

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

ENGINEERING CHEMISTRY LAB

CourseCode-CH206BS

IB.TechSemester-II A.Y.2022-2023

Preparedby V.MOUNIKA Asst.Professor

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH Periouda(M) Ibrahimpatham (M) R.R. Dist-501 516 PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Name of the Physical	
laboratory:	ENGINEERING CHEMISTRYLAB
Course code	CH206BS
Room No	D-103&B-104
Name of the lab in charge	K.MOUNIKA
Name of the faculty in charge	V.MOUNIKA

Index of LabFile

S.No.	Name of the content
1	Institute vision and mission
2	Programme outcomes
3	Course Syllabus with Structure
4	Course Outcomes(CO)and CO-PO mapping
5	List of experiments and their CO, PO mapping
6	Timetable
7	Model Practical End examination questions
8	Schedule of end practical examinations
9	List of examiners
10	Lab occupancy chart
11	Dos and Don'ts
12	Physical lab floor plan with area in Sq.m
13	Lab manual
14	CO-PO Attainments

EAMCET CODE: INDI

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- > IM1: To offer outcome-based education and enhancement of technical and practical skills.
- ➤ **IM2:**To Continuous assess of teaching-learning process throughinstituteindustry collaboration.
- ➤ IM3:To be a centre of excellence for innovative and emerging fields in technologydevelopmentwithstate-of-artfacilitiestofacultyandstudents' fraternity.
- ➤ **IM4:**ToCreateanenterprisingenvironmenttoensureculture,ethicsand socialresponsibilityamongthestakeholders.

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH

beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510 Website:https://siiet.ac.in/

PROGRAMMEOUTCOMES

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, research literature, and analyze complex engineeringproblemsreachingsubstantiatedconclusionsusingfirstprinciplesofmathematics, natural sciences, and engineering sciences.

PO3:Design/DevelopmentofSolutions: Designsolutionsforcomplexengineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The Engineer & Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment & Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual & Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large ,such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: Project Management & Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's , as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Head of the Department
Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriguda(M) Ibrahimoatmam (M) R.R. Dist-501 516

OF ENGINEERING TOWNS TO SHARE THE PARTY OF T

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510 Website:https://siiet.ac.in/

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY B.Tech. in COMPUTER SCIENCE AND ENGINEERING (IOT) COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations) ApplicablefromAcademicYear:2022-23 Batch

I Year I Semester

S.	Course Code	Course Title	L	T	P	Credits
No.						
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S.	Course Code	Course Title	L	T	P	Credits
No.						
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering chemistry laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510 Website:https://siiet.ac.in/

ENGINEERING CHEMISTRYLABORATORY

(CourseCode:CH206BS)

B.Tech. IYear IISem.

0 0 21

LT PC

Prerequisites: ENGINEERING CHEMISTRY

CourseObjectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to per form estimations of acids and bases using conductometry ,potentiometry and pH metry methods.
- StudentswilllearntopreparepolymerssuchasBakeliteandnylon-6 in the laboratory.
- Students will earn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metryinordertofindouttheconcentrationsorequivalencepointsofacids and bases.
- Studentsareabletopreparepolymerslikebakeliteandnylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

- **I. Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method.
- **II. Conductometry:** Estimation of the concentration of an acid by Conductometry.
- III. **Potentiometry:** Estimation of the amount of Fe⁺²byPotentiomentry.
- IV. pH Metry: Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. PreparationNylon-6.

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510 Website:https://siiet.ac.in/

VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

REFERENCEBOOKS:

- 1. Lab manual for ENGINEERING CHEMISTRY by B.Ramadevi and P.Aparna, S Chand Publications ,New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications. College Practical Chemistry by V.K.Ahluwalia, Narosa Publications Ltd. NewDelhi

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510 Website:https://siiet.ac.in/

COURSEOUTCOMES

Course Name: ENGINEERING CHEMISTRY Lab(C126)

At the End of the course, student will be able to

C126.1Determinationofparameters like hardness of water by the complexometric titrations (Understanding L2)

C126.2Studentscanableto perform the methods such as conductometry, pH metry to find out concentration of unknown solutions. (Applying L3)

C126.3 Students can determine the Potentiometry in order to find out the concentrations of acids and bases. (Applying L3)

C126.4 Students are able to synthesise Polymers-Bakelite & Nylon-6. (Applying L3)

C126.5Students can estimate the saponification value and viscosity of the lubricants.

(Analyzing L4)

C126.6 They can able to demonstrate the rate of corrosion of mild steel in various conditions (Understanding L2)

COsandPOs&PSOsMapping

High-3 Medium-2 Low-1

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C126.1	2	2	-	-	-	-	1	-	-	-	-	-	-	-
C126.2	2	2	-	-	1	-		-	-	-	-	-	-	-
C126.3	2	1	-	1	1	-	1	-	-	-	-	-	-	-
C126.4	2	-	2	-	-	1		-	-	-	-	-	-	-
C126.5	2	1	-	-	-		1	-	-	-	-	-	-	-
C126.6	2	1	-	1	-	1	1	-	-	-	-	-	-	-
AVE	2.00	1.4	2.0	1.0	1.0	1.0	1.0	-	-	-	-	-	-	-

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad)

Khalsa Ibrahim patnam, Sheriguda (V), Ibrahim patnam (M), Ranga Red dy Dist., Telangana-501510

MAPPINGOFEXPERIMENTOUTCOMESWITH CO/PO'S/PSO

EXPERIMENT OBJECTIVES	EXPERIMENT OUTCOMES	СО	PO'S
1.To estimate the total hardness of water by EDTA method.	The students will be able to analyze the nature of salts causing hardness and to solve the engineering problems arising during steam production in boilers.	C126.1	PO1,PO2 ,PO7
2.To determine the strength of the strong acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given acid with addition of strong base using conductivity meter.	C126.2	PO1,PO2 PO5
3.To estimate the Fe ⁺² by potentiometry using KMnO ₄ .	The student shall be able to Analyze the variation of EMF values of given acid with addition of KMnO ₄ using potentiometer.	C126.3	PO1,PO2, PO4,PO5, PO7
4.Toestimatetheamountof HCl present in the given Volume of test solution by PH metry.	The students able to find out the concentrations of acids and bases.	C126.2	PO1,PO2 PO5
5.To prepare Bakelite polymer using Phenol and Formaldehyde.	The student shall be able to prepare the polymer of Bakelite	C126.4	PO1,PO3 PO6
6.To prepare Nylon-6,6 polymer using adipoyl chloride and hexamethylene diammine.	The students able to prepare the polymer of Nylon-6,6.	C126.4	PO1,PO3 PO6
7.Todeterminetheacidvalueof Coconut oil.	The student shall be able to identity and calculate the acid values of coconut oil.	C126.5	PO1,PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE, NewDelhiandAffiliatedtoJNTUH,Hyderabad)

KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510

8.To determine the viscosity of the given coconut oil and ethanol.	The students shall be able to Determine and calculate the Viscosity coefficient values of coconut oil and ethanol.	C126.5	PO1,PO2 PO7
9.To determine the rate of corrosion of mild steel in acidic medium in the absence and presence of an inhibitor And calculate the efficiency of the Inhibitor.	The student can able to understand the efficiency and function of inhibitor in the Process of corrosion.	C126.6	PO1,PO2 PO4,PO6 PO7
ADDITIONALEXPERIMENT	S		
10.To determine the strength of the weak acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given weak acid with addition of strong base using conductivity meter.	C126.2	PO1,PO2 PO5
11.To determine the surface tension of a given liquid at room temperature using stalagmometer by drop number method.	The student shall be able to determine and calculate the surface tension values of reference liquid and given liquid	C126.5	PO1,PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

Class: IOT Semester: II W.E.F-03-04-2023 LH:-D-110 1 II Ш IV V VII VI 9:40-10:30 -11:20-12:10-12.45-1.35-2.25-3.15-4.00 10:30 11:20 12:10 12.45 1.35 2.25 3.15 **ITWS LAB** ODE **EDC** EC ODE(T)/EC(T) MON L CAEG PRACTICE BEE BEE ODE EDC(T)/ BEE(T) TUE U N EC(T)/ODE(T) WED EC ODE **EDC** EC/BEE LAB C H LIBRARY THU BEE EC ODE CAEG PRACTICE BEE(T)/EDC(T) FRI BEE **EDC** EC **PYTHON LAB** PYTHON(T) SAT EC BEE LAB EDC ODE BEE

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA201B S	OrdinaryDiffer entialEquation sandVectorCal culus	V.SUJATHA	CH206B S	Engineering ChemistryLa boratory	V.MOUNIKA/O.SUBHASHI NI
CH203B S	EngineeringCh emistry	V.MOUNIKA	EE202ES	BasicElectric alEngineerin gLaboratory	S.NISCHALA/M.NAGARAJ U
ME201E S	ComputerAide dEngineeringG raphics	M.YADHAGI RI	CS201ES	PythonProgr ammingLabo ratory	P.BALU/M.TEJASWI
EE201ES	BasicElectrical Engineering	S.NISCHALA	CS203ES	ITWorkshop	B.RAJITHA/N.KEERTHI CHANDANA
EC201ES	ElectronicDevi cesand Circuits	P.SRILATHA			

Coordinator

V. Sugatha Class In-Charge

s In-Charge Time T

Head of The Department

Sri Indu Institute of Engg. & Tech Main Road, Sheriguda(V). Ibrahimpatnam(M), R.R. Dist. Telangana-501 510

UGC Autonomous Institution ,Accredited by NAAC with A+ Grade

Recognized under2(f)ofUGCAct1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana - 501 510 **X3**

BR22

Lab External Question paper

Year& Semester :I-II Branch :IOT

Subject Name : ENGINEERING CHEMISTRY Lab Faculty Name : V.MOUNIKA

EXTERNALEXAM QUESTIONPAPER

- 1. Estimate the total hardness of water by complexometric method using EDTA.[CREATINGL6]
- 2. Estimate of an HCL by conductometric titration. [EVALUATING L5]
- 3. EstimateofFe+2byPotentiometryusingbykmno4.[EVALUATINGL5]
- 4. Determine the acid concentration by using PH meter.[EVALUATINGL5]
- 5. Estimate of an acetic acid by conductometric titration. [EVALUATINGL5]
- 6. Determine the viscosity of a given liquid by using Ostwald's viscometer. [EVALUATING L5]
- 7. Write about preparation of Bakelite.[REMEMBARINGL1]
- 8. Write about preparation of Nylon6,6.[REMEMBARING L1]
- 9. Determine the acid value of coconut oil.[REMEMBARING L1]
- 10. Determine the surface tension of agiven liquid by using stalagmometer.[REMEMBARINGL1]

STATE OF THE PARTY OF THE PARTY

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(AnAutonomousInstitutionunderUGC)

AccreditedbyNAACwithA+Grade,Recognizedunder2(f) ofUGCAct1956.

(ApprovedbyAICTE,NewDelhiandAffiliatedtoJNTUH,Hyderabad)

KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510

https://siiet.ac.in/

EC Lab External Time Table Examination Branch

A.Y.:2022-23 SEM-II

DATE	Day	Branch	Session	HT.No	TotalNo of Students
21-8-2023	MONDAY	ECE &CIV IL	FN	22X31A0401 TO 22X31A0464 22X31A0101 TO 22X31A0103	67
22-8-2023	TUESDAY	IOT	FN	22X31A6901 TO 22X31A6963	63
23-8-2023	WEDNESDAY	AI&ML-B	FN	22X31A6651 TO 22X31A6697	47
24-8-2023	THURSDAY	AI&ML-A	FN	22X31A6601 TO 22X31A6650	50
25-8-2023	FRIDAY	AI&DS	FN	22X31A7201 TO 22X31A7264	64

FN:9:40amto12:25pm

Head of the Department
Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriguida(M) Ibrahimoatham (M) R.R. Dist-501 516 PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(UGCAUTONOMOUSINSTITUTION)

AccreditedbyNAACA+Grade,Recognizedunder2(f)ofUGCAct1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510

EC Lab External Time Table Examination Branch

A.Y:2022-2023 SEM-II

Date	Day	Branch	Session	HT.NO	Total	Remarks	
					No.of Stude nts	Internal examiner	Externalexaminer
21-08- 2023	MON DAY	ECE & CIVIL	FN	22X31A0401 TO 22X31A0464 22X31A0101 TO 22X31A0103	67	O.SUBHASHINI	D.Swathi 7032248997 Asst.prof BIIET
22-08- 2023	TUE SDA Y	IOT	FN	22X31A6901 TO 22X31A6963	63	V.MOUNIKA	Dr.Nagaveni 9959073712 Assoc.prof BIIET
23-08- 2023	WED NES DAY	AI&ML-B	FN	22X31A6651 TO 22X31A6697	47	O.SUBHASHINI	Dr.Rinkikumar 7488730602 Asst.prof BIIET
24-08- 2023	THU RSD AY	AI&ML- A	FN	22X31A6601 TO 22X31A6650	50	V.MOUNIKA	Dr.Litunswain 9489576721 Asst.prof BIIET
25-08- 2023	FRID AY	AI&DS	FN	22X31A7201 TO 22X31A7264	64	K.MOUNIKA	Dr.Shahroorasameen 9149454924 Asst.prof BIIET

FN:9:40AM to12:25PM

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda^{I/A} Ibrahimostnam (M. R.R. Dist-501-51)

PRINCIPAL
Sri Indu Institute of Engineering & Tect.
Sheriguda(Vill), Ibrahimpatnam
R.R. Dist. Telangana-501 510.

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+Grade, Recognized under 2(f) of UGC Act 1956 (Approvedby AICTE, New Delhiand Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY LAB

Class:IB.Tech Semester-II LH:B-104

	I 9:40-10:30	II 10:30-11:20	III 11:20-12:10	12:10- 12.45	IV 12.45-1.35	V 1.35-2.25	VI 2.25-3.15	VII 3.15- 4.00
MON	IBT	ECHIISEMAI&ML-	A	_				
TUE	IBT	ΓΕCHIISEMAI&DS		L U	IB			
WED	I		N	II	BTECHIISEMI	OT		
THU	MAINTAINANCE			C				
FRI				Н				
SAT							<u> </u>	

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriguida(M) Ibrahimoatnam (M) R.R. Dist-501 516 PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510

(AnAutonomousInstitutionunderUGC)

Accredited by NAAC with A+Grade, Recognized under 2(f) of UGC Act 1956 (Approvedby AICTE, New Delhiand Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY

LAB

Class:IB.Tech Semister-II LH:D-103

	I	II	Ш		IV	V	VI	VII
	9:40-10:30	10:30-11:20	11:20-12:10	12:10- 12.45	12.45-1.35	1.35-2.25	2.25-3.15	3.15- 4.00
MON	MA	INTAINANCE						
TUE								
WED								
THU					IBT	ΓECHIISEMAI	&DS	
FRI	IBTECHIISEMAI&ML-A				IBTECHIISEMECE			
SAT	I	BTECHIISEMIOT			IB	TECHIISEMA	I&ML-B	

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH

heriauda(M) forahimoatnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE ,New Delhi and Affiliated to JNTUH ,Hyderabad)
KhalsaIbrahimpatnam, Sheriguda(V),Ibrahimpatnam(M) ,Ranga Reddy Dist., Telangana–501510

ENGINEERING CHEMISTRY LAB

Do's

- 1. Attend all the practical classes with
- a)Observation note book b) Chemistry practical manual c) A neat handkerchief
- 2. Follow the instructions of your Lecturer carefully.
- 3. Read the experiment perfectly before starting.
- 4. Take the required apparatus and clean them.
- 5. The observations should be in noted in the note book immediately.
- 6. Clean the apparatus immediate after the experiment and return to the concerned lab incharge.
- 7. Do the calculation and get the signature of Lecturer on the observation note book.
- 8. Always throw the pieces of papers, broken glass pieces etc., in a waste basket only.
- 9. The observations and calculations should be recorded neatly in the record book and submit the same of the lecturer.

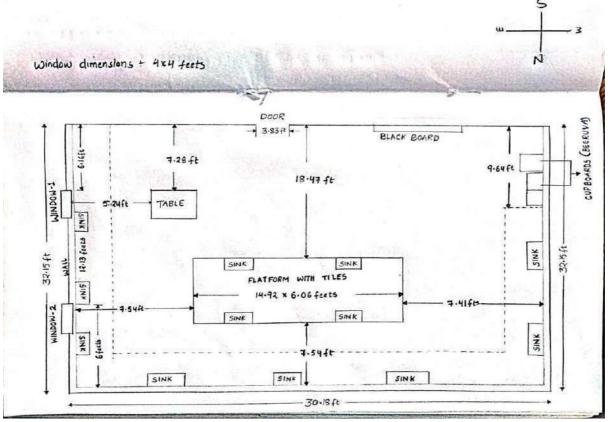
Don'ts

- 1. Don't handle the apparatus roughly ;it leads in damage(or)breakage.
- 2. Don't perform the experiment with in complete knowledge, it may lead you in confusion.
- 3. Don 't use excess amount of chemicals(or)reagents.
- 4. Don't consult our fellow student, if you have doubt in the experiment ,consult Lecturer only.
- 5. Don't throw any solid matter in the sink. Don't waste the chemical or reagent.
- 6. Don't taste any chemical and inhale poisonous gases.
- 7. Don't waste the water. If it is not required, the tap must be closed.
- 8. Don't leave the laboratory unless your work bench is clean and all the apparatus is returned to the attender.

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

DEPARTMENT OF HUMANITIES AND SCIENCES

NAME: Engin	eering chemidey	RC	DOM NO: B-104
1 3 9 Poly	Berches 2 3 4 5 6 Proof form	Benches 8 9 10 11 12	
H, [] [] [] [] [] [] [] [] [] [] [] [] []	19.8 19 (10)k	SINK SINK	25.10" 25.10" Jatyon 22-10" 51.4" 13.6"
b Area(In. Sqm.)= RG b Area (In. Sft.)= 30 AB In-charge	D×19=&≠170 ×52=1860	291-8"	lead of the Department


(An Autonomous Institution under UGC)

Accredited by NAAC with A+Grade, Recognized under 2(f) of UGC Act 1956 (Approvedby AICTE, New Delhiand Affiliated to JNTUH, Hyderabad)

KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddy Dist.,Telangana-501510

PHYSICALLABFLOOR-1 PLAN

ROOM NO - D103 CHEMISTRY LAB

Lab area in sq.m=9.198*9.80=90.14 Labareainsq.ft=30.18*32.15=970.287

LAB in Charge

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
"erlandal" Ibrahmostnam (M R R Nst-50) 517

(AnAutonomous InstitutionunderUGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (ApprovedbyAICTE,NewDelhiandAffiliatedtoJNTUH,Hyderabad) KhalsaIbrahimpatnam,Sheriguda(V),Ibrahimpatnam(M),RangaReddyDist.,Telangana-501510

Labmanuallink

https://drive.google.com/file/d/1QjP0tK0jpATEqLV1Wcww6fUdJzJ8mwi9/view?usp=sharing

	SRI INDU II	NSTITUTE	OF ENGIN	EERING AN	D TECHNOLOGY									
8	100 700 700	Departme	ntof Humanities	andSciences										
6	(PRO)													
3			CourseOu	ıtcomeAttainmer	nt(InternalExamination-1)									
Name o	of the faculty:	VMOUNIKA		AcademicYear:	2022-23									
Branch	&Section:	IOT		Examination:	INTERNAL-I									
LabCo	urse Name:	ENGINEERING C	HEMISTRY	Year/semester	I/II									
S.No	HTNo.	R+O+A	V+V	E+E+R				R+O+A	:RECORD+	OBSERVA	TION+ATT	ANDANCE		
Max.Ma		10	10	10										
	22X31A6901	10	9	10				V+V:VI	VAVOICE					
3	22X31A6902 22X31A6903	9	5	10				E.E.D.	EVDEDIME	NTWRITEU	D. EVECTE	TON, DECL	T	
4	22X31A6904	10	5	9	1			E+E+K	EAPERINE	NIWKIIEU	P+EXECUI	ION+RESU	LI	-
5	22X31A6905	9	4	10	1									
6	22X31A6906	10	9	10										
7	22X31A6907	5	5	9										
8	22X31A6908	4	6	10	ļ									
9	22X31A6909	10	9	10										
10	22X31A6910 22X31A6911	10 10	8	10										-
12	22X31A6911 22X31A6912	10	6	10										-
13	22X31A6913	10	8	10	İ									1
14	22X31A6914	9	6	9										
15	22X31A6915	9	5	9										
16	22X31A6916	4	6	8										
17	22X31A6917 22X31A6918	4	6	10										-
18 19	22X31A6918 22X31A6919	8	5	9										-
20	22X31A6920	10	4	10										-
21	22X31A6921	5	5	10										
22	22X31A6922	9	5	8	İ									
23	22X31A6923	10	9	10										
24	22X31A6924	9	5	8										
25	22X31A6925 22X31A6926	10	9 7	10										-
26 27	22X31A6927	10	6	10										-
28	22X31A6928	10	9	10										_
29	22X31A6929	10	9	10										
30	22X31A6930	8	7	10										
31	22X31A6931	10	9	10										
32	22X31A6932 22X31A6933	7 10	5	7 10										-
33 34	22X31A6934	10	8	10										-
35	22X31A6935	10	8	10										_
36	22X31A6936	10	9	10										
37	22X31A6937	10	6	9										
38	22X31A6938	10	10	10										
39	22X31A6939	10	9	10										-
40	22X31A6940 22X31A6941	9	7	10 10	1									-
41	22X31A6941 22X31A6942	9	10	10	1									-
43	22X31A6943	10	6	10	İ									1
44	22X31A6944	10	9	10	İ									
45	22X31A6945	9	6	10										
	22X31A6946				ļ									
47	22X31A6947	10	9	10										-
48	22X31A6948 22X31A6949	10 10	9 7	10 10			\vdash							-
50	22X31A6949 22X31A6950	8	4	10	1									-
51	22X31A6951	8	8	10										
52	22X31A6952	9	8	10										
53	22X31A6953	10	9	10										
54	22X31A6954	10	8	10										
55	22X31A6955	9	6	10										
56	22X31A6956	9	7	10										-
57 58	22X31A6957 22X31A6958	10	9	10										-
59	22X31A6959	9	5	10	1		\vdash							-
60	22X31A6960	10	5	10										
61	22X31A6961	9	9	10										
62	22X31A6962	9	5	10										
63	22X31A6963	10	9	10										

Target set by the faculty /	6.00	6.00	6.00			
Number of students performed above the target	56	45	61			
Number of students attempted	61	61	61			
Percentage of students scoredmore than target	92%	74%	100%			
<u>COMapping with ExamQuestion</u>	ons:					
CO-1	Y	Y	Y			
CO-2	Y	Y	Y			
CO-3	Y	Y	Y			
CO-4	+ + +					
CO-5						
CO-6						
COAttainment basedonExam	nQuestions:					
CO-1	92%	92%	100%			
CO-2	92%	92%	100%			
CO-3	92%	92%	100%			
CO-4		<u> </u>				
CO-5				<u></u>		1
CO-6						
СО	Intrnalpractica	E+E+R	OveralI	Level	Attainmen	ntLevel
CO-1	92%	100%	96%	3	1	40%
CO-2	92%	100%	96%	3	2	50%
CO-3	92%	100%	96%	3	3	60%
CO-4						+
CO-5				1		
CO-6	+					+
		mination)=	Д ,		-	+

	(((projection)	Departme	ent of Humanities	es and Sciences													
	Car																
	Al service So		C	ourseOutcomeAt	tainment(InternalExamina	tion-2)											
Name c	of the faculty:	VMOUNIKA		AcademicYear:	2022-23												
	&Section:	IOT		Examination:	INTERNAL-II												
Lab Co	ourse Name:	ENGINEERING C	HEMISTRY	Year/semester	I/II				\Box		_			<u> </u>	<u> </u>	<u> </u>	<u> </u>
																	
S.No	HTNo.	R+O+A	V+V	E+E+R	ppt		<u> </u>			R+4	O+A:R	.ECORD+	+OBSERVAT	fion+att/	ANDANCE		
Max.Ma		10	10	10	10)	<u> </u>			V	V-VIV	· VOICE					
2	22X31A6901 22X31A6902	9 8	9 8	10	10	-			+	V+	V:VIVA	AVOICE				$\overline{}$	
3	22X31A6903	9	10	10	10	+			+	E+	E+R:E	XPERIMF	NTWRITE	UP+EXECU	TION+RESUL	LT	+
4	22X31A6904	9	8	10	10	1					\Box				Ĺ		
5	22X31A6905	8	7	10	10												
6	22X31A6906	9	9	10	10			-	1		_		1				
7	22X31A6907	9	7	9 8	10			-		-	+		-	-	+	+	-
8	22X31A6908 22X31A6909	10	6 8	10	10	+			+	-+	+		-	-	+	+	+
10	22X31A6910	10	6	10	10	1				-	-		_	+	+	+	+
11	22X31A6911	10	9	10	10	1								_			1
12	22X31A6912	9	5	8	10												
13	22X31A6913	10	8	10	10]		<u> </u>	\Box		_				<u> </u>		
14 15	22X31A6914 22X31A6915	8 9	6	7 8	10			-		-	+		-	-	+	+	-
16	22X31A6915 22X31A6916	10	6	8	10	+			+	-+	+		-	+	+	+	+
17	22X31A6916 22X31A6917	7	5	7	10	+			+		+			+	+	+	+
18	22X31A6918	A	A	A	A	1					T				+		
19	22X31A6919	8	5	7	10						\Box						
20	22X31A6920	9	7	9	10]		<u> </u>	\Box		_			Ε	Ι	Ι	Ι
21 22	22X31A6921 22X31A6922	10 9	6 7	10 7	10	-	-				+		-	-	+		-
22	22X31A6922 22X31A6923	10	9	10	10	+		-	+	-	+		-	-	+	+	+
24	22X31A6924 22X31A6924	9	6	10	10	+			+		+		_	+	+	+	+
25	22X31A6925	10	9	10	10	1					\top						
26	22X31A6926	9	7	10	10						\Box						
27	22X31A6927	9	6	7	10]		<u> </u>	\Box		_			<u> </u>	Ţ	Ι	<u> </u>
28 29	22X31A6928 22X31A6929	10 10	7 8	10 10	10	-			++		+			+	+	+	+
30	22X31A6929 22X31A6930	9	5	10	10	+			+-+	-	+		+	+	+	+	+
31	22X31A6931	10	9	10	10	†					\pm				+	+	+
32	22X31A6932	10	6	10	10						I						
33	22X31A6933	6	6	8	10						_						
34	22X31A6934	10	6	10	10			-			+		+	+	-	+	-
35 36	22X31A6935 22X31A6936	9	6 8	8	10	-		-		-+	+		+	+	+	+	+
37	22X31A6936 22X31A6937	9	6	8	10	+			+	-	+		-	-	+	+	-
38	22X31A6938	10	5	10	10	1					\top						
39	22X31A6939	9	5	10	10						\Box						
40	22X31A6940	8	5	8	10						_				Ι		
41	22X31A6941 22X31A6942	6 10	5 7	8	10 10	-		-			+		-	-	-	+	+
42	22X31A6942 22X31A6943	9	5	8	10	+		_	+	-+	+		+	-	+	+	+
44	22X31A6944	10	8	10	10	+			+	-	+			+	+	+	+
45	22X31A6945	10	9	10	10						\Box						
46	22X31A6946	6	5	7	10						\Box						
47	22X31A6947	9	5	10	10			<u> </u>	\Box		_			Г.	Ţ	Ι—	Ι
48 49	22X31A6948 22X31A6949	9	6 5	10 10	10	-			+	-+	+		-	+	+	+	+
50	22X31A6949 22X31A6950	6	5	8	10	+	$\overline{}$		+	-	+		-	-	+	+	+
51	22X31A6951	9	4	8	10	†					+				+	+	+
52	22X31A6952	10	5	10	10	Ť					I					1	
53	22X31A6953	9	5	10	10												
54	22X31A6954	10	5	10	10]		ļ	<u> </u>		-			-	1	<u> </u>	1
55 56	22X31A6955 22X31A6956	7 10	5	7 10	10 10	4	-				+		-	-	+		+
57	22X31A6956 22X31A6957	9	5	7	10	-			+	-	+		-	+	+	+	+
58	22X31A6958	10	9	10	10	1			+	-	_			+	+	+	
59	22X31A6959	9	5	9	10	1								_			
60	22X31A6960	9	5	9	10						I						
61	22X31A6961	10	7	10	10						\Box						
62	22X31A6962 22X31A6963	9	5	9	10				1		-					-	
		10	5	10	10			1					1				

							
Targetsetby thefaculty /HoD	6.00	6.00	6.00	6.00			
Number of studentsperformedabovethet arget	62	38	62	62			
Numberofstudentsattempted	63	63	63	63			
Percentage of studentsscoredmorethantarg et	98%	60%	98%	98%			
COMappingwithExamQuestic	ons:						
CO-1							
CO-1 CO-2	+ +		+				
CO-2	+		+	+			
CO-3	Y	Y	Y	Y			_
CO-5	Y	Y	Y	Y			
CO-6	Y	Y	Y	Y			
COAttainmentbasedonExam	Ouestions:						
CO-1	1						
CO-2	†						
CO-3	†						
CO-4	98%	60%	98%	98%			
CO-5	98%	60%	98%	98%			
CO-6	98%	60%	98%	98%			
СО	Intrnalpractica	E+E+R	ppt	OveralI	Level	Attainmen	ntLevel
CO-1	1					1	40%
CO-2	1	_				2	50%
CO-3	1					3	60%
CO-4	79%	98%	98%	92%	3		1
CO-5	79%	98%	98%	92%	3		
CO-6	79%	98%	98%	92%	3		
Attainment(I	Internal2Exa	amination)	=		3		
,		· · · ·					

Department of Humanities and Sciences

Course Outcome Attainment (University Examinations)

Name	Name of the faculty: V.MOUNIKA				AcademicYear:					
Branch	n&Section:	IOT		Year/Seme	ester:	I/II				
Lab C	Course Name:	ENGINEERING CHEMISTRY								
S.No	RollNumber	MarksSecured		S.No	RollNumber	MarksSecured				
1	22X31A6901	58		35	22X31A6935	57				
2	22X31A6902	38		36	22X31A6936	58				
3	22X31A6903	55		37	22X31A6937	50				
4	22X31A6904	55		38	22X31A6938	53				
5	22X31A6905	40		39	22X31A6939	52				
6	22X31A6906	58		40	22X31A6940	50				
7	22X31A6907	37		41	22X31A6941	45				
8	22X31A6908	35		42	22X31A6942	54				
9	22X31A6909	53		43	22X31A6943	56				
10	22X31A6910	54		44	22X31A6944	55				
11	22X31A6911	59		45	22X31A6945	42				
12	22X31A6912	45		46	22X31A6946	48				
13	22X31A6913	54		47	22X31A6947	45				
14	22X31A6914	35		48	22X31A6948	55				
15	22X31A6915	55		49	22X31A6949	50				
16	22X31A6916	52		50	22X31A6950	50				
17	22X31A6917	39		51	22X31A6951	53				
18	22X31A6919	40		52	22X31A6952	57				
19	22X31A6920	53		53	22X31A6953	57				
20	22X31A6921	45		54	22X31A6954	57				
21	22X31A6922	35		55	22X31A6955	45				
22	22X31A6923	58		56	22X31A6956	52				
23	22X31A6924	51		57	22X31A6957	45				
24	22X31A6925	58		58	22X31A6958	55				
25	22X31A6926	53		59	22X31A6959	45				
26	22X31A6927	50		60	22X31A6960	47				
27	22X31A6928	58		61	22X31A6961	55				
28	22X31A6929	58		62	22X31A6962	45				
29	22X31A6930	53		63	22X31A6963	57				
30	22X31A6931	58								
31	22X31A6932	52								
32	22X31A6933	48								
33	22X31A6934	58								
ClassAv	veragemark		51		AttainmentLevel	%students				
	rofstudentsperformed		37		1	40%				
Number	rofsuccessfulstudents	S	62		2	50%				
Percenta	ageofstudentsscored	morethantarget	60%		3	60%				
Attai	inmentlevel		3							

and the same of th	Departme	ent of Humanities	and Scier	nces	
TOWN OF THE PARTY		CourseOu	tcomeAt	tainment	
WRAM WAT NAME					
Nameofthefaculty	VMOUN	IKA		AcademicYear:	2022-23
Branch&Section:	IOT			Year/Semester:	I/II
Lab Course Name:	ENGINEER	RING CHEMISTRY			
CourseOutcomes	1st Internal Exam	2ndInternal Exam	Internal Exam	UniversityExam	AttainmentLevel
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Inter	rnal&Unive	rsityAttainment:	3.00	3.00	
		Weightage	70%	30%	
COAttainmentforthed	course(Inter	nal,University)	2.10	0.90	
COAttainmentfortl	hecourse(Di	rectMethod)		3.00	
Overallco	urseat	 tainment	level		3.00

SRIINDUINSTITUTEOFENGINEERING&TECHNOLOG

OF ENGINEER	.	KIII	וטעו				FENC						LUC	,
SVV	1				epartm							S		
S. S. S.	00000 00000			Prog	ram Oı	<u>itcom</u>	<u>eAttair</u>	<u>ment(</u>	(from	Cours	<u>e)</u>		ı	
GRAMMPATHAN	7													
Nameof							AcademicYear: 2022				23			
Branch&						Year/	Semes	ster:	I/II					
CourseN	lame:		ENGI	NEERI	NG CHE	MISTI	₹Y							
60.00		_												
CO-POm														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2					1							
CO2	2	2			1									
CO3	2	1		1	1		1							
CO4	2		2			1								
CO5	2	1					1							
CO6	2	1		1		1	1							
Course	2.00	1.40	2.00	1.00	1.00	1.00	1.00							
СО					Cor	ırseO	utcom	eAtta	inmer	nt				
							3.00)						1
CO1														
							3.00)						
CO2							3.0	,						
							3.00)						1
CO3														
							3.00)						1
CO4														
							3.00)						
CO5														
CO6							3.00)						
Overall	COLLES	eatta	inme	ntleve	 				7	3.00				
Overan	004.3	Catta												_
PO-ATT	INMI	ENT												
	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
со														
Attainm														
ent	2.00	1.40	2.00	1.00	1.00	1.00	1.00							
COcontrik	oution	toPO-3	3%.679	%,100%	(Level1	(2/3)								
			,		/					I.	1		I	