

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

COURSE FILE

ON

LOW POWER VLSI DESIGN

Course Code – EC823PE

IV B.Tech II-SEMESTER A.Y.: 2022-2023

Prepared by

Mr. M. GANESH Assistant Professor

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH sheriguda(V), Ibrahimpatham(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Academic Year	2022-2023
Course Title	LOW POWER VLSI DESIGN
Course Code	EC823PE
Programme	B.Tech
Year & Semester	IV year II-semester
Branch & Section	ECE-A
Regulation	R18
Course Faculty	Mr. M GANESH, Assistant Professor

Index of Course File

S. No.	Name of the content
1	Institute vision and mission
2	Department vision and mission
3	Program Educational Objectives/ Program Specific Outcomes
4	Program Outcomes
5	Course Syllabus with Structure
6	Course Outcomes (CO)
7	Mapping CO with PO/PSO and Justification
8	Academic Calendar
9	Time table - highlighting your course periods including tutorial
10	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
11	Web references
12	Lecture notes
13	List of Power point presentations
14	University Question papers
15	Internal Question papers, Key with CO and BT
16	Assignment Question papers mapped with CO and BT
17	Tutorial topics
18	Result Analysis to identify weak and advanced learners - 3 times in a semester
19	Result Analysis at the end of the course
20	Remedial class for weak students - schedule and evidences
21	CO, PO/PSO attainment sheets
22	Attendance register
23	Course file (Digital form)

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

INSTITUTE VISION AND MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH shenguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

Vision:

To become a recognized center in the field of Electronics and Communication Engineering by producing creative engineers with social responsibility and address ever-changing global challenges.

Mission:

- **DM1:** To facilitate an academic environment that enables student's centric learning.
- **DM2:** To provide state-of-the-art hardware and software technologies to meet industry requirements.
- DM3: To continuously update the Academic and Research infrastructure.
- **DM4:** To Conduct Technical Development Programs for overall professional caliber of Stake Holders.

Head of the Department Electronics and Communication Engg. Dept SRI INDV INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpatnam(M), R.R.Dist-Su1 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM EDUCATIONAL OBJECTIVES

Program Educational objectives are to Promote:

- **PEO1:** Graduates with a strong foundation in Electronics and Communication Engineering, Science and Technology to become successful in the chosen professional career.
- **PEO2:** Graduates with ability to execute innovative ideas for Research and Development with continuous learning.
- **PEO3:** Graduates inculcated with industry based soft-skills to enable employability.
- **PEO4:** Graduates demonstrate with ability to work in interdisciplinary teams and ethical professional behavior.

PROGRAM SPECIFIC OUTCOMES

PSO 1: Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.

PSO 2: Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Shenguda(V), Ibrahimpatnam(M), R.R.Dist-501 510

PRINCIPAL Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi Affiliated to JNTUH, Hyderabad.

PROGRAM OUTCOMES

1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510. Campus Ph:9640590999, 9347187999, 8096951507.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS (R18)

Applicable From 2018-19 Admitted Batch

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC701PC	Microwave and Optical Communications	3	0	0	3
2		Professional Elective – III	3	0	0	3
3		Professional Elective – IV	3	0	0	3
4		Open Elective - II	3	0	0	3
5	SM702MS	Professional Practice, Law & Ethics	2	0	0	2
6	EC703PC	Microwave and Optical Communications Lab	0	0	2	1
7	EC704PC	Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8	EC705PC	Seminar	0	0	2	1
9	EC706PC	Project Stage - I	0	0	6	3
		Total Credits	14	0	10	21

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Τ	Р	Credits
1		Professional Elective – V	3	0	0	3
2	EC823PE	Professional Elective – VI	3	0	0	<mark>3</mark>
3		Open Elective - III	3	0	0	3
4	EC801PC	Project Stage - II	0	0	14	7
		Total Credits	9	0	14	16

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective – V

EC811PE	Satellite Communications
EC812PE	Radar Systems
EC813PE	Wireless Sensor Networks

Professional Elective – VI

EC821PE	System on Chip Architecture
EC822PE	Test and Testability
EC823PE	Low Power VLSI Design

R18 B.Tech. ECE Syllabus

HYDERABAD

EC823PE: LOW POWER VLSI DESIGN (PE - VI)

B.Tech. IV Year II Semester

L T P C

3 0 0 3

Prerequisite: VLSI Design

Course Objectives:

- Known the low power low voltage VLSI design
- Understand the impact of power on system performances.
- Known about different Design approaches.
- Identify suitable techniques to reduce power dissipation in combinational and sequential circuits.

Course Outcomes: Upon completing this course, the student will be able to

- Understand the need of Low power circuit design.
- Attain the knowledge of architectural approaches.
- Analyze and design Low-Voltage Low-Power combinational circuits.
- Known the design of Low-Voltage Low-Power Memories

UNIT - I:

Fundamentals: Need for Low Power Circuit Design, Sources of Power Dissipation – Switching Power Dissipation, Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.

UNIT - II:

Low-Power Design Approaches: Low-Power Design through Voltage Scaling – VTCMOS circuits, MTCMOS circuits, Architectural Level Approach –Pipelining and Parallel Processing Approaches.

Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, and Mask level Measures.

UNIT - III:

Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder's Architectures – Ripple Carry Adders, Carry Look- Ahead Adders, Carry Select Adders, Carry Save Adders, Low- Voltage Low-Power Design Techniques – Trends of Technology and Power Supply Voltage, Low- Voltage Low-Power Logic Styles.

UNIT - IV:

Low-Voltage Low-Power Multipliers: Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh- Wooley Multiplier, Booth Multiplier, Introduction to Wallace Tree Multiplier.

UNIT - V:

Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trend and Development of ROMs, Basics of SRAM, Memory Cell, Precharge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

TEXT BOOKS:

- 1. CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 2011.
- 2. Low-Voltage, Low-Power VLSI Subsystems Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering.

REFERENCE BOOKS:

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- 2. Low Power CMOS VLSI Circuit Design Kaushik Roy, Sharat C. Prasad, John Wiley & Sons, 2000.
- 3. Practical Low Power Digital VLSI Design Gary K. Yeap, Kluwer Academic Press, 2002.
- 4. Leakage in Nanometer CMOS Technologies Siva G. Narendran, Anatha Chandrakasan, Springer, 2005.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

COURSE : LOW POWER VLSI DESIGN (C422)

CLASS: IV- ECE A

Course Outcomes:

After completing this course the student will be able to:

- C422.1: Able to carry out research and development in the area of Low Power VLSI circuits. (Analysis)
- C422.2: Apply techniques to improve power consumption of VLSI circuits. (Knowledge and Analysis)
- C422.3: Utilize logic simulation methods to design Low Power VLSI circuits (Knowledge)
- C422.4: Apply logic-level, architecture-level and system-level techniques in various designs to optimize power consumption of the VLSI circuits (Analysis)
- C422.5: Known the design of Low-Voltage Low-Power Memories (Knowledge and Analysis)
- C422.6: Implement practical and state of the art Low Power VLSI design, suitable for real life and Industry applications. (Evaluation)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
C422.1	3	3	3	2	-	-	-	-	-	-	-	3	2	2
C422.2	3	3	3	2	-	-	-	-	-	-	-	3	2	2
C422.3	3	-	3	2	-	-	-	-	-	-	-	3	2	2
C422.4	3	-	-	3	-	-	-	-	-	-	-	3	2	2
C422.5	3	-	3	3	-	-	-	-	-	-	-	3	3	3
C422.6	3	-	3	3	-	-	-	-	-	-	-	3	2	2
C422	3	3	3	2.5	-	-	-	-	-	-	-	3	2.16	2.16

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

<u>CO-PO mapping Justification</u>

PO1.	ENGINEERING KNOWLEDGE : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2.	PROBLEM ANALYSIS : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3.	DESIGN/DEVELOPMENT OF SOLUTIONS : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4.	CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
PO12.	LIFE-LONG LEARNING : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PSO 1	Design Skills: Design, analysis and development a economical system in the area of Embedded system & VLSI design.
PSO 2	Software Usage: Ability to investigate and solve the engineering problems using MATLAB, Keil and Xilinx.

C422.1: Able to carry out research and development in the area of Low Power VLSI circuits. (Analysis)

	Justification
PO1	Students get the knowledge on area of Low Power VLSI circuits (level 3)
PO2	Students solve & analyze the complex vlsi circuits (level 3)
PO3	Students can Implement and design the practical low power vlsi circuits(level 3)
PO4	Students can do research based experiments in low power vlsi (level 2)
PO12	Students can learn the need of low power circuit design (level 3)
PSO1	By combining your design, analysis, and development skills with a focus on economical systems in Embedded Systems and VLSI design, you are well-equipped to engage in research and development in the area of Low Power VLSI circuits. (level 2)
PSO2	MATLAB is particularly useful for algorithm development and signal processing, which are critical aspects of low power design. (level 2)

C422.2: Apply techniques to improve power consumption of VLSI circuits. (Knowledge and Analysis)

	Justification
PO1	Gain the knowledge to improve the power consumption of vlsi circuits (level 3)
PO2	Students solve & analyze the complex problems on power consumption of VLSI circuits (level 3)
PO3	Able to design the circuits to reduce the overall power consumption (level 3)
PO4	Applying the techniques and methodologies to reduce the overall static and dynamic power (level 2)
PO12	Students can learn the different power consumption techniques of vlsi circuits(level 3)
PSO1	Your ability to develop economical systems is directly applicable to the practical aspects of optimizing power consumption. (level 2)
PSO2	your proficiency in software tools such as MATLAB, Keil, and Xilinx provides a strong foundation for applying techniques to improve the power consumption of VLSI circuits. (level 2)

C422.3: Utilize logic simulation methods to design Low Power VLSI circuits (Knowledge)

	Justification
PO1	Students get the knowledge of simulation methods to design Low Power VLSI circuits(level 3)
PO3	Students can able to design and develop the low power vlsi circuits (level 3)
PO4	Students can use research based methods to design low power CMOS Adders(level 2)
PO12	Students can clearly understand the different types CMOS adders (level 3)
PSO1	The utilization of logic simulation methods in designing Low Power VLSI circuits is well- justified by the Design Skills outlined in the provided PSO. (level 2)
PSO2	Xilinx tools are essential for FPGA development, and FPGA-based solutions play a significant role in VLSI design. Proficiency in Xilinx tools allows for hardware-level simulation and investigation of power-related issues. (level 2)

C422.4: Apply logic-level, architecture-level and system-level techniques in various designs to Optimize power consumption of the VLSI circuits. (Analysis)

	Justification
PO1	Students get the knowledge of low voltage low power (level 3)
PO4	Students can use the research based methods to design the low voltage low power multipliers (level 3)
PO12	Students acquire continuous knowledge about low power multipliers (level 3)
PSO1	The application of logic-level, architecture-level, and system-level techniques to optimize power consumption in VLSI circuits is well-justified by the specified Design Skills related to designing economical systems in the area of Embedded Systems and VLSI design. (level 2)
PSO2	The combination of MATLAB, Keil, and Xilinx represents a comprehensive set of software tools that covers the entire spectrum of VLSI design, from algorithmic considerations to low-level software development and hardware implementation. (level 2)

C422.5: Known the design of Low-Voltage Low-Power Memories. (Knowledge and Analysis)

	Justification
PO1	Students get the knowledge of Low-Voltage Low-Power Memories (level 3)
PO3	Students can able to design and develop the memory cells, RAM, AOM (level 3)
PO4	Students can use the research based methods on low power memories(level 3)
PO11	The knowledge of designing Low-Voltage Low-Power Memories aligns well with the specified PO related to Project Management and Finance.
PO12	Students can gain the knowledge on types of memory cells ,RAM,ROM. (level 3)
PSO1	Memories are integral components in embedded systems, and their design significantly impacts the overall system's efficiency. (level 3)
PSO2	The combination of MATLAB, Keil, and Xilinx represents a comprehensive set of software tools covering different aspects of memory design, from algorithmic considerations to low-level software and hardware development. (level 3)

C422.6: Implement practical and state of the art Low Power VLSI design, suitable for real life and Industry applications. (Evaluation)

	Justification
PO1	Get the knowledge of Need for Low Power VLSI design (level 3)
PO3	Students can able to design and develop the low power vlsi circuits (level 3)
PO4	Students can use the research based methods on low power CMOS circuits(level 3)
PO12	Students can gain the knowledge on low power consumption(level 3)
PSO1	Implementing practical and state-of-the-art Low Power VLSI design, suitable for real-life and industry applications, aligns perfectly with the specified PSO related to Design Skills. (level 2)
PSO2	The ability to implement practical and state-of-the-art Low Power VLSI design, suitable for real-life and industry applications, is well-justified by the specified PSO related to Software Usage. (level2)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ACADEMIC CALENDAR 2022-23

B. Tech./B. Pharm. IV YEAR I & II SEMESTERS

I SEM

S. No	Description	Duration			
5. 140		From	То		
1	Commencement of I Semester classwork	29.08.2022			
2	1 st Spell of Instructions (including Dussehra Recess)	29.08.2022	31.10.2022 (9 Weeks)		
3	Dussehra Recess	03.10.2022	08.10.2022 (1 Week)		
4	First Mid Term Examinations	01.11.2022	07.11.2022 (1 Week)		
5	Submission of First Mid Term Exam Marks to the University on or before				
6	2 nd Spell of Instructions	09.11.2022	03.01.2023 (8 Weeks)		
7	Second Mid Term Examinations	04.01.2023	10.01.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	11.01.2023	19.01.2023 (1 Week)		
9	Submission of Second Mid Term Exam Marks to the University on or before	17.01.2023			
10	End Semester Examinations	20.01.2023	02.02.2023(2 Weeks)		

Note: No. of Working/instructional days: 94

II SEM

S. No	Description	Duration			
5.110	•	From	То		
1	Commencement of II Semester classwork		03.02.2023		
2	1 st Spell of Instructions	03.02.2023	31.03.2023 (8 Weeks)		
3	First Mid Term Examinations	01.04.2023	08.04.2023 (1 Week)		
4	Submission of First Mid Term Exam Marks to the University on or before				
5	2 nd Spell of Instructions	10.04.2023	17.06.2023 (10 Weeks)		
6	Summer Vacation	15.05.2023	27.05.2023 (2 Weeks)		
7	Second Mid Term Examinations	19.06.2023	24.06.2023 (1 Week)		
8	Preparation Holidays and Practical Examinations	26.06.2023	01.07.2023 (1 Week)		
9	Submission of Second Mid Term Exam Marks to the University on or before	01.07.2023			
10	End Semester Examinations	03.07.2023	15.07.2023 (2 Weeks)		

Note: No. of Working/ instructional days: 91

RI

CONTRACTOR OF STREET

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC Autonomous, Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING <u>Class Timetable</u>

CLA	CLASS: IV-B.Tech ECE-A		IV-B.Tech ECE-A A.Y:2022-23		SEMEST	SEMESTER: II		LH: B-205	
TIME/ DAY	I 9:40-10:30	II 10:30 -1	III 1:20 11:20-12:10	IV 12:10-1:0	0 1:00-1:30	V 1:30-2:20	VI	VII	
MON	LPVLSID	ML		COUN		WSN	2:20-3:10 ML	3:10-4:00	
TUE	WSN	LPVLS	SID CO-CU	And a second		ML	WSN	INT	
WED	LPVLSID	ML		ML	L	WSN		LIB	
THU	LPVLSID	WSN	I ML	WSN			LPVLSID	SPORTS	
FRI		PR	OJECT STAGE-II	WOIN	С Н	ML	LPVLSID	LPVLSID	
SAT			OJECT STAGE-II		"	PROJECT STAG			
*(T)	- Tutorial Conc	ern Faculty	v			1	PROJECT STAGE	·П	
Course Code	Cour Nam	se ie	Name of the Faculty	Course Code	Course Name		Name of th		
C813PE	WSN-Wireless Networks (Professional E	lective-V)	Dr.S.Anjaneyulu	COUN	Counseling	M.Ga	Faculty M.Ganesh/K.Rajender/P.Kavitha		
C823PE	LPVLSID-Low VLSI Design (Professional El	ective-VI)	M.Ganesh	SPORTS	Sports		P.Srilatha/S.Naresh		
800OE	ML-Machine L (Open Elective-	earning	G.Swapna	CO-CU/ DAA	Co-Curricular/				
SALPC	DDOIDOT OT (A.Sindhuja/ K.Mallaiah	/ LID	Dept.Assoc.Activ	ities 1.1td	es Y.Raju/B.Jyothirmai/K.Bhaskar Re		

EC801PC Library PROJECT Dr.K.Srinivasa Reddy/ LIB -11 K.Padma Dr.D.Lakshmaiah Electronics and Confinement of Electronics and Confinement of Electronics and Confinement of Electronics and Confinement of Electronics and the second secon Internetar unen INT K.Bhaskar Reddy Class Incharge CIPAL in Inda Fisikas of Engineering & Teu Sheriguda(Vill), Ibrahimpatnam R R Dist Telangana -501 510 impatham(M), R.R.Dist-501 51Q Electronics and

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

LESSON PLAN

Programme: B.Tech	Academic Year: 2022-23
Year: IV	Semester: II
Course Title: LOW POWER VLSI DESIGN	Course Code: EC823PE
Name of Faculty: M GANESH	

Unit-I Syllabus

Fundamentals: Need for Low Power Circuit Design, Sources of Power Dissipation – Switching PowerDissipation, Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.

No. of	Topics	Reference	Teaching Mathad/	
Sessions Planned			Method/ Aids	
1	Fundamentals: Need for Low Power Circuit Design	T2, R 1	BB	
1	Sources of Power Dissipation	T2, R 1	BB	
1	Switching PowerDissipation,	T2, R 2	BB	
1	Short Circuit Power Dissipation	T2, R 2	BB	
1	Leakage Power Dissipation	T1, R2	BB	
1	Glitching Power Dissipation	T1, R2	BB	
1	Short Channel Effects	T1	BB	
2	Drain Induced Barrier Lowering and Punch Through	T1, R1	BB	
2	Surface Scattering	T1, R1	BB	
1	Velocity Saturation	T1	BB	
2	Impact Ionization	T1	BB	
1	Hot Electron Effect.	T1, R2	BB	
Gap beyo	ond syllabus(if any):			
Gap with	in the syllabus(if any)			
Course O	Putcome 1: Able to carry out research and development in the	he area of Low	Power	
VLSI circ	VLSI circuits.(Analysis)			

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-II Syllabus:

Low-Power Design Approaches: Low-Power Design through Voltage Scaling – VTCMOS circuits, MTCMOS circuits, Architectural Level Approach –Pipelining and Parallel Processing Approaches.

Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, and Mask level Measures.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
2	Low-Power Design Approaches	T1, R 2	BB	
2	Low-Power Design through Voltage Scaling	T2,R 2	BB	
1	VTCMOS circuits	T2,R 2	BB	
1	MTCMOS circuits	T2,R 1	BB	
1	Architectural Level Approach	T2	BB	
1	Pipelining and Parallel Processing Approaches	T2,R1	BB	
2	Switched Capacitance Minimization Approaches	T2,R2	BB	
1	System Le Circuit Level Measures	T1	BB	
1	Circuit Level Measures	T2	BB	
1	Mask level Measures	T1, R 2	BB	
Gap beyo	ond syllabus (if any):			
Gap within the syllabus (if any)				
	Course Outcome 1 Apply techniques to improve power consumption of VLSI circuits.			
(Knowledge and Analysis)				

*Session Duration: 50 minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-III Syllabus:

Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder's Architectures Ripple Carry Adders, Carry Look- Ahead Adders, Carry Select Adders, Carry Save Adders, Low- Voltage Low-Power Design Techniques –Trends of Technology and Power Supply Voltage, Low- Voltage Low-Power Logic Styles.

Topics	Reference	Teaching		
		Method/		
		Aids		
Low-Voltage Low-Power Adders	T1,R1	BB		
Introduction, Standard Adder Cells	T1	BB		
CMOS Adder's Architectures Ripple Carry Adders	T1, R 1	BB		
Carry Look- Ahead Adders	T1, R 1	BB		
Carry Select Adders	T1, R 1	BB		
Carry Save Adders	T1, R 2	BB		
Low- Voltage Low-Power Design Techniques	T1, R 1	BB		
Trends of Technology and Power Supply Voltage	T1, R2	BB		
Low- Voltage Low-Power Logic Styles.	R1	BB		
ond syllabus(if any):	·			
Gap within the syllabus(if any)				
utcome: : Utilize logic simulation methods to design Low	Power VLSI	circuits		
(Knowledge)				
	Low-Voltage Low-Power Adders Introduction, Standard Adder Cells CMOS Adder's Architectures Ripple Carry Adders Carry Look- Ahead Adders Carry Select Adders Carry Save Adders Low- Voltage Low-Power Design Techniques Trends of Technology and Power Supply Voltage Low- Voltage Low-Power Logic Styles. ond syllabus(if any): in the syllabus(if any) utcome: : Utilize logic simulation methods to design Low	Low-Voltage Low-Power Adders T1,R1 Introduction, Standard Adder Cells T1 CMOS Adder's Architectures Ripple Carry Adders T1, R 1 Carry Look- Ahead Adders T1, R 1 Carry Select Adders T1, R 1 Carry Save Adders T1, R 2 Low- Voltage Low-Power Design Techniques T1, R 1 Trends of Technology and Power Supply Voltage T1, R2 Low- Voltage Low-Power Logic Styles. R1 md syllabus(if any): Inthe syllabus(if any) utcome: : Utilize logic simulation methods to design Low Power VLSI		

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-IV Syllabus

Low-Voltage Low-Power Multipliers: Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh- Wooley Multiplier, Booth Multiplier, Introduction to Wallace TreeMultiplier.

No. of	Topics	Reference	Teaching		
Sessions			Method/		
Planned			Aids		
2	Low-Voltage Low-Power Multipliers	T2,R2	BB		
1	Introduction, Overview of Multiplication	R2	BB		
2	Types of Multiplier Architectures	T2,R1	BB		
1	Braun Multiplier	T2, R2	BB		
2	Baugh- Wooley Multiplier	T2, R 1	BB		
2	Booth Multiplier	T2	BB		
2	Introduction to Wallace TreeMultiplier.	T2	BB		
Gap beyo	ond syllabus(if any):				
Gap with	Gap within the syllabus(if any)				
	utcome: Apply logic-level, architecture-level and system-lev		in various		
designs to optimize power consumption of the VLSI circuits (Analysis)					

*Session Duration: 50minutes

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Unit-V Syllabus

Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trend and Development of ROMs, Basics of SRAM, Memory Cell, Precharge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

No. of	Topics	Reference	Teaching	
Sessions			Method/	
Planned			Aids	
2	Low-Voltage Low-Power Memories	T2,R2	BB	
1	Basics of ROM, Low-Power ROM Technology	T2,R2	BB	
1	Future Trend and Development of ROMs	T2	BB	
1	Basics of SRAM, Memory Cell	T1, R 1	BB	
2	Precharge and Equalization Circuit	T1, R 1	BB	
2	Low-PowerSRAM Technologies	T1	BB	
1	Basics of DRAM	T2	BB	
1	Self-Refresh Circuit	T1, R 1	BB	
2	Future Trend and Development of DRAM.	T2, R 1	BB	
Gap beyo	ond syllabus(if any):			
Gap with	in the syllabus(if any)			
Course O	Course Outcome 1: : Known the design of Low-Voltage Low-Power Memories			
((Knowledge and Analysis)			
Course Outcome 2: Implement practical and state of the art Low Power VLSI design, suitable				

for real life and Industry applications. (Evaluation)

*Session Duration: 50minutes

Text Books		
Text 1	CMOS Digital Integrated Circuits – Analysis and Design – Sung-Mo Kang, Yusuf Leblebici, TMH, 2011.	
Text 2	Low-Voltage, Low-Power VLSI Subsystems – Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering	

Reference	ce Books
Ref 1	Introduction to VLSI Systems: A Logic, Circuit and System Perspective – Ming-BO Lin, CRC Press, 2011
Ref 2	Low Power CMOS VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad, John Wiley & Sons, 2000.
Ref 3	Practical Low Power Digital VLSI Design – Gary K. Yeap, Kluwer Academic Press, 2002.
Ref 4	Leakage in Nanometer CMOS Technologies – Siva G. Narendran, Anatha Chandrakasan, Springer, 2005.

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

WEB REFERENCES:

Websit	tes
W1	https://www.physicaldesign4u.com/2020/01/sources-of-power-dissipation-in- cmos.html
W2	http://www.faadooengineers.com/online-study/post/ece/vlsi-design/1829/variable- threshold-cmos-vtcmos-circuits
W3	https://www.ece.uvic.ca/~fayez/courses/ceng465/lab_465/project1/adders.pdf
W4	https://www.electronics-notes.com/articles/electronic_components/semiconductor- ic-memory/dynamic-ram-how-does-dram-work-operation.php
W5	https://ikarthikmb.github.io/wallace-tree/

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1EOn2dbK97jZrwzgIae8XVGIa9jaz ua6x/view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1bU44ws7cIUdSuUwaIQnrnbM7zcCf LzoF/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/11CBRdgcFM9ehjicookfdaCPEIWN8 gter/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1txCr34lUwJ9b5C7Wkanqx4mJLo-IU3Ir/view?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/15qmXx9e15eYLNyLBU1os1ClUSl2 UCsL1/view?usp=sharing

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Power point presentation

PPT link:

https://drive.google.com/file/d/1LDa-bqPkRPXmHhReRlipFe9W-AAPooTq/view?usp=sharing

Code No: 158BH JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, July/August - 2022 LOW POWER VLSI DESIGN (Electronics and Communication Engineering)

Time: 3 Hours

Max.Marks:75

Answer any five questions All questions carry equal marks

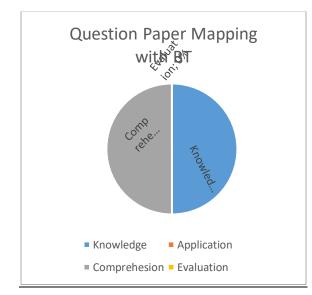
- 1.a) Discuss the need of a low power designs in VLSI circuits.
- b) Derive the equation for threshold voltage of a MOSFET and discuss the factors involved in it.
- c) Explain how the V_{th} and V_{dd} influences the power dissipation. [5+5+5]
- 2. Discuss with a suitable figure (i) Switching Power Dissipation (ii) Short Circuit Power Dissipation (iii) Glitching Power Dissipation. [15]
- 3. Discuss the two basic architectural level measures to reduce the power in VLSI circuits and explain with suitable examples. [15]
- 4.Discuss about power reduction by
a) One hot codingb) CG granularity.[8+7]
- 5.a) Write down the differences between carry select adders and carry save adders.
- b) Discuss two types of low voltage low power logic styles with suitable examples. [5+10]
- 6.a) Draw the logic circuit of the conventional CMOS full adder and explain about it.
- b) Explain the basic theory, operation and performance evaluation of carry look-ahead Adder. [7+8]
- 7.a) Discuss the types of multiplier architectures and compare them.
- b) Explain about Booth multiplier with neat architectures. [5+10]
- 8.a) Write down differences between 6T and 4T static RAM cells.b) With a neat diagram, explain the block diagram of DRAM architecture. [6+9]

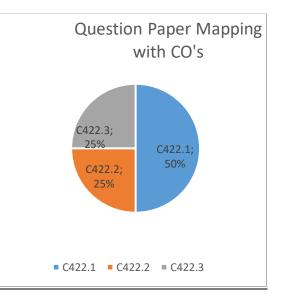
---00000----

Code No: 158BH R18 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, September - 2022 LOW POWER VLSI DESIGN (Electronics and Communication Engineering) Time: 3 Hours Max.Marks:75 Answer any five questions All questions carry equal marks

1.	What are the different sources of power dissipation in VLSI circuits and explain the	em in detail? [15]
2.a)	Describe about short channel effect.	
b)	What is hot electron effect in low power VLSI design?	
c)	What is velocity saturation in MOS FET?	[5+5+5]
3.a)	How VTCMOS circuits reduce efficiently the overall power dissipation?	
b)	Compare the VTCMOS and MTCMOS circuits.	[9+6]
,	1	
4.a)	Explain any one method of minimizing the switched capacitance at circuit level i	
b)	Explain how a simple mask level measures reduce power dissipation and parasitic	-
		[8+7]
5.a)	Design a standard adder circuit and modify it for low power and low voltage.	
b)	Draw the architecture of low voltage low power carry save adder and explain its	working with
	truth table.	[6+9]
6.	What are the different low power, low voltage logic styles and explain then	n with some
0.	examples.	[15]
		[10]
7.a)	Design a Braun multiplier and what modifications are required to use in low	power VLSI
	circuits	
b)	What are advantages and limitations of Wallace tree multiplier with respect to low design?	-
	design?	[10+5]
8.a)	Draw the 6T static RAM structure and explain how it stores the data.	
b)	Why Refresh circuit is needed in DRAM and draw such a circuit and explain its	working.

[7+8]

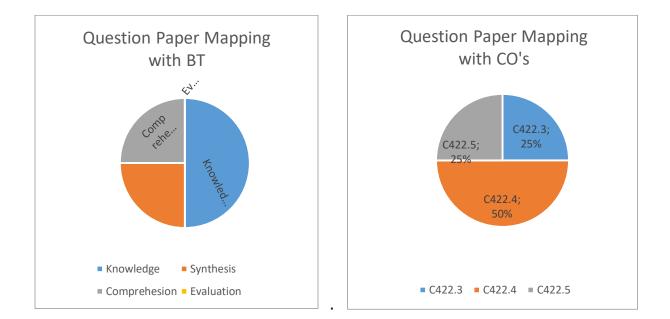

---00000----



Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 Set – I

I - Mid Examinations, May -2023						
Year &Branch: IV ECE-A,B&C Date:08 -05-202						
Subject: LPVLSIDMax. Marks: 10Time: 60 m						
Answer any TWO Questions. All Question Carry Equal Marks 2*5=10 marks						
(This question paper is prepared with Course Outcome and BT's mapping)						

1	Write short notes on need for low power circuit design	(5)	C422.1	(Knowledge)
2.	Explain the switching power dissipation	(5)	C422.1	(Comprehension)
3	Explain the operation of Multiple threshold CMOS (MTCMOS)?	(5)	C422.2	(Comprehension)
4	What are the standard adder cells, and describe the Half Adder with diagram?	(5)	C422.3	(Knowledge)



Shereguda (V), Ibrahimpatnam (M), R.R.Dist-501 510 Set – I

II - Mid Examinations, June -2023						
Year &Branch: IV ECE-A,B&C Date: 19-06-2023 (AN						
Subject: LPVLSIDMax. Marks: 10Time: 60 mins						
Answer any TWO Questions. All Question Carry Equal Marks 2*5=10 marks						
(This question paper is prepared with Course Outcome and BT's mapping)						

1	Design the different logic styles of XOR/XNOR gate.	(5)	C422.3	(Synthesis)
2	Draw the structure of Booth Encoder and Explain it	(5)	C422.4	(Knowledge)
3	Explain different types of Multiplier architectures	(5)	C422.4	(Comprehension)
4	Write about the future trend and development of ROM	(5)	C422.5	(Knowledge)

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B.Tech IV Year II Sem I Mid – Term Examination, May-2023

LPVLSI Design

DATE: 08 /05/2023		ective Ex	kam)	X.MARKS: 10		
NAME :	ROLL	NO:		MARKS:		
I. Choose The Correct	Alternative:					
1. To reduce the overall pow	er dissipation in CM	IOS logic	circuits supply vo	ltage should be	: []
a) high b) low	c) medium	C	l) none			
2. High performance microp	rocessor chips opera	te at clock	frequency in the	range of	[]
a) 100-300 MHZ b) 200-	300 MHZ c) 300-40	00 MHZ 0	l) none			
3. The threshold voltage Vt of	of a MOS transistor i	s a functio	on of		[]
a) source-to-substrate volta	ge b) substrate-to-so	urce volta	ge c) Source-to-	Drain Voltage d	l) no	ne
4 In CMOS Logic NMOS ne	twork is called				[]
a) Pull-Up b) Pull-c	lown c) both	d)	none			
5. Short channel effects area) Surface scattering b) V	elocity saturation c	e) impact i	onization d) all		[]
6. The disadvantage of Parala) increased area b) increased	1 0 11				[]
7. Different levels in switchera) System level b) Circuit	-	-			[]
8. As the technology developa) 0.17μm - 0.13 μm b) 0.	Ŭ			002 is	[]
 9. As the technology develop 1989-2002 is a) 1.5V- 1.2V b) 2V- 1V 		U	nas undergone from	m	[]
10. Which type of MOSFET	exhibits no current	at zero gat	te voltage		[]
a) Enhancement mode Mec) both	OSFET b) Depletio d) none		IOSFET			

II. Fill in the blanks

- 11. In conventional CMOS logic circuits, the substrate terminals of all nMOS transistors are connected to
- In VTCMOS circuit technique, on the other hand, the transistors are designed inherently with a low ______.

13. In CMOS Logic PMOS network is called _____

14. In NMOS & PMOS transistors used in CMOS logic gate have ______reverse leakage and sub threshold currents.

15. Drain –Induced barrier lowering and punch through is ______ effect.

16. What is MTCMOS______.

17. ______ technique is used to automatically control the threshold voltages.

18. In Pipeline approach the dynamic power consumption of structure is P_{ref} =_____

19. In conventional CMOS logic circuits the substrate terminals of all pMOS transistors are connected to

20. Typical power consumption is in between _____

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B.Tech IV Year II Sem II Mid – Term Examination, June-2023

LPVLSI Design

(Objective Exam)						
DATE: 19 /06/2023 (AN)	TIME: 20 Min	MAX.MARKS: 10				
NAME :	ROLL NO:	MARKS:				

I. Choose The Correct Alternative:

1. CMOS logic styles have used to implement the low power cells			
a) 8-bit adder cells b) 2-bit adder ce	ells c) 1-bit adder cells d) 4-bit adder cells		
2. The 4-T cell consist of NMOS trans	sistors	[]	
a) 2 b) 4 c) 6 d) 8			
3. The mass storage memory is a serial o	or sequential memory such as found in	[]	
a) Hard disks b) CD-ROM c)) both d) RAM		
4. ROM chip architecture contains		[]	
a) Standard ROM b) Mask – Program	nmed ROM c) PROM d) all		
5. The DRAM access time is		[]	
a) 60ns b) 100ns c)	10ns d) none		
6. The power supply is reduced toV	'olts by year 2016	[]	
a) 0.5v b) 0.6v c)	0.7v d) 0.9v		
7. CSA stands for		[]	
a) Carry select adders b) Carry save adders			
b) Complementary save adders	d) none		
8. The basic unit of Ripple carry adder i	İS	[]	
a) Full adder b) Half adder	c) n-bit adder d) none		

9. The hardware implementation of parallel multipliers advances in improved []						
a) Accuracy	b) Size	c) Dynamic range	d) none			
10. The two main	categories of a	binary arithmetic multipl	ication involves they are	[]		
a) Computing u	nsigned numb	ers b) Computing si	gned numbers			
c) both		d) none				
II. Fill in the bla	anks					
11.The final step in	n the fabricatio	on process of manufacture	is called			
-		-				
12. Low power tec	chniques at the	circuit level is used to det	ermine the			
13. The hardware and		on of parallel multipliers a	dvances in improved			
14.The main speci	fication of mu	ltiplier is				
		-	algorithm			
10. The Serial Indi	upner uses u _					
	-		ate and			
circuits for eac	ch bit lines .					
17. Low power hig	gh performanc	e SRAM s are usefull in	device an	d high		
performance p				0		
18 method result in reduction of the capacitance AND/OR switching activity of bit and row lines.						
switching activ	vity of bit and	i row lines.				
19.Multiplication i	is considered a	s a series of repeated	·			
-		-				
-	-	<u> </u>	pers is first converted to its			
	represen	lation				

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE

B.Tech IV Year II Sem I Mid –Term Examination, May-2023

LPVLSI Design

DATE: 08 /05/2023

(Objective Exam)

ANSWER KEY

Descriptive paper key link:

https://drive.google.com/file/d/17sYTcOVXiwQep0e3uAqwWhiXPiJw6SrZ/view?usp =sharing

Objective/Quiz Key Paper

I. Choose The Correct Alternative:

- 1. b
- 2. a
- 3. a
- 4. b
- 5. d
- 6. c
- 7. d
- 8. a
- 9. a
- 10. a

II. Fill in the blanks

- 11. Ground potential
- 12. Threshold voltage
- 13. Pull-Up Network
- 14. Non zero
- 15. Short channel
- 16. Multiple Threshold CMOS
- 17. VTCMOS
- $18. \ C_{total}. V_{DD}{}^2. f_{clk}$
- 19. V_{DD}
- 20. 20-50W

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE B.Tech IV Year II Sem II Mid –Term Examination, June-2023 LPVLSI Design (Objective Exam)

DATE: 19 /06/2023 (AN)

Descriptive paper key link:

https://drive.google.com/file/d/1vY5Ls1SLhrFdbeQ21tW4HoY8tIIk39wI/view?usp=s haring

Objective/Quiz Key Paper

I. Choose The Correct Alternative:

- 1. c
- 2. b
- 3. c
- 4. d
- 5. a
- 6. b
- 7. b
- 8. a
- 9. b
- 10. c

II. Fill in the blanks

- 11. Mask programming
- **12.** Short circuit current
- 13. Speed, Size
- 14. Size or Speed
- 15. Successive addition
- 16. Pre-Charge and pre-discharge
- 17. Hand-held
- 18. Cascade sensing or Difference Encoding
- 19. Additions
- 20. 2's Complement

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT-1 SUBJECT: LOW POWER VLSI DESIGN

1	What are the sources of power dissipation, and explain the switching power dissipation	C422.1	(Comprehension)
2	Define what is Architectural level approach, and Explain about pipeline approach?	C422.3	(Knowledge)
3	Write notes on what are the trends of technology?	C422.2	(Knowledge)
4	Write about leakage power dissipation	C422.1	(Knowledge)
5	Explain the switching power dissipation	C422.2	(Comprehension)
6	Write short notes on need for low power circuit design	C422.1	(Knowledge)
7	Explain the operation of Multiple threshold CMOS (MTCMOS)?	C422.1	(Knowledge)
8	What are the standard adder cells, and describe the Half Adder with diagram?	C422.3	(Knowledge)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENT-2 SUBJECT: LOW POWER VLSI DESIGN

1	Design the different logic styles of XOR/XNOR gate.	(5)	C422.3	(Synthesis)
2.	Draw the structure of Booth Encoder and Explain it	(5)	C422.4	(Knowledge)
3	Explain different types of Multiplier architectures	(5)	C422.4	(Comprehension)
4	Write about the future trend and development of ROM	(5)	C422.5	(Knowledge)
5	Differentiate the different types of SRAM Memory cells and note down its limitations.	(5)	C422.5	(Analysis)
6	Explain the Architecture of Braun Multiplier	(5)	C422.4	(Comprehension)
7	Explain the design techniques for low power circuit development.	(5)	C422.5	Comprehension)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

Course Title	LOW POWER VLSI DESIGN
Course Code	EC823PE
Programme	B.Tech
Year & Semester	IV year II-semester, A sec
Regulation	R18
Course Faculty	M GANESH, Assistant Professor, ECE

Slow learners:

S No	Roll no	No of	Internal-I Status	Internal-II
		backlogs		Status
1	19X31A0404	3	22	22
2	19X31A0410	4	21	21
3	19X31A0412	3	19	23
4	19X31A0416	4	19	21
5	19X31A0417	4	17	23
6	19X31A0423	4	17	21
7	19X31A0424	4	20	21
8	19X31A0428	4	19	20
9	19X31A0441	3	20	21
10	19X31A0448	3	14	17

S.NO	ROLL.NO.	Assigned work
1	19X31A0401	
2	19X31A0403	
3	19X31A0407	
4	19X31A0408	
5	19X31A0411	
6	19X31A0413	
7	19X31A0414	Advanced concepts material is
8	19X31A0420	provided for advanced learners,
9	19X31A0421	subject seminars are presented
10	19X31A0422	by advanced learners in the
11	19X31A0427	class, and advanced learners are
12	19X31A0429	encouraged to support slow learners
13	19X31A0430	learners
14	19X31A0431	
15	19X31A0435	
16	19X31A0437	
17	19X31A0440	
18	19X31A0442	
19	19X31A0443	
20	19X31A0444	
21	19X31A0446	
22	19X31A0447	
23	19X31A0450	
24	20X35A0402	
25	20X35A0403	
26	20X35A0404	

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

B.TECH III – I-ECE -A RESULT ANALYSIS

ACADAMIC	COURSE	NUMB STUD		-	ON PAPER TING	
YEAR	NAME		DAGED			PASS%
		APPEARED	PASSED	INTERNAL	EXTERNAL	
2022-23	LOW POWER VLSI DESIGN	57	48	COURSE FACULTY	JNTUH	84.21

LOW POWER VLSI DESIGN (422) RESULT ANALYSIS

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana - 501 510

Website: https://siiet.ac.in/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REMEDIAL CLASSES TIME TABLE

A.Y 2022-23

SEMESTER-II

BRANCH/ SEC	MON 4.00 PM- 5.00 PM	TUE 4.00 PM- 5.00 PM	WED 4.00 PM- 5.00 PM	THUR 4.00 PM- 5.00 PM	FRI 4.00 PM- 5.00 PM
II ECE-A	EMF&W	LTNM	A&DC	LICA	ECA
II ECE-B	LICA	A&DC	EMF&W	ECA	LTNM
III ECE-A	DSP	VLSID	A&P	ESD	IM
III ECE-B	A&P	ESD	DSP	IM	VLSID
III ECE-C	IM	A&P	ESD	VLSID	DSP
IV ECE-A	WSN	ML	LPVLSID	-	-
IV ECE-B	ML	LPVLSID	WSN	-	-
IV ECE-C	LPVLSID	WSN	ML	-	-

Head of the Department Electronics and Communication Engg. Dept SRI INDU INSTITUTE OF ENGG & TECH Sheriguda(V), Ibrahimpalham(M), R.R.Dist-501 514

PRINCIPAL Sin Indu Institute of Engineering & Tech

Sheriguda(Vill), Ibrahimpatnam R R Dist Telangana -501 510

Scanned by CamScanner

Department of Electronics and Communication Engineering

Course Outcome Attainment (Internal Examination-1)

Name of the faculty :	M.GANESH	Academic Year:	2022-23	
Branch & Section:	ECE - A	Examination:	I Internal	
Course Name:	LOW POWER VLSI DESIGN	Year: IV	Semester:	II

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj1	A1
Max	. Marks ==>	5		5		5		5		10	5
1	19X31A0401			5		4				8	5
2	19X31A0402			4		3				8	5
3	19X31A0403	3		4						8	5
4	19X31A0404	4		5						8	5
5	19X31A0405	4		4						8	5
6	19X31A0406	3				4				9	5
7	19X31A0407									5	5
8	19X31A0408	3						5		9	5
9	19X31A0409	3		3						8	5
10	19X31A0410	3		5						8	5
11	19X31A0411	4		4						9	5
12	19X31A0412	1				4				8	5
13	19X31A0413			5		3				8	5
14	19X31A0414			5		3				8	5
15	19X31A0415			4		4				8	5
16	19X31A0416			3		3				8	5
17	19X31A0417			3		2				7	5
18	19X31A0420			5		4				8	5
19	19X31A0421			4		4				9	5
20	19X31A0422			3		4				9	5
21	19X31A0423	2		3						7	5
22	19X31A0424	3				5				7	5
23	19X31A0425	3		4						8	5
24	19X31A0426	3		2						9	5
25	19X31A0427	4		4						9	5
26	19X31A0428	4		1						9	5
27	19X31A0429	5				5				9	5
28	19X31A0430	4		3						9	5
29	19X31A0431	3						5		9	5
30	19X31A0432					3		4		8	5
31	19X31A0433			4						5	5
32	19X31A0434							4		5	5
33	19X31A0435	4		2						7	5
34	19X31A0436	3						4		9	5
35	19X31A0437	3						4		9	5
36	19X31A0438	3				4				9	5
37	19X31A0439					4				5	5
38	19X31A0440	5								9	5
39	19X31A0441					3		3		9	5
40	19X31A0442					5		4		9	5

41	19X31A0443	3		4						10	5
42	19X31A0444	5		5						10	5
43	19X31A0445	4		3						9	5
44	19X31A0446	4				5				8	5
45	19X31A0447			5		5				8	5
46	19X31A0448							4		5	5
47	19X31A0449	3				4				9	5
48	19X31A0450	3				4				9	5
49	20X35A0401	3								7	5
50	20X35A0402					5				9	5
51	20X35A0403					5		5		9	5
52	20X35A0404	3		4						9	5
53	20X35A0405	3		3						9	5
54	20X35A0407	2								8	5
55	20X35A0408									6	5
56	20X35A0409	3				4				9	5
57	20X35A0410	3				2				7	5
Targ	get set by the	2.00	0.00	2.00	0.00	2 00	0.00	2.00	0.00	6.00	2.00
facu	lty / HoD	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
	ber of students										
-	ormed above the	32	0	27	0	25	0	10	0	52	57
targe											
Nun	ber of students	35	0	30	0	27	0	10	0	57	57
	npted	55	U	50	0	21	v	10	0	57	57
	entage of students										
	ed more than	91%		90%		93%		100%		91%	100%
targe	et										
<u>CO</u>	<u>Mapping with Exa</u>	m Quest	tions:								
	CO - 1	Y		Y						Y	Y
	CO - 2					Y				Y	Y
	CO - 3					-		Y		Y	Y
	CO - 4							1		1	1
	CO - 5										
	CO - 6										
		1									<u> </u>
0/	Students Scored										
70		91%		90%		93%		100%		91%	100%
	>Target %	9170		90%		7370		10070		7170	10070
CO	Attainment based	on Exam	Questi	ons:							
	CO - 1	91%		90%						91%	100%

CO - 1	91%	90%			91%	100%
CO - 2			93%		91%	100%
CO - 3				100%	91%	100%
CO - 4						
CO - 5						
CO - 6						

СО	Subj	obj	Asgn	Overall	Level
CO-1	91%	91%	100%	94%	3.00
CO-2	93%	91%	100%	95%	3.00
CO-3	100%	91%	100%	97%	3.00
CO-4					

Attainment Level							
1	40%						
2	50%						
3	60%						

CO-5								
CO-6								
Attainment (Internal 1 Examination) 3.00								

Department of Electronics and Communication Engineering Course Outcome Attainment (Internal Examination-2)

Name of the faculty :	M.GANESH	Academic Year:	2022-23	
Branch & Section:	ECE - A	Examination:	II Internal	
Course Name:	LOW OWER VLSI DESIGN	Year: IV	Semester:	Π

S.No	HT No.	Q1a	Q1b	Q2a	Q2b	Q3a	Q3b	Q4a	Q4b	Obj4	A4
Max. Marks ==>		5		5		5		5		10	5
1	19X31A0401	5				4				8	5
2	19X31A0402	4		3						8	5
3	19X31A0403			4		5				8	5
4	19X31A0404					4		4		9	5
5	19X31A0405					3		5		9	5
6	19X31A0406			4		5				9	5
7	19X31A0407	5								8	5
8	19X31A0408			5						8	5
9	19X31A0409					3		3		8	5
10	19X31A0410					3		4		8	5
11	19X31A0411	5		3						9	5
12	19X31A0412	3		3						9	5
13	19X31A0413			5						8	5
14	19X31A0414			5		4				9	5
15	19X31A0415			4		5				9	5
16	19X31A0416			4		4				9	5
17	19X31A0417					5		4		8	5
18	19X31A0420	3						5		8	5
19	19X31A0421	4		4						9	5
20	19X31A0422			4		4				9	5
21	19X31A0423			4				4		8	5
22	19X31A0424					4		4		8	5
23	19X31A0425	5				5				9	5
24	19X31A0426	5		4						8	5
25	19X31A0427			5		4				9	5
26	19X31A0428							5		8	5
27	19X31A0429			5				5		9	5
28	19X31A0430	4		5						8	5
29	19X31A0431	5		4						8	5
30	19X31A0432					3		3		8	5
31	19X31A0433							3		4	5
32	19X31A0434					3		3		5	5
33	19X31A0435	4		5						4	5
34	19X31A0436	4		3						9	5
35	19X31A0437			4		4				9	5
36	19X31A0438					4				9	5
37	19X31A0439			4		5				4	5
38	19X31A0440			5				5		9	5
39	19X31A0441							5		9	5
40	19X31A0442	5						5		8	5
41	19X31A0443	5								8	5
42	19X31A0444			5		5				9	5
43	19X31A0445					5				9	5
44	19X31A0446					4		5		9	5

45 19X31A0447			5		5				8	5
46 19X31A0448			5						9	5
47 19X31A0449	3		4						8	5
48 19X31A0450	4		4						8	5
49 20X35A0401			4		4				8	5
50 20X35A0402					5		4		8	5
51 20X35A0403			2				5		9	5
52 20X35A0404			4		4				8	5
53 20X35A0405					4		4		8	5
54 20X35A0407							5		9	5
55 20X35A0408					3		5		1	5
56 20X35A0409			3		4				8	5
57 20X35A0410	3		4						8	5
Target set by the faculty / HoD	3.00	0.00	3.00	0.00	3.00	0.00	3.00	0.00	6.00	3.00
Number of students performed above the target	18	0	32	0	30	0	22	0	52	57
Number of students attempted	18	0	33	0	30	0	22	0	57	57
Percentage of students scored more than target	100%		97%		100%		100%		91%	100%
CO Mapping with Exa	m Quest	tions:								
CO - 1										
CO - 2										
CO - 3										
CO - 4	Y								Y	Y
CO - 5	1		Y		Y				Y	Y
CO - 6			-		-		Y		Y	Y
% Students Scored		1								
>Target %	100%		97%		100%		100%		91%	100%
CO Attainment based		1 1 Oues								
CO - 1		I Ques								
CO - 2										
CO - 3										
CO - 4	100%								91%	100%
CO - 5			97%		100%		1000/		91%	100%
CO - 6							100%		91%	100%
CO	Subj	obj	Asgn	Ov	verall	Le	evel		Attai	nment L
CO-1								1	40%	
CO-2									2	50%
CO-3	1	1							3	60%
CO-4	1000/	91%	100%	0	70/	2	.00		5	007
				. 9	97%		.00			
	100%						00			
CO-5 CO-6	100% 98% 100%	91%	100%	9	7% 7%	3.	.00 .00			

Attainment (Internal Examination-2] 3.00

Department of Electronics and Communication Engineering Course Outcome Attainment (University Examinations)

Name o	of the faculty :	M.GANESH		Academic Y		2022-23		
	Branch & Section: ECE - A			Year / Seme		IV/II		
	Name:	LOW POWER VLSI DI	ESIGN	1				
S.No	Roll Number	Marks Secured	7	S.No	Roll Number	Marks Secured		
1	19X31A0401	33		36	19X31A0438	37		
2	19X31A0402	28		37	19X31A0439	48		
3	19X31A0403	39		38	19X31A0440	56		
4	19X31A0404	38		39	19X31A0441	30		
5	19X31A0405	40		40	19X31A0442	45		
6	19X31A0406	43		41	19X31A0443	51		
7	19X31A0407	31		42	19X31A0444	45		
8	19X31A0408	48		43	19X31A0445	34		
9	19X31A0409	48		44	19X31A0446	32		
10	19X31A0410	8		45	19X31A0447	47		
11	19X31A0411	51		46	19X31A0448	18		
12	19X31A0412	12		47	19X31A0449	30		
13	19X31A0413	41		48	19X31A0450	37		
14	19X31A0414	34		49	20X35A0401	40		
15	19X31A0415	34		50	20X35A0402	35		
16	19X31A0416	27		51	20X35A0403	38		
17	19X31A0417	2		52	20X35A0404	33		
18	19X31A0420	46		53	20X35A0405	43		
19	19X31A0421	51		54	20X35A0407	29		
20	19X31A0422	37		55	20X35A0408	34		
21	19X31A0423	20		56	20X35A0409	35		
22	19X31A0424	12		57	20X35A0410	33		
23	19X31A0425	42						
24	19X31A0426	42						
25	19X31A0427	51						
26	19X31A0428	3						
27	19X31A0429	53						
28	19X31A0430	40						
29	19X31A0431	45						
30	19X31A0432	46						
31	19X31A0433	AB						
32	19X31A0434	AB						
33	19X31A0435	40						
34	19X31A0436	39						
35	19X31A0437	41						
Max M	arks	75						
Class A	verage mark		33		Attainment Level	% students		
		formed above the target	40		1	40%		
Number	r of successful st	udents	57		2	50%		

Percentage of students scored more than target	70%
Attainment level	3

Department of Electronics and Communication Engineering Course Outcome Attainment

Name of the faculty :M.GANESHAcademic Year:2022-23Branch & Section:ECE - AYear:IVCourse Name:LOW POWER VLSI DESIGNSemester:II

Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level	
CO1	3.00		3.00	3.00	3.00	
CO2	3.00		3.00	3.00	3.00	
CO3	3.00		3.00	3.00	3.00	
CO4		3.00	3.00	3.00	3.00	
CO5		3.00	3.00	3.00	3.00	
CO6		3.00	3.00	3.00	3.00	
Interi	nal & Unive	rsity Attainment:	3.00	3.00		
		Weightage	25%	75%		
CO Attainment for the	course (Int	ernal, University)	0.75	2.25	1	
CO Attainment for t	he course (l	Direct Method)		3.00]	

Overall course attainment level3.00

Department of Electronics and Communication Engineering <u>Program Outcome Attainment (from Course)</u>

Name of Faculty:	M.GANESH	Academic Year:	2022-23
Branch & Section:	ECE - A	Year:	IV
Course Name:	LOW PWER VLSI DESIGN	Semester:	II

CO-PO mapping

1 mm		<u> </u>												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	-	-	-	-	-	-	3	2	2
CO2	3	3	3	2	-	-	-	-	-	-	-	3	2	2
CO3	3	-	3	2	-	-	-	-	-	-	-	3	2	2
CO4	3	-	-	3	-	-	-	-	-	-	-	3	2	2
CO5	3	-	3	3	-	-	-	-	-	-	-	3	3	3
CO6	3	-	3	3	-	-	-	-	-	-	-	3	2	2
Course	3	3	3	2.5	-	-	-	-	-	-	-	3	2.167	2.17

со	Course Outcome Attainment	
CO1	3.00	
CO2	3.00	
CO3	3.00	
CO4	3.00	
CO5	3.00	
CO6	3.00	
Overall course attainment level	3.00	

PO-ATTAINMENT

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO Attainme nt	3.00	3.00	3.00	2.50							#####	3.00	2.17	2.17

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510 Website: https://siiet.ac.in/

ASSIGNMENTS AND REGISTERS

Assignment 1 script link:

https://drive.google.com/file/d/1aVL6b4zS56WUxNIRd3C3Ci08EuwhGsBV/vi ew?usp=sharing

Assignment 2 script link:

https://drive.google.com/file/d/1i2eRdthTERiycJwWsoKbSQzKL_NB3MYX/v iew?usp=sharing

Attendance register link:

https://drive.google.com/file/d/15X4F7iFKVH9UbDxu2zqubU97kiXXuxNe/vie w?usp=sharing