

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

ENGINEERING CHEMISTRY LAB

Course Code - CH206BS

I B. Tech Semester-II A.Y. 2022-2023

> Prepared by **K.MOUNIKA** Asst. Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH

heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

ODE: INDI Approved by AICTE, New De	elhi, & Affiliated to JNTUH, Hyderabad. JNTUH CODE: X3
Name of the Physical	
laboratory:	ENGINEERING CHEMISTRY LAB
Course code	CH206BS
Room No	D-103 & B-104
Name of the lab incharge	K.MOUNIKA
Name of the faculty incharge	K.MOUNIKA

Index of Lab File

S. No.	Name of the content
1	Institute vision and mission
2	Programme outcomes
3	Course Syllabus with Structure
4	Course Outcomes (CO) and CO-PO mapping
5	List of experiments and their CO, PO mapping
6	Time table
7	Model Practical End examination questions
8	Schedule of end practical examinations
9	List of examiners
10	Lab occupancy chart
11	Dos and Don'ts
12	Physical lab floor plan with area in Sq.m
13	Lab manual
14	CO-PO Attainments

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- ➤ **IM1:** To offer outcome-based education and enhancement of technical and practical skills.
- ➤ **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- ➤ **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- ➤ **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH

periouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(VIII). Ibrahimpatnam

R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

PROGRAMME OUTCOMES

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The Engineer & Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment & Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual & Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: Project Management & Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH

"eriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

B. Tech.in ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE STRUCTURE, I YEAR SYLLABUS (BR 22 Regulations) Applicable from Academic Year:2022-23Batch

I YearI Semester

S. No.	Course Code	Course Title	L	Т	P	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

IYearII Semester

S. No.	Course Code	Course Title	L	Т	P	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

ENGINEERING CHEMISTRY LABORATORY

(Course Code: CH206BS)

B.Tech. I Year II Sem. L T P C 0 0 2 1

Prerequisites: Engineering Chemistry

Course Objectives: The course consists of experiments related to the principles of chemistry requiredfor engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surfacetension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to findout the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

- Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.
- **II. Conductometry:** Estimation of the concentration of an acid by Conductometry.
- **III. Potentiometry:** Estimation of the amount of Fe⁺² by Potentiomentry.
- IV. pH Metry: Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon 6.

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.

VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

REFERENCE BOOKS:

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New De

TENGINERALINA TOPONO DE LA COMBINA DE LA COM

SRI INDU INSTITUTE OF ENGINEERING ANDTECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

COURSE OUTCOMES

Course Name: Engineering Chemistry Lab (C126)

At the End of the course, student will be able to

C126.1 Determination of parameters like hardness of water by the complexometric titrations (Understanding L2)

C126.2 Students can able to perform the methods such as conductometry, pH metry to find out concentration of unknown solutions. (Applying L3)

C126.3 Students can determine the Potentiometry in order to find out the concentrations of acids and bases. (Applying L3)

C126.4 Students are able to synthesise Polymers-Bakelite & Nylon-6. (Applying L3)

C126.5 Students can estimate the saponification value and viscosity of the lubricants. (Analyzing L4)

C126.6 They can able to demonstrate the rate of corrosion of mild steel in various conditions (Understanding L2)

COs and POs & PSOs Mapping

High -3 Medium -2 Low-1

Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C126.1	2	2	-	-	-	-	1	-	-	-	-	-	-	-
C126.2	2	2	-	-	1	-		-	-	-	-	-	-	-
C126.3	2	1	-	1	1	-	1	-	-	-	-	-	-	-
C126.4	2	-	2	-	-	1		-	-	-	-	-	-	-
C126.5	2	1	-	-	-		1	-	-	-	-	-	-	-
C126.6	2	1	-	1	-	1	1	-	-	-	-	-	-	-
AVE	2.00	1.4	2.0	1.0	1.0	1.0	1.0	-	-	-	-	-	-	-

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

MAPPING OF EXPERIMENT OUTCOMES WITH CO/PO'S/PSO

EXPERIMENT OBJECTIVES	EXPERIMENT OUTCOMES	CO	PO'S
1.To estimate the total hardness of water by EDTA method.	The students will be able to analyze the nature of salts causing hardness and to solve the engineering problems arising during steam production in boilers.	C126.1	PO1, PO2 ,PO7
2.To determine the strength of the strong acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given acid with addition of strong base using conductivity meter.	C126.2	PO1, PO2 PO5
3.To estimate the Fe ⁺² by potentiometry using KMnO ₄ .	The student shall be able to Analyze the variation of EMF values of given acid with addition of KMnO ₄ using potentiometer.	C126.3	PO1, PO2, PO4, PO5, PO7
4.To estimate the amount of HCl present in the given volume of test solution by P ^H metry.	The student shall be able to find out the concentrations of acids and bases.	C126.2	PO1, PO2 PO5
5.To prepare Bakelite polymer using Phenol and Formaldehyde.	The student shall be able to prepare the polymer of Bakelite	C126.4	PO1, PO3 PO6
6.To prepare Nylon-6,6 polymer using adipoyl chloride and hexamethylenediammine.	The student shall be able to prepare the polymer of Nylon-6,6.	C126.4	PO1, PO3 PO6
7.To determine the acid value of Coconut oil.	The student shall be able to identity and calculate the acid values of coconut oil.	C126.5	PO1, PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

8. To determine the viscosity of the given coconut oil and ethanol.	The students shall be able to Determine and calculate the Viscosity coefficient values of coconut oil and ethanol.	C126.5	PO1, PO2 PO7
9.To determine the rate of corrosion of mild steel in acidic medium in the absence and presence of an inhibitor and calculate the efficiency of the Inhibitor.	The student can able to understand the efficiency and function of inhibitor in the Process of corrosion.	C126.6	PO1, PO2 PO4, PO6 PO7
ADDITIONAL EXPERIMENT	TS .		
10.To determine the strength of the weak acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given weak acid with addition of strong base using conductivity meter.	C126.2	PO1, PO2 PO5
11.To determine the surface tension of a given liquid at room temperature using stalagmometer by drop number method.	The student shall be able to determine and calculate the surface tension values of reference liquid and given liquid	C126.5	PO1, PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Class: AI &DS

Semester: II W.E.F-03-04-2023

LH:-D-210

	I 9:40- 10:30	II 10:30 - 11:20	III 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00
MON	CA	AEG PRACT	TCE	L	EC	BEE	EDC	LIBRARY
TUE		EC BEE LAB			ODE	EC	BEE	BEE(T)/EDC(T)
WED		ITWS LAE	3	U N	ODE	EDC	BEE	PYTHON(T)
THU	ODE	EC	EDC	C H	Е	C BEE LA	В	ODE(T)/EC(T)
FRI	BEE	ODE	ODE	1	CAEG PRACTICE		EDC(T)/ BEE(T)	
SAT	EDC	EC	BEE	1	PYTHON LAB		EC(T)/ODE(T)	

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA201BS	ODE-Ordinary Differential Equations & Vector Calculus	V.SUJATHA	CH206BS	EC LAB- Engineering Chemistry Laboratory	K.MOUNIKA/V.MOUNIKA
CH203BS	EC- Engineering Chemistry	K.MOUNIKA	EE202ES	BEE LAB- Basic Electrical Engineering Laboratory	G.BHARGAVI/K.RAJASHEKA R
ME201ES	CAEG- Computer Aided Engineering Graphics	A.MALLESH	CS201ES	PYTHON Programming Laboratory	M.TEJASWI/ P.BALU
EE201ES	BEE-Basic Electrical Engineering	G.BHARGAVI	CS203ES	ITWS-IT Workshop	N.KEERTHI CHANDANA/B.SWATHI
EC201ES	EDC- Electronic Devices & Circuits	P.SRILATHA			

Head of The Department
ornindu Institute of Engg. & Tech
Main Road, Sheriguda(V),
Ibrahimpatnam(M), R.R. Dist.

UGC Autonomous Institution, Accredited by NAAC with A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana - 501 510 Х3

BR22

Lab External Question paper

Year & Semester: I-II Branch: AI&DS

Subject Name: Engineering Chemistry Lab Faculty Name: K.MOUNIKA

EXTERNAL EXAM OUESTION PAPER

- 1. Estimate the total hardness of water by complex ometric method using EDTA. [CREATING L6]
- 2. Estimate of an HCL by conductometric titration. [EVALUATING L5]
- 3. Estimate of Fe+2 by Potentiometry using by kmno4. [EVALUATING L5]
- 4. Determine the acid concentration by using PH meter. [EVALUATING L5]
- 5. Estimate of an acetic acid by conductometric titration. [EVALUATING L5]
- 6.Ditermine the viscosity of a given liquid by using Ostwald's viscometer. [EVALUATING L5]
- 7. Write about preparation of Bakelite. [REMEMBARING L1]
- 8. Write about preparation of Nylon 6,6. [REMEMBARING L1]
- 9. Determine the acid value of coconut oil. [REMEMBARING L1]
- 10. Determine the surface tension of a given liquid by using stalagmometer. [REMEMBARING L1]

TO LINGUIST THE PARTY OF THE PA

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

EC Lab External Time Table Examination Branch

A.Y.: 2022-23 SEM-II

DATE	Day	Branch	Session	HT.No	Total No of Students
21-8-2023	MONDAY	ECE & CIVIL	FN	22X31A0401 TO 22X31A0464 22X31A0101 TO 22X31A0103	67
22-8-2023	TUESDAY	IOT	FN	22X31A6901 TO 22X31A6963	63
23-8-2023	WEDNESDAY	AI&ML-B	FN	22X31A6651 TO 22X31A6697	47
24-8-2023	THURSDAY	AI&ML-B	FN	22X31A6601 TO 22X31A6650	50
25-8-2023	FRIDAY	AI&DS	FN	22X31A7201 TO 22X31A7264	64

FN: 9:40am to 12:25pm

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH

heriauda(M) forahimoatnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

EC Lab External Time Table Examination Branch

A.Y:2022-2023 SEM-II

Date	Day	Branch	Session	HT.NO	Total	Remarks	
					No. of Stude nts	Internal examiner	External examiner
21-08-2023	MON DAY	ECE & CIVIL	FN	22X31A0401 TO 22X31A0464 22X31A0101 TO 22X31A0103	67	O.SUBHASHINI	D.Swathi 7032248997 Asst.prof BIIET
22-08-2023	TUES DAY	IOT	FN	22X31A6901 TO 22X31A6963	63	V.MOUNIKA	Dr.Nagaveni 9959073712 Assoc.prof BIIET
23-08-2023	WED NES DAY	AI&ML-B	FN	22X31A6651 TO 22X31A6697	47	O.SUBHASHINI	Dr.Rinki kumar 7488730602 Asst.prof BIIET
24-08-2023	THU RSD AY	AI&ML- A	FN	22X31A6601 TO 22X31A6650	50	V.MOUNIKA	Dr.Litun swain 9489576721 Asst.prof BIIET
25-08-2023	FRID AY	AI&DS	FN	22X31A7201 TO 22X31A7264	64	K.MOUNIKA	Dr.Shahroora sameen 9149454924 Asst.prof BIIET

FN: 9:40AM to 12:25PM

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
*reriouxda^A Ibrahimosham IM R.R. Dist-501 516

PRINCIPAL
Sri Indu Institute of Engineering & Tect.
Sheriguda(Vill), Ibrahimpatnam
R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY LAB

Class: I B.Tech Semister-II LH:B-104

	I	II	III		IV	V	VI	VII
	9:40-10:30	10:30 -11:20	11:20-12:10	12:10- 12.45	12.45-1.35	1.35-2.25	2.25-3.15	3.15- 4.00
MON	I BT	TECH II SEM AI&M	L-A					
TUE	I B'	L U	I B					
WED	I	BTECH IISEM EC	Е	N N	I	BTECH II SEM	TOI	
THU			C					
FRI		H						
SAT								

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH

heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY LAB

Class: I B.Tech Semister-II LH: D-103

	I	II	III		IV	V	VI	VII
	9:40-10:30	10:30 -11:20	11:20-12:10	12:10- 12.45	12.45-1.35	1.35-2.25	2.25-3.15	3.15- 4.00
MON	MA	INTAINANCE						
TUE								
WED								
THU					I B'	TECH II SEM A	AI&DS	
FRI	I	BTECH II SEM AI	&ML-A		I			
SAT	I	BTECH II SEM IO	Γ		I E	STECH II SEM	AI&ML-B	

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist, Telangana-501 510.

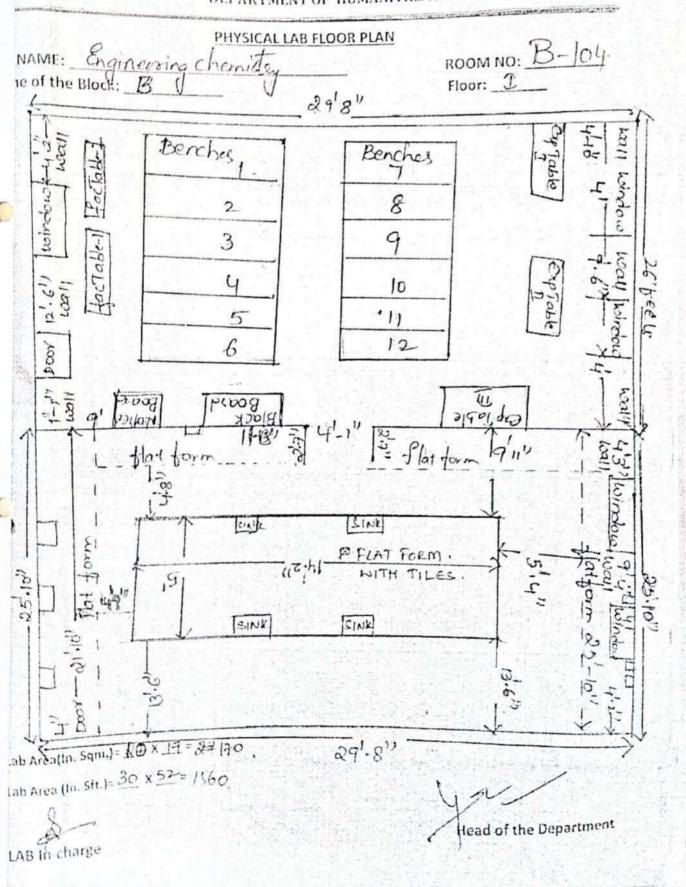
(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

ENGINEERING CHEMISTRY LAB

Do's

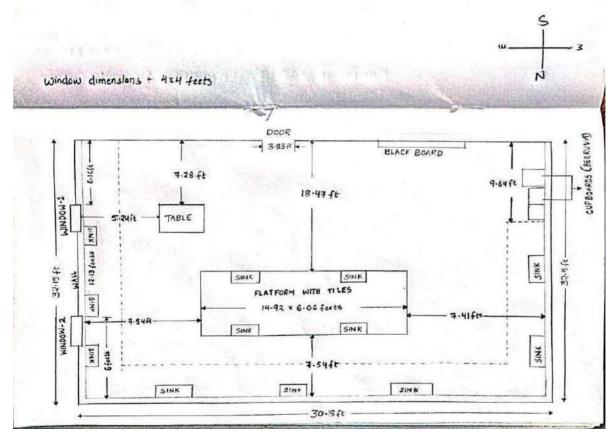
- 1. Attend all the practical classes with
- a) Observation note book b) Chemistry practical manual c) A neat hand kerchief
- 2. Follow the instructions of your Lecturer carefully.
- 3. Read the experiment perfectly before starting.
- 4. Take the required apparatus and clean them.
- 5. The observations should be in noted in the note book immediately.
- 6. Clean the apparatus immediately after the experiment and return to the concerned lab incharge.
- 7.Do the calculation and get the signature of Lecturer on the observation note book.
- 8. Always throw the pieces of papers, broken glass pieces etc., in a waste basket only.
- 9. The observations and calculations should be recorded neatly in the record book and submit the same of the lecturer.


Don'ts

- 1. Don't handle the apparatus roughly; it leads in damage (or)breakage.
- 2. Don't perform the experiment with incomplete knowledge, it may lead you in confusion.
- 3.Don't use excess amount of chemicals (or) reagents.
- 4.Don't consult your fellow student, if you have doubt in the experiment, consult Lecturer only.
- 5.Don't throw any solid matter in the sink. Don't waste the chemical or reagent.
- 6. Don't taste any chemical and inhale poisonous gases.
- 7. Don't waste the water. If it is not required, the tap must be closed.
- 8. Don't leave the laboratory unless your work bench is clean and all the apparatus is returned to the attender.

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

DEPARTMENT OF HUMANITIES AND SCIENCES


(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

PHYSICAL LAB FLOOR-1 PLAN

ROOM NO - D103 CHEMISTRY LAB

Lab area in sq.m=9.198*9.80=90.14 Lab area in sq.ft =30.18*32.15=970.287

LAB in Charge

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
erioudal/ Ibrahimoatnam f/M R.R. Dist-501 516

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Lab manual link

https://drive.google.com/file/d/1kd3ieekIp3ipx4CgNmOaQkWM6KYWiTc/view?usp=sharing

	CHECK	Department of H	umanities and	Sciences								
6	((1))	Department of II	umanities and i	Sciences								
N N	1 2 11 2 11	C	ourse Outcon	ne Attainment (In	ternal Examination-1)							
Tomas	of the feaulty.											
	of the faculty:	K.MOUNIKA		Academic Year:								
	h & Section:	AI&DS		Examination:	INTERNAL -I							
Lab C	Course Name:	ENGINEERING C	CHEMISTRY	Year/semester	I/II							
S.No	HT No.	R+O+A	V+V	E+E+R		R+	O+A : RECORI	D+OBSERV A	ATION+ATT	ANDANCE		
Iax. M	Iar ks ==>	10	10	10								
1	22X31A7201	A	A	A		V+	V: VIVA VOICE	3				
2	22X31A7202	8	7	10								
3	22X31A7203 22X31A7204	10	10	10		E+	E+R:EXPERIME	ENT WRITE	UP+EXECU	TION+RESUL	Γ	
5	22X31A7204 22X31A7205	9	5 6	10 10								
6	22X31A7203 22X31A7206	9	3	10								
7	22X31A7207	7	5	10								
8	22X31A7208	10	6	10								
9	22X31A7209	9	7	10								
10	22X31A7210	9	9	10								
11	22X31A7211	10	9	10								
12	22X31A7212	8	5	10								
13	22X31A7213	10	9	10								
14	22X31A7214 22X31A7215	8	5	10								
15 16	22X31A7215 22X31A7216	10 7	5 3	10								
17	22X31A7216 22X31A7217	10	9	10	1							
18	22X31A7217 22X31A7218	9	7	10	1							
19	22X31A7219	10	8	10								
20	22X31A7220	7	7	10	1							
21	22X31A7221	8	6	10	1							
22	22X31A7222	9	7	10								
23	22X31A7223	9	9	10								
24	22X31A7224	9	3	10								
25	22X31A7225	9	6	10								
26	22X31A7226	10	9	10								
27	22X31A7227 22X31A7228	10 9	9	10								
28 29	22X31A7228 22X31A7229	9	7	10 10								
30	22X31A7223	7	5	10								
31	22X31A7231	6	5	10								
32	22X31A7232	9	5	10								
33	22X31A7233	10	9	10								
34	22X31A7234	6	2	7								
35	22X31A7235	10	10	10								
36	22X31A7236	9	9	10								
37	22X31A7237	9	5	10								
38	22X31A7238	9	5	10								
39	22X31A7239	10	6	10								
40	22X31A7240 22X31A7241	A 9	A 5	A 10								
41	22X31A7241 22X31A7242	10	10	10								
43	22X31A7242 22X31A7243	9	7	10	1							
44	22X31A7244	9	5	10								
45	22X31A7245	10	10	10								
46	22X31A7246	8	6	10								
47	22X31A7247	6	2	7								
48	22X31A7248	10	10	10								
49	22X31A7249	10	10	10								
50	22X31A7250	9	10	10								
51	22X31A7251	6	4	10								
52	22X31A7252	10	8	10								
53 54	22X31A7253 22X31A7254	9	9 7	10								
55	22X31A7254 22X31A7255	10	8	10	 							
56	22X31A7256	7	3	10	 							
57	22X31A7250 22X31A7257	10	9	10								
58	22X31A7258	8	5	10	i							
59	22X31A7259	10	8	10								
60	22X31A7260	8	8	10								
61	22X31A7261	9	6	10								
62	22X31A7262	9	6	10								
63	22X31A7263	9	5	10								
64	22X31A7264	6	5	9								
	I			1								

Target set by the faculty / HoD	6.00	6.00	6.00			
Number of students performed above the target	62	40	62			
Number of students attempted	64	64	64			
Percentage of students scored more than target	97%	63%	97%			
CO Mapping with Exam Que	estions:					
CO 1	V	N/	37			
CO - 1	Y	Y	Y			
CO - 2	Y	Y	Y			
CO - 3	Y	Y	Y			
CO - 4 CO - 5						
CO - 6						
CO Attainment based on Exa	am Questions:					
CO - 1	97%	97%	97%			
CO - 2	97%	97%	97%			
CO - 3	97%	97%	97%			
CO-4	9170	9170	9170			
CO - 5						
CO - 6						
СО	Intr nal pr actica	E+E+R	OveralI	Level	Attainmen	t Level
CO-1	97%	97%	97%	3	1	40%
CO-2	97%	97%	97%	3	2	50%
CO-3	97%	97%	97%	3	3	60%
CO-4		/ ٧				3370
CO-5						
CO-6						
	T4 1 1 F		. \			
Attainment (ınternal I Ez	kamination	1) =	3		

	Maria .	Department of H	lumanities and	Sciences			
18	11/2						
10	- A - A - A - A - A - A - A - A - A - A		Course O	utcome Attainmen	nt (Internal E		
ame o	f the faculty:	K.MOUNIKA		Academic Year:			
	& Section:	AI&DS		Examination:	INTERNAL		
	urse Name:	ENGINEERINGO	CHEMISTRY	Year/semester	I/II		
S.No	HT No.	R+O+A	V+V	E+E+R	ppt	R+O+A: RECORD+OBSERVATION+ATTANDANCE	
ax. Ma	rks ==>	10	10	10	10		
	22X31A7201	8	8	10	10	V+V: VIVA VOICE	
2	22X31A7202	8	6	8	10		
3	22X31A7203	10	7	10	10	E+E+R:EXPERIMENT WRITE UP+EXECUTION+RESULT	
4	22X31A7204	7	5	10	10		
	22X31A7205	7	5	10	10		
7	22X31A7206 22X31A7207	7	6	10 10	10 10		
8	22X31A7207 22X31A7208	8	6	10	10		
	22X31A7209	7	5	10	10		
	22X31A7210	9	7	10	10		
	22X31A7211	9	6	10	10		
	22X31A7212	8	4	8	10		
	22X31A7213	8	6	10	10		
14	22X31A7214	7	4	10	10		
15	22X31A7215 22X31A7216	9	7	10 10	10 10		
16 17	22X31A7216 22X31A7217	8	7	10	10		
	22X31A7218	7	5	10	10		
	22X31A7219	10	8	10	10		
20	22X31A7220	8	7	9	10		
	22X31A7221	8	5	8	10		
	22X31A7222	6	5	10	10		
23	22X31A7223	9	8	8	10		
	22X31A7224 22X31A7225	9	6	9	10		
	22X31A7226	7	5 8	10 8	10 10		
	22X31A7227	9	8	10	10		
	22X31A7228	8	5	7	10		
	22X31A7229	9	6	8	10		
	22X31A7230	8	4	8	10		
	22X31A7231	7	5	8	10		
	22X31A7232 22X31A7233	7 10	5 10	10 10	10 10		
33 34	22X31A7234	5	8	8	10		
35	22X31A7235	10	10	10	10		
36	22X31A7236	9	9	10	10		
37	22X31A7237	8	7	10	10		
	22X31A7238	9	7	10	10		
	22X31A7239	10	8	10	10		
	22X31A7240	A	A	A	A		
41	22X31A7241 22X31A7242	8 10	6 10	10 10	10 10		
	22X31A7242 22X31A7243	9	8	10	10		
44	22X31A7243	9	7	10	10		
	22X31A7245	8	6	10	10		
	22X31A7246	8	7	10	10		
	22X31A7247	A	A	A	10		
	22X31A7248	10	10	10	10		
49	22X31A7249	9	8	10	10		
	22X31A7250 22X31A7251	7 8	6	10	10 10		
	22X31A7251	10	7	10	10		
	22X31A7253	10	10	10	10		
54	22X31A7254	10	8	10	10		
	22X31A7255	10	7	10	10		
	22X31A7256	9	5	10	10		
	22X31A7257	10	9	10	10		
	22X31A7258	9	7	10	10		
	22X31A7259 22X31A7260	9	7	10 10	10 10		
	22X31A7261	9	7	10	10		
62	22X31A7262	9	8	10	10		
	22X31A7263	9	6	5	10		
		1 /					
64	22X31A7264	6	8	6	10		

Target set by the faculty / HoD	6.00	6.00	6.00	6.00			
Number of students performed above the target	61	47	61	63			
Number of students attempted	64	64	64	64			
Percentage of students scored more than target	95%	73%	95%	98%			
CO Mapping with Exam Qu	estions:						
60.1							
CO - 1							
CO - 2							
CO - 3	1			17			
CO - 4 CO - 5	Y Y	Y Y	Y Y	Y			
CO - 6	Y	Y	Y	y Y			
CO Attainment based on Ex	cam Questions:						
CO - 1							
CO - 2							
CO - 3							
CO - 4	95%	73%	95%	95%			
CO - 5	95%	73%	95%	95%			
CO - 6	95%	73%	95%	95%			
СО	Intr nal pr actica	E+E+R	ppt	OveralI	Level	Attainme	nt Level
CO-1						1	40
CO-2						2	509
CO-3						3	60
	84%	95%	95%	92%	3		
CO-4					_		
CO-4 CO-5	84%	95%	95%	92%	3		

177	SRI IND	U INSTITUTE OF ENGIN Department of Hu				DLOGY
SAVED.		Course Outcome Attainment				
Nomo	of the faculty:	K.MOUNIKA	CIIIV	Academic		2022-23
	of the faculty:			Year / Sen		I/II
		AI&DS		rear / Sen	nester:	1/11
	ourse Name:	ENGINEERING CHEMISTRY		C M-	Dell Niveshau	Maulas Cassas I
S.No	Roll Number	Marks Secured	_	S.No	Roll Number	Marks Secured
1	22X31A7201	56	_	35	22X31A7235	58
2	22X31A7202	48	_	36	22X31A7236	52
3	22X31A7203	57	_	37	22X31A7237	50
4	22X31A7204	50	_	38	22X31A7238	42
5	22X31A7205	51	4	39	22X31A7239	48
6	22X31A7206	52	_	40	22X31A7240	32
7	22X31A7207	58		41	22X31A7241	51
8	22X31A7208	54	_	42	22X31A7242	58
9	22X31A7209	55	_	43	22X31A7243	53
10	22X31A7210	53		44	22X31A7244	50
11	22X31A7211	48		45	22X31A7245	52
12	22X31A7212	48		46	22X31A7246	42
13	22X31A7213	48		47	22X31A7247	32
14	22X31A7214	40		48	22X31A7248	54
15	22X31A7215	40		49	22X31A7249	53
16	22X31A7216	46		50	22X31A7250	45
17	22X31A7217	57		51	22X31A7251	50
18	22X31A7218	53		52	22X31A7252	45
19	22X31A7219	56		53	22X31A7253	50
20	22X31A7220	46		54	22X31A7254	48
21	22X31A7221	43		55	22X31A7255	52
22	22X31A7222	55		56	22X31A7256	46
23	22X31A7223	52		57	22X31A7257	58
24	22X31A7224	53		58	22X31A7258	40
25	22X31A7225	50		59	22X31A7259	57
26	22X31A7226	58		60	22X31A7260	52
27	22X31A7227	56		61	22X31A7261	52
28	22X31A7228	49		62	22X31A7262	50
29	22X31A7229	40		63	22X31A7263	32
30	22X31A7230	40	1	64	22X31A7264	32
31	22X31A7231	40	1			0_
32	22X31A7232	40	1			
33	22X31A7233	57	1			
34	22X31A7234	41	1			
F .						
			1			
			1			
Class A	verage mark	l	49		Attainment Level	% students
		med above the target	38		1	% students 40%
	of successful stud	<u>*</u>	64		2	50%
		red more than target	59%			60%
		note than target			3	00%
Attai	nment level		3			

SRI INDU I	NSTITU	TE OF EN	GINEEI	RING AND T	ECHNOLOGY
- Cons	Departme	nt of Humanities	and Scien	ces	
A CANADA A C		Course Ou	itcome At	tainment	
Wanne Ania					
Name of the faculty	K.MOUN	TKA		Academic Year:	2022-23
Branch & Section:	AI&DS			Year / Semester:	I/II
Lab Course Name:	ENGINEER	RINGCHEMISTRY			
Cour se Outcomes	1st Inter nal Exam	2nd Inter nal Exam	Inter nal Exam	University Exam	Attainment Level
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Inter	nal & Univ	er sity Attainment:	3.00	3.00	
		Weightage	70%	30%	
CO Attainment for the	cour se (Int	er nal, Univer sity)	2.10	0.90	
CO Attainment for t	the course (Dir ect Method)		3.00	
Overall co	urse a	ıttainmer	nt leve	el	3.00

Ell wer V	100			De	partn	nent o	of Hur	naniti	ies ai	nd Sc	ience	es										
13/13	100		<u>F</u>				Attain															
Stone	7																					
lame of			K.MO	UNIKA	4						2022	-23										
Branch 8	k Secti		AI& DS					Year	/ Sem	ester:	1/11											
Course N	lame:			NEERII	NG CHE	MIST	RY															
O-PO n								1							1	E-111		50.11		•		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1:	1 PO12	PSO1	PSO2	Note	: FIII y	our CO	-PO M	apping	of your	respecti	ve labs
01	2	2				 	¹	 	 		 	 -	+	-	1							
02	2	<u>2</u>		<u>-</u>	<u>1</u>	 		 -	 	 	 	 -	+	-	1							
03	2				<u>-</u>		<u>-</u>	` -	 	 	 	t	+-		1							
:05	2	<u>-</u>				├ -		i -	t	 	†	†	t									
06	2	1		1		1	_ i	†	T	†	Τ	†										
Course	2.00	1.40	2.00	1.00	1.00	1.00	1.00															
								L						_								
0					Cou	irse C	utcom		inme	nt				4								
							3.0	0														
01														4								
02							3.0	0														
.02							3.0	0						_								
03							3.0	· ·														
							3.0	0						1								
04														↓								
							3.0	0														
05							2.0	0						4								
06							3.0	U						_								
Overall	cours	e att	ainm	ent le	vel				3	3.00												
O ATT	ININAT	NT																				
O-ATTA			PO3	PO4	PO5	PO6	PO7	PO8	PΩα	PO10	PO1	1 PO12										
0	101	1 02	1.03	1 04	1 03	100	1.07	100	103	7010	, гот.		1									
ttainm																						
ent	2.00	1.40	2.00	1.00	1.00	1.00	1.00	Ļ					_									
O contri	bution	to PC	- 33%	, 67%,	100% (L	evel 1	/2/3)															