

COURSE FILE

ON

ENGINEERING CHEMISTRY

Course Code - CH203BS

I B. Tech Semester-II A.Y. 2022-2023

> Prepared by V.MOUNIKA Asst. Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH reriouda(^/_ lbrahimoatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

Index of Course File

S.No	Name of the content
1	Institute Vision & Mission
2	Programme outcomes
3	Course Syllabus with Structure
4	Course Outcomes (CO) and CO-PO mapping
5	List of experiments and their CO ,
6	Mapping CO with PO/PSO; course with PO/PSO
7	Academic Calendar
8	Time table - highlighting your course periods including tutorial
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book
10	Gap within the syllabus - mapping to CO, PO/PSO
11	Gaps beyond the syllabus - Mapping to PO/PSO
12	Web references
13	Lecture notes
14	List of Power point presentations / Videos
15	University Question papers
16	Internal Question papers, Key with CO and BTL
17	Assignment Question papers mapped with CO and BTL
18	Scheme of evaluation with CO and BTL mapping
19	Tutorial topics with evidence
20	Result Analysis to identify weak and advanced learners
21	Result Analysis at the end of the course
22	Remidial class schedule and evidences
23	CO, PO/PSO attainment
24	Attendance register
25	Course file (Digital form)

https://siiet.ac.in

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical and practical skills.
- IM2: To Continuous assess of teaching-learning process through institute-industry collaboration.
- IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department

Department of H&S SRI INDU INSTITUTE OF ENGG & TECH berioudal^(M) Ibrahimostnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PROGRAM OUTCOMES

PO1: ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: INDIVIDUAL AND TEAM WORK: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: COMMUNICATION: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: PROJECT MANAGEMENT AND FINANCE: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH ineriouda/M Ibrahimoatham (M) R.R. Dist-501 516

BR22 B.Tech CSE (IOT) Syllabus SIIET SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY B.Tech. in COMPUTER SCIENCE AND ENGINEERING (IOT) COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations) Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

BR22 B.Tech CSE (IOT) Syllabu ENGINEERING CHEMISTRY (Course Code: CH203BS)

B.Tech. I Year II Sem.

L T P C 3 1 0 4

Course Objectives:

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skillsrequired to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion it's control to protect the structures.
- 3. To imbibe the basic concepts of petroleum and its products.
- 4. To acquire required knowledge about engineering materials like cement, smart materials andLubricants.

Course Outcomes:

- 1. Students will acquire the basic knowledge of electrochemical procedures related to corrosionand its control.
- 2. The students are able to understand the basic properties of water and its usage in domesticand industrial purposes.
- 3. They can learn the fundamentals and general properties of polymers and other engineeringmaterials.
- 4. They can predict potential applications of chemistry and practical utility in order to become goodengineers and entrepreneurs.

UNIT - I: Water and its treatment: [8]

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation -Determination of F- ion by ion- selective electrode method. Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods -Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion [8]

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basicrequirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell.

Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion.Factors affecting rate of corrosion, Corrosion control methods-

BR22 B.Tech CSE (IOT) Syllabus

Cathodic protection - Sacrificial anode and impressed current methods

SIIET

UNIT - III: Polymeric materials: [8]

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene**Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP).**Rubbers:** Natural rubber and its vulcanization.

Elastomers: Characteristics – preparation – properties and applications of Buna-S, Butyl and Thiokolrubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in trans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and theirApplications.

UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum andits refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials: [8]

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinylamides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants mechanismof lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point

TEXT BOOKS:

 Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016

3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K.Shashikala, Pearson Publications, 2021.

4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications

REFERENCE BOOKS:

1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015

2.Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course: Engineering Chemistry(C122)

Class: I-B. TECH CSE-IOT

Course Outcomes

After completing this course the student will be able to:

C122.1: Student can explain the basic properties of water& usage in domestic, industrial purpose, preventive measures to water related problems and water purification methods (Understanding)L2

C122.2: Student can acquire the knowledge of construction of electrochemical cells used in various batteries, fuel cells and their applications (Knowledge)L1

C122.3: Student can able to understand the mechanism, control measures of the types of corrosion and

their applications (Applying)L3

C122.4: Student can learn the fundamentals & general properties of types of polymers, preparation & applications in various fields (Applying)L3

C122.5: Student can learn the basic knowledge on analysis of fuels and composition of the gaseous fuels (Analysing)L4

C122.6: Student can acquire the knowledge on engineering materials like cement, smart materials lubricants and their applications in constructions & health benefits (Understanding)L2

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO 3	PO	PO 5	PO 6	PO 7	PO	PO	PO1	PO	PO 12	PS O1	PS O2
			3	4	3			8	9	0	11	12	01	02
C122.1	2	2	-	-	-	1	1	-	-	-	-	2	-	-
C122.2	2	2	-	-	1	1	1	-	-	-	-	1	-	-
C122.3	2	2	-	-	I	-	1	-	-	-	-	-	-	-
C122.4	2	-	-	-	-	1	1	-	-	-	-	1	-	-
C122.5	2	2	-	-		-	1	-	-	-	-	-	-	-
C122.6	2	1	-	-	1	1	1	-	-	-	-	1	-	-
C122	2.00	1.8	-	-	1.0	1.0	1.0	-	-	-	-	1.0	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: ENVIRONMENT AND SUSTAINABILITY: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C122.1: Student can explain the basic properties of water& usage in domestic, industrial purpose, preventive measures to water related problems and water purification methods (understanding)L2

	Justification
PO1	Student get the knowledge on the water treatment methods (level 2)
PO2	Classify the types of hardness of water (level 2)
PO6	Student can able to know the importance of purification methods(level1)
PO7	Student can understand the impact of water treatment methods in industrial and domestic usage (level1)
PO12	Student can attain the knowledge in life –long practice (level 2)

C122.2: Student can acquire the knowledge of construction of electrochemical cells used in various batteries, fuel cells and their applications (Knowledge)L1

	Justification
PO1	Student can get the knowledge on construction of electrochemical cell(level2)
PO2	Student can able to understand the usage of batteries (level 2)
PO5	Student can able to understand the types of battery cells & fuel cells(level1)
PO6	Student can able to get the knowledge on applications of fuel cells(level1)
PO7	Student can understand the usage of eco-friendly fuels (level1)
PO12	Student can attain the knowledge in life –long practice (level 1)

C122.3: Student can able to understand the mechanism, control measures of the types of corrosion and

their applications (Applying)L3

	Justification
PO1	Student get the knowledge of corrosion (level 2)
PO2	Student can understand the different types of corrosion(level2)
PO7	Student can understand the corrosion control methods (level 1)

C122.4: Student can learn the fundamentals & general properties of types of polymers, preparation& applications in various fields (Applying)L3

	Justification
PO1	Student can understand the fundamentals of the polymers(level2)
PO6	Student can able to know the wide range of applications of the polymers(level1)
PO7	Student can utilize the concept of bio-degradable polymers(level1)
PO12	Student can attain the knowledge in life –long practice (level 1)

C122.5: Student can learn the basic knowledge on analysis of fuels and composition of the gaseous fuels (Analysing)L4

	Justification
PO1	Student can classify the different types of fuels(level2)
PO2	Student can understand the extraction of the fuels (level2)
PO7	Student can able to get knowledge about composition of eco-friendly fuels(level1)

C122.6: Student can acquire the knowledge on engineering materials like cement, smart materials, lubricants and their applications in constructions & health benefits (Understanding)L2

	Justification
PO1	Student can get the knowledge on the composition of engineering materials(level2)
PO2	Student can able to get the composition and applications of engineering materials(level1)
PO5	Student can understand the usage in the medical applications(level1)
PO6	Student can contribute the application for further applications(level1)
PO7	Student can understand the promotion for the sustainable environment (level1)
PO12	Student can attain the knowledge in life –long practice (level 1)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510 https://siiet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR I B.TECH FOR THE ACADEMIC YEAR 2022-23

(BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

To, All the HOD's

Sir,

Sub: SIIET (Autonomous)-Academic & Evaluation-Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-23 is given below.

		Per	Desetion			
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)		03.11.2022	10		
2.	1 st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before		16.03.2023	-		
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

II-SEMESTER

-		Per	riod	Duration			
S. NO	Description	From	To	Duration			
1.	Commencement of II Semester class work	03.04.2023					
2.	1 st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks			
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks			
3.	I Mid Examinations	`12.06.2023	17.06.2023	1 Week			
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023					
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks			
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week			
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week			
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023					
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks			

R OF EXAMINATIONS Indu Institute of Engineering and Technology

HANNING KARDE EXAMINATIONS Sri Indu Institute of Engineering and Technology

PRINCIPAL

(An Autonomous Institution under JNTUH)

Sri Indu Institute oPENARCIAN-AND Technology (An Autonomous Institution Under JNTUH) Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

An Autonomous Institution under JNTUH) (An Autonomous Institution under JNTUH) Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution under UGC)

E I I I I

IIIIIIIIIII

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

the set of the set of an and the set of the

<u>Class</u> : IOT		Semes	ter: II	<u>W.E.F</u> -03-04-2023			<u>LH</u> :-D-110			
	I 9:40- 10:30	II 10:30 - 11:20	III 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00		
MON		ITWS LAI	3	T	ODE	EDC	EC	ODE(T)/EC(T)		
TUE		CAEG PRACT	FICE		BEE	BEE	ODE	EDC(T)/ BEE(T)		
WED	EC	ODE	EDC	N C	E	C/BEE LAE	EC(T)/ODE(T)			
THU	BEE	EC	ODE	н	CAE	EG PRACTI	CE	LIBRARY		
FRI	BEE	EDC	EC		PY	THON LA	В	BEE(T)/EDC(T)		
SAT	EC/BEE LAB				ODE	EDC	BEE	PYTHON(T)		
Course Course M		urse Name	Name of the	Course	Course	Name	Name of the Faculty			

	Code	Course Name	Faculty	Code	Course Name	Name of the Faculty					
	MA201B S	OrdinaryDiffer entialEquation sandVectorCal culus	V.SUJATHA	CH206B S	Engineering ChemistryLa boratory	V.MOUNIKA/O.SUBHASHI NI					
e e e	CH203B S	EngineeringCh emistry	V.MOUNIKA	EE202ES	BasicElectric alEngineerin gLaboratory	S.NISCHALA/M.NAGARAJ U					
	ME201E S	ComputerAide dEngineeringG raphics	M.YADHAGI RI	CS201ES	PythonProgr ammingLabo ratory	P.BALU/M.TEJASWI					
	EE201ES	BasicElectrical Engineering	S.NISCHALA	CS203ES	ITWorkshop	B.RAJITHA/N.KEERTHI CHANDANA					
	EC201ES	ElectronicDevi cesand Circuits	P.SRILATHA								
	V. Sugatha Class In-Charge Times Table Coardinator Head of The Department Srindu Institute of Engel & Topp										
	SHERIGUDA SHERIGUDA T ST STO + 150 ST ST STO + 150 ST ST STO + 150 ST ST ST STO + 150 ST ST S										

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

L/H	TOPIC TO BE COVERED	TEACHING AIDS	BOOKS
	UNIT-1: WATER & ITS TREAT	ſMENT	
1	Introduction to hardness of water, types of hardness.	Black Board	T1,R1
2	Units of hardness, Estimation of hardness of water by complexometric method.	Black Board	T1,R1
3	Related numerical problems.	Black Board	T1,R1
4	Potable water and its specifications - Steps involved in the treatment of potable water	Black Board, PPT	T1,R1
5	Disinfection of potable water by chlorination and break - Point chlorination.	Black Board	T1,R1
6	Defluoridation- Determination of F- ion by ion- selective electrode method .Boiler troubles: Sludges, Scales	Black Board	T1,R1,W1
7	Caustic embrittlement. Internal treatment of Boiler feed water -Calgon conditioning - Phosphate conditioning - Colloidal conditioning.	Black Board, PPT	T1,R1
8	External treatment methods -Softening of water by ion- exchange process.	Black Board, PPT	T1,R1, V1
9	Desalination of water – Reverse osmosis.	Black Board	T1,R1
	UNIT-I1: BATTERY CHEMIS	FRY AND CORROSI	ON
10	Introduction - Classification of batteries- primary, secondary and reserve batteries with examples.	Black Board	T1,R1
11	Basic requirements for commercial batteries. Construction, working and applications of: Zn-air battery.	Black Board	T1,R1

12	Lithium-ion battery, Applications of Li-ion battery to electrical vehicles.	Black Board	T1,R1
13	Fuel Cells- Differences between battery and afuel cell, Construction and applications ofMethanol Oxygen fuel cell.	Black Board	T1,R1,W2
14	Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.	Black Board	T1,R1
15	Corrosion: Causes and effects of corrosion.	Black Board, PPT	T1,R1
16	Theories of chemical Corrosion and mechanism of chemical corrosion.	Black Board, PPT	T1,R1 V2
17	Electrochemical corrosion –mechanism of electrochemical corrosion.	Black Board PPT	T1,R1,
18	Types of corrosion: Galvanic, water-line and pitting corrosion	Black Board	T1,R1
19	Factors affecting rate of corrosion	Black Board	T1,R1
20	Corrosion control methods.	Black Board	T1,R1
21	Cathodic protection-sacrificial and impressed current methods	Black Board	T1,R1
	UNIT–III POLYMERI	C MATERIALS	
22	Definition – Classification of polymers with examples.	Black Board	T1,R1
23	Types of polymerization –addition (free radical addition) .	Black Board	T1,R1
24	Condensation polymerization with examples – Nylon 6:6, Terylene	Black Board	T1,R1
25	Definition and characteristics thermoplastic and thermosetting plastics.	Black Board	T1,R1
26	Bakelite, Teflon, Fiber reinforced plastics (FRP).	Black Board	T1,R1
27	Natural rubber and its vulcanization.	Black Board	T1,R1
28	Elastomers, Characteristics –preparation – properties and applications of Buna-S rubber.	Black Board	T1,R1

29	Butyl rubber, and Thiokol rubber.	Black Board	T1,R1
30	Characteristics and Classification of conducting polymers with examples.	Black Board	T1,R1 W3,V3
31	Mechanism of conduction intrans-poly acetylene and applications of conducting polymers.	Black Board	T1, R1
32	Biodegradable polymers, Concept and advantages – Polylacticacid and poly vinyl alcohol and their applications.	Black Board	T1, R1
	UNIT-IV ENERGY	SOURCES	
33	Introduction, calorific value of fuel- HCV,LCV.Units of calorific value	Black Board	T1, R1
34	Dulongs formula. Classification- solid fuels.	Black Board	T1,R1
35	Coal – analysis of coal – proximate analysis and their significance.	Black Board	T1,R1,W4
36	Ultimate analysis of coal and their significance.	Black Board, PPT	T1,R1
37	Liquid fuels – petroleum and its refining.	Black Board, PPT	T1,R1
38	Cracking types – moving bed catalytic cracking.	Black Board ,PPT	T1,R,V4
39	Knocking – octane and cetane rating.	Black Board	T1,R1
40	Synthetic petrol - Fischer-Tropsch's process.	Black Board	T1,R1
41	Gaseous fuels – composition and uses of natural gas, LPG.	Black Board	T1, R1
42	CNG, Biodiesel – Transesterification, advantages.	Black Board	T1, R1
	UNIT –V: ENGINEERING	MATERIALS	
43	Introduction of Portland cement &its composition,	Black Board	T1,R1
44	Setting and hardening of Portland cement.	Black Board	T1, R1
45	Smart materials and their engineering applications.	Black Board	T1, R1,W5

46	Shape memory materials- Poly L- Lactic acid.	Black Board	T1, R1, V5
47	Thermoresponse materials- Polyacryl amides,	Black Board	T1, R1
	Polyvinyl amides		
48	Introduction of lubricants. Classification of	Black Board	T1, R1
	lubricants with examples.		
49	Characteristics of a good lubricants,	Black Board	T1, R1
	mechanism of lubrication -thick film, thin film		
	and extreme pressure		
50	Properties of lubricants: viscosity, cloud point,	Black Board	T1, R1
	pour point, flash point and fire point		

Text books:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- 2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning,

2016.

3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K.

Shashikala, Pearson Publications, 2021.

4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications.

Reference books:

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015).
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011).

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

GAP WITHIN THE SYLLABUS – MAPPING TO CO, PO

Galvanic cell construction and functioning and preparation of cement

Course outcome;

After completing this topic, the student will be able to:

1. The required principles and concepts of electrochemistry, to know the different types of batteries and applications (Analysis) L3

2. The basic principle involved in the preparation of cement. (Knowledge) L1

Mapping of course outcomes with program outcomes:

High -3

Medium -2

Low-1

PO/ CO	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
1	2	2	-	-	1	-	-	-	-	-	-	1	-	-
2	2	-	-	-	1	-	-	-	-	-	-	1	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

Chemical analysis of water, corrosion control methods and utilization of smart materials in medical field.

Course outcome:

After completing this topic, the student will be able to:

1. The basic principle involved in the concept of chemical analysis of brackish water.

2. The process involved in the application of the corrosion control methods involving electrochemical process.

3. The mechanism involved in the application of smart materials in the medical field

Mapping to PO/PSO:

High -3

Medium -2

Low-1

PO/	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO	PO	PO	PO	PO	PS	PS
CO						6		8	9	10	11	12	01	O2
1	2	2	-	-	-	-	-	-	-	-	-	1	-	-
2	2	2	-	-	-	-	-	-	-	-	-	1	-	-
3	2	2	-	-	-	-	-	-	-	-	-	1	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

WEB REFERENCES :

W-1 https://www.thermodyneboilers.com/boiler-problems/

W-2

https://www.scribd.com/presentation/443668095/Batteries-

and-Fuel-Cells

<u>W-3</u> https://www.sciencedoze.com/2022/03/conducting-polymers-definition-examples.html

W-4 https://www.scribd.com/presentation/497847401/Analysis-of-Coal

W-5 https://www.atriainnovation.com/en/what-are-shape-memory-materials/

VIDEO REFERENCES :

- 1. https://youtu.be/ctlHNf1s6RM?si=FnrLSa3uXqzPZtDR –Ion exchange process
- 2. https://www.youtube.com/live/rPv35HuWLW0?si=8pIqwhWd8IWyHOZZ Corrosion
- 3. https://youtu.be/1dG0PmKFsQA?si=u83MUinL3KQs4mKd Conducting polymers
- 4. https://youtu.be/SayZyTMROxk?si=CCB22VarlU6SIygw –moving bed catalytic cracking
- 5. https://youtu.be/I7doX1zWGdw?si=NhhkbRfuJ24j0QvM -shape memory materials

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

POWERPOINT PRESENTATION

Unit-1

https://docs.google.com/presentation/d/1Hcj1ip8ap6k_h1568J-W3r0h2Aax1hOP/edit?usp=sharing&ouid=105720808056246778205&rtpof=t rue&sd=true

Unit-2

https://docs.google.com/presentation/d/1Zihc9ppImK9VfChsvuvuadcse4UT_J 1K/edit?usp=sharing&ouid=105720808056246778205&rtpof=true&sd=true

Unit-4

https://docs.google.com/presentation/d/1wiZafPiRaH4xGjQffBYyrtEZcWAC gbaa/edit?usp=sharing&ouid=105720808056246778205&rtpof=true&sd=true

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana-501510

Lecture notes

Unit 1 link:

https://drive.google.com/file/d/1aOrg6Z XXPGsKHuH JuK7axChExklgQt/ view?usp=sharing

Unit 2 link:

https://drive.google.com/file/d/1TMLCoVT2RWRtsH2bM0BVIvJczijYOfD N/view?usp=sharing

Unit 3 link:

https://drive.google.com/file/d/1QtQUV-imszqWSetKXo-Ym4-n-GDtQBuw/view?usp=sharing

Unit 4 link:

https://drive.google.com/file/d/1qFliGL1PBVX17zxegygc2BbHa7cO3RFD/vi ew?usp=sharing

Unit 5 link:

https://drive.google.com/file/d/1rup7vbaItLmbGa1UX66L36T4DECW1Ole/view ?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS OUESTION PAPERS

https://drive.google.com/file/d/17ykw7LHO8laz-veKgY4xPixSCPcqOSd/view?usp=sharing

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

BR22

I B.TECH II SEM I-MID Examinations, June-2023

Set-I

Branch: CIVIL, ECE, CSE (AI&ML), CSE (IOT), AI&DS Subject: Engineering chemistry Marks: 20 Date: 13-06-2023(FN) Time: 2 Hours

PART-B

Answer any **FOUR** Questions. All Question carry Equal Marks 4*5=20 Marks

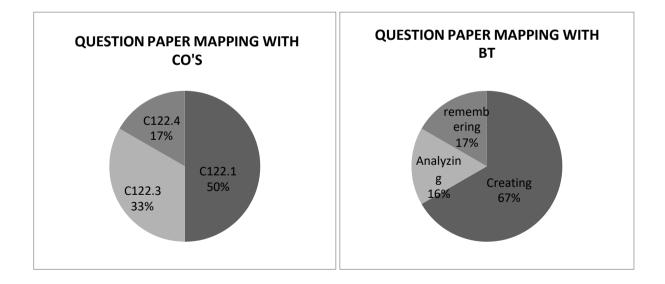
1. Discuss demineralization of hard water using ion exchange process with a net diagram?

[Creating L6](C122.1)

[AnalyzingL4](C122.1)

[Creating L6](C122.4)

[RememberingL1](C122.3)


2. Discuss different methods used for internal treatment of boiler feed water? [Creating L6](C122.1)

3. Distinguish between scales and sludges?

4. Write a note on corrosion?

5. Discuss sacrificial anode and impressed current cathodic protection methods? [Creating L6](C122.3)

6. Discuss the mechanism of addition polymerization?

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510

Branch: CIVIL, ECE, CSE (AI&ML), CSE(IOT), AI&DS Subject: Engineering chemistry

Date:13-06-2023(FN)
Marks: 10

Student name:	H.T.NO:						
	П.I.NO.						

PART-A

Objective/Quiz paper

The objective /quiz paper is set with multiple choice, fill in the blanks and match the following type of question for a total of 10 marks.

Multiple choices:					
1.Temporary hardn	ess of water c	an be removed	by	[]
A)Chlorination	B) Boiling	C)Aeration	D) None		
2. The salt used in a	calgon conditi	oning is			
	-	-]	1
A)Sodium Hexa N	Aeta phosphat	e B)Sodium	Tri phosphate	-	-
,		,	Hydrogen phosphate]]
3. Chemical formul	0 1 1	,		Ī]
A)FeO	B)Fe ₃ o ₃	$C)Fe_3o_4$	D) $Fe_2o_3x H_2o$	- [
4. PVC is a polyme	,	<i>'</i>	, -	Ī	1
A) Ethylene	1 0			-	-
C) Acrylonitrile		-			
Fill in the blanks:					
5. Hardness of wate	er can be expr	essed in terms	of equivalants of		
6. A fuel cell conve	erts chemical of	energy in to			
7i	s used as elec	trolyte in meth	anol oxygen fuel cell		
8. Homo polymers		•			
1 2	_				

Match the following :

9.

-] A. Electro chemical fuel i. Boiler [ii. Reverse osmosis ſ] C. Cellulose acetate iii .Zn-Air Battery [iv. Wet corrosion ſ
 -] B. Caustic embrittlement

 -] D. Primary Battery

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM I-MID Examinations, June-2023

BR22

Answer key

<u>Descriptive paper key link; https://drive.google.com/file/d/14V9qLe-</u> F938J343TSVRPzqbM6cCTGxJx/view?usp=sharing_

Objective/Quiz Key Paper

Multiple choices:

- 1. B
- 2. A
- 3. D
- 4. D

Fill in the blanks:

- 5. CaCO₃
- 6. Electrical energy
- 7. Methanol
- 8. Same monomers

Match the following:

- 9.I-B
- II-C
- III-D
- IV-A

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM I1-MID Examinations, August-2023

Branch: CIVIL, ECE, CSE (AI&ML), CSE (IOT), AI&DS Subject: Engineering chemistry Marks: 20 Date: 16-08-2023(FN) Time: 2 Hours

BR22

PART-B

Answer Any FOUR Question Carry Equal Marks

4*5=20 Marks

1. Define biodegradable polymers taking poly lactic acid as an example?

2. Explain ultimate analysis of coal?

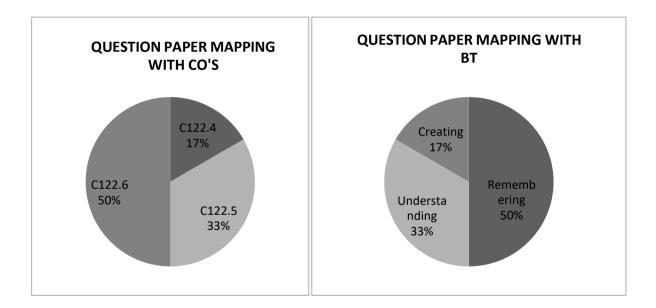
3. Define cracking, knocking of petrol, octane number, cetane number?

4. Give the composition of Portland cement?

5. Explain the mechanism of lubrication?

6. Discuss the properties of lubricants?

(Remembering L1)(C122.4)


(Understanding L2)(C122.5)

(Remembering L1) (C122.5)

(Remembering L1) (C122.6)

(Understanding L2) (C122.6)

(Creating L6) (C122.6)

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM II-MID Examinations, August-2023

Branch: CIVIL, ECE, CSE (AI&ML), CSE (IOT), AI&DS	Date: 16-08-2023	BR22
Subject: Engineering chemistry	Marks: 10	
Student name:	H.T NO	

PART-A

Objective/Quiz paper The objective /quiz paper is set with multiple choice, fill in the blanks and match the following type of question for a total of 10 marks.

Multiple choices:

1. Buna-s is prepared by	the following poly	merization		[]	
a) Copolymerization	b) Condensation	c) Both a & b	d) None			
2. Natural gas mainly con	itains			[]	
a) CH4	b) n-butane	c) n-octane	d) acetylene			
3. Gross calorific value is also known as						
a) Highest calorific value	b) Low calorific	value c) Net calo	orific value d) None			
4. Cement contains				[]	
a) Calcareous material	b) Argillaceous r	naterial c) Both	a & b d) None			
Fill in the blanks:						
5. Polymers which can be	e degraded by micro	oorganisms are know	wn as			
6. Petroleum refining is c	arried out using		_distillation.			
7is an example of semi	solid lubricants.					
8. Good lubricant viscosit	y should be					
Match the following: 9. i. Ultimate analysis	[] a) F	Retards intial setting	g of cement.			
ii.Gypsum	[] b) a	cement				
iii Inorganic building material [] c) Fractional distillation.						
iv Petroleum refining	[] d)	Quantitative				

(An Autonomous Institution under UGC) Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

I B.TECH II SEM II -MID Examinations, August-2023

BR22

Answer key

Descriptive paper key link

https://drive.google.com/file/d/1k0XrBzV2B3nlOw8OODI7wTMtY4uc8grj/view?usp=sharing

Objective/Ouiz Key Paper

Multiple choices:

- 1. C
- 2. A
- 3. A
- 4. C

Fill in the blanks:

5. Bio degradable polymers

6.Fractional distillation

7.Grease

8.High

Match the following:

9.

I-D

II-A

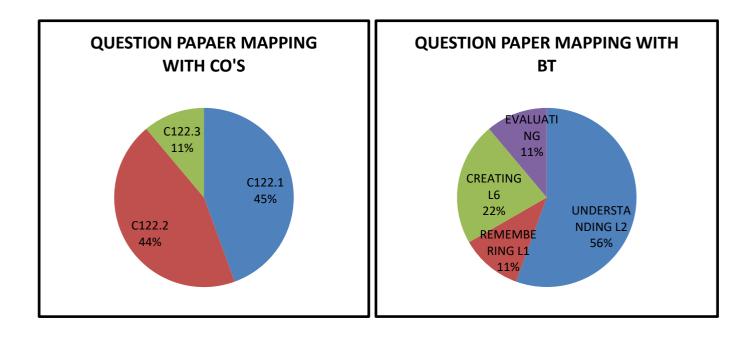
III-B

IV-C

MID-1 & MID-11 STUDENT ANSWER SCRIPTS:

-MID - I https://drive.google.com/file/d/12IYGTXnfikN2Z7Xtj5Sj67ic1MOR9ccQ/view?usp=sharing

-MID-II https://drive.google.com/file/d/1ImT0LGzf2q2EQl1-pW0BjV7DQt35IKDJ/view?usp=sharing



(UGC AUTONOMOUS INSTITUTION) Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID ENGINEERING CHEMISTRY ASSIGNMENT

- 1. Explain internal treatment of boiler feed water?(Understanding L2) (C122.1)
- 2. Explain external treatment of water? (Understanding L2)(C122.1)
- 3. Estimate the hardness of water by complexometric method ?(Evaluating L5)(C122.1)
- 4. Explain briefly about boiler troubles? (Understanding L2)(C122.1)
- 5. Define battery? Give the differences between battery and fuel cell?(Remembering L1)(C122.2)
- 6. Explain briefly about MOFC & SOFC?(Understanding L2)(C122.2)
- 7. Explain solar cell functioning and uses? (Understanding L2)(C122.2)
- 8. Discuss about types of polymerization ?(Creating L6)(C122.3)
- 9. Discuss cathodic protection method? (Creating L6)(C122.2)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

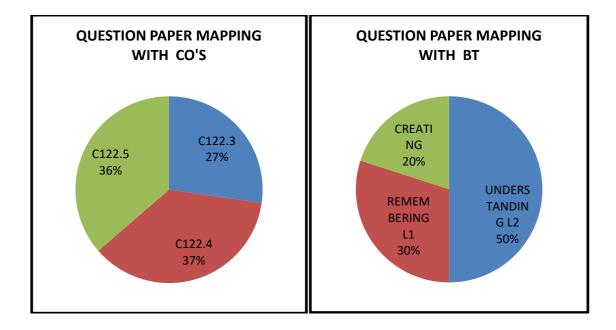
(UGC AUTONOMOUS INSTITUTION)

II-MID ENGINEERING CHEMISTRY ASSIGNMENT

1 .Explain about the characteristics and classification of conducting polymers? (Understanding L2) (C122.3)

2. Explain about conduction mechanism in Trans poly acetylene and applications of conducting polymers? (Understanding L2) (C122.3)

3. What is mean by bio-degradable polymers concept and advantages of poly vinyl and poly lactic acid? (**Remembering L1**) (C122.3)


4. Explain the proximate analysis and ultimate analysis of coal and their significance?

(Understanding L2) (C122.4)

- 5. Define cracking and explain moving bed catalytic cracking?. (Remembering L1) (C122.4)
- 6. Define knocking, octane and cetane rating? (Remembering L1) (C122.4)
- 7. Discuss the mechanism involved in the Fischer-Tropsch process?(Creating L6) (C122.4)
- 8. Explain about Portland cement, its composition and setting & hadening? (Understanding L2) (C122.5)

9. Discuss about mechanism of Lubrication? (Creating L6) (C122.5)

10. Explain the properties of lubricants? (Understanding L2) (C122.5)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID & II-MID ENGINEERING CHEMISTRY ASSIGNMENT PROOFS

MID -1 https://drive.google.com/file/d/1TeQxGFxYg0i4mf-RSVpxT0TJLoO4WP8F/view?usp=sharing

MID - 2

https://drive.google.com/file/d/19E8OEX9S8kdAFmObTG9pWQvDpi-PfGtz/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-ENGINEERING CHEMISTRY(MID-I)(Set-I)

Instructions:

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra,stuck off and repeated) should be valued .Answers with maximum marks must be considered.

Qn No	Description of Answer	
1.	Definition of ion-exchange process and differences b/w cation & anion exchanger(C122.1)(Remembering)	
	Neat diagram of ion – exchange process and equations (C122.1)(Remembering)	
	Advantages & disadvantages of ion exchange process (C122.1) (Remembering)	1
2.	Mention the names of different internal treatment methods (C122.1)(Remembering)	1
	Complete explanation of different methods &equations(C122.1)(Remembering)	4
3.	Difference b/w scale &sludge has mention the diagram(C122.1)(Analyzing)	1
	What are the causes of scale and sludge and disadvantages(C122.1)(Analyzing)	2
	Mention the preventive methods(C122.1)(Analyzing)	2
4.	Definition of dry corrosion & mention the different types of dry corrosion names (C122.3)(Understanding)	2
	Explain the oxidation corrosion ,corrosion by hydrogen,& liquid metal corrosion with equations and examples(C122.3)(understanding)	3
5	Definitions of sacrificial anode & impressed current cathodic protection methods (C122.3)(understanding)	2
	Neat diagrams and equations of sacrificial anode & impressed current cathodic protection methods (C122.3)(understanding)	3
6	Definition of addition polymerization &mention the steps in the free radical mechanism (C122.4)(Remembering)	2
	Complete explanation of free radical mechanism with equations (C122.4) (Remembering)	3
	TOTAL	20

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-ENGINEERING CHEMISTRY (MID-II)(Set-II) Instructions: Any answer by alternate method should be valued and suitably awarded. a) b) All answers (including extra, stuck off and repeated) should be valued .Answers with maximum marks must be considered. Qn No **Description of Answer** Marks Definition of bio- degradable polymers (C122.4)(Remembering) 1 1 Preparation of poly lactic acid with equation & properties & applications 4 (C122.4)(Remembering) 2 What are steps involved in ultimate analysis(C122.5)(Understanding) 1 Explanation of each steps in ultimate analysis(C122.5)(Understanding) 2 2 Formula's of each steps in proximate analysis(C122.5)(Understanding) Definitions of cracking, knocking, octane number, cetane number & equations 5 3 (C122.5)(Remembering) 4 Definition of cement and mention the raw materials of cement (C122.6) 2 (Remembering) Formulas and chemical composition of raw materials of cement (C122.6)3 (Remembering) 5 Mention the names of mechanism of lubrication (C122.6) (Remembering) 1 4 Thin film ,thick film & extreme pressure has definition and diagram and where it is used (C122.6)(Remembering) Mention the names of properties of lubrication(C122.6)(Understanding) 6 1 Explain the each property has definitions and where it is used (C122.6)(Understanding) 4

TOTAL 2

20

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

TUTORIAL CLASS

S.NO	ΤΟΡΙΟ	Teaching method/Teaching	Session plan	Reference books
		Aid		
1	Hard water, hardness, types of hardness, units of hardness, potable water &its treatment, break point chlorination.	Black Board	1	T1, R1
2	Defluoridation, boiler troubles- sludges, scales, caustic embrittlement, internal treatment method.	Black Board, PPT	1	T1, R1,W1
3	External treatment method ,reverse osmosis	Black Board	1	T1, R1 V1
4	Batteries, types of batteries, construction, working&applications of Zn-air battery.	Black Board	1	T1, R1,W2
5	Lithium –ion battery, fuel cell, methanol –oxygen fuel cell.	Black Board,PPT	1	T1, R1,W2
6	Solid-oxide fuel cell, solar cell, introduction of corrosion.	Black Board	1	T1, R1
7	Theories of corrosion, types of corrosion.	Black Board, PPT	1	T1, R1 V2
8	Corrosion control methods	Black Board	1	T1, R1
9	Polymers, types of polymerization, free radical mechanism.	Black Board	1	T1, R1
10	Preparations of polymers like- Nylon-6,6, Terylene, naturalrubber, vulcanization rubber.	Black Board	1	T1, R1
11	Preparations of polymers like- Buna-s, butyl &Thiokol rubber, PVC.	Black Board	1	T1, R1

-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

				1
12	Classification of conducting polymers, biodegradable	Black Board	1	T1, R1
	polymers.			W3,V3
13	Calorific value, HCV, LCV, Dulongs formula.	Black Board	1	T1, R1
14	Analysis of coal-proximate &ultimate analysis of coal.	Black Board, PPT	1	T1, R1,W4
15	Petroleum refining –fractional distillation, synthetic petrol- Fischer Tropsch's process	Black Board, PPT	1	T1, R1
16	Cracking-moving bed catalytic cracking, knocking-octane rating &cetane rating.	Black Board, PPT	1	T1, R1 V4
17	Bio diesel- trans esterification, CNG, LPG.	Black Board	1	T1, R1
18	Cement-Composition, setting and hardening.	Black Board	1	T1, R1
19	Smart materials – shape memory materials, thermo response materials	Black Board	1	T1, R1 W5, V5
20	Classification of lubricants with examples	Black Board	1	T1, R1
21	Properties of lubricants, mechanism of lubricants	Black Board	1	T1, R1

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

(UGC AUTONOMOUS INSTITUTION)

Result Analysis: IOT

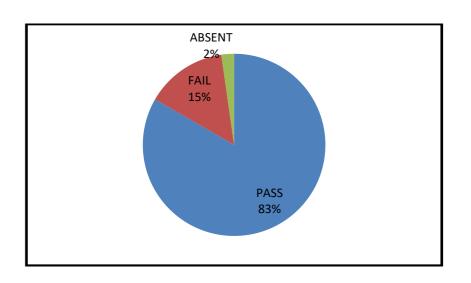
Course Title	ENGINEERING CHEMISTRY
Course Code	CH203BS
Programme	B. Tech
Year & Semester	I year II- semester
Regulation	BR22
Course Faculty	V. Mounika, Assistant Professor, H&S

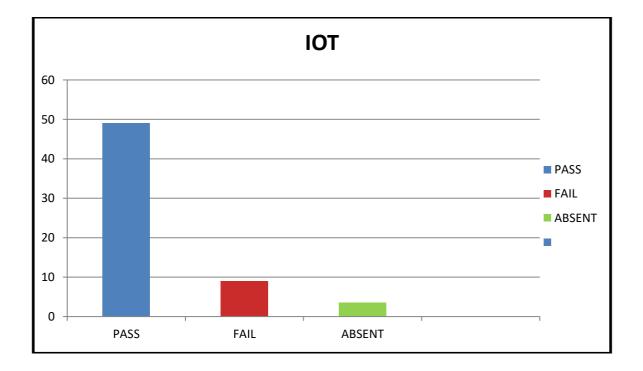
Weak Students:

	Weak Drauents							
S No	Roll no	No of failures in semester-I	Internal-I Status (35)	Internal-II Status (35)				
1	22X31A6955	3	21	25				
2	22X31A6959	3	21	25				
3	22X31A6962	3	20	25				
4	22X31A6961	2	31	30				
5	22X31A6907	2	21	27				
6	22X31A6914	2	21	25				
7	22X31A6908	1	5	25				
8	22X31A6941	1	21	25				
9	22X31A6945	1	21	30				

Advanced learners:

S No	Roll No	Semester-I	Gate Material
1	22X31A6901	8.8	Water &its treatment, batteries ,fuels
2	22X31A6923	8.6	&combustion.
3	22X31A6928	8.7	
4	22X31A6929	9.1	
5	22X31A6931	9.5	
6	22X31A6933	9.5	
7	22X31A6936	8.6	




Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

RESULT ANALYSIS AT END OF SEMESTER

Branch : IOT

Subject: ENGINEERING CHEMISTRY

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

	DE	PARTMENT O <u>REMEDIAI</u>	F HUMANITI L CLASSES TI		NCE										
DAY/ PERIOD															
CSE-A	ODE&VC	ENG	EDC	AP	ODE&VC	AP									
CSE-B	AP	EDC	ODE&VC	ENG	EDC	ENG									
CSE-C	ENG	AP	EDC	ODE&VC	AP	ODE&VC									

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
DS	EDC	AP	ODE&VC	ENG	EDC	ODE&VC
CYBER	ENG	EDC	AP	ODE&VC	AP	ENG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	ODE&VC	EC	EDC	BEE	EC	ODE&VC
AIML-B	BEE	EDC	ODE&VC	EC	BEE	EDC

DAY/ PERIOD	4.	MON 00-5.0	0	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AI&DS		BEE		EC	ODE&VC	EDC	BEE	EC
ΙΟΤ		EC		ODE&VC	EDC	BEE	ODE&VC	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
ECE	ODE&VC	BEE	EC	EDC	BEE	EC
CIVIL	ODE&VC	BEE	EC	AM	BEE	EC

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(VIII), Ibrahimpatnam R.R. Dist. Telangana-501 510.

1000	LAND ST					D	epart	ment	t of H	Iuma	nities	& S	cien	ces								
ORAN	MPATURE .						-								l Ex	amin	ation-	<u>1)</u>				
an	ne of the facu	V.MC	DUNI	<u>KA</u>					Aca	demi	c Ye	ar:						2022	-2023	}		
	nch & Sectior	ΙΟΤ							Exa	mina	tion:							I Inte	ernal			
ou	rse Name:	ENGI	NEER	INGC	HEMI	STRY			Yea	r:	Ι							Sem	ester:	Π		
																						L
.No	HT No.	Q1a	Q1b	Q1c		Q2b	Q2c		Q3b	Q3c		Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c	Obj1	A1	
	Marks ==>	5			5			5			5			5			5			10	5	L
1 2	22X31A6901 22X31A6902	5			5 2			5			5 3									10 10	5 5	
2	22X31A6902	5			5			5			3									10	5	ł
4	22X31A6904				1			2						1			1			10	5	
5	22X31A6905				2			2			1									10	5	
6	22X31A6906	5			3			3			5						2			6	5	
7	22X31A6907	2			1									2			1			10	5	
8 9	22X31A6908 22X31A6909				5			5						5			5			10	<u>5</u> 5	
9	22X31A6909	5			5			5			5			5			5			10	5	
1	22X31A6910	5			5			5			4					┝──┦	5			10	5	
2	22X31A6912							5			2			2						7	5	
3	22X31A6913	3			5			3			4									6	5	
4	22X31A6914				3			_			1			1			1			10	5	↓
5	22X31A6915	1 2			1			2			2					┝──┦	1			10 7	5 5	────────────
16 17	22X31A6916 22X31A6917	2			2			5			1					┝──┦	1			10	5	┟───┼
.7	22X31A6917 22X31A6918	2			2											┝──┦				10	5	<u> </u>
19	22X31A6919				2			2		1				2						10	5	
20	22X31A6920	2						2			1						2			9	5	
21	22X31A6921				3			2									1			10	5	
23	22X31A6922	2						2			1						1			10	5	ļ
24	22X31A6923	5			4			2			5						2			10	<u>5</u> 5	
25 26	22X31A6924 22X31A6925	1			1 5			2 5			2			5			3			10 10	5	
20 27	22X31A6925	5			4			5						5			5			8	5	
28	22X31A6927	-			4			-			4			5			4			10	5	1
29	22X31A6928	5			5			5			5						5			10	5	
30	22X31A6929	5						5			5						5			10	5	
31	22X31A6930	5			5			5			3			-			4			8	5	Į
32 33	22X31A6931 22X31A6932	5 4						5 4			5			5						10 8	<u>5</u> 5	
34	22X31A6933				1			2			2						1			10	5	
35	22X31A6934				2			5			5						3			8	5	
36	22X31A6935	3			3			4									5			10	5	
38	22X31A6936	5			5			5									5			10	5	
39	22X31A6937	1						2			1						4			8	5	
40	22X31A6938	4			5			5			5									9	5 5	
41 42	22X31A6939 22X31A6940	2			5 2			5 1			4					$\left \right $				10 10	5	├ ───┼
+2 43	22X31A6940 22X31A6941	-			~			2		<u> </u>	1		\vdash	1			2			10	5	├ ───┼
14	22X31A6942	5						4			5			2						9	5	
45	22X31A6943	5						5			3						5			9	5	
46	22X31A6944	4			5						2		ert	5		\mid				9	5	
17 10	22X31A6945	2			2						2									10	5	↓
18 19	22X31A6946 22X31A6947				2			2			2					$\left \right $	3			10 10	<u>5</u> 5	───┼
49 50	22X31A6947 22X31A6948	3			4		-	3		<u> </u>	4		\vdash				э			7	5	<u> </u>
51	22X31A6949	4			4			4			<u> </u>						5			8	5	
52	22X31A6950	2						3			1									10	5	
53	22X31A6951							5			2									9	5	
54	22X31A6952	3						5			1		ert			\mid				7	5	
5	22X31A6953	4			4			4			5									9	5	
56 57	22X31A6954 22X31A6955	4			3			4			4									7 10	5	────
57 58	22X31A6955 22X31A6956	2			2		-	- 1		<u> </u>	2 4		\vdash							10	5	<u> </u>
i9	22X31A6950 22X31A6957	5			5			4			5									10	5	
50	22X31A6958	5			5			5			5									10	5	
51	22X31A6959	1						5												10	5	
52	22X31A6960				4			4					\square			\mid	3			7	5	
53	22X31A6961				5			5						5			1			10	5	
54 57	22X31A6962 22X31A6963	5			5	\vdash		3		<u> </u>	4									10 10	5	───┼
55		5		1	5	1		5	I I	1	+		1					1	I	10	5	1

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	
Number of students performed above	27	0	0	28	0	0	37	0	0	24	0	0	6	0	0	16	0	0	61	62	
Number of students attempted	42	0	0	43	0	0	51	0	0	44	0	0	13	0	0	28	0	0	61	62	
Percentage of students scored more than target	64%			65%			73%			55%			46%			57%			100%	100%	
<u>CO Mapping with 1</u>	Exam ()uesti	ions:																		
CO - 1	Y			Y			Y												Y	Y	
CO - 2	-			-			-												Y	Y	
CO - 3										Y			Y						Y	Y	
CO-4										1			1			Y			Y	Y	
CO - 5																					
CO - 6																					
Scored >Target %	64%			65%			73%			55%			46%			57%			100%	100%	
CO Attainment bas	sed on	Exam	Ques	tions:																	
CO - 1	64%			65%			65%												100%	100%	
CO - 2																			100%	100%	
CO - 3										73%			73%						100%	100%	
CO - 4																73%			100%	100%	
CO - 5																					
CO - 6																					
CO	Subj	obj		Asgn	(Overa	11		Leve	1									ttainm	ent Leve	
CO-1	65%	77%		100%		81%			3.00										1	40%	
CO-2		###		100%		100%			3.00										2	50%	
CO-3	73%	82%		100%		85%			3.00										3	60%	
CO-4	73%	86%		100%		86%			3.00											<u> </u>	
CO-5																					
CO-6					i																
Attainme	ent (1	Inter	rnal	1 Ex	kam	ina	tion		3.0()											
	. (-																				
																			Facult	y Signa	ture

	SRI	INI	DUI	NS	ттт	JTE	C OI	FEN	١GI	NE	ERI	NG	A	ND '	ТЕ	СН	NO	LO	GY			
SOUN	23			Car				ent of								•						
Survey - Indiana	arman -			<u>Cot</u>	urse C	utco	ome .	Attai	nme	nt (11	ntern	ai E	xam	inau	on-4	<u>2)</u>						
Nan	ne of the facu	V.MO	JUNI	< (A					Aca	demi	c Yea	ır:								2022-	2023	
	nch & Section									minat										II Inte		
Cou	rse Name:	ENG	NEER	ING	CHEMI	STRY			Yea	r:	Ι									Seme	ster:	<u>II</u>
S.No	HT No.	010	014	01.	020	0.21	0.	020	0.21	02.	010	0.41	04.	05.0	054	05.0	06	00	06	Obj	A2	viva/
Max	Marks ==>	Q1a 5	Q1b	Qie	Q2a	Q20	Q2c	Q3a 5	Q30	QSC	Q4a 5	Q4D	Q4C	Q5a 5	QSD	QSC	Q0a	Qon	Qoc	10	5	ppt 5
1	22X31A6901	5			5			5			2			5						10	5	5
2	22X31A6902										5			5			2			5	5	5
3	22X31A6903 22X31A6904	5			5			5			3			5 5						10 10	4	5
5	22X31A6905	-			1			2			4			4						7	5	5
6	22X31A6906	5			5			5						5						5	4	5
7	22X31A6907 22X31A6908	2						4			2			4			2			10 7	5	5 5
。 9	22X31A6908				5			5			5			5						7	5	5
10	22X31A6910	5			5			5						5						10	5	5
11	22X31A6911	4			5			4			5			5						10	5	5
12 13	22X31A6912 22X31A6913	4			3 5			5			4			4 5						1	4	5 5
14	22X31A6914										2			3						10	4	5
15	22X31A6915	5						4			5			4						8	5	5
16 17	22X31A6916 22X31A6917	4									3			3			4			6 8	5 5	5 5
17	22X31A6917 22X31A6918										5			2						0	A	5
19	22X31A6919	2			1									1			1			10	3	5
20	22X31A6920				3			2						4			2			10	5	5
21 22	22X31A6921 22X31A6922				2									2			1			10 10	3	5 5
23	22X31A6923				5			5						5			5			10	5	5
24	22X31A6924	4						4			2			5						8	5	5
25 26	22X31A6925 22X31A6926	5			5			5			5			5			5			10 10	5 5	5 5
20	22X31A6920 22X31A6927				5			5			5			5			5			10	5	5
28	22X31A6928	4			5									5			5			10	5	5
29	22X31A6929	3			5			5			3			5			5			10 9	5 5	5
30 31	22X31A6930 22X31A6931	5			5			5			1 5			5						9 10	5	5 5
32	22X31A6932	3			3						2			3						9	5	5
33	22X31A6933	1						1			1			2			_			10	5	5
34	22X31A6934 22X31A6935	4			5			5 5			5			5			5 5			10 10	5	5 5
36	22X31A6936	4			5			5						5			5			10	5	5
37	22X31A6937	2			2			3						2						8	5	5
38 39	22X31A6938 22X31A6939	4			4 5			4			5			5			5			10 9	5 5	5 5
40	22X31A6940	-			5			2			3			5			2			4	5	5
41	22X31A6941	1									3			1						10	2	5
42 43	22X31A6942 22X31A6943	5			5						5			2	-		4			9	5 5	5
43 44	22X31A6943 22X31A6944	3			3						1 4			3 5	-		2			9 8	5	5 5
45	22X31A6945				3			1			3			3						10	4	5
46	22X31A6946				4			1						2	\vdash		-			9	4	5
47 48	22X31A6947 22X31A6948				2			3			2			3			1			10 10	4	5 5
49	22X31A6949				5			5			4				L		5			1	5	5
50	22X31A6950	3			1						1									10	5	5
51 52	22X31A6951 22X31A6952				4						4			5 5			4			10 10	4	5 5
52 53	22X31A6952 22X31A6953				2			5			4			5	-					10	5	5
54	22X31A6954				5			5			4			5						10	5	5
55	22X31A6955				1	<u> </u>		3	<u> </u>		1			~				<u> </u>		1	4	5
56 57	22X31A6956 22X31A6957	3			3 5			5			3			5 5	<u> </u>					9 10	5	5 5
58	22X31A6958	5			5			5						5	L					10	5	5
59	22X31A6959	_			3			2												10	4	5
60 61	22X31A6960 22X31A6961	2			5			3			2			1	<u> </u>		2			9 10	4	5 5
61	22X31A6961 22X31A6962				5			3			2			3	<u> </u>		2			10	4	5
63	22X31A6963	5			5						5			5						10	5	5
\square																						
\vdash															-							

0.0 0.0 0		3.00 35	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	###	0.00	3.00	0.00	0.00	6.00	3.00	3.00
		35	0	0															
0				0	28	0	0	31	0	0	43	0	0	14	0	0	56	60	62
	0	46	0	0	35	0	0	43	0	0	51	0	0	23	0	0	62	62	62
		76%			80%			72%			84%			61%			90%	97%	100%
tions	ons:																		
+			-																
																	Y	Y	Y
		Y			Y												Y	Y	Y
								Y			Y			Y			Y	Y	Y
-																			
		76%			80%			72%			84%			61%			90%	97%	100%
n Que	Quest	tions:																	
-																			
-																	90%	97%	97%
		80%			80%												90%	97%	97%
								80%			80%			80%			90%	97%	100%
aas	aasg	ppt		Overa	11		Leve	1									Attai	nment	Level
																	1	4	0%
																	2	5	0%
																	3	6	0%
6 979	97%	97%		91%			3.00												
				91%			3.00												
				92%															
			min																
							-		<u> </u>										
							F	acult	y Sıg	matu	re								
6		97%	97% 100%	97% 100%	97% 100% 92%	97% 100% 92%	97% 100% 92%	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00	97% 100% 92% 3.00 rnal Examination-2 3.00			

IBRAHEMPATH		-		Humanities &		
- AND PAC		Course Outcome Att	ainmen			
	of the faculty	V.MOUNIKA		Academic		2022-2023
	h & Section:	<u>IOT</u>		Year / Sei	nester:	<u>1/11</u>
	e Name:	ENGINEERING CHEMIST	RY			
	Roll Number			S.No	Roll Number	Marks Secured
1	22X31A6901	35		36	22X31A6936	39
2	22X31A6902	28		37	22X31A6937	31
3	22X31A6903	45		38	22X31A6938	42
4	22X31A6904	35		39	22X31A6939	45
5	22X31A6905	21	[40	22X31A6940	23
6	22X31A6906	34	[41	22X31A6941	27
7	22X31A6907	16		42	22X31A6942	48
8	22X31A6908	25		43	22X31A6943	41
9	22X31A6909	47		44	22X31A6944	35
10	22X31A6910	37	[45	22X31A6945	14
11	22X31A6911	44		46	22X31A6946	21
12	22X31A6912	24		47	22X31A6947	30
13	22X31A6913	34		48	22X31A6948	31
14	22X31A6914	6		49	22X31A6949	30
15	22X31A6915	28		50	22X31A6950	17
16	22X31A6916	38		51	22X31A6951	27
17	22X31A6917	12		52	22X31A6952	39
18	22X31A6918			53	22X31A6953	42
19	22X31A6919	9		54	22X31A6954	37
20	22X31A6920	28	•	55	22X31A6955	25
21	22X31A6921	24		56	22X31A6956	30
22	22X31A6922	A		57	22X31A6957	37
23	22X31A6923	52		58	22X31A6958	50
24	22X31A6924	33		59	22X31A6959	15
25	22X31A6925	43		60	22X31A6960	21
26	22X31A6926	39		61	22X31A6961	26
27	22X31A6927	39		62	22X31A6962	13
28	22X31A6928	51		63	22X31A6963	26
29	22X31A6929	49				
30	22X31A6930	23				
31	22X31A6931	43				
32	22X31A6932	31				
33	22X31A6933	13				
34	22X31A6934	38				
35	22X31A6935	40				
Iax M	arks	60				
lass A	verage mark		32		Attainment Level	% students
	-	rformed above the target	30		1	40%
	r of successfuls		62		2	50%
		scored more than target	48%		3	60%
	inment lev	-	2		-	
Lua.			۲	_		

STATE ALL COLL					TECHNOLOGY					
A CONTRACT OF A	Departme	ent of Humanities								
- Connor		Course Out	<u>icome Ati</u>	<u>tainment</u>						
ORAHIMPATHAN				A 1 * 37	2022 2022					
Name of the facult		<u>KA</u>		Academic Year: 2022-2023						
Branch & Section:				Examination:	<u>l Internal</u>					
Course Name:	ENGINEE	RING CHEMISTRY	<u></u>	Year:	<u> </u>					
	1-4			Semester:	<u>II</u>					
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level					
C01	3.00		3.00	2.00	2.30					
CO2	3.00		3.00	2.00	2.30					
CO3	3.00		3.00	2.00	2.30					
CO4	3.00	3.00	3.00	2.00	2.30					
CO5		3.00	3.00	2.00	2.30					
CO6		3.00	3.00	2.00	2.30					
Inter	nal & Univ	ersity Attainment:	3.00	2.00						
		Weightage	30%	70%						
CO Attainment for th	e course (li	nternal, University	0.90 1.40							
CO Attainment for	the course	(Direct Method)		2.30						
Overall co	ourse	attainme	nt lev	rel	2.30					

Faculty Signature

SUBL OF ENGINEERING	S	RI I	NDU	INS	STIT	UTE	OF	ENG	INE	ERIN	G &	тес	HNO	LOG
	CHNOLOG			D	epartn	nent	of Hu	mani	ties &	c Scien	nces			
BRAHIMPATNAM]	Progra	am Ou	tcome	Attai	nme nt	t (from	Cours	<u>e)</u>			
Name of	^F Facu	lty:	V.MC	UNIK	<u>4</u>			Acad	emic Y	ear:	2022-	2023		
Branch &	k Sect	ion:	<u>IOT</u>				Year:			1				
Course I	ourse Name:		ENGINEERING CHE			MISTRY		Semester:			П			
CO-PO n	oonni	221												
CO-PO I		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2
<u>CO1</u>	2	2	F 0 3	F 04	105	1	1	F 08	105	1010	1011	2	F301	F 302
CO1 CO2	2	2			1	1	1					1		
CO2	2	2			1	1	1					1		
CO4	2					1	1					1		
CO5	2	2					1							
CO6	2	1			1	1	1			1				
Course		1.80			0.30	0.66	0.83			0.30		0.66		
<u> </u>					Cor	urse (Jutcon	e Att	ainme	nt				
СО						nsee				III				
							2.3	0						
CO1														
							2.3	0						
CO2														
							2.3	0						
CO3														
							2.3	0						
CO4														
							2.3	0						
CO5														
CO6							2.3	0						
Overall			-							20				
Overall	cour	se at	lainm	entie	ever				4	2.30				
ΡΟ-ΑΤΤΑ														
10-ATT		PO2	PO3	PO4		PO6	DO7	PO8	PO9	PO10	DO11	PO12		
		F 02	103	r 04	105				1.03	1-010		1012		
CO Attainm														
Attainm ent	1.53	1.38			0.23	0.51	0.64			0.23		0.51		
			•	•	•			1	1		1			
CO contri	butior	n to PC) - 33%	, 67%, :	100% (Le	evel 1/	2/3)							
	Faculty Signature													

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

https://drive.google.com/file/d/1_jV3hD-WJh_HG1-CHoGevPZmgWnG-Qmj/view?usp=sharing