14	22X31A0414	33		49	22X31A0451	9
15	22X31A0415	43		50	22X31A0452	21
16	22X31A0416	15		51	22X31A0453	43
17	22X31A0417	12		52	22X31A0454	33
18	22X31A0418	14		53	22X31A0455	45
19	22X31A0419	23		54	22X31A0456	0
20	22X31A0420	7		55	22X31A0457	36
21	22X31A0421	25		56	22X31A0458	40
22	22X31A0423	15		57	22X31A0459	48
23	22X31A0424	4		58	22X31A0460	29
24	22X31A0425	14		59	22X31A0461	23
25	22X31A0426	37		60	22X31A0462	33
26	22X31A0427	38		61	22X31A0463	30
27	22X31A0428	21		62	22X31A0464	22
28	22X31A0429	24		63		
29	22X31A0430	17		64		
30	22X31A0431	22		65		
31	22X31A0432	27]	66		
32	22X31A0433	26	1	67		
33	22X31A0434	22		68		
34	22X31A0435	21		69		
35	22X31A0436	21		70		
Max Ma	arks	60				
Class A	verage mark		26		Attainment Level	% students
Number	of students perf	formed above the target	27		1	40%
Number	of successful st	udents	61		2	50%
	-	cored more than target	44%		3	60%
Attai	nment leve	l	2			

Department of Humanities & Sciences

Course Outcome Attainment

Name of the faculty :	<u>M P REENA</u>			Academic Year:	2022-2023
Branch & Section:	ECE				
Course Name:	BASIC ELECTR	LICAL ENGINEE	RING	Year:	Ī
				Semester:	II
Course Outcomes	1st Internal	2nd Internal			
Course Outcomes	Exam	Exam	Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	2.00	2.40
CO2	3.00		3.00	2.00	2.40
CO3	3.00		3.00	2.00	2.40
CO4		3.00	3.00	2.00	2.40
CO5		3.00	3.00	2.00	2.40
CO6		3.00	3.00	2.00	2.40
	Internal & Univ	ersity Attainment:	3.00	2.00	
		Weightage	40%	60%	
CO Attainment for	the course (Interr	nal, University)	1.20	1.20	
CO Attainment	for the course (Dir	ect Method)	2	.40	

Overall course attainment level

2.40

Department of Humanities & Sciences <u>Program Outcome Attainment (from Course)</u>

Name of Faculty:	M P REENA	Academic Year:	2022-2023
Branch & Section:	ECE	Year:	Ι
Course Name:	BASIC ELECTRICAL ENGINE	E Semester:	II

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1	1	-	-	-	-	-	-	-	-
CO2	3	3	1	-	-		-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	1	1	-	-	-	-	2	-	-
CO4	3	1	-	-	-	-	-	-	-	-	-	2	-	-
CO5	3	1	-	-	-	-	-	-	-	-	-	2	-	-
CO6	3	-	-	-	-	2	-	-	-	-	-	2	-	-
Course	3.00	1.80	1.00	2.00	1.00	1.33	1.00					2.00		

СО	Course Outcome Attainment	
	2.40	
CO1		
	2.40	
CO2		
	2.40	
CO3		
	2.40	
CO4		
	2.40	
CO5		
CO6	2.40	
Overall course attainment le	vel 2.40	

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО												
Attainm												
ent	2.40	1.44	0.80	1.60	0.80	1.07	0.80					1.60

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

DEPARTMENT OF HUMANITIES AND SCIENCE <u>REMEDIAL CLASSES TIME TABLE</u>

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
CSE-A	ODE&VC	ENG	EDC	AP	ODE&VC	AP
CSE-B	AP	EDC	ODE&VC	ENG	EDC	ENG
CSE-C	ENG	AP	EDC	ODE&VC	AP	ODE&VC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
DS	EDC	AP	ODE&VC	ENG	EDC	ODE&VC
CYBER	ENG	EDC	AP	ODE&VC	AP	ENG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	ODE&VC	EC	EDC	BEE	CAEG	ODE&VC
AIML-B	BEE	EDC	ODE&VC	EC	BEE	CAEG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AI&DS	BEE	CAEG	ODE&VC	EDC	BEE	EC
ΙΟΤ	EC	ODE&VC	CAEG	BEE	ODE&VC	EDC
DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
-	-	-		-		-

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda(M Ibrahimoatnam (M) R.R. Dist-501 516

Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

MID ANSWER SCRIPTS, ASSIGNMENTS AND REGISTERS

Mid 1 answer script link: <u>https://drive.google.com/file/d/1yJBbla4HGlMK6BEvb9wDNxqi00F6tUOu</u> /view?usp=sharing

Mid 2 answer script link: <u>https://drive.google.com/file/d/116hxfoINkFQfl5R5n439-</u> XnS0GmRsnsy/view?usp=sharing

Mid 1 assignment link: <u>https://drive.google.com/file/d/1RBcsLaiRYBx4dNHbzuzP6v-</u> SaUqgaUA3/view?usp=sharing

Mid 2 assignment link: <u>https://drive.google.com/file/d/1DUygHr60euiTvRvjlcfe4AZO9rjvco2S/view?usp</u> <u>=sharing</u>

Class register link: <u>https://drive.google.com/file/d/1WLNWW86LfNo1WqI7KRJhUowDN8E5DJh2/vi</u> <u>ew?usp=sharing</u>