

COURSE FILE

ON

ENGINEERING CHEMISTRY

Course Code - CH203BS

I B. Tech Semester-II A.Y. 2022-2023

> Prepared by Dr.D.Premalatha Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda^(M) Ibrahimoatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

Index of Course File

	COURSE FILE INDEX					
S.No	Course/Subject Name					
1	Institute Vision & Mission					
2	POs/PSOs					
3	Course Structure					
4	Course syllabus					
5	Course Outcomes (CO)					
6	Mapping CO with PO/PSO; course with PO/PSO					
7	Academic Calendar					
8	Time table - highlighting your course periods including tutorial					
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book					
10	Gap within the syllabus - mapping to CO, PO/PSO					
11	Gaps beyond the syllabus - Mapping to PO/PSO					
12	Webreferences					
13	Lecture notes					
14	List of Power pointpresentations / Videos					
15	University Question papers					
16	Internal Question papers, Key with CO and BTL					
17	Assignment Question papers mapped with CO and BTL					
18	Scheme of evaluation with CO and BTL mapping					
19	Tutorial topics with evidence					
20	Result Analysis to identify weak and advanced learners					
21	Result Analysis at the end of the course					
22	Remedial class schedule and evidences					
23	CO, PO/PSO attainment					
24	Attendance register					
25	Course file (Digital form)					

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- IM2: To Continuous assess of teaching-learning process through instituteindustry collaboration.
- IM3: To be a Centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- IM4: To Create an enterprising environment to ensure culture ethics and social responsibility among the stakeholders.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH reriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516 Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PROGRAM OUTCOMES

PO1: ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH iseriouda⁽¹⁾ Ibrahimostnam (II) R.R. Dist-501 511

B.Tech. in COMPUTER SCIENCE AND ENGINEERING(AI&ML)

COURSE STRUCTURE

I YEAR SYLLABUS (BR22 Regulations)

Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

ENGINEERING CHEMISTRY (Course Code: CH203BS)

B.Tech. I Year II Sem.

L T P C 3 1 0 4

Course Objectives:

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills Required to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of battery Chemistry, significance of corrosion it's control to protect the structures.
- 3. To imbibe the basic concepts of petroleum and its products.
- 4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

- 1. Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
- 2. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- 3. They can learn the fundamentals and general properties of polymers and other engineering materials.
- 4. They can predict potential applications of chemistry and practical utility in order to become good Engineers and entrepreneurs.

UNIT - I: Water and its treatment: [8]

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation - Determination of F-ion by ion- selective electrode method.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water -Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods -Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion [8]

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic Requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods

UNIT - III: Polymeric materials: [8]

Definition - Classification of polymers with examples - Types of polymerization -

addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene **Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). **Rubbers:** Natural rubber and its vulcanization.

Elastomers: Characteristics – preparation – properties and applications of Buna-S, Butyl and Thiokol

rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in Transpolyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylacticacid and poly vinyl alcohol and their Applications.

UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials: [8]

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinyl amides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point

TEXT BOOKS:

1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010

2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016

3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.

4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications

REFERENCE BOOKS:

1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015

2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course: Engineering Chemistry(C122)

Class: I-B. TECH AI&ML-A

Course Outcomes

After completing this course the student will be able to:

- C122.1 Students can explain the basic properties of water & usage in domestic, industrial purpose, preventive measures to water related problems and water purification(Understanding)L2
- C122.2 Students can acquire the knowledge of construction of electrochemical cells used in various batteries, fuel cells and their applications(Applying)L3
- C122.3 Students can explain the mechanism of corrosion, types of corrosion, protection measures and their application in daily life. (Applying)L3
- C122.4 Students can learn the fundamentals & general properties of polymers, types of polymers, preparation& applications in various fields(Applying)L3
- C122.5 Students can get the basic knowledge on analysis of fuels and composition of the fuels(Analyzing) L4
- C122.6 Students can acquire the knowledge on engineering materials like cement, smart materials, lubricants and their application in constructions & health benefits(Understanding)L2

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	Р О3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	P O 11	PO 12	PSO 1	PSO 2
C122.1	3	2	-	-	-	1	1	-	-	-	-	2	-	-
C122.2	3	2	-	-	1	1	1	-	-	-	-	1	-	-
C12.3	2	2	-	-	-	-	2	-	-	-	-	1	-	-
C122.4	3	2	-	-	-	-	1	-	-	-	-	1	-	-
C122.5	2	2	-	-	-	-	1	-	-	-	-	-	-	-
C122.6	3	2	-	-	1	-	1	-	-	-	-	2	-	-
C122	2.6	2	-	-	1.0	1.0	1.16	-	-	-	-	1.1	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Applythe knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and abilityto engage in independent and life-long learning in the broadest context of technological change.

C122.1 He can explain the basic properties of water, preventive measures to water related problems. He can Apply the water treatment processes for industrial and domestic purpose (**Understanding**)**L2**

	Justification
PO1	Students can understand the properties and uses of water for industrial and domestic purpose. (level 3)
PO2	He can Identifywater types (level 2)
PO6	Students can know the importance of purification methods(level1)
PO7	Students can understand the impact of water treatment methods in industrial and domestic usage (level1)
PO12	Students can apply water purification methods for industrial and domestic purpose in future(level 2)

C122.2: Students can acquire the knowledge on construction of electrochemical cells used in various batteries, fuel cells and their applications (Knowledge)L1

	Justification
PO1	Students can get the knowledge on construction of electrochemical cell and fuel cells (level2)
PO2	Students can understand the usage of batteries and fuel cells (level 2)
PO5	Students can understand the types of batterycells & fuel cells(level1)
PO6	Students can get the knowledge on applications of fuelcells(level1)
PO7	Students can understand importance of usage of ecofriendly cells (level1))
PO12	Students can use this knowledge to identify useful materials for batteries and fuels in future. level1))

C122.3: Students can understand the mechanism of corrosion, types of corrosion, protection measures

and their applications (Applying)L3

	Justification
PO1	Students get the knowledge of corrosion(level 2)
PO 2	Students can understand the different types of corrosion(level2)
PO7	Students can use corrosion control methods through the life(level-2)
PO12	Students can use the knowledge to identify newer materials to prevent corrosion(level-1)

C122.4: Students can learn the fundamentals & general properties of types of polymers, preparation& applications in various fields(Applying)L3

	Justification
PO1	Students can get knowledge on fundamentals of the polymers(level3)
PO6	Students can explain wide range of applications of the polymers(level2)
PO7	Students can utilize the concept of bio-degradable polymers(level1)
PO12	Student can use the knowledge throughout the life and uses which are ecofriendly materials(level 1)

	Justification
PO1	Students can classify the different types of fuels(level2)
PO2	Students can understand the extraction and analysis methods of fuels (level2)
PO7	Students can analyze eco-friendly fuels(level1)

C122.6: Develops knowledge on advanced engineering materials like cement, smart materials and applies in modern life. (Understanding)L2

	Justification
PO1	Students can get the knowledge on composition of engineering materials(level-3)
PO2	Students can explain composition and applications of engineering materials(level1)
PO5	Students can understand the usage of smart materials in the medical field(level1)
PO7	Students can understand the promotion of engineering materials for sustainable environment (level1)
PO12	Students can recognize the importance of smart materials and uses in future.(level-2)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Dehi and Affiliated to JNTUH, Hyderabad) Khalaa Ibrahimpatnam, Sherigida(V), Ibrahimpatnam(M), Ranga Reddy Dist, Telangana - 501 519

https://silet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR **I B.TECH FOR THE ACADEMIC YEAR 2022-23** (BR22-REGULATIONS)

Dr.I. Satyanarayana,
Principal.

X3

To, All the HOD's Sir,

Sub: SIIFT (Autonomous)-Academic & Evaluation-Revised Academic Calendar for IB. Tech - I & II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for IB.Tech - I & II Semesters for the academic year 2022-23 is given below. I CEMECTED

		Per	iod	Duration
S. NO	Description	From	То	Durauon
Ι.	Commencement of I Semester class work (including Induction programme)		03.11.2022	
2.	1 st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks
3.	Mid Examinations	29.12.2022	04.01.2023	1 Wcck
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before		10.01.2023	
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before		16.03.2023	
9.	1 Semester End Examinations	17.03.2023	01.04.2023	2 Weeks

II-SEMESTER

-		Per	riod	Duration	
S. NO	Commencement of II Semester class work 1 st Spell of Instructions (including Summer Vacati Summer Vacation I Mid Examinations Submission of First Mid Term Exam Marks to the Autonomous Section on or before 2 nd Spell of Instructions II Mid Term Examinations	From	То	Durauon	
1.	Commencement of II Semester class work		03.04.2023		
2.	1 st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks	
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks	
3.	I Mid Examinations	12.06.2023	17.06.2023	1 Week	
4.			23.06.2023		
5.		19.06.2023	12.08.2023	8 Weeks	
6.		14.08.2023	19.08.2023	1 Week	
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week	
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before		26.082023		
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks	

Ar Ar ER OF EXAMINATIONS indu Institute of Engineering and Technology

THE EXAMINATIONS Sn indulnshitute of Engineering and Technology (An Autonomous Institution under JNTUH) (An Autugracus Institution Under JN 10th) Sheriguda VI, Ibrahimpatnam, R.R. Dist-501510.

PRINCIPAL Sri Indu Institute oPERFICIAL and Echnology (An Autonomous Institution Under .NTUH)

Sheriguda (V), Ibrahimpataam, R.R. Dist-501510.

The second secon	Acc	redited b	(/ y NA (A	An Auton AC with	nomou A+ Gr AICTH ida(V), I	is Institutio ade, Recog E, New Delhi	on u nize and um(N	under UG ed under 2(Affiliated to . M), Ranga Re	C) f) of UG JNTUH, J	TECHNOLOO GC Act 19 <mark>5</mark> 6. Hyderabad) , Telangana – 501 510		
Class: A	AI &ML	-В	S	emester: l	u <u>w.</u>	<u>E.F</u> -03-04-2	2023	3	L <u>H</u> :-D-2	205		
	I 9:40- 10:30	II 10:30 11:20		III 11:20- 12:10	12:1	121 (121))))))))))	-0	V 1.35-2.25	VI 2.25- 3.15	VII 3.15-4.00		
MON	ODE	EC		EDC		Charles and a second	CAE	G PRACTIC		BEE(T)/EDC(T		
TUE	EC	BEE		EDC	L	200 1		EC/BEE LAB		PYTHON(T)		
WED		PYTHON		11505-508-891		ODE	10.00	EDC	BEE	ODE(T) EC(T)		
THU		CAEG PR	CAVE-Sections	CTICE						BEE	ODE	EDC(T)/ BEE(T
FRI		ITWS	LAB			EDC		BEE	ODE	EC(T)/ODE(T)		
SAT	EC	BEE		ODE	1		EC	C/BEE LAB		LIBRARY		
MA201BS	Differe Equation Vector	ons & Calculus gineering		V.SRINIVAS Dr.D.PREMALATHA M.YADHAGIRI		CH206BS		EC LAB- Engineering Chemistry aboratory BEE LAB-Bas Electrical	0.	MOUNIKA/ SHUBHASHINI RAJASHEKAR/M.P.F JA		
ME201ES		ter Aided ering	M.Y.					Engineering Laboratory PYTHON Programming Laboratory		M.TEJASWI/ P.BALU		
EE201ES	BEE-B Electric Engined	al	K.RA	AJASHEKA	R	CS203ES	1.	TWS-IT Vorkshop	- 2 m 2 - 2	KEERTHI IANDANA/B.SWATH		
EC201ES	EDC-E Devices Circuits		P.AR	UNA KUM								
Clas	Class In-Charge			Time Table Coordinator				Head of The Department Sri Indu Institute of Engg. & Tec Main Road, Sheriguda(V) Ibrahimpatnam(M), R.R. Disi Telangana-501,510				

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

L/H	TOPIC TO BE COVERED	TEACHING AIDS	BOOKS
	UNIT-1: WATER & ITS TREATM	ENT	
1	Introduction to hardness of water, types of hardness.	Black Board	T1,R1
2	Units of hardness, Estimation of hardness of water by complexometric method.	Black Board	T1,R1
3	Related numerical problems.	Black Board	T1,R1
4	Potable water and its specifications - Steps involved in the treatment of potable water	Black Board, PPT	T1,R1
5	Disinfection of potable water by chlorination and break - Point chlorination.	Black Board	T1,R1
6	Defluoridation- Determination of F- ion by ion- selective electrode method .Boiler troubles: Sludges, Scales	Black Board	T1,R1,W1
7	Caustic embrittlement. Internal treatment of Boiler feed water -Calgon conditioning - Phosphate conditioning - Colloidal conditioning.	Black Board, PPT	T1,R1
8	External treatment methods -Softening of water by ion- exchange process.	Black Board, PPT	T1,R1, V1
9	Desalination of water – Reverse osmosis.	Black Board	T1,R1
	UNIT-I1: BATTERY CHEMIST	RY AND CORROSION	N
10	Introduction - Classification of batteries- primary, secondaryand reserve batteries with examples.	Black Board	T1,R1
11	Basic requirements for commercial batteries.	Black Board	T1,R1
	Construction, working and applications of: Zn- air battery.		
	alf Datterv.		

	batteryto electrical vehicles.		
13	Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell.	Black Board	T1,R1
14	Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.	Black Board	T1,R1
15	Corrosion: Causes and effects of corrosion.	Black Board, PPT	T1,R1
16	Theories of chemical Corrosion and mechanism of chemical corrosion.	Black Board, PPT	T1,R1 V2
17	Electrochemical corrosion –mechanism of electrochemical corrosion.	Black Board PPT	T1,R1
18	Types of corrosion: Galvanic, water-line and pitting corrosion	Black Board	T1,R1
19	Factors affecting rate of corrosion	Black Board	T1,R1
20	Corrosion control methods.	Black Board	T1,R1
21	Cathodic protection-sacrificial and impressed current methods	Black Board	T1,R1
	UNIT-III POLYMERIC	MATERIALS	
22	Definition – Classification of polymers with examples.	Black Board	T1,R1
23	Types of polymerization –addition (free radical addition) .	Black Board	T1,R1
24	Condensation polymerization with examples – Nylon 6:6, Terylene	Black Board	T1,R1
25	Definition and characteristics thermoplastic and thermosetting plastics.	Black Board	T1,R1
26	Bakelite, Teflon, Fiber reinforced plastics (FRP).	Black Board	T1,R1
27	Naturalrubber and its vulcanization.	Black Board	T1,R1
28	Elastomers, Characteristics –preparation – properties and applications of Buna-S rubber.	Black Board	T1,R1
29	Butylrubber, and Thiokolrubber.	Black Board	T1,R1
30	Characteristics and Classification of	Black Board	T1,R1,W2

	conducting polymers with examples.		V3		
31	Mechanism of conduction intrans-poly acetylene and applications of conducting polymers.	Black Board	T1, R1		
32	Biodegradable polymers, Concept and advantages – Polylacticacid and poly vinyl alcohol and their applications.	Black Board	T1, R1		
	UNIT-IV ENERGY S	SOURCES			
33	Introduction, calorific value of fuel- HCV,LCV.Units of calorific value	Black Board	T1, R1		
34	Dulongs formula. Classification- solid fuels.	Black Board	T1,R1		
35	Coal – analysis of coal – proximate analysis and their significance.	Black Board	T1,R1,W3		
36	Ultimate analysis of coal and their significance.	Black Board, PPT	T1,R1		
37	Liquid fuels – petroleum and its refining.	Black Board, PPT	T1,R1		
38	Cracking types – moving bed catalytic cracking.	Black Board ,PPT	T1,R,V4		
39	Knocking – octane and cetane rating.	Black Board	T1,R1		
40	Synthetic petrol - Fischer-Tropsch's process.	Black Board	T1,R1		
41	Gaseous fuels – composition and uses of natural gas, LPG.	Black Board	T1, R1		
42	CNG, Biodiesel – Transesterification,advantages.	Black Board	T1, R1		
	UNIT-V: ENGINEERING N	IATERIALS			
43	Introduction of Portland cement &its composition,	Black Board	T1,R1		
44	Setting and hardening of Portland cement.	Black Board	T1, R1		
45	Smart materials and their engineering applications.	Black Board	T1, R1		
46	Shape memory materials- Poly L- Lactic acid.	Black Board	T1, R1, W4,V5		
47	Thermoresponse materials- Polyacryl amides,	Black Board	T1, R1		

	Polyvinyl amides		
48	Introduction of lubricants. Classification of lubricants with examples.	Black Board	T1, R1
49	Characteristics of a good lubricants, mechanismof lubrication -thick film, thin film and extreme pressure	Black Board	T1, R1
50	Properties of lubricants: viscosity, cloud point, pour point, flash point and fire point	Black Board	T1, R1

Text books:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- 2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddyand Rath, Cengage

learning,

2016.

3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K.

Shashikala, Pearson Publications, 2021.

4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications.

Reference books:

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015).
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011).

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Course outcome:

After completing this topic, the student will be able to:

- 1. Estimation of dissolved oxygen (Understanding) L2
- 2. Estimation of chlorine (Understanding) L2

3. The required principles and concepts of electrochemistry, to differentiate the types of batteries and their applications (Analysis) L3

4. The basic principle involved in the preparation of cement (Knowledge) L1

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO 4	PO 5	PO6	PO 7	PO8	PO 9	PO10	PO 11	PO 12	PS O1	PS O2
1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
4	3	2	-	-	-	-	-	-	-	-	-	-	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Estimation (Analysis) of chlorine, do etc. present in water using Biosensors
- 2. Applications of smart materials in construction and medical, and health benefits

Course outcome:

After completing this topic, the student will be able to:

1. Explain the principle of construction and utilization of biosensors for estimations (Knowledge) L1

2. Explains the importance of smart materials in different fields (Knowledge) L1

Mapping to PO/PSO:

High -3

Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO 9	PO10	PO 11	PO 12	PS O1	PS O2
1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
2	2	2	-	-	-	-	-	-	-	-	-	-	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

WEB REFERENCES :

- W-1_https://www.thermodyneboilers.com/boiler-problems/
- W-2 https://www.sciencedoze.com/2022/03/conducting-polymers-definition-examples.html
- W-3 https://www.scribd.com/presentation/497847401/Analysis-of-Coal
- W-4 https://www.atriainnovation.com/en/what-are-shape-memory-materials/

VIDEO REFERENCES:

- 1. https://youtu.be/ctlHNf1s6RM?si=FnrLSa3uXqzPZtDR -Ion exchange process
- 2. https://www.youtube.com/live/rPv35HuWLW0?si=8pIqwhWd8IWyHOZZ -Corrosion
- 3. https://youtu.be/1dG0PmKFsQA?si=u83MUinL3KQs4mKd -Conducting polymers
- 4. https://youtu.be/SayZyTMROxk?si=CCB22VarlU6SIygw -moving bed catalytic cracking
- 5. https://youtu.be/I7doX1zWGdw?si=NhhkbRfuJ24j0QvM -shape memory materials

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

POWERPOINT PRESENTATION

Unit-1

https://docs.google.com/presentation/d/1Hcj1ip8ap6k_h1568J-W3r0h2Aax1hOP/edit?usp=sharing&ouid=105720808056246778205&rtpof=true &sd=true

Unit-2

https://docs.google.com/presentation/d/1Zihc9ppImK9VfChsvuvuadcse4UT_J1K/ edit?usp=sharing&ouid=105720808056246778205&rtpof=true&sd=true

Unit-4

https://docs.google.com/presentation/d/1wiZafPiRaH4xGjQffBYyrtEZcWACgbaa/ edit?usp=sharing&ouid=105720808056246778205&rtpof=true&sd=true

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1aOrg6Z_XXPGsKHuH_JuK7axChExklgQt/ view?usp=sharing

Unit 2 link: https://drive.google.com/file/d/1TMLCoVT2RWRtsH2bM0BVIvJczijYOfD N/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1QtQUV-imszqWSetKXo-Ym4-n-GDtQBuw/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1qFliGL1PBVX17zxegygc2BbHa7cO3RFD/vi ew?usp=sharing

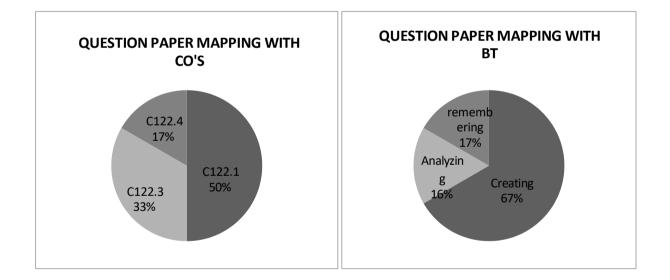
Unit 5 link:

https://drive.google.com/file/d/1rup7vbaItLmbGa1UX66L36T4DECWlOle/view ?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS OUESTION PAPERS

https://drive.google.com/file/d/17vkw7LHO8laz-veKgY4xPixSCPcqOSd/view?usp=sharing


Accredited by NA (Approv	TITUTE OF ENGINEERING (An Autonomous Institution und AAC with A+ Grade, Recognized u ed by AICTE, New Delhi and Affiliated to , Sheriguda(V), Ibrahimpatnam(M), Rang	der UGC) under 2(f) of UGC Act 1956. JNTUH, Hyderabad)	
I B.TECH II SEM	-MID Examinations,June-2023		
	Set-I		
Branch: CIVIL, ECE, CSE (AI&ML), CSE	(IOT), AI&DS	Date: 13-06-2023(FN)	
Subject: Engineering chemistry	Time: 2 Hours		
	PART-B		
Answer any FOUR Questions. All Que	stion carry Equal Marks	4*5=20 Marks	
1. Discuss demineralization of hard wate	r using ion exchange process with a net	diagram?	
		[Creating L6](C122.1)	
2. Discuss different methods used for im-	ernal treatment of boiler feed water?	[Creating L6](C122.1)	
3. Distinguish between scales and sludge	s?	[AnalyzingL4](C122.1)	
4. Write a note on corrosion?		[RememberingL1](C122.3)	

5. Discuss sacrificial anode and impressed current cathodic protection methods? [Creating L6](C122.3)

[Creating L6](C122.4)

6. Discuss the mechanism of addition polymerization?

ST OF EMOINTERING

A CONTRACTOR OF CONTRACTOR OF

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delbi and Affiliated to INTUH, Hyderabad)

(Approve	a by AICIE, N	ew Deim and	Annated to J.	NIUH, H	yderadad)	
Khalsa Ibrahimpatnam,	Sheriguda(V),	Ibrahimpatn	am(M), Ranga	Reddy D	ist., Telanga	na - 501 510

IB.TECHI	CEM.	·	Evon	· ·		•		1
ID.ILUIII			LAAL	ш	lauons,	Luno	2022	

Branch: CIVIL, ECE, CSE (AI&ML), CSE(IOT), AI&DS	Date:13-06-2023(FN)
Subject: Engineering chemistry	Marks: 10
Student name:	H.T.NO:

PART-A Objective/Quiz paper

The objective /quiz paper is set with multiple choice, fill in the blanks and match the following type of question for a total of 10 marks.

Multiple choices:

1. Temporary hardn	ess of water c	an be removed b	у	[]
A) Chlorination	B) Boiling	C) Aeration	D) None		
2. The salt used in c	algon conditio	oning is		[]
A) Sodium Hexa M	Aeta phosphate	e B) Sodium	Tri phosphate		
C) Sodium Dihydr	ogen phospha	te D) Sodium H	lydrogen phosphate	[]
3. Chemical formul	a of Rust			[]
A) FeO	B)Fe ₃ o ₃	$C)Fe_{3}o_{4}$	D)Fe203x H20	[]
4. PVC is a polymer	r of repeating	units of		[]
A) Ethylene	B) Tetrachlor	roethylene			
C) Acrylonitrile	D) Vinyl chlo	oride			

Fill in the blanks:

5. Hardness of water can be expressed in terms of equivalents of
--

- 6. A fuel cell converts chemical energy in to _____
- 7. is used as electrolyte in methanol oxygen fuel cell
- 8. Homo polymers are made of _____

Match the following:

9.	
i Boiler [] A. Electro chemical fuel
ii. Reverse osmosis [] B. Caustic embrittlement
iii .Zn-Air Battery [] C. Cellulose acetate
iv. Wet corrosion [] D. Primary Battery

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM I-MID Examinations, June-2023

BR22

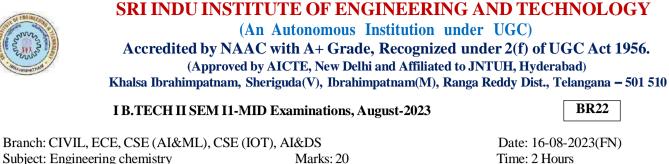
Answer key

Descriptive paper key link

https://drive.google.com/file/d/1H5BLaJ22sLxzBsFtrBHcqnVB4QC4Hu-n/view?usp=sharing

Objective/Quiz Key Paper

Multiple choices:


- 1. B
- 2. A
- 3. D
- 4. D

Fill in the blanks:

- 5. CaCO₃
- 6. Electrical energy
- 7. Methanol
- 8. Same monomers

Match the following:

- 9.I-B
- II-C
- III-D
- IV-A

Subject: Engineering chemistry Marks: 20

PART-B

Answer Any FOUR Question Carry Equal Marks

4*5=20 Marks

1. Define biodegradable polymers taking poly lactic acid as an example?

2. Explain ultimate analysis of coal?

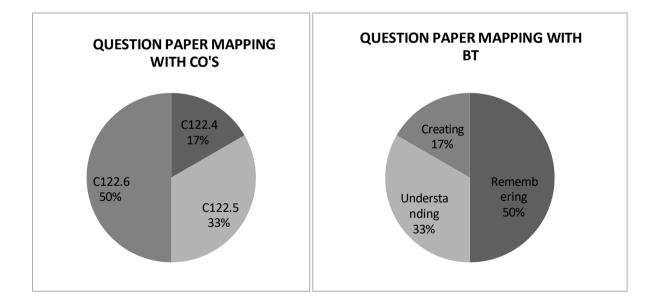
3. Define cracking, knocking of petrol, octane number, cetane number?

4. Give the composition of Portland cement?

5. Explain the mechanism of lubrication?

6. Discuss the properties of lubricants?

(Remembering L1)(C122.4)


(Understanding L2)(C122.5)

(Remembering L1) (C122.5)

(Remembering L1) (C122.6)

(Understanding L2) (C122.6)

(Creating L6) (C122.6)

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM II-MID Examinations, August-2023

Branch: CIVIL, ECE, CSE (AI&ML), CSE (IOT), AI& Subject: Engineering chemistry	DS	Date: 16-08-2 Marks: 10	2023		BR22
Student name:	H.T.NO:]
Objective/Qu The objective /quiz paper is set with multiple cl the following type of question for a total of	noice, fill in the blanks and	d match			
Multiple choices:					
1. Buna-s is prepared by the following polymer	zation		[]	
a) Copolymerization b) Condensation c	e) Both a & b d) N	one			
2. Natural gas mainly contains			[]	
a) CH4 b) n-butane	c) n-octane d) a	cetylene			
3. Gross calorific value is also known as			[]	
a) Highest calorific value b) Low calorific va	lue c) Net calorific valu	ue d) None			
4. Cement contains			[]	
a) Calcareous material b) Argillaceous material	erial c) Both a & b	d) None			
Fill in the blanks:					
5. Polymers which can be degraded by microorg	ganisms are known as			-	
6. Petroleum refining is carried out using	distillati	on.			
7is an example of semi solid	lubricants.				
8. Good lubricant viscosity should be					
Match the following:					
9. i. Ultimate analysis [] a) Reta	rds initial setting of cemer	nt.			
ii.Gypsum [] b) ceme	ent				
iii. Inorganic building material [] c) Fract	ional distillation.				
iv. Petroleum refining [] d) Quar	ntitative				

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

BR22

I B.TECH II SEM II - MID Examinations, August-2023

Answer key

Descriptive paper key link

https://drive.google.com/file/d/1k0XrBzV2B3nlOw8OODI7wTMtY4uc8grj/view?usp=sharing

Objective/Quiz Key Paper

Multiple choices:

- 1. C
- 2. A
- 3. A
- 4. C

Fill in the blanks:

5. Bio degradable polymers

6. Fractional distillation

- 7. Grease
- 8. High

Match the following:

9.

I-D

- II-A
- III-B
- IV-C

MID-1 & MID-11 STUDENT ANSWER SCRIPTS:

https://drive.google.com/file/d/1LsowbkAuXbdkQepOrI_qngQ2Ynpsskzz/view?usp=sharing

https://drive.google.com/file/d/1cvfnC1nsWGo_BQK8c-CVHJ9ZGsjmCqP4/view?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

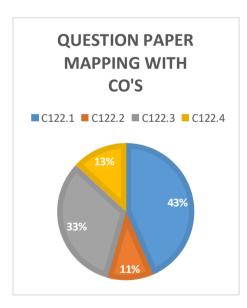
<u>I- MID ENGINEERING CHEMISTRY ASSIGNMENT</u>

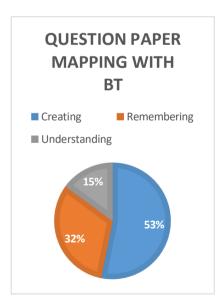
1. Explain about ion-exchange process? What are its advantages and dis -advantages and what is the hardness left with water after ion exchange process? (**Understanding L2**) (**C122.1**)

2. Discuss internal treatment of boiler feed water? (Creating L6)(C122.1)

3. What are the difference between scales and sludge? (**Remembering L1**) (**C122.1**) **4.** Discuss the mechanism of dry corrosion? (**Creating L6**) (**C122.3**)

5.Explain municipal water treatment? (**Understanding L2**) (**C122.1**)


6. Discuss the mechanism of wet corrosion? (Creating L6) (C122.3)


7. Discuss methanol-oxygen fuel cell and differentiate between fuel cell and battery? (Creating L6) (C122.2)

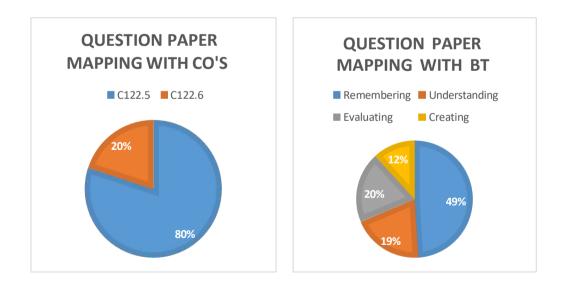
8. What is polymerisation? Describe addition polymerisation? (Remembering L1) (C122.4)

9. What are the characteristic features and applications of PVC? (**Remembering L1**) (C122.4)

10. Discuss cathodic protection methods? (Creating L6) (C122.3)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

II- MID ENGINEERING CHEMISTRY ASSIGNMENT


- Discuss the preparation of synthetic petrol by Fischer's tropsch process?
 (Evaluating L5) (C122.5)
 What is cracking? Discuss moving bed catalytic cracking? (Remembering L1) (C122.5)
 what is refining of petroleum and write a note on petroleum refining process?
 (Remembering L1) (C122.5)
 What is Portland cement? Give the composition and write down setting and hardening of cement? (Remembering L1) (C122.5)
 Define the following

 a) thermoresponse materials b) smart materials c) cetane rating d) octane rating
- e) knocking (Remembering L1) (C122.5)
- 6. What is biodiesel? Write the preparation of biodiesel? (Remembering L1) (C122.5)
- 7. Describe the mechanism of lubrication? (Creating L6) (C122.6)
- 8. Explain the classification of lubricants and describe the properties of lubricants?

(Understanding L2) (C122.6)

9. Discuss gaseous liquid fuels? (Evaluating L5) (C122.5)

10. Explain ultimate analysis of coal? (Understanding L2) (C122.5)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ENGINEERING CHEMISTRY ASSIGNMENT PROOFS

https://drive.google.com/file/d/1g_rKs5DHFPIggbYTJLf3LHAlZYm31iKg/view?usp= sharing __mid-1

https://drive.google.com/file/d/1KDjL2eCml7LnShyXKInsj0KmIqLJ81el/vi ew?usp=sharing -mid-2

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-ENGINEERING CHEMISTRY(MID-I)(Set-I)

Instructions:

- a) Any answer by alternate method should be valued and suitably awarded.
- b) Allanswers(includingextra,stuckoffandrepeated)shouldbevalued.Answerswithmaximum marks must be considered.

Qn No	Description of Answer	Marks
1.	Definition of ion-exchange process and differences b/w cation & anion exchanger(C122.1)(Remembering)	2
	Neat diagram of ion –exchange process and equations (C122.1)(Remembering)	2
	Advantages & disadvantages of ion exchange process (C122.1) (Remembering)	1
2.	Mention the names of different internal treatment methods (C122.1)(Remembering)	1
	Complete explanation of different methods & equations(C122.1)(Remembering)	4
3.	Difference b/w scale & sludge has mention the diagram(C122.1)(Analyzing)	1
	What are the causes of scale and sludge and disadvantages(C122.1)(Analyzing)	2
	Mention the preventive methods(C122.1)(Analyzing)	2
4.	Definition of dry corrosion & mention the different types of dry corrosion names (C122.3)(Understanding)	2
	Explain the oxidation corrosion, corrosion by hydrogen, & liquid metal corrosion with equations and examples (C122.3) (understanding)	3
5	Definitions of sacrificial anode & impressed current cathodic protection methods (C122.3)(understanding)	2
	Neat diagrams and equations of sacrificial anode & impressed current cathodic protection methods (C122.3)(understanding)	3
6	Definition of addition polymerization & mention the steps in the free radical mechanism(C122.4)(Remembering)	2
	Complete explanation of free radical mechanism with equations (C122.4) (Remembering)	3
	TOTAL	20

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

	Instructions:		
 a) Any answer by alternate method should be valued and suitably awarded. b) Allanswers(includingextra,stuckoffandrepeated)shouldbevalued.Answerswithmaximum marks must be considered. 			
Qn No	Description of Answer	Marks	
1	Definition of bio- degradable polymers (C122.4)(Remembering)	1	
	Preparation of poly lactic acid with equation & properties & applications (C122.4)(Remembering)	4	
2	What are steps involved in ultimate analysis(C122.5)(Understanding)	1	
	Explanation of each steps in ultimate analysis(C122.5)(Understanding)	2	
	Formula's of each steps in proximate analysis(C122.5)(Understanding)	2	
3	Definitions of cracking, knocking, octane number, cetane number & equations (C122.5)(Remembering)	5	
4	Definition of cement and mention the raw materials of cement (C122.6) (Remembering)	2	
	Formulas and chemical composition of raw materials of cement (C122.6) (Remembering)	3	
5	Mention the names of mechanism of lubrication(C122.6)(Remembering)	1	
	Thin film ,thick film & extreme pressure has definition and diagram and where it is used $(C122.6)(Remembering)$	4	
6	Mention the names of properties of lubrication(C122.6)(Understanding)	1	
	Explain the each property has definitions and where it is used (C122.6)(Understanding)	4	
	TOTAL	20	

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

S.NO	ΤΟΡΙΟ	Teaching method/Teaching Aid	Session plan	Reference books
1	Hard water, hardness, types of hardness, units of hardness, potable water &its treatment, break point chlorination.	Black Board	1	T1, R1
2	Defluoridation, boiler troubles- sludges, scales, caustic embrittlement, internal treatment method.	Black Board, PPT	1	T1, R1,W1
3	External treatment method ,reverse osmosis	Black Board	1	T1, R1 V1
4	Batteries, types of batteries, construction, working&applications of Zn-air battery.	Black Board	1	T1, R1
5	Lithium –ion battery, fuel cell, methanol –oxygen fuel cell.	Black Board ,PPT	1	T1, R1
6	Solid-oxide fuel cell, solar cell, introduction of corrosion.	Black Board	1	T1, R1
7	Theories of corrosion, types of corrosion.	Black Board ,PPT	1	T1, R1 V2
8	Corrosion control methods	Black Board	1	T1, R1
9	Polymers, types of polymerization, free radical mechanism.	Black Board	1	T1, R1
10	Preparations of polymers like- Nylon-6,6, Terylene, naturalrubber, vulcanization rubber.	Black Board	1	T1, R1

TUTORIAL CLASS

BR22

11	Preparations of polymers like-	Black Board	1	T1, R1
	Buna-s, butyl &Thiokol rubber, PVC.			
12	Classification of conducting polymers, biodegradable polymers.	Black Board	1	T1, R1 W2,V3
13	Calorific value, HCV, LCV, Dulongs formula.	Black Board	1	T1, R1
14	Analysis of coal-proximate &ultimate analysis of coal.	Black Board ,PPT	1	T1, R1,W3
15	Petroleum refining –fractional distillation, synthetic petrol- Fischer Tropsch's process	Black Board ,PPT	1	T1, R1
16	Cracking-moving bed catalytic cracking, knocking-octane rating &cetane rating.	Black Board, PPT	1	T1, R1 V4
17	Bio diesel- transesterification, CNG, LPG.	Black Board	1	T1, R1
18	Cement-Composition, setting and hardening.	Black Board	1	T1, R1
19	Smart materials – shape memory materials, thermoresponse materials	Black Board	1	T1, R1 W4, V5
20	Classification of lubricants with examples	Black Board	1	T1, R1
21	Properties of lubricants, mechanism of lubricants	Black Board	1	T1, R1

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

Result Analysis:

AI&ML-A

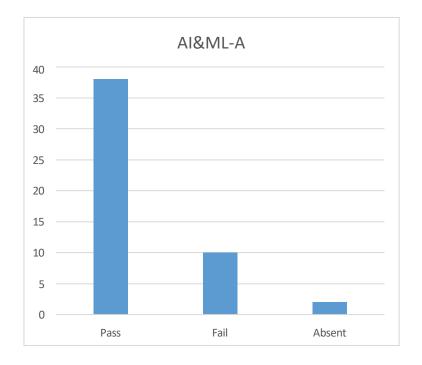
Course Title	ENGINEERING CHEMISTRY
Course Code	CH203BS
Programme	B.Tech
Year & Semester	I year II- semester
Regulation	BR22
Course Faculty	Dr.D.Premalatha, Professor, H&S

Weak Students:

S No	Roll no	I Semresult	Internal-I Status (35)	Internal-II Status (40)
1	22X31A6605	Failed (2 subjects)	20	25
2	22X31A6606	Failed (2 subjects)	27	28
3	22X31A6610	Failed (3 subjects)	20	25
4	22X31A6619	Failed (2 subjects)	20	26
5	22X31A6620	Failed(2 subjects)	20	25
6	22X31A6637	Failed (2 subjects)	20	25
7	22X31A6640	Failed (2 subjects)	20	0
8	22X31A6641	Failed (2 subjects)	20	31
9	22X31A6644	Failed (2 subjects)	20	25
10	22X31A0446	Failed(1 subject)	27	29

Advanced learners:

S No	Roll No	I- Sempercentage	Gate Material
1	22X31A6616	90.11%	Spectroscopy
2	22X31A6622	91.89%	Transition elements
3	22X31A6626	89.68%	Instrumental method Analysis
4	22X31A6627	90.95%	Equilibrium
5	22X31A6631	89.16%	
6	22X31A6646	86.63%	
7	22X31A6650	87.16%	



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

RESULT ANALYSIS AT END OF SEMESTER

Branch: AI&ML-A

Subject: ENGINEERING CHEMISTRY

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

	DEI	PARTMENT OI <u>REMEDIAL</u>	F HUMANITIE <mark>. CLASSES TI</mark> I		CE	
DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
CSE-A	ODE&VC	ENG	EDC	AP	ODE&VC	AP
CSE-B	AP	EDC	ODE&VC	ENG	EDC	ENG
CSE-C	ENG	AP	EDC	ODE&VC	AP	ODE&VC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
DS	EDC	AP	ODE&VC	ENG	EDC	ODE&VC
CYBER	ENG	EDC	AP	ODE&VC	AP	ENG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	ODE&VC	EC	EDC	BEE	EC	ODE&VC
AIML-B	BEE	EDC	ODE&VC	EC	BEE	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AI&DS	BEE	EC	ODE&VC	EDC	BEE	EC
ΙΟΤ	EC	ODE&VC	EDC	BEE	ODE&VC	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
ECE	ODE&VC	BEE	EC	EDC	BEE	EC
CIVIL	ODE&VC	BEE	EC	AM	BEE	EC

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH heriouda(M) Ibrahimpatham (M) R.R. Dist-501 516

9

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

2	AT DESIGN (SALE)	SI	RI IN	DU	INST	ITU	ТЕ	OF	EN	GI	NEE	RI	NG	AND) TI	ECH	INO	LO	GΥ			
	Sunaz .						Depart							xes e rnal I	Fyon	ninat	ion_1)				
N	Cul Cu	D. D	Durana			U	oui se	. Ou					(IIIt	ci nai i	5Aan	ma	1011-1		202	2		
	ne of the facu			latha						demi		ar:			_				2-202			
	nch & Sectio	AI-N	1L-A							mina									ernal			
Cou	rse Name:	Engin	eering cl	hemist	ry				Yea	r:	I							Sem	ester:	П		
S.N	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c	Obj1	A1	
Max	. Marks ==>	5			5			5			5			5			5			10	5	
1	22X31A6601	5			3			5						5						8	5	
2	22X31A6602	5			5			4						5						9	5	
3	22X31A6603	4			5			4			1									9	5	
4	22X31A6604	4			5			5			5									8	5	
5	22X31A6605							5												10	5	
6	22X31A6606	4			3			4			3									8	5	
7	22X31A6607	4			4			5			4									9	5	
8	22X31A6608	5			3			5			4									10	5	
9	22X31A6609	5						5			2			4						9	5	
10	22X31A6610	3						2												10	5	
11	22X31A6611																				_	
12	22X31A6612	4						4			3			4						9	5	
13	22X31A6613	4						5									1			9	5	
14	22X31A6614	5			5			5			4						1			9	5	
15	22X31A6615							5			3				<u> </u>					8	5	
16	22X31A6616	5			4			5			3						-			10	5	
17	22X31A6617	4			3			4									3			10	5	
18	22X31A6618	5			4			5			4									10	5	
19	22X31A6619	2						4												9	5	
20	22X31A6620	1						5												9	5 5	
21	22X31A6621	4			4			4			-						-			9	5	
22	22X31A6622	5 4						5			5						5			10		
23	22X31A6623	4						4			4									9 9	<u>5</u> 5	
24 25	22X31A6624 22X31A6625	4						2			1						7			9 10	5	
23	22X31A0023	5			4			4			5			5			/			10	5	
20	22X31A0020 22X31A6627	5			4			5			5			5						10	5	
27	22X31A6628	5			3			4			5									10	5	
20	22X31A6629	3			3			4			5									9	5	
30	22X31A6630	4			3			4			4									9	5	
31	22X31A6631				5			5			4				1					10	5	
32	22X31A6632				-	1		4			1				1					9	5	
33	22X31A6633		-		-			4												10	5	
34	22X31A6634	4						3			2				1					9	5	
35	22X31A6635	2		1				3			1									9	5	
36	22X31A6636	4						4							1		3			9	5	
37	22X31A6637	3						2												10	5	
38	22X31A6638	4			5			4							1		4			8	5	
39	22X31A6639	5			5			5									5			9	5	
40	22X31A6640	4						1									5			10	5	
41	22X31A6641	4						2									6			9	5	
42	22X31A6642							3			1						3			7	5	
43	22X31A6643							4												9	5	
44	22X31A6644	3						2												10	5	
45	22X31A6645	4			1			3			2				<u> </u>					9	5	
46	22X31A6646	5			4			5							<u> </u>		5			10	5	
47	22X31A6647	5			4			5			3									10	5	
48	22X31A6648														<u> </u>							
49	22X31A6649	2			4									5	<u> </u>					9	5	
50	22X31A6650	5						5			4				<u> </u>		2			9	5	

Target se faculty /		3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Number students performe		38	0	0	22	0	0	40	0	0	18	0	0	6	0	0	10	0	0	48	48
Number of students attempte		44	0	0	23	0	0	46	0	0	26	0	0	6	0	0	11	0	0	48	48
Percenta students more tha	scored	86%			96%			87%			69%			100%			91%			100%	100%
<u>COMap</u>	oping with E	xamQu	uestions:																		
со) - 1	Y			Y			Y												Y	Y
CO)-2																			Y	Y
CO											Y			Y						Y	Y
CO											-			•			Y			Y	Y
CO)-5																				
CO	0-6																				
	>Target %	86%			96%			87%			69%			100%			91%			100%	100%
-	ainment bas		xamQue	estions																	
CO		86%			96%			96%												100%	100%
CO																			_	100%	100%
CO											87%			87%						100%	100%
CO																	87%			100%	100%
CO																					
CO)-6																				
СО		Subj	obj		Asgn	(Overa	11		Leve	el									Attainn	nent Leve
CO-	-1	93%	97%		100%		97%			3.00										1	40%
CO-			100%		100%		100%			3.00										2	50%
CO-		87%	91%		100%		93%			3.00										3	60%
CO-	-4	87%	93%		100%		93%			3.00											
CO-																					
CO-																					
		nt (T	ntorn	പ പി 1	Evor	nine	tion	<u>) –</u>		2 00											
A	ttainme	m (1	mern	ai I	Exall	шпа	uon	i) =		3.00											

				~	-																	
	14			Cou	rse Ou	itcor	ne A	ttain	men	t (Int	terna	l Exa	amir	atio	n-2)							
	ang c																					
Brai	ne of the facul			atha					Aca	demi	c Yea	r:								<u>2022-2</u>	023	
Dia	nch & Section:	<u>AI-M</u>	L-A						Exa	minat	tion:									<u>II Inter</u>	nal	
Cou	rse Name:	Engir	neering	chemis	try				Yea	r:	Ι									Semes	ter:	<u>II</u>
S.No	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5t	Q5c	Q6a	Q6b	Q6c	Obj	A2	viva/ ppt
Max	.Marks ==>	5						5			5			5			5			10	5	5
1	22X31A6601				5						5			4			5			8	5	5
2	22X31A6602				5			4			5						5			10	5	5
3	22X31A6603							2			5						1			7	5	5
4	22X31A6604				4			4												9	4	5
5	22X31A6605		_		1			1						2			3			8	5	5
6	22X31A6606				1			1			3						4			9	5	5
7	22X31A6607				5			4						4			5			10	5	5
8	22X31A6608				5						3			3			4			9	5	5
9	22X31A6609	2									5			5			5			9	5	5
10	22X31A6610							3			2						1			9	5	5
11 12	22X31A6611 22X31A6612	1						4			4						n				5	5
12	22X31A6612 22X31A6613	1			<u>├</u>			4			4			3			2			9	<u>5</u>	5
13	22X31A6613 22X31A6614				4			3			4			3			3 5			9	5	5
14	22X31A6614 22X31A6615	1			4			э			4						5			9 10	5	5
15	22X31A6616	1			5						5			5			5			10	5	5
10	22X31A6617				4			1			1			J			2			9	5	5
18	22X31A6618				4			3			1						4			9	4	5
19	22X31A6619				3			1			3									9	5	5
20	22X31A6620				4			3			_									9	4	5
21	22X31A6621							2									4			9	4	5
22	22X31A6622				5			4						4			5			10	5	5
23	22X31A6623				1						4			4			4			9	5	5
24	22X31A6624	6									4			2						9	4	5
25	22X31A6625										4			2						9	5	5
26	22X31A6626				5			5						5			5			10	5	5
27	22X31A6627				5						5			4			5			9	5	5
28	22X31A6628				3									2			3			8	4	5
29	22X31A6629							3			3						1			10	5	5
30	22X31A6630							3						2			2			9	5	5
31	22X31A6631							~	ļ,		3			4		ļ	3			9	5	5
32	22X31A6632							3			4			1			2			6 10	5	5
33 34	22X31A6633 22X31A6634				1 4			1			1			1			3			10 9	5	5
34 35	22X31A6634 22X31A6635				4			4			-			T			1			9	5	5
35 36	22X31A6636				1			4			1			3			1			9	5	5
37	22X31A0030 22X31A6637				1			4			-			1			1			8	5	5
38	22X31A6638	2			5			4						1			5			9	5	5
39	22X31A6639	-						3			3			4		-	4			9	5	5
40	22X31A6640							-						•						-	-	-
41	22X31A6641				4									3			5			9	5	5
42	22X31A6642				2						3						2			8	5	5
43	22X31A6643				4			5			4						5			10	5	5
44	22X31A6644				3									3						9	5	5
45	22X31A6645				3			3			1			3						9	5	5
46	22X31A6646				5			3			5			5						9	5	5
47	22X31A6647				5			4			5			4						10	5	5
48	22X31A6648				4			3			3						2			8	5	5
49	22X31A6649				3			4			3						3			9	5	5
50	22X31A6650							2			4			3			4			8	5	5
		<u> </u>																				
					I T																	

Farget set by the faculty / HoD	3.00	0.00	0.00	0.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	####	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Number of students performed above he target	1	0	0	32	0	0	23	0	0	25	0	0	19	0	0	26	0	0	47	46	46
Number of tudents attempted	5	0	0	32	0	0	34	0	0	31	0	0	27	0	0	38	0	0	47	46	46
Percentage of students scored more than target	20%			100%			68%			81%			70%			68%			100%	100%	100%
CO Mapping with Ex	xam Qı	estions:																			
CO - 1																					
CO - 2																					
CO - 3														_]							
CO - 4	Y																		Y	Y	Y
CO - 5				Y			Y												Y	Y	Y
CO - 6										Y			Y			Y			Y	Y	Y
% Students Scored																					
>Target %	20%			100%			68%			81%			70%			68%			100%	100%	100%
CO Attainment base	edon E	xam Que	estions:																		
CO - 1																					
CO - 2																					
CO - 3																					
CO - 4	20%																		100%	100%	100%
CO - 5				20%			20%												100%	100%	100%
CO - 6										20%			20%			20%			100%	100%	100%
СО	Subj	obj	aasgn	ppt		Overa	11		Leve	-1									Atta	inment]	[_eve]
CO-1	Subj	<u>50</u>	uusgii	rpr		o vera				~1									1)%
CO-2																			2	40% 50%	
CO-2 CO-3																			3	60%	
CO-3 CO-4	20%	100%	100%	100%		80%			3.00										3	0	570
CO-5	20%	100%		100%		80%			3.00												
CO-6	20%	100%		100%		80%			3.00												
Attainma	nt (Íı	nterna	al Exa	min	atio	n-2`) =		3.00												

COLVE STORES

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Humanities & Sciences

Name	of the faculty	Dr.D.Premalatha		Academic	2022-2023			
Branch	n & Section:	<u>AI-ML-A</u>		Year / Ser	nester:	<u> / </u>		
Course	e Name:	Engineering chemistry						
S.No	Roll Number	Marks Secured		S.No	Roll Number	Marks Secured		
1	22X31A6601	37		36	22X31A6636	28		
2	22X31A6602	46		37	22X31A6637	16		
3	22X31A6603	22		38	22X31A6638	30		
4	22X31A6604	32		39	22X31A6639	41		
5	22X31A6605	32		40	22X31A6640	А		
6	22X31A6606	25		41	22X31A6641	16		
7	22X31A6607	50		42	22X31A6642	32		
8	22X31A6608	46		43	22X31A6643	16		
9	22X31A6609	38		44	22X31A6644	14		
10	22X31A6610	27		45	22X31A6645	27		
11	22X31A6611	А		46	22X31A6646	27		
12	22X31A6612	25		47	22X31A6647	48		
13	22X31A6613	32		48	22X31A6648	31		
14	22X31A6614	35		49	22X31A6649	42		
15	22X31A6615	31		50	22X31A6650	29		
16	22X31A6616	47		51				
17	22X31A6617	23		52				
18	22X31A6618	39		53				
19	22X31A6619	12		54				
20	22X31A6620	14		55				
21	22X31A6621	10		56				
22	22X31A6622	52		57				
23	22X31A6623	31		58				
24	22X31A6624	36		59				
25	22X31A6625	24		60				
26	22X31A6626	47		61				
27	22X31A6627	50		62				
28	22X31A6628	44		63				
29	22X31A6629	10		64				
30	22X31A6630	30		65				
31	22X31A6631	51		66				
32	22X31A6632	26		67				
33	22X31A6633	==		68				
34	22X31A6634			69				
35	22X31A6635	17		70				
Iax Ma		60						
	verage mark		31		Attainment Level	% students		
	=	rformed above the target	24		1	40%		
	r of successful s		50		2	50%		
Percent	age of students	scored more than target	48%	<u> </u>	3	60%		
Attai	inment leve	el	2					

and and	Departme	ent of Humanities	& Science	es			
		Course Out	tcome Att	tainment	· · · · · · · · · · · · · · · · · · ·		
in an usa man							
Name of the facult		<u>nalatha</u>		Academic Year:	<u>2022-2023</u>		
Branch & Section:	<u>AI-ML-A</u>			Examination:	<u>1-Internal</u>		
Course Name:	<u>Engineeri</u>	ing chemistry		Year:	1		
				Semester:	II		
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level		
CO1	3.00		3.00	2.00	2.30		
CO2	3.00		3.00	2.00	2.30		
CO3	3.00		3.00	2.00	2.30 2.30		
CO4	3.00	3.00	3.00	2.00			
CO5		3.00	3.00	2.00	2.30		
CO6		3.00	3.00	2.00	2.30		
Inter	nal & Univ	ersity Attainment:	3.00	2.00			
		Weightage	30%	70%			
CO Attainment for the	e course (In	ternal, University	0.90	1.40			
CO Attainment for	the course	(Direct Method)		2.30			
Overall co	ourse	attainmer	nt leve	el	2.30		

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Humanities & Sciences															
CANNO SAL	010010														
THRAMMPRTWANS		1		<u>Progr</u>	<u>am Ou</u>	tcom	e Attai	nment	(from	Course	<u>e)</u>		1	1	
Name of			-	Prema	<u>latha</u>				emic Ye	ear:	<u>2022-</u>	<u>2023</u>			
Branch 8			<u>AI-MI</u>					Year:			I				
Course N	lame:		Engin	eering	g chemi	<u>stry</u>		Seme	ster:		II				
CO-PO m	-	1													
	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	
CO1	3	2				1	1					2			
CO2	3	2			1	1	1					1			
CO3	2	2					2					1			
CO4	3	2					1					1			
CO5	2	2					1								
CO6	3	2			1		1					2			
Course	2.60	2.00			1.0	1.0	1.10					1.10			
со	Course Outcome Attainment														
							2.3	0						1	
CO1															
							2.3	0						-	
CO2							2.5	0							
002							2.3	0							
CO3							2.3	0							
103							2.2	0						-	
CO4							2.3	0							
							2.3	0							
CO5															
CO6							2.3	0							
Overall	cours	se att	ainme	ent lev	vel				2	2.30					
PO-ATTA		ENT													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
со			_			_		_	_	-					
Attainm															
ent	1.99	1.53			0.77	0.77	0.84					0.84			
CO contri	bution	to PO	- 33%,	67%, 1	.00% (Le	vel 1/2	/3)								

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

https://drive.google.com/file/d/1t27fb3gDinJjYyR3zk6BgT0gp2tDOS_V/view?usp=sharing