

EAMCET CODE: INDI

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

ENGINEERING CHEMISTRY LAB

Course Code - CH106BS

I B. Tech Semester-I A.Y. 2022-2023

> Prepared by **V.MOUNIKA Asst. Professor**

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH

beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tect. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Name of the Physical	
laboratory:	ENGINEERING CHEMISTRY LAB
Course code	CH106BS
Room No	B-104&D-103
Name of the lab incharge	K.MOUNIKA
Name of the faculty incharge	V.MOUNIKA

Index of Lab File

S. No.	Name of the content
1	Institute vision and mission
2	Programme outcomes
3	Course Syllabus with Structure
4	Course Outcomes (CO) and CO-PO mapping
5	List of experiments and their CO, PO mapping
6	Time table
7	Model Practical End examination questions
8	Schedule of end practical examinations
9	List of examiners
10	Lab occupancy chart
11	Dos and Don'ts
12	Physical lab floor plan with area in Sq.m
13	Lab manual
14	CO-PO Attainments

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

EAMCET CODE: INDI

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- > **IM1:** To offer outcome-based education and enhancement of technical and practical skills.
- ➤ **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- ➤ **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- ➤ **IM4:** To Create an enterprising environment to ensure culture, ethicsand social responsibility among the stakeholders.

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

PROGRAMME OUTCOMES

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The Engineer & Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment & Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual & Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: Project Management & Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

CI ENGINEERING COMMING

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY B.Tech. in COMPUTER SCIENCE AND ENGINEERING (CYBER SECURITY) COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations) Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S.	Course Title		L	T	P	Credits
No.	Code					
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	CH103BS	Engineering Chemistry	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	EE101ES	Basic Electrical Engineering	2	0	0	2
5.	ME101ES	Computer Aided Engineering Graphics	1	0	4	3
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	CH106BS	Engineering Chemistry Laboratory	0	0	2	1
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EE102ES	Basic Electrical Engineering Laboratory	0	0	2	1
		Induction Program				
		Total	12	2	12	20

I Year II Semester

S.	Course Code	Course	L	T	P	Credits
No.						
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	AP202BS	Applied Physics	3	1	0	4
3.	ME202ES	Engineering Workshop	0	1	3	2.5
4.	EN204HS	English for Skill Enhancement	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	AP205BS	Applied Physics Laboratory	0	0	3	1.5
7.	CS201ES	Python Programming Laboratory	0	1	2	2
8.	EN207HS	English Language and Communication Skills Laboratory	0	0	2	1
9.	CS203ES	IT Workshop	0	0	2	1
10.	*MC201ES	Environmental Science	3	0	0	0
		Total	13	4	12	20

SHIP & VECHNOI

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

ENGINEERING CHEMISTRY LABORATORY (Course Code: CH106BS)

B.Tech. I Year I Sem.

L T PC

0 0 21

Prerequisites: Engineering Chemistry

Course Objectives: The course consists of experiments related to the principles of chemistry requiredfor engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surfacetension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to findout the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

- **I. Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method.
- **II. Conductometry:** Estimation of the concentration of an acid by Conductometry.
- III. **Potentiometry:** Estimation of the amount of Fe⁺² by Potentiomentry.
- IV. pH Metry: Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon -6.

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.
- **VII. Corrosion:** Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

CI ENGINEERING NEW PROPERTY OF THE PROPERTY OF

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

REFERENCE BOOKS:

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New De

THE ENGINEER HIS TOWN TO THE PROPERTY OF THE P

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510
Website: https://siiet.ac.in/

COURSE OUTCOMES

Course Name: Engineering Chemistry Lab (C117)

At the End of the course, student will be able to

- C117.1 Determination of parameters like hardness of water by the complexometric titrations (Understanding L2)
- C117.2 Students can able to perform the methods such as conductometry, pH metry to find out concentration of unknown solutions. (Applying L3)
- C117.3 Students can determine the Potentiometry in order to find out the concentrations of acids and bases. (Applying L3)
- C117.4 Students are able to synthesise Polymers-Bakelite & Nylon-6. (Applying L3)
- C117.5 Students can estimate the saponification value and viscosity of the lubricants. (Analyzing L4)
- C117.6 They can able to demonstrate the rate of corrosion of mild steel in various conditions (Understanding L2)

COs and POs & PSOs Mapping

High -3 Medium -2 Low-1

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C117.1	2	2	-	-	-	-	1	-	-	-	-	-	-	-
C117.2	2	2	-	-	1	-		-	-	-	-	-	-	-
C117.3	2	1	-	1	1	-	1	-	-	-	-	-	-	-
C117.4	2	-	2	-	-	1		-	-	-	-	-	-	-
C117.5	2	1	-	-	-		1	-	-	-	-	-	-	-
C117.6	2	1	-	1	-	1	1	-	-	-	-	-	-	-
AVE	2.00	1.4	2.0	1.0	1.0	1.0	1.0	-	-	-	-	-	-	-

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

MAPPING OF EXPERIMENT OUTCOMES WITH CO/PO'S/PSO

EXPERIMENT OBJECTIVES	EXPERIMENT OUTCOMES	СО	PO'S
1.To estimate the total hardness of water by EDTA method.	The students will be able to analyze the nature of salts causing hardness and to solve the engineering problems arising during steam production in boilers.	C117.1	PO1, PO2 ,PO7
2.To determine the strength of the strong acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given acid with addition of strong base using conductivity meter.	C117.2	PO1, PO2 PO5
3.To estimate the Fe ⁺² by potentiometry using KMnO ₄ .	The student shall be able to Analyze the variation of EMF values of given acid with addition of KMnO ₄ using potentiometer.	C117.3	PO1, PO2, PO4, PO5, PO7
4.To estimate the amount of HCl present in the given volume of test solution by P ^H metry.	The student shall be able to find out the concentrations of acids and bases.	C117.2	PO1, PO2 PO5
5.To prepare Bakelite polymer using Phenol and Formaldehyde.	The student shall be able to prepare the polymer of Bakelite	C117.4	PO1, PO3 PO6
6.To prepare Nylon-6,6 polymer using adipoyl chloride and hexamethylenediammine.	The student shall be able to prepare the polymer of Nylon-6,6.	C117.4	PO1, PO3 PO6
7.To determine the acid value of Coconut oil.	The student shall be able to identity and calculate the acid values of coconut oil.	C117.5	PO1, PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

8. To determine the viscosity of the given coconut oil and ethanol.	The students shall be able to Determine and calculate the Viscosity coefficient values of coconut oil and ethanol.	C117.5	PO1, PO2 PO7
9.To determine the rate of corrosion of mild steel in acidic medium in the absence and presence of an inhibitor and calculate the efficiency of the Inhibitor.	The student can able to understand the efficiency and function of inhibitor in the Process of corrosion.	C117.6	PO1, PO2 PO4, PO6 PO7
ADDITIONAL EXPERIMENT	ΓS		
10.To determine the strength of the weak acid by titration with strong base conductometrically.	The student shall be able to analyze the variation of conductance values of given weak acid with addition of strong base using conductivity meter.	C117.2	PO1, PO2 PO5
11.To determine the surface tension of a given liquid at room temperature using stalagmometer by drop number method.	The student shall be able to determine and calculate the surface tension values of reference liquid and given liquid	C117.5	PO1, PO2 PO7

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Class:	CYBER	SECURITY	Y	Semester	; I .	W.E.F-14-1	1-2022	<u>LH</u> :-D-207		
	1 9:40- 10:30	11 10:30 - 11:20	111 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00		
MON	PPS	BEE	EC		M&C	PPS	EC	BEE(T)/M&C(T)		
TUE		G PRACTI	CE	L	BEE ECSE		DEE CCCC DPS		PPS	EC(T)/PPS(T)
WED	BEE	M&C	PPS	N	BEE EC LAB			PPS(T)/EC(T)		
THU	M&C	BEE	M&C	C H	PPS LAB			M&C(T)/BEE(T)		
FRI		BEE EC LA			ECSE	PPS	EC	EG(T)		
SAT	EC	M&C	BEE		EG PRACTICE			LIB		

Course	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA101BS	Matrices and Calculus	CH.SARITHA	ME101ES	ComputerAided Engineering Graphics	M.V.B.KALYAN
11103BS	Engineering Chemistry	K.MOUNIKA	CH106BS	Engineering Chemistry Lab	K.MOUNIKA/V.MOUNIKA
CS103ES	Programming for Problem Solving	U.NARESH	CS107ES	Programming for Problem Solving Lab	U.NARESH/G.KALYANI
E101ES	Basic Electrical Engineering	S.NISCHALA	EE102ES	Basic Electrical Engineering Lab	S.NISCHALA/G.BHARGAVI
CS106ES	Elements of Computer Science & Engineering	D.UMA			

k. Mounika Class In-Charge

Time Table Cortinator

510 . KE

Head of The Department
Dr. R. YADAGIRI RAO
M.Sc.,B.Ed.,M.Tech(CSE), Ph.D.
Head of the Department
Department of H&S
RI INDU INSTITUTE OF ENGG & TECH
reriguda(V). Ibrahimpatnam (M), R.R. Dist-501 510.

UGC Autonomous Institution, Accredited by NAAC with A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana - 501 510

BR22

Lab External Question paper

Year & Semester: I-I Branch:CYBER SECURITY
Subject Name: Engineering Chemistry Lab Faculty Name: V.MOUNIKA

EXTERNAL EXAM OUESTION PAPER

- 1. Estimate the total hardness of water by complexometric method using EDTA.
- 2. Estimate of an HCl by conductometric titration.
- 3.Estimate of Fe⁺²by potentiometry using by KMNO₄.
- 4. Determine the acid concentration by using P^H meter.
- 5. Estimate of an acetic acid by conductometric titration.
- 6. Determine the viscosity of a given liquid by using Ostwald's viscometer.
- 7. Write about preparation of Bakelite.
- 8. Write about preparation of nylon -6,6.
- 9. Determine the acid value of coconut oil.
- 10. Determine the surface tension of given liquid by using stalagmometer.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

EC Lab External Time Table Examination Branch

A.Y.: 2022-23 SEM-I

DATE	Day	Branch	Session	HT.No	Total No of Students
11-3-2023	SATURDAY	CSE-A	FN	22X31A0501 TO 22X31A0565	65
11-3-2023	SATURDAY	CSE-B	AN	22X31A0566 TO 22X31A05D0	65
13-3-2023	MONDAY	CSE-C	FN	22X31A05D1 TO 22X31A05J1	61
13-3-2023	MONDAY	CYBER SECURITY	AN	22X31A6201 TO 22X31A6262	62
14-3-2023	TUESDAY	DS	FN	22X31A6701 TO 22X31A6764	64

FN: 9:40am to 12:25pm AN: 1:00pm to 4:00pm

> Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH

heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

EC Lab External Time Table with examiners SEM-I

DATE	Day	Branch	Session	HT.No	Total No of Stude nts	Internal Examiner	External Examiner
11-3-2023	SATURDAY	CSE-A	FN	22X31A0501 TO 22X31A0565	65	O.SUBHASHI NI	A. Koteswarao (Asst.Prof) TKRCET 8179731744
11-3-2023	SATURDAY	CSE-B	AN	22X31A0566 TO 22X31A05D0	65	V.MOUNIKA	A.Koteswarao (Asst.Prof) TKRCET 8179731744
13-3-2023	MONDAY	CSE-C	FN	22X31A05D1 TO 22X31A05J1	61	K.MOUNIKA	S. Anusha (Asst.Prof) TKRCET 9908590046
13-3-2023	MONDAY	CYBER SECUR ITY	AN	22X31A6201 TO 22X31A6262	62	K.MOUNIKA	S. Anusha (Asst.Prof) TKRCET 9908590046
14-3-2023	TUESDAY	DS	FN	22X31A6701 TO 22X31A6764	64	O.SUBHASHI NI	U.Anand (Asst.Prof) TKRCET 9848376155

A.Y.: 2022-23 SEM-I

FN: 9:40am to 12:25pm AN: 1:00pm to 4:00pm

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda (**) Ibrahimosham (**) R.R. Dist-501 516

PRINCIPAL
Sri Indu Institute of Engineering & Tect.
Sheriguda(Vill), Ibrahimpatnam
R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY LAB

Class: I B.Tech Semister-1 W.E.F-14-11-2022 LH:B-104

	I	II	III		IV	V	VI	VII
	9:40-10:30	10:30 -11:20	11:20-12:10	12:10- 12.45	12.45-1.35	1.35-2.25	2.25-3.15	3.15- 4.00
MON	M	AINTAINANCE		_	I BTE	CH I SEM DA	TA SCIENCE	
TUE	I E	STECH I SEM CSE-	В	L U]			
WED	I	BTECH I SEM CSE	-C	N	I BTECH	I SEM CYBEF	R SECURITY	
THU	MA		C H					
FRI								
SAT								

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriguda(M) Ibrahimpatham (M) R.R. Dist-501 516 PRINCIPAL

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

LAB OCCUPANCY CHART

ENGINEERING CHEMISTRY LAB

Class: I B.Tech Semister-1 W.E.F-14-11-2022 LH: D-103

	I 9:40-10:30	II 10:30 -11:20	III 11:20-12:10	12:10- 12.45	IV 12.45-1.35	V 1.35-2.25	VI 2.25-3.15	VII 3.15- 4.00
MON	MAIN	TAINANCE		L				
TUE				U N				
WED				C H				
THU	11	BTECH I SEM CSE	-В		I BTEC	H I SEM DATA	A SCIENCE	
FRI	I BTI	ECH I SEM CYBER	SECURITY		N	MAINTAINAN	CE	
SAT	II	BTECH I SEM CSE-	·A			I BTECH I SEN	M CSE-C	

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda(1/1) Ibrahimostnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

ENGINEERING CHEMISTRY LAB

Course: B. Tech. I Year SUB CODE:CH106BS

Do's

- 1. Attend all the practical classes with
- a) Observation note book b) Chemistry practical manual c) A neat hand kerchief
- 2. Follow the instructions of your Lecturer carefully.
- 3. Read the experiment perfectly before starting.
- 4. Take the required apparatus and clean them.
- 5. The observations should be in noted in the note book immediately.
- 6.Clean the apparatus immediately after the experiment and return to the concerned lab incharge.
- 7.Do the calculation and get the signature of Lecturer on the observation note book.
- 8. Always throw the pieces of papers, broken glass pieces etc., in a waste basket only.
- 9. The observations and calculations should be recorded neatly in the record book and submit the same of the lecturer.

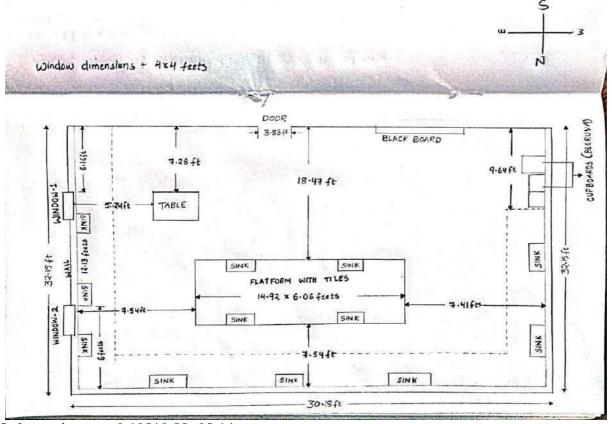
Don'ts

- 1. Don't handle the apparatus roughly; it leads in damage (or)breakage.
- 2. Don't perform the experiment with incomplete knowledge, it may lead you in confusion.
- 3.Don't use excess amount of chemicals (or) reagents.
- 4. Don't consult your fellow student, if you have doubt in the experiment, consult Lecturer only.
- 5. Don't throw any solid matter in the sink. Don't waste the chemical or reagent.
- 6.Don't taste any chemical and inhale poisonous gases.
- 7. Don't waste the water. If it is not required, the tap must be closed.
- 8. Don't leave the laboratory unless your work bench is clean and all the apparatus is returned to the attender.

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Sheriguda (V), Ibrahimpatnam (M), R.R.Dist-501 510

DEPARTMENT OF HUMANITIES AND SCIENCES

NAME: Engir	PHYSICAL LAB Leeving Chemidey B	ROC	OM NO: B-104
toindousting?	Berches 1.	Benches 8	tall window 4/18 41
12:61) Lasti Hactab	3 	10 11	26" beek
11 mm 1	Hart form 19	4-1" Plat form	19 (10) (10) (10) (10) (10) (10) (10) (10)
-25'10"	19 (10)	[SINK]	151.4"
2 (2) (3) (4) (4) (4) (4) (4) (4) (4	0 x 14 = 82 130 ,	&9 ¹ ·8 ³	\$2'-10" ->
Lab Area (In. Sft.)= 30	2 x <u>52</u> = 1560,	4	ead of the Department


(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956 (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

PHYSICAL LAB FLOOR-1 PLAN

ROOM NO - D103 CHEMISTRY LAB

Lab area in sq.m=9.198*9.80=90.14 Lab area in sq.ft =30.18*32.15=970.287

LAB in Charge

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periousda(M) Ibrahimoshnam (M) R.R. Dist-501 516

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda (V), Ibrahimpatnam (M), Ranga Reddy Dist., Telangana – 501 510

Lab manual link

https://drive.google.com/file/d/1QjP0tK0jpATEqLV1Wcww6fUdJzJ8mwi9/view?usp=sharing

	(23)	Departmen	nt of Humanitie	es and Sciences									+
-	((0))		Commo	Dutaama Attainm	ent (Internal Examination-1)								+
20.0	f the faculty:	V MOUNIKA		Academic Year									+
	& Section:	CYBER SECU		Examination:	INTERNAL -I								+
	urse Name:	ENGINEERING C		Year/semester	I/I								+
.0 00	uise ivanie.	ENGINEERING	THE VIEW I	r cur/scinester	D1								t
No	HT No.	R+O+A	V+V	E+E+R			I	R+O+A :	RECORE	+OBSERV	ATION+AT	TANDANG	Œ
k. Ma	rks ==>	10	10	10									Τ
	22X31A6201	9	7	10			1	/+V: VIV	A VOICE				
	22X31A6202	9	6	9									_
	22X31A6203 22X31A6204	10 10	5	7			I	E+E+R:E	XPERIME	NT WRITE	UP+EXECU	JTION+RE	SUL
5	22X31A6205	10	7	9									+
	22X31A6206	10	7	8				-					T
	22X31A6207	9	6	10									
	22X31A6208	10	6	10									I
	22X31A6209	9	6	8									+
	22X31A6210	10 10	9 7	10									+
	22X31A6211 22X31A6212	9	7	10	1	-							+
	22X31A6213	10	6	8									$^{+}$
	22X31A6214	10	7	10									
	22X31A6215	8	5	8									I
	22X31A6216	9	8	10									+
	22X31A6217 22X31A6218	10 10	5	7		-							+
	22X31A6218 22X31A6219	10	6	10									+
	22X31A6219 22X31A6220	10	5	8				-					+
	22X31A6221	10	7	10									Ť
	22X31A6222	7	4	9									
	22X31A6223	10	5	10									I
4	22X31A6224	10	5	10		-							+
	22X31A6225 22X31A6226	9	7 5	10 8				-					+
	22X31A6226 22X31A6227	10	9	10		+		-					+
	22X31A6228	8	6	10	1								
	22X31A6229	9	6	10									I
	22X31A6230	10	8	10									1
	22X31A6231	10 10	7	10									+
	22X31A6232 22X31A6233	10	8	10				-					+
	22X31A6233 22X31A6234	9	6	10				-					+
	22X31A6235	9	6	9									†
5	22X31A6236	10	9	10									Ι
	22X31A6237	9	8	10									Ţ
	22X31A6238	10	9	10		-							+
	22X31A6239 22X31A6240	10 10	7 8	6		-		-					+
	22X31A6240 22X31A6241	A A	8 A	A		+		-					+
	22X31A6242	10	6	7	1			-					t
3	22X31A6243	10	9	10									I
	22X31A6244	9	6	8									T
	22X31A6245	10	9	10									+
	22X31A6246 22X31A6247	10 10	7	10		-							+
	22X31A6247 22X31A6248	10	9	10				-					+
	22X31A6249	A	A	A									
	22X31A6250	A	A	A									
	22X31A6251	9	6	9									T
	22X31A6252	9	7	9		-							+
	22X31A6253 22X31A6254	10 10	9 7	10 10		-							+
	22X31A6254 22X31A6255	10	6	10		+		-					+
	22X31A6256	8	6	10				-					$^{+}$
7	22X31A6257	10	6	9									İ
8	22X31A6258	10	6	8									I
	22X31A6259	10	9	10									Ţ
	22X31A6260	10	7	10									+
	22X31A6261 22X31A6262	10	6	10		-	-	-			-		+
+	22V2TW0707	10	U	10	1	-						-	+

Target set by the faculty /	6.00	6.00	6.00			
Number of students performed above the target	59	50	59			
Number of students	62	62	62			
Percentage of students cored more than target	95%	81%	95%			
CO Mapping with Exam Que	estions:					
CO. 1	N.	37				
CO - 1	Y	Y	Y			
CO - 2	Y	Y	Y			
CO - 3	Y	Y	Y			
CO - 4 CO - 5						
CO - 6						
CO Attainment based on Exa	om Questions:					
CO - 1	95%	95%	95%			
CO - 2	95%	95%	95%			
CO - 3	95%	95%	95%			
CO - 4	95%	95%	95%			
CO - 5						
CO - 6						
СО	Intrnal practical	E+E+R	OveralI	Level	Attainme	ent Level
CO-1	95%	95%	95%	3	1	40%
CO-2	95%	95%	95%	3	2	50%
CO-3	95%	95%	95%	3	3	60%
CO-4						1
CO-5						
CO-6						
	Internal 1 Ex	xamination) =	3		

5	SRI INDU I	NSTITUTE (OF ENGIN	EERING ANI	TECHNOLOGY										
() S	%			s and Sciences	J I I I I I I I I I I I I I I I I I I I										
	010		~												
100	38°				inment (Internal Exam	ination-2)									
	f the faculty:	V MOUNIKA		Academic Year:											
	& Section:	CYBER SECU		Examination:	INTERNAL-II										
Lab Co	urse Name:	ENGINEERING C	CHEMISTRY	Year/semester	I/I										
S.No	HT No.	R+O+A	V+V	E+E+R	ppt				R+O+A	: RECORI	D+OBSERV	ATION+AT	TANDANCI	E	
Max. Ma		10	10	10	10										
	22X31A6201	9	6	7	10				V+V: V	IVA VOICI	E				
	22X31A6202	10	8	10	10										
	22X31A6203	9	10	10	10				E+E+R:	EXPERIMI	ENT WRITE	UP+EXECU	TION+RES	ULT	
	22X31A6204	10	8	10	10										
5	22X31A6205	10	9	10	10										
	22X31A6206	10	10	10	10										
7	22X31A6207	10 10	9 10	10	10										
	22X31A6208 22X31A6209	9	6	8	10 10										
	22X31A6209 22X31A6210	10	7	10	10										
	22X31A6211	10	8	10	10										
	22X31A6212	10	8	10	10										
13	22X31A6213	10	10	10	10										
	22X31A6214	10	9	10	10										
	22X31A6215	10	6	10	10										
	22X31A6216	10	6	10	10										
	22X31A6217	10	9	10	10										
	22X31A6218	10	10	10	10										
	22X31A6219 22X31A6220	10	10	10	10										
	22X31A6221	10	9	10	10										
	22X31A6222	10	6	9	10										
	22X31A6223	10	9	10	10										
	22X31A6224	10	7	10	10										
25	22X31A6225	10	8	10	10										
	22X31A6226	A	A	A	10										
27	22X31A6227	10	9	10	10										
	22X31A6228 22X31A6229	10 10	8	10 10	10										
	22X31A6229 22X31A6230	10	9	10	10										
	22X31A6231	10	7	10	10										
	22X31A6232	10	9	10	10										
33	22X31A6233	10	8	10	10										
	22X31A6234	9	7	10	10										
	22X31A6235	10	7	9	10										
	22X31A6236	10	8	10	10										
	22X31A6237 22X31A6238	10 10	6	10	10 10										
	22X31A6236 22X31A6239	10	8	10	10										+
	22X31A6240	10	8	10	10										
	22X31A6241	10	7	10	10										
	22X31A6242	10	8	10	10										
	22X31A6243	10	10	10	10										
	22X31A6244	10 10	8 10	10 10	10 10										
	22X31A6245 22X31A6246	10	10	10	10						-				
	22X31A6246 22X31A6247	10	10	10	10										
	22X31A6248	10	10	10	10										
	22X31A6249	10	8	10	10										
50	22X31A6250	A	A	A	A										
	22X31A6251	10	8	10	10										
	22X31A6252	10	6	9	10										
	22X31A6253	10 10	10	10	10										-
	22X31A6254	10	8	10 10	10 10										
	22X31A6255 22X31A6256	10	7	10	10										-
	22X31A6256 22X31A6257	10	10	10	10										+
	22X31A6258	10	10	10	10										
	22X31A6259	10	9	10	10										
60	22X31A6260	10	9	10	10										
	22X31A6261	10	8	10	10										
62	22X31A6262	10	8	10	10										

Target set by the faculty /	6.00	6.00	6.00	6.00			
Number of students performed above the target	60	60	60	61			
Number of students	62	62	62	62			
Percentage of students cored more than target	97%	97%	97%	98%			
CO Mapping with Exam Que	estions:						
CO - 1							
CO - 2							
CO - 3							
CO - 4	Y	Y	Y	Y			
CO - 5 CO - 6	Y	Y Y	Y Y	Y			
CO Attainment based on Ex	am Questions:						
CO - 1	+						
CO - 2	+						
CO - 3							
CO - 4	97%	97%	97%	97%			
CO - 5 CO - 6	97%	97%	97%	97%			
CO - 0	97%	97%	97%	97%			
со	Intrnal practical	E+E+R	ppt	OveralI	Level	Attainme	nt Level
CO-1						1	40%
CO-2						2	50%
CO-3						3	60%
CO-4	97%	97%	97%	97%	3		
CO-5	97%	97%	97%	97%	3		
CO-6	97%	97%	97%	97%	3		
Attainment (7 105		`		3		

Department of Humanities and Sciences **Course Outcome Attainment (University Examinations)** Name of the faculty: V MOUNIKA Academic Year: 2022-23 Branch & Section: CYBER SECURITY Year / Semester: I/ILab Course Name: ENGINEERING CHEMISTRY S.No | Roll Number Marks Secured S.No **Roll Number** Marks Secured 32 22X31A6201 35 22X31A6232 58 2 48 33 52 22X31A6202 22X31A6233 34 45 22X31A6203 59 22X31A6234 35 22X31A6204 45 22X31A6235 40 5 36 50 22X31A6205 55 22X31A6236 37 6 22X31A6206 22X31A6237 45 50 7 38 40 22X31A6207 55 22X31A6238 39 22X31A6208 59 22X31A6239 58 9 40 50 22X31A6209 44 22X31A6240 41 10 22X31A6210 50 22X31A6241 45 11 42 44 22X31A6211 52 22X31A6242 12 22X31A6212 55 43 22X31A6243 56 13 44 48 22X31A6213 48 22X31A6244 45 14 22X31A6214 59 22X31A6245 54 15 46 22X31A6215 50 22X31A6246 50 16 47 59 57 22X31A6216 22X31A6247 17 54 48 52 22X31A6217 22X31A6248 18 49 22X31A6218 46 22X31A6249 58 19 50 22X31A6219 44 22X31A6250 Α 51 20 22X31A6220 48 22X31A6251 51 21 52 47 22X31A6221 42 22X31A6252 58 53 53 22X31A6222 22X31A6253 23 22X31A6223 45 54 22X31A6254 47 24 55 22X31A6224 50 22X31A6255 48 25 56 22X31A6225 48 22X31A6256 50 57 26 22X31A6226 22X31A6257 52 58 40 58 59 22X31A6227 22X31A6258 28 59 45 22X31A6228 45 22X31A6259 29 42 60 58 22X31A6229 22X31A6260 30 61 54 22X31A6230 42 22X31A6261 31 62 50 22X31A6231 46 22X31A6262 Class Average mark Attainment Level % students 50 Number of students performed above the target 34 40% 1 Number of successful students 2 62 50% Percentage of students scored more than target 3 55% 60%

3

Attainment level

SRI INDU I	NSTIT	UTE OF EN	GINEE	RING AND T	TECHNOLOGY
anna de	Departme	ent of Humanities	and Scien	ices	
AND THE PARTY OF T		Course Ou	tcome At	<u>tainment</u>	
STATE WAY THE STATE OF THE STAT					
Name of the faculty	V MOU	NIKA		Academic Year:	2022-23
Branch & Section:	CYBER S	SECURITY		Year / Semester	: I/I
Lab Course Name:	ENGINEER	RING CHEMISTRY			
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level
CO1	3.00		3.00	3.00	3.00
CO2	3.00		3.00	3.00	3.00
CO3	3.00		3.00	3.00	3.00
CO4		3.00	3.00	3.00	3.00
CO5		3.00	3.00	3.00	3.00
CO6		3.00	3.00	3.00	3.00
Inter	nal & Univ	ersity Attainment:	3.00	3.00	
		Weightage	70%	30%	
CO Attainment for the	course (In	ternal, University)	2.10	0.90	
CO Attainment for	the course (Direct Method)		3.00	
Overall co	urse a	ıttainmen	ıt leve	el	3.00

STE OF ENGINEERING	S.	KI I	NDU										CHN)LO(
S Survey	ECHNO				•		of Hun					S		
Samo]	ı	<u>I</u>	Progra	am Out	tcome	Attain	<u>me nt</u>	(from	Cour	<u>se)</u>			
- AMERICA					_					-				
Name of		-		DUNIK					emic Y		2022-	23		
Branch & Course N				R SECL	JRITY NG CHE	NAICTI	DV	Year	/ Sem	ester:	I/I			
Course i	vame		ENGII	NEEKI	NG CHE	IVIISTI	K Y							
CO-PO n	nappi	ng												
	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	DO10	DO11	PO12	PSO1	DCO2
			PU3	PU4	PU5	PU6		PU8	P09	PO10	PO11	POIZ	P301	PSO2
CO1	2	2			1		1							
CO2	2	2		1	1		1							
CO3	2	1	_	1	1	-	1		-				 	+
CO4	2	1	2			1	1						 	+
CO5	2	1		_		-	1		-				 	+
CO6	2 00	1 10	2.00	1 00	1.00	1 00	1							
Course	2.00	1.40	2.00	1.00	1.00	1.00	1.00							
					Con	reco C) Outcom	o Atto	inmo	nt				
СО					Cou	use C			шше	11t				_
							3.00)						
CO1														
							3.00)						
CO2							2.04							
							3.00)						
CO3														_
CO4							3.00)						
CO4							3.00)						_
CO5							3.00	,						
							3.00)						
CO6														_
Overall	cour	se att	tainm	ent le	evel				3	3.00				
DO 4	10100													
PO-ATTA	ı		DO3	DO 4	DOE	DOC	DO7	DOS	DOO	DO10	DO11	DO12	1	
CO	PO1	PU2	PO3	PO4	PO5	PO6	PU/	PO8	PO9	PO10	POII	1012		
CO Attainm														
ent	2.00	1.40	2.00	1.00	1.00	1.00	1.00							
	hu+:-	. to DC	330/	670/	1000/ /1	ovel 1	/2/2\							
CO contri	DUTION	1 10 PC	, - 33% 	, יי, ס,	100% (L	evei 1,	(2/3)							