

COURSE FILE ON MATRICES & CALCULUS

Course Code – MA101BS

I B. Tech Semester-I A.Y. 2022-23

Prepared by

Mr.T THIRUPATHI REDDY Assistant Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH Veriouda^[M] Ibrahimostnam (M) R.R. Dist-501 516

PRINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist, Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999. https://siiet.ac.in

EAMCET CODE: INDI

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Index of Course File

COURSE FILE INDEX					
S.No	Course/Subject Name				
1	Institute Vision & Mission				
2	POs /PSOs				
3	Course Structure				
4	Course syllabus				
5	Course Outcomes (CO)				
6	Mapping CO with PO/PSO; course with PO/PSO				
7	Academic Calendar				
8	Time table - highlighting your course periods including tutorial				
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book				
10	Gap within the syllabus - mapping to CO, PO/PSO				
11	Gaps beyond the syllabus - Mapping to PO/PSO				
12	Web references				
13	Lecture notes				
14	List of Power point presentations / Videos				
15	University Question papers				
16	Internal Question papers, Key with CO and BTL				
17	Assignment Question papers mapped with CO and BTL				
18	Scheme of evaluation with CO and BTL mapping				
19	Tutorial topics with evidence				
20	Result Analysis to identify weak and advanced learners				
21	Result Analysis at the end of the course				
22	Remedial class schedule and evidences				
23	CO, PO/PSO attainment				
24	Attendance register				
25	Course file (Digital form)				

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that individuals transforms into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- IM1: To offer outcome-based education and enhancement of technical andpractical skills.
- IM2: To Continuous assess of teaching-learning process through institute-industry collaboration.
- IM3: To be a center of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH heriouda(M Ibrahimoatham (M) R.R. Dist-501 516

RINCIPAL

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

https://siiet.ac.in

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

(UGC AUTONOMOUS INSTITUTION)

PROGRAM OUTCOMES

PO1. **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to associate, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11. **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH Veriouda(M) Ibrahimostnam (M) R.R. Dist-501 516

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations)

Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Cre dits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS102ES	C Programming for Engineers	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	EC101ES	Elements of Electronics and Communication Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
9.	CS105ES	C Programming for Engineers Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CS202ES	Applied Python Programming Laboratory	0	1	2	2
7.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
8.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
9.	EC202ES	Electronic Devices and Circuits Laboratory	0	0	2	1
		Total	11	3	12	20

MATRICES AND CALCULUS (Course Code: MA101BS)

B.Tech. I Year I Sem.	L	Т	Р) (С
	3	1	0)	4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form.
- Geometrical approach to the mean value theorems and their application to the mathematical problems.
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative.
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications.

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyze the solution of the system of equations.
- Find the Eigenvalues and Eigen vectors.
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions.
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes.

UNIT - I: Matrices

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT - II: Eigen values and Eigen vectors

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT - III: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

10 L

10 L

10 L s and

UNIT - IV: Multivariable Calculus (Partial Differentiation and applications) 10 L

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS:

1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition,Pearson, Reprint, 2002.

3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

8 L

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course : Matrices and Calculus(C111)

Class: I-B.TECH ECE

Course Outcomes

After completing this course the student will be able to:

- C111.1 : Solve the system of Homogeneous and non-Homogeneous equations. (Applying)
- C111.2 : Student can judge the nature of the Quadratic form. (Evaluating)
- C111.3 : Student can estimate pairwise orthogonality before finding modal matrix. (Creating)
- C111.4 : Student can evaluate the surface and volume integrals. (Evaluating)
- C111.5 : Student can find the Jacobian of function of two and three variables. (Remembering)
- C111.6 : Compare the difference between double integrals and triple integrals in cartesian and polar Coordinates. (Understanding)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C111.1	3	2	-	1	1	-	-	-	-	-	-	1
C111.2	3	2	-	1	1	-	Ι	-	Ι	-	I	1
C111.3	2	2	-	1	1	-	-	-	-	-	-	1
C111.4	2	3	-	1	1	-	-	-	-	-	-	2
C111.5	3	2	-	1	1	-	-	-	-	-	-	2
C111.6	3	2	-	1	1	-	-	-	-	-	-	2
C111	2.6	2.16	-	1	1	-	-	-	-	-	-	1.5

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. MODERN TOOL USAGE: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO12. LIFE-LONG LEARNING: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C111.1	: Solve the system of Homogeneous and non-Homogeneous equations. (Applying)
	Justification
PO1	Student construct the matrix representation of Homogeneous and non-Homogeneous equations(level 3)
PO2	Student analyze the nature of the Homogeneous and non-Homogeneous equations(level 2)
PO4	Student can use different matrix methods to get solution(level 1)
PO5	Student apply appropriate techniques to solve linear system. (level 1)
PO12	Student can recognize importance of consistent concepts in linear system of equations. (level1)

C111.2	: Student can judge the nature of the Quadratic form. (Evaluating)
	Justification
PO1	Student get the knowledge of diagonalization on finding eigen values and eigen vectors(level 3)
PO2	Student can identify normalization of vectors to get modal matrix in orthogonal transformation(level 2)
PO4	Student can use knowledge of eigen values and eigen vectors in diagonalizing the matrix(level 1)
PO5	Student apply techniques of diagonalization to say nature of quadratic form. (level 1)
PO12	Student can recognize step by step procedure in orthogonal transformation. (level 1)

C111.3 Student can estimate pairwise orthogonality before finding modal matrix. (Creating)

	Justification
PO1	Student get the knowledge of pairwise orthogonal vectors.(level 3)
PO 2	Student can compare the difference between eigenvectors and pairwise orthogonal vectors(level 2)
PO4	Student can use eigenvalues and eigenvectors to find the modal matrix.(level 1)
PO5	Student apply find diagonalized matrix by using modal matrix.(level 1)
PO12	Student can recognize importance of diagonalized matrix for conversion of Quadratic form to Orthogonal transformation(level 1)

C111.4 : Student can evaluate the surface and volume integrals. (Evaluating)

	Justification
PO1	Student get the knowledge of Integration.(level3)
PO2	Student can explain the concept of surface integrals.(level2)
PO4	Student can use techniques of double and triple integrals for finding exact value of integral function.(level 1)
PO5	Student apply formula for finite intervals of volume integration(level 1)
PO12	Student can recognize importance of calculus formulas in surface and volume integrals. (level 1)

C111.5	: Student can find the Jacobian of function of two and three variables. (Remembering)
	Justification
PO1	Student get the knowledge to finding Jacobian of functions(lavel3)
PO2	Student can differentiate the functions of two variables and three variables in finding maxima and minima of functions (lavel2)
PO4	Student can analyze the steps involving in functions of two variables and three variables. (level 1)
PO5	Student can apply partial derivatives for finding Jacobian. (level 1)
PO12	Student can recognize importance of differentiation for finding Jacobian of two and three variables (level 1)

C111.6 : Compare the difference between double integrals and triple integrals in cartesian and polar coordinates(Understanding)

	Justification
PO1	Student get the knowledge to finding double and triple integrals.(level 3)
PO2	Student can differentiate integration in double and triple integrals(level 2)
PO4	Student can analyze the steps involving in cartesian and polar form for multiple integrals(level 1)
PO5	Student apply areas and volume concepts in double and triple integrals(level 1)
PO12	Student can recognize importance of multiple integrals in spherical and polar forms(level 1)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

÷ i

Lr. No. SIIET/BR22/Academic Calendar/2022/01

I B.TECH ACADEMIC CALENDAR FOR THE ACADEMIC YEAR 2022-23

(BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal,

To,

All the HOD's

Sir,

Sub: SIIET (Autonomous)-Academic & Evaluation-Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg. ******

The approved Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-23 is given below. LSEMESTER

		Per	Denting			
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)	03.11.2022				
2.	1 st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations and Remidial Mid Test (RMT)	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	16.03.2023				
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

H-SEMESTER

		Per	Period		
S. NO	Description	From	To	Duration	
1.	Commencement of II Semester class work		03.04.2023		
2.	1 st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks	
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks	
3.	I Mid Examinations	`12.06.2023	17.06.2023	1 Week	
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023			
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks	
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week	
7.	Preparation & Practical Examinations and Remidial Mid Test (RMT)	21.08.2023	26.08.2023	1 Week	
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023			
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks	
	Commencement of Class Work for II B.7	ech I Semester – 1	1.09.2023		
X	Kirl Kiredly	i i i	\V	2	
	CE		PRIN	CIPAL	

*Copy to All the Heads of the Depts. & AO:

ACE

PRINCIPAL Sri Indu Institute of Engineering & Tech. Sheriguda(V), Ibrahimpatnam(M). R. Dist. Telangana -501 510

Date: 27.10.2022

Contraction of the second

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Class: ECE		Semes	ter: I	<u>W.E.</u> F	-14-11-20	022	LH:-D	-209
	1 9:40- 10:30	11 10:30 - 11:20	111 11:20- 12:10	12:10-	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 2.15	VII 3.15-4.00
MON	CPE	ES	M&C		AP	ENG	M&C	LIB
TUE	AP	M&C	ENG	U	CPE LAB		AB	PPS(T)/AP(T)
WED	E	EWS/ELCS L	.AB	N C	M&C	AP	CPE	ENG(T)/M&C(T)
THU	AP LAB			Н	CPE	ENG	ES	AP(T)/CPE(T)
FRI	AP	CPE	ES		EWS/ELCS LAB		AB	M&C(T)/ENG(T)
SAT	ENG	E-ECI	ELAB		CPE M&C		AP	E-ECE(T)

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
A 101BS Matrices and Calculus REDDY		T.THIRUPATHI REDDY	THIRUPATHI ME102ES E		M.V.B. KALYAN/B.SRINU NAIK
AP102BS	Applied Physics	B.SANTHI	AP105BS	Applied Physics - Lab	B.SANTHI/M.JANAIAH/ R. YADAGIRI RAO /M.MANISHA
CS102ES C Programming for Engineers B.RA		B.RAJASHWARI	.RAJASHWARI CS105ES		B.RAJASHWARI/ D.SWAPNA
EN104HS English for Skill G Enhancement G MC101ES Environmental V Sciences V		104HS English for Skill Enhancement G.VENKAT REDDY		English Language and Communication Skills Lab	G.VENKAT REDDY/E.PRARTHANA
		V.MOUNIKA	EC101ES	Elements of Electronics and Communication Engineering	Dr.S.SURESH/Dr.K.SRINIVAS A REDDY

B. Sar **Class In-Charge**

ch. Sauthe

Time Table Coordinator

SHERIGUDA

01 510*

Head of The Department Dr. R. YADAGIRI RAO M.Sc., B.Ed., M.Tech(CSE)., Ph.D. Head of the Department Department of H&S 3RI INDU INSTITUTE OF ENGG & TECH heriguda(M) Ibrahimpatham (M), R.R. Dist 503 51.

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course Title	MATRICES AND CALCULUS
Course Code	MA101BS
Programme	B.Tech
Year & Semester	I-year I-semester
Regulation	BR22
Course Faculty	Mr.T THIRUPATHI REDDY, Assistant Professor, H&S
sub	LESSON PLAN

Matrices and Calculus : Lesson Plan

L/H	Торіс	TA/TM	Reference book
1	Unit wise Introduction of Matrices and Calculus	Lecture	R-1
	Syllabus	Method	
2	UNIT –I Matrices	Lecture	R-1
	Types of matrices ,examples	Method	
3	Properties and problems on	Lecture	R-1
	Symmetric, skew symmetric Matrices	Method	
4.	Rank of the matrix	Lecture	R-1,W1
		Method	
5.	Rank of the matrix by using Echelon form	Lecture	R-1
		Method	
6	Rank of the matrix by using Normal form	Lecture	R-1
		Method	
7	Problems on Rank of the matrix	Lecture	T-1
		Method	
8	Inverse of the matrix by using Gauss Jordan method	Lecture	R-1
		Method	
9	Problems	Problem solving	T-1
		Method	
10	Concept to know the consistency of Linear system of	Lecture	R-1
	equations	Method, Video	
11	Homogeneous system of linear equations and problems	Lecture	R-1,T-1
		Method, Video	
12	Non Homogeneous system of linear equations and	Problem solving	R-1,T-1
	problems	Method, Video	
13	Gauss Elimination method	Lecture	T-1,V-4
	and Problems	Method/ Problem	
		solving Method, Video	
14	Gauss Seidel Iteration method	Lecture	T-1,W2,V-3
	and Problems	Method /Problem	
		solving Method, Video	
15	UNIT – II	Lecture	R-1
	Eigen values and Eigen Vectors	Method, Video	
	Introduction of Linear transformation and Orthogonal		
	transformation		
16	To finding Eigen values and Eigen Vectors of a Matrix	Problem solving	T-1,V-1
		Method,Web	
		Presentation,video	
17	To finding Eigen values and Eigen Vectors of a Matrix	Problem solving	T-1
		Method,Web	
		Presentation,video	
18	Problems	Problem solving	T-1,
		Method,Web,Video	
19	Properties of Eigen values and Eigen vectors	Lecture	R-1
		Method	
20	To find Diagonalization of a Matrix	Lecture	T-1
		Method	
21	Problems on Diagonalization	Problem solving	T-1
		Method	

22	Cayley Hamilton theorem -Problems	Problem solving Method Video	T-1,V-2
23	Cayley Hamilton theorem -Problems	Problem solving Method.Video	T-1
24	Finding Inverse and powers of a Matrix by using Cayley Hamilton theorem	Lecture Method.Video	R-1
25	Finding Inverse and powers of a Matrix by using Cayley Hamilton theorem	Lecture Method,Video	R-1,V-2
26	Quadratic form - Introduction	Lecture Method	T-1
27	Nature and Signature of Quadratic form	Lecture Method	R-1
28	Reduction of Quadratic form to Canonical form by using Orthogonal transformation	Lecture Method	R-1
29	UNIT - III Calculus Introduction of Mean value theorems	Lecture Method	R-1
30	Rolle's Mean value theorem - Problems	Problem solving Method,web	R-1
31	Lagrange's Mean value theorem- Problems	Problem solving Method ,web	R-1,w4
32	Applications	Lecture	R-1
33	Cauchy's mean value theorem –Problems	Problem solving Method, web presentation	R-1,T-1
34	Taylor's Series - Problems	Problem solving Method	R-1,T-1
35	Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	R-1
36	Introduction of Improper Integrals Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	R-1
37	Introduction of Improper Integrals	Lecture Method	R-1
38	Beta and Gamma functions and their properties - problems	Problem solving Method	R-1,T-1
39	UNIT - IV Multi variable Calculus (Partial differentiation and applications)	Lecture Method	R-1
40	Euler's theorem - Problems	Problem solving Method	R-1,T-1
40 41	Total derivative - Problems	Problem solving Method Problem solving Method	R-1,T-1 R-1,T-1
40 41 42	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems	Problem solving Method Problem solving Method Problem solving Method	R-1,T-1 R-1,T-1 R-1,T-1
40 41 42 43	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems	Problem solving Method Problem solving Method Problem solving Method Problem solving Method	R-1,T-1 R-1,T-1 R-1,T-1 T-1
40 41 42 43 44	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Functional dependence & independence Problems	Problem solving Method Problem solving Method Problem solving Method Problem solving Method Problem solving Method	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1
40 41 42 43 44 45	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Functional dependence & independence Problems Maxima and Minima of functions of two variables - Problems	Problem solving Method Problem solving Method Problem solving Method Problem solving Method Problem solving Method Problem solving Method	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3
40 41 42 43 44 45 46	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Functional dependence & independence Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, Video	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5
40 41 42 43 44 45 46 47	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Functional dependence & independence Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoProblem solving Method, VideoProblem solving Method, VideoProblem solving Method, VideoProblem solving Method, VideoProblem solving Method, Video	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5
40 41 42 43 44 45 46 47 48	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, Video	R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 T-1,V-5
40 41 42 43 44 45 46 47 48 49	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Functional dependence & independence Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima of functions of three variables - Problems Maxima of functions of three variables - Problems Introduction to multiple integration	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture Method	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 R-1
40 41 42 43 44 45 46 47 48 49 50	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima of functions of three variables - Problems Evaluation of functions of three variables - Problems UNIT-V Multi variable calculus (Integration) Introduction to multiple integration Evaluation of double integrals in Cartesian and polar coordinates	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture MethodLecture MethodMethod	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 R-1 R-1 R-1
40 41 42 43 44 45 46 47 48 49 50 51	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Menima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Charge of order of integration Evaluation of double integrals in Cartesian and polar coordinates Change of order of integration in Cartesian form	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture MethodLecture MethodLecture MethodMethod	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 R-1 R-1 R-1 R-1
40 41 42 43 44 45 46 47 48 49 50 51 52	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Menima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima of functions of three variables - Problems Charge of order of integration Evaluation of double integrals in Cartesian and polar coordinates Change of order of integration in Cartesian form Evaluation of triple integrals	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture MethodLecture MethodMethodLecture MethodMethodLecture MethodMethodLecture MethodMethodLecture MethodMethodLecture MethodMethodLecture MethodMethodLecture MethodMethod	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 R-1 R-1 R-1 R-1 T-1
40 41 42 43 44 45 46 47 48 49 50 51 52 53	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Muxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Charge of order of integration Evaluation of double integrals in Cartesian and polar coordinates Change of order of integrals Change of variables Cartesian to polar in double integrals	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture MethodLecture MethodProblem solving Method, VideoProblem solving Method, Video	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 T-1,V-5 R-1 R-1 R-1 R-1 T-1 T-1 T-1
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Euler's theorem - Problems Total derivative - Problems Jacobian - Problems Functional dependence & independence - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of two variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems Maxima and Minima of functions of three variables - Problems UNIT-V Multi variable calculus (Integration) Introduction to multiple integration Evaluation of double integrals in Cartesian and polar coordinates Change of order of integration in Cartesian form Evaluation of triple integrals Change of variables Cartesian to polar in double integrals Change of variables Cartesian to spherical in triple integrals	Problem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving MethodProblem solving Method, VideoProblem solving Method, VideoLecture MethodLecture MethodProblem solving Method, VideoProblem solving Method, Video	R-1,T-1 R-1,T-1 R-1,T-1 T-1 T-1 T-1,V-5,W3 T-1,V-5 T-1,V-5 R-1 R-1 R-1 R-1 T-1 T-1 T-1 T-1

	integrals	Method	
56	Areas by double integrals	Lecture	R-1
		Method	
57	Volumes by double and triple integrals	Lecture	R-1,w5
		Method	

REFERENCES:

R-1 .Ramana B.V., Higher Engineering Mathematics, Tata McGRAW Hill, New

DelhiR-2 .N.P. Bali and Manish Goyal, A text book of Engineering Mathematics

TEXTBOOKS :

T-1 B.S.Grewal, Higher Engineering Mathematics, Khanna

PublishersT-2 Erwin Kreyszig, Advanced Engineering

Mathematics

GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Cramer's rule,Matrix inversion method, Importance of sequence ,Continuity and differentiability of a function with examples, Integration and differentiation methods

Course Outcomes

After completing this topic the student will be able to:

1. student can compare methods in solving linear system of equations.(Analysis)

2. After knowing calculus concepts student can easily solve partial differential equations methods and problems (Application)

3. After knowing calculus methods student can easily define beta gamma derivations (Knowledge)

Mapping of course outcomes with program outcomes:

High -3	Medium -2	Low-1
---------	-----------	-------

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	3	_	_	_	_	_	_	_	_	_	_
2	3	2	-	_	_	-		_	_	_	-	_
3	2	2	_	_	_	_	_	_	_	_	-	-

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Regular industrial visits help students to know the information useful for knowledge upgradation.
- 2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
- 3. Teaching at least a few portions giving practical demonstration to create interest among the students
- 4. Introducing current Scientific and Technological innovations and development
- 5. Computer aided learning tools are also used for better visual display for the Mathematics

Mapping to PO/PSO:

High -3 Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	_	_	_	2	_	_	-			Ι	_	2
2	-	-	—	-	-	-	Ι	_	_	2	_	_
3	-	-	—	-	-	-	Ι	_	_	_	3	_
4	_	_	_	-	_	_	_	_	1	_	_	_
5	_	_	_	Ι	2	_	_	_	_	Ι	—	-

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

WEB REFERENCES :

- W-1 https://en.wikipedia.org/wiki/Rank_(linear_algebra) (For UNIT-I,UNIT-II)
- W-2 http://mathforcollege.com/ma/book2021/gauss-seidel-method.html (For UNIT- I)
- W-3 <u>https://tutorial.math.lamar.edu/Classes/CalcIII/RelativeExtrema.aspx (For</u> UNIT-III)
- W-4 https://courses.lumenlearning.com/calculus1/chapter/the-mean-value-theorem-for-integrals (For UNIT-IV)
- W-5 <u>https://math.stackexchange.com/questions/1903927/volume-of-solid-rotated-about-y-axis(For</u> UNIT-V)

VIDEO REFERENCES :

- V-1 <u>https://www.youtube.com/watch?v=h5urBuE4Xhg</u>(Video for Eigen values and eigen vectors)
- V-2 https://www.youtube.com/watch?v=8D3WViAyJvc (Cayley-Hamilton Theorem)
- V-3_https://www.youtube.com/watch?v=ajJD0Df5CsY (For Gauss seidal iteration method)
- V-4 <u>https://www.youtube.com/watch?v=2j5Ic2V7wq4</u> (For Gauss Elimination method)
- V-5_https://www.youtube.com/watch?v=gLWUrF_cOwQ_(For Maxima and Minima)
- V-6_https://www.youtube.com/watch?v=ry9cgNx1QV8_(For Maxima and Minima)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

M&C LECTURE NOTES

https://drive.google.com/file/d/1auDWIg9WJJ4bPUQS_Ow81nHZ4tXeAgbw/view?usp=sharing_

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

POWERPOINT PRESENTATION

https://docs.google.com/presentation/d/1oFq_C2UB_eufipG_DbFloVIQBJe0j26v/edit?usp=sharing&ouid=109382372023570652601&rtpof=true&sd=true

https://docs.google.com/presentation/d/1hwaxkt5bNcc3mBys96H0rRBHViZHsClP/edit?usp=sharing&ouid=109382372023570652601&rtpof=true&sd=true

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS QUESTION PAPERS

https://drive.google.com/file/d/1dIABobEjhLe0bpp0c--M1mkvHlpwhzzr/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

a foraninipathani, Sheriguda (v), foraninipathani (NI), Kanga Keudy Dist., Telangana – 50151

Set-I

I B.TECH SEM-I MID-I EXAMINATION Dec-2022/Jan-2023									
Year & Branch: Common to All		Date & Sessie	on: 29-12-2022 &FN						
Subject : MATRICES & CALCULUS	Marks: 20	Time	: 2 Hours						

<u>Part-B</u>

Answer any **FOUR** Questions. All Question Carry Equal Marks.

1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$ (Remembering(L1))

2. Show that the equations x -4y +7z = 14, 3x + 8y -2z = 13, 7x - 8y + 26z = 5 are inconsistent

(Evaluating(L5))

- 3. Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by using Gauss seidel iteration method (Applying(L3))
- 4. If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ find the value of the matrix $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$

using Cayley Hamilton theorem (**Remembering(L1**))

5 .Reduce the given Quadratic form to canonical form 2xy+2yz+2zx by orthogonal reduction and find the

Nature, Index and Signature of Quadratic form. (Analyzing(L4))

6. Verify Rolle's theorem for $f(x) = e^x(\sin x - \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ (Evaluating(L5))

Mid-1 answer script: https://drive.google.com/file/d/1gunCXPVVLaJZ5s5Td7oLFTIUNgzDCUnx/view?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Sat II

			Set-II						
I B.TECH SEM-I MID-II EXAMINATION March-2023									
Year & Branch: Common to All		Date & Session: 03-03	-2023 &FN						
Subject : MATRICES & CALCULUS	Marks: 20	Time	: 2 Hours						

Part-B Answer any FOUR Questions. All Question Carry Equal Marks.

- 1. a) Express $f(x) = \log \cos x$ as Taylor's series about $x = \pi/3$ **Understanding(L2)**

b) Obtain the Maclaurin's series expansion of f(x) = cosx**Understanding(L2)**

2. If x+y+z = u, y+z = uv, z = uvw then evaluate i) $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ ii) $\frac{\partial(u,v,w)}{\partial(x,y,z)}$

Evaluating(L5)

3. Find the maximum and minimum distances of the point of $u = x^2y^3z^4$ if

4. Evaluate i) $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$ **Evaluating(L5)** ii) $\int_0^4 \int_0^{x^2} e^{\frac{y}{x}} dx dy$ **Evaluating(L5)**

5. Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$

2x+3y+4z = a

6. Find the area of the region bounded by the parabolas $y^2=4ax$ and $x^2=4ay$

Remembering(L1)

Remembering(L1)

Mid-2 answer script: https://drive.google.com/file/d/1snjUryv-KaMn3CJb6gDF7mTP3IrSlNkn/view?usp=sharing

MID I & MID-II KEY link https://drive.google.com/file/d/1r_tqhyATwxUgbvZDkhQ_c1jCjVvOl78k/view?usp=sharing

Evaluating(L5)

THE REAL PROPERTY OF THE REAL

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID M&C ASSIGNMENT

1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$

2. Define the Rank of the Matrix and find the rank of the following matrix using Normal form

[2	1	3	4]	
0	3	4	1	(Domomboring(I 1))
2	3	7	5	(Kemenibernig(L1))
2	5	11	6	

3. Find the value of k if the rank of the matrix A is 2 where A = $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0 \end{bmatrix}$ (Remembering(L1))

4. Find the inverse of the matrix A using Gauss Jordan Method (Elementary row operations)

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
 (Remembering(L1))

- 5. Discuss for what values of a, b the simultaneous equations x+y+z = 6, x+2y+3z = 10, x+2y+az=b have i) no solution ii) a unique solution iii) an infinite number of solutions (Creating(L6))
- 6. Show that the system of equations x+2y+z = 3, 2x + 3y +2z = 5,3x-5y+5z = 2, 3x+9y-z = 4 are Consistent and solve them. (Evaluating(L5))
- 7. Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by using Gauss Seidel Iteration Method (Applying(L3))
- 8. Verify Cayley Hamilton theorem and find A⁻¹ and A⁴ for the matrix A = $\begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$

(Evaluating(L5))

9. If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ find the value of the matrix $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$

using Cayley Hamilton theorem (Remembering(L1))

- 10. Prove that the sum of Eigen values of the matrix A is equal to its trace of A and product of Eigen values to its determinant. (Evaluating(L5))
- 11. Diagonalize the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ (Analyzing(L4))
- 12. Reduce the Quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form by orthogonal Reduction and find the Nature, rank, index and signature of the Quadratic form (Analyzing(L4))
- Reduce the given Quadratic form to canonical form 2xy+2yz+2zx by orthogonal reduction and find the Nature, Index and Signature of Quadratic form. (Analyzing(L4))

- 14. Verify Rolle's theorem for $f(x) = e^{x}(\sin x \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ (Evaluating(L5))
- 15. State Rolle's theorem and verify for $f(x) = x^3 6x^2 + 11x 6$ in [1,3] (Understanding(L2))

Mid1 Assignment <u>https://drive.google.com/file/d/1r8WZaHDmf0ftXWC8GvIC7iJkdok_GC_t/view?usp=sharing</u>

A REAL PROPERTY OF THE REAL PR

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

II-MID M&C ASSIGNMENT

1. a) Express $f(x) = \log \cos x$ as Taylor's series about $x = \pi/3$ Understanding(L2) b) Obtain the Maclaurin's series expansion of f(x) = cosxUnderstanding(L2) 2. Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ (o<b<a) rotates about major axis Remembering(L1) 3. Show that the area of the surface generated by the revolution about the x-axis of the loop of the curve $3ay^2 = x(x-a)^2$ is $\frac{\pi a^2}{2}$ **Evaluating(L5)** 4. If $z = \log(e^x + e^y)$ show that $rt-s^2 = 0$ Evaluating(L5) 5. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ if $u = \tan^{-1}(\frac{x^3 + y^3}{x + y})$ Applying(L3) 6. If u = f(r) and $x = r\cos\theta$, $y = r\sin\theta$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f^{II}(r) + \frac{1}{r}f^{I}(r)$ Evaluating(L5) 7. Find $\frac{du}{dx}$ if $u = \sin(x^2 + y^2)$ where $a^2x^2 + b^2y^2 = c^2$ Remembering(L1) 8. If x+y+z = u, y+z = uv, z = uvw then evaluate i) $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ ii) $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ Evaluating(L5) 9. Show that the functions u=x+y+z, v=xy+yz+zx and $w=x^2+y^2+z^2$ are functionally dependent and find the relation between them Evaluating(L5) 10. Find the maximum and minimum distances of the point of $u = x^2y^3z^4$ if 2x+3y+4z = aRemembering(L1) 11. Find the maxima and minima of the function $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ Remembering(L1) 12. Evaluate i) $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$ Evaluating(L5) ii) $\int_0^4 \int_0^{x^2} e^{\frac{y}{x}} dx dy$ Evaluating(L5) 13. Solve $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dx dy dz$ Evaluating(L5) 14. Find the area of the region bounded by the parabolas $y^2=4ax$ and $x^2=4ay$ Remembering(L1) 15. Evaluate the double integral $\int_0^{4a} \int_{y^2}^{y} \left(\frac{x^2 - y^2}{x^2 + y^2}\right) dx dy$ by changing into polar Evaluating(L5) 16.Change coordinates the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dx dy$ and hence evaluate the double Creating(L6) integral Mid2 Assignment https://drive.google.com/file/d/1wGZY_poYzxHtNUTxKir-RRwWoBwAdoLT/view?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-MATRICES & CALCULUS(MID-I)(Set-I)

Instructions:	
 a) Any answer by alternate method should be valued and suitably awarded. b) All answers (including extra, stuck off and repeated) should be valued. Answers wir marks must be considered. 	h maximum
Qn Description of Answer No	Marks
1. Using row1 and column1 operations (C111.1) (Analyzing)	1
Using row2 and column2 operations (C111.1) (Analyzing)	1
Using row3 and column3 operations & get rank (C111.1) (Analyzing)	3
2. To write matrix form (C111.1) (Analyzing)	1
To write augmented form and getting rank using echelon form anf rank of A not equal to rank of [A;B](C111.1) (Analyzing)	2
To compare consistency and to get solution(C111.1) (Analyzing)	2
3. To check diagonal dominant (C111.1) (Analyzing)	1
To find iterations until get solution (C111.1) (Analyzing)	4
4. To find characteristic equation of A (C111.2) (Applying)	2
Using Cayley Hamilton theorem and Calculations(C111.2) (Applying)	3
5. To form matrix for the given quadratic form(C111.2) (Applying)	1
To find eigen values and eigen vectors (C111.2) (Applying)	2
To get $P^{T}AP = D$ and writing canonical form, rank, index and signature(C111.2) (Applying)	2
6. To check continuous and derivable and $f(a)=f(b)$ of $f(x)$ (C111.3) (Creating)	3
To apply Rolle's theorem and get value of c (C111.3) (Creating)	2
TOTAL	20

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

(UGC AUTONOMOUS INSTITUTION)

SCHEME OF EVALUATION-MATRICES & CALCULUS(MID-II)(Set-2) Instructions: a) Any answer by alternate method should be valued and suitably awarded. All answers (including extra, stuck off and repeated) should be valued. Answers with maximum b) marks must be considered. **Description of Answer** On Marks No To write Taylor's series expansion (C111.3) (Creating) 1 a) 1 To calculate value of $f(x) = \log \cos x$ at $x = \pi/3$ (C111.3) (Creating) 1 To write Maclaurin's series expansion(C111.3) (Creating) b) 1 To calculate value of $f(x) = \cos x$ at x = 0(C111.3) (Creating) 2 To find Jacobian of x,y,z with respect to u,v,w (C111.5). (Remembering) 2. 3 To find Jacobian of u,v,w with respect to x,y,z. (C111.5)(Remembering) 2 3. Using Lagrange's method of multipliers formula .(C111.5)(Remembering) 1 To calculate maximum and minimum values .(C111.5)(Remembering) 4 4. 2 To evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$ (C111.6) (Understanding) To evaluate $\int_0^4 \int_0^{x^2} \frac{y}{e^x} dxdy$ (C111.6) (Understanding) 3 To Evaluate $\int_{0}^{n} \int_{0}^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$ (C111.6) (Understanding) 5. 5 To take limits of x and y (C111.6) (Understanding) 6. 2 To find area of the region bounded by the parabolas (C111.6) (Understanding) 3 TOTAL 20

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

TUTORIAL TOPICS

S.	Торіс	Teaching	No.of Sessions	Reference book
No	-	Method/Teaching	Planned	
		Aid		
1	Rank of the matrix by using Echelon form	Lecture	1	R-1
		Method		
2	Rank of the matrix by using Normal form	Lecture	1	R-1
_		Method		
3	Inverse of the matrix by using Gauss Jordan method	Lecture Method	1	R-1
4	Homogeneous system of linear equations and	Lecture	1	R-1.T-1.V-1
	problems	Method, Video		7 7 ·
5	Non Homogeneous system of linear equations	Problem solving	1	R-1,T-1,V-1
	and problems	Method, Video		
6	Gauss Elimination method	Lecture	1	T-1,V-5
	and Problems	Method/ Problem		
7	Gauss saidel Iteration method	Solving Method, video	1	T 1 V 4
'	and Problems	Method /Problem	1	1-1, V-4
		solving Method, Video		
8	To finding Eigen values and Eigen Vectors of a	Problem solving	1	T-1,W-2,V-1
	Matrix	Method,Web		
_		Presentation, video		
9	To find Diagonalization of a Matrix	Lecture	1	T-1
10	Caulou Hamilton theorem Broblems	Method Broblem solving	1	T 1 V 2
10	Cayley Hammon theorem - Problems	Method Video	1	1-1, V-2
11	Reduction of Quadratic form to Canonical form	Lecture	1	R-1
	by using Orthogonal transformation	Method		
12	Rolle's Mean value theorem - Problems	Problem solving	1	R-1,W-5
		Method, web		
10		presentation		
13	Lagrange's Mean value theorem-	Problem solving	1	R-1,W-5
	Problems	presentation		
14	Cauchy's mean value theorem –Problems	Problem solving	1	R-1.T-1.W-5
		Method, web	-	1,1,1,1,1,0
		presentation		
15	Taylor's Series - Problems	Problem solving	1	R-1,T-1
		Method		
16	Applications of definite integrals to evaluate	Lecture	1	R-1
	surface areas and volumes of revolutions of	Method		
17	Euler's theorem - Problems	Problem solving	1	R-1.T-1
		Method	-	,
18	Total derivative - Problems	Problem solving	1	R-1,T-1
		Method		
19	Jacobian - Problems	Problem solving	1	R-1,T-1
20	Eurotional dependence & independence	Niethod Broblem solving	1	Т 1
20	Problems	Method	1	1-1
21	Maxima and Minima of functions of two	Problem solving	1	T-1.V-8
	variables - Problems	Method, Video	-	,. 0
22	Evaluation of double integrals in Cartesian and	Lecture	1	R-1
	polar coordinates	Method		
23	Change of order of integration in Cartesian form	Lecture	1	R-1
24	Evaluation of triple integrals	Method Broblem solving	1	TIVO
24	Evaluation of imple integrals	Method Video	1	1-1, V-9

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Result Analysis:

ECE

MATRICES & CALCULUS
MA101BS
B.Tech
I year I- semester
BR22
T Thirupathi Reddy, Assistant Professor, H&S

Weak Students:

S No	Roll no	Intermediate	Internal-I Status	Internal-II Status
		Marks	(35)	(40)
1	22X31A0401	58%	25	36
2	22X31A0403	69%	28	38
3	22X31A0413	68.5%	24	39
4	22X31A0428	59.4%	20	36
5	22X31A0429	55.9%	20	26
6	22X31A0430	41.2%	18	30
7	22X31A0431	69.6%	20	22
8	22X31A0432	59.7%	20	27
9	22X31A0435	58.5%	22	23
10	22X31A0440	50.2%	23	25
11	22X31A0443	63.6%	24	28
12	22X31A0448	55%	18	33
13	22X31A0454	55.3%	23	32

Advanced learners:

S No	Roll No	Intermediate Marks	Gate Material
1	22X31A0402	95.9%	
2	22X31A0434	90.9%	
3	22X31A0442	93.8%	Probability, Discrete
4	22X31A0449	91.4%	Fountions
5	22X31A0455	91%	Liquations
6	22X31A0458	95.6%	
7	22X31A0459	93%	

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

RESULT ANALYSIS AT THE END OF SEMESTER

Branch : ECE

Subject: MATRICES & CALCULUS

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

DEPARTMENT OF HUMANITIES AND SCIENCE REMEDIAL CLASSES TIME TABLE

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4:00 -5:00
CSE-A	M&C	PPS	AP	EG	M&C	AP
CSE-B	AP	M&C	EG	PPS	AP	M&C
CSE-C	PPS	EG	AP	M&C	PPS	EG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4:00 -5:00		
ECE-A	M&C	СНЕМ	BEE	ENG	M&C	СНЕМ		
ECE-B	BEE	M&C	СНЕМ	M&C	BEE	CHEM		

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4:00 -5:00
AIML	CHEM	BEE	M&C	BEE	CHEM	M&C
CYBER	PPS	EG	AP	M&C	PPS	EG

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	4.00-5.00	4.00-5.00	4.00-5.00	4.00-5.00	4.00-5.00	4:00 -5:00
CIVIL & IOT	СНЕМ	BEE/EM	M&C	BEE/EM	CHEM	M&C

Head of the Department

Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda/M Ibrahimostnam (M) R.R. Dist-501 516

PRINCIPAL Sri Indu Institute of Engineering & Tect. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY																					
	STATUTE STATUTE			(Cours	De se Oi	partr utcou	nent ne A	of Hu . ttair	uman Imer	ities of nt (In	& Sc tern	ienc al E	es xami	nati	on-1)				
Nar	ne of the facu	T TH	IRUP/	ATHI	REDE			III 11	Aca	demi	c Ye	ar:					<u>,</u>	2022	-2023		
Bra	nch & Sectior	ECE							Examination: I Internal												
Cou	rse Name:	M&C	2						Yea	Year: I Se						Sem	ester:	Ι			
S No	HT No	019	01b	01c	029	02h	026	039	03h	036	049	04h	04c	05%	05h	05c	069	06h	06c	Ohi1	A1
Max	. Marks ==>	5	Q10	QIU	5	Q20	Q2C	5	Q30	QSC	5	Q+0	QTC	5	Q30	QJU	5	Q00	Que	10	5
1	22X31A0401	5						2			5						2			6	5
2	22X31A0402	5			5			5								-	5			7	5
4	22X31A0403	5			5 4			5			4						4			4	5
5	22X31A0405	5			5			5			5									6	5
6	22X31A0406	5			5			5			4						4			6	5
8	22X31A0407 22X31A0408	4			4			5			4 5			4						6	5
9	22X31A0409				5			5			5						5			8	5
10	22X31A0410	5			5			5			4									8	5
12	22X31A0411 22X31A0412	4			5			5			5									7	5
13	22X31A0413	5			5												5			4	5
14	22X31A0414	5			5			5			5						5			9	5
15	22X31A0413 22X31A0416	4			5			5			5						4			9 7	5
17	22X31A0417				5			5			1						5			8	5
18	22X31A0418	5			F			5						2			5			5	5
20	22X31A0419 22X31A0420	4			5			5			5						4			7	5
21	22X31A0421	4			2												3			4	5
22	22X31A0422	4			2			-									4			4	5
23	22X31A0423 22X31A0424	A			A			A			А						A			5 A	A
25	22X31A0425	4			4			5									4			6	5
26	22X31A0426	3						4			4						5			6	5
27	22X31A0427 22X31A0428	4						5			5						5 4			5 6	5
29	22X31A0429	4			3												1			7	5
30	22X31A0430	4			5						0						5			4	5
32	22X31A0431 22X31A0432	3			1			3			3						-			5	5
33	22X31A0433				5			5			5						4			8	5
34	22X31A0434 22X31A0435	5			5			5			5						2			5	5
36	22X31A0435	4			5			2			5						2			4	5
37	22X31A0437	4															5			6	5
38	22X31A0438	2			3			5								-	3			8	5
40	22X31A0440	5			5			5									5			3	5
41	22X31A0441	5			5						5						5			6	5
42	22X31A0442 22X31A0443	5			5			5			5						5			6	5
44	22X31A0444	4			5			4												4	5
45	22X31A0445	4			_			5			5						5			6	5
46 47	22X31A0446 22X31A0447	5 5			5						3						4			6 9	5
48	22X31A0448	3			2			1									2			5	5
49	22X31A0449	4			5			5		<u> </u>	5						5			6	5
50	22X31A0450 22X31A0451	4			4			5			3				\vdash		5			4	5 5
52	22X31A0452	4						3			5						4			4	5
53	22X31A0453	A			A	<u> </u>		Α	<u> </u>		A						A			A	A
55	22X31A0454 22X31A0455	4 5			2			5			2				-		4 5			о 6	5
56	22X31A0456	5									4									5	5
57	22X31A0457	4						5			F						4			4	5
58 59	22X31A0458 22X31A0459	4						5 4			2						4			' 5	5
60	22X31A0460	4			2			5			2									6	5
61	22X31A0461	5			2			=			5						4			6	5
63	22X31A0462 22X31A0463	4 5						5			5			2			5			4	5
64	22X31A0464	4			2			1			1									7	5
1	1	I	1		l I	1	1	1	1												

Target set by the faculty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Number of students performed above	56	0	0	34	0	0	37	0	0	34	0	0	1	0	0	38	0	0	36	62
Number of students attempted	59	0	0	44	0	0	44	0	0	45	0	0	3	0	0	45	0	0	64	64
Percentage of students scored more than target	95%			77%			84%			76%			33%			84%			56%	97%
<u>CO Mapping with 1</u>	Exam (Quest	ions:																	
CO - 1	Y			Y															Y	Y
CO - 2							Y			Y						Y			Y	Y
CO - 3													Y						Y	Y
CO - 4																				
CO - 5																				
CO - 6																				
Scored >Target %	95%			77%			84%			76%			33%			84%			56%	97%
CO Attainment bas	ed on	Exam	Que	stions	:															
CO - 1	95%			77%															56%	97%
CO - 2							84%			84%						84%			56%	97%
CO - 3													84%						56%	97%
CO - 4																				
CO - 5																				
CO - 6																				
60	Gubi	ohi		Acar		Duara	11		Lovo	1									ttainn	ont Lou
CO-1	Subj 86%	67%		ASg1	,	83%	11		3.00	1									1	40%
CO-2	84%	77%		07%		86%			3.00										2	50%
CO-3	84%	70%		97%		84%			3.00										3	60%
CO-4	0 7/0	10/0		7170		0-1/0			5.00										5	0070
CO-5																				
A their mere	I (Inte	1	 1 Τ			otic		2 04	`										
Attainment (Internal I Examinatio								3.Ul	J											

	SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY																						
SUL SUL	NASO CONTRACTOR			C		Dep	partm	ent o	f Hu	manit	ies &	Scier	nces		am 7)								
Nar	ne of the facu	<u>T THI</u>	RUPA	THI F	REDDY				Aca	demi	c Yea	ır:								<u> 2022-</u>	2023		
Bra	Branch & Section ECE					Exa	minat	ion:									<u>II Inte</u>	ernal					
Cou	rse Name:	<u>M&C</u>	<u> </u>						Yea	r:	I									<u>Seme</u>	ster:	<u>l</u>	
S.No	HT No.	O1a	01b	01c	O2a	O2b	O2c	O 3a	O3h	O3c	04a	O4b	04c	05a	O5b	O5c	O6a	O6b	O6c	Obj	A2	viva/	
Max	. Marks ==>	3	2	x =	5	x	x	5	x =	Q	3	2	Q	5	Q = ~	C	5	X ***	x	10	5	5	
1	22X31A0401	1	2		5			-			3	2					4			9	5	5	
2	22X31A0402 22X31A0403	3	2		5			5 4			2	2					4			9 10	5 5	5	
4	22X31A0404	3	1		4			5									4			8	5	5	
5	22X31A0405	3 A	2 		5 4			5 4			3 4	2 4		Δ			Δ			10 	5	5	
7	22X31A0400 22X31A0407	3	2		5			5			~	~		~			5			10	5	5	
8	22X31A0408	3	2		5			5			3	2								9	5	5	
9	22X31A0409 22X31A0410	2	2		5			5			3	2					5			9	5	5	
11	22X31A0411	3	2		5			5									5			8	5	5	
12	22X31A0412	3	2		4			5			3	2					5			9	5	5	
14	22X31A0413	3	2		5			5									5			10	5	5	
15	22X31A0415	3	2		5			5			3	2								8	5	5	
16 17	22X31A0416 22X31A0417	3	2		4			5			3	0					5			9 7	5	5	
18	22X31A0418	3	2		4			5			-	-					1			7	5	5	
19	22X31A0419	2	2		5			5			3	2					-			7	5	5	
20	22X31A0420 22X31A0421	3	2		5			5			2	0					5			8	5	5	
22	22X31A0422																			_	А	5	
23	22X31A0423 22X31A0424	1	0		2			1			1	0								9 9	A 5	5	
25	22X31A0425	1	1		5						1	0								6	5	5	
26	22X31A0426	3	2		5			3			3	2								8	5	5	
27	22X31A0427 22X31A0428	3	2		5			5			3	2								7	5	5	
29	22X31A0429	2	1		5						2						2			9	А	5	
30	22X31A0430	2	1		3						3	2		2			3			7	5	5	
32	22X31A0432	3			2						1	0					,	3		8	5	5	
33	22X31A0433	3	2		5			5			3	2								8	5	5	
34	22X31A0434 22X31A0435	2	2		3			5			3	2								8	5	5	
36	22X31A0436	3	2		5			5			3	2								8	Α	5	
37	22X31A0437 22X31A0438	A 2	A 0		A 2			A			A	A		A			A	A	A	A 8	A 5	5	
39	22X31A0439	3	2		5			0			2	0								8	5	5	
40	22X31A0440	1	2		2			1			2	0								7	5	5	
41 42	22X31A0441 22X31A0442	3	2		5			5			3	0	-				5			8 7	5 5	5 5	
43	22X31A0443	3	2		5			2												6	5	5	
44	22X31A0444 22X31A0445	1	1		1 4			4			3	2	<u> </u>				5			6	5	5	
46	22X31A0446	3	0		2			2			3	0								5	5	5	
47	22X31A0447	3	2		4			-			-			1			5			9	5	5	
48 49	22X31A0448 22X31A0449	3	2		2			5			3	2					4			6	5	5	
50	22X31A0450	3	2		2			3			3	2								8	5	5	
51	22X31A0451	3	1		4			0			3	0					4			6	5	5	
53	22X31A0452 22X31A0453	3	1		5	L		5	L	L	3	2	L		L	L	ر _	L	L	7	_5	5	
54	22X31A0454	2	1		5			3			3	2								6	5	5	
55 56	22X31A0455 22X31A0456	3	2		5			5			3	2								/ 7	5	5	
57	22X31A0457				5			5			3	2					5			9	5	5	
58	22X31A0458	3	2		5			5			3	2								6	5	5	
59 60	22X31A0459 22X31A0460	3	1		5			5			2 3	2					5			0 8	5	5	
61	22X31A0461	3	2		4			5			3	2		_						6	5	5	
62 63	22X31A0462 22X31A0463	3	2		5			5			3	2		2						8 8	5	5	
64	22X31A0464	3	1		1			5			3	2								7	5	5	
1										1				1				1					

Targ facul	et set by the lty / HoD	1.80	1.20	0.00	3.00	0.00	0.00	3.00	0.00	0.00	1.80	1.20	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Num stud perfo the t	ber of ents ormed above arget	49	36	0	48	0	0	42	0	0	39	29	0	0	0	0	23	1	0	60	59	64
Num stud atter	ber of ents npted	57	54	0	60	0	0	50	0	0	44	43	0	5	0	0	27	2	1	63	64	64
Perco stud more	entage of ents scored than target	86%	67%		80%			84%			89%	67%		0%			85%	50%	0%	95%	92%	100%
<u>co</u> 1	CO Mapping with Exam Questions:																					
	CO 1																					
	<u>co-1</u>																					
	CO-2																					
	$\frac{\text{CO}-3}{\text{CO}-4}$	Y						V												Y	Y	Y
	$\frac{0.4}{0.5}$							Ŷ			v			v						Y V	Y V	Y V
	<u>CO-6</u>				Y						1			1			Y			Y	Y	Y
					-												-			-	-	-
%	5 Students																					
Scor	ed >Target %	86%	67%		80%			84%			89%	67%		0%			85%	50%	0%	95%	92%	100%
<u>CO</u>	Attainment ba	sed on	Exam	Ques	tions:																	
	CO - 1																					
	CO - 2																					
	CO - 3	86%																		95%	92%	92%
	CO - 4							86%												95%	92%	92%
	CO - 5										86%			86%						95%	92%	92%
	CO - 6				86%												86%			95%	92%	100%
	<u>co</u>	Subi	obi	aasg	ppt		Overa	11		Leve	1									Attai	nmen	t Level
	CO-1	Judg	00]	uusg	ppt		overa				-									1	4	0%
	CO-2																			2	5	0%
	CO-3	86%	95%	92%	92%		91%			3										3	6	0%
	CO-4	86%	95%	92%	92%		91%			3.00												
	CO-5	86%	95%	92%	92%		91%			3.00												
	CO-6	86%	95%	92%	100%		93%			3.00												
	Attainme	ent (Inter	mal	Exar	nin	atio	n-2		3.0()											

SUTE OF ENGINEERING	SRI IN	DU INSTITUTE	OF EN	GINEE	RING AND 7	ECHNOLOGY
	TECHNOLOG	Departr	ment of H	lumanities &	z Sciences	
IBRAHIMPATINAM		Course Outcome Att	ainment	t (Universi	ty Examinations	<u>)</u>
Name	of the faculty	T THIRUPATHI REDDY		Academic	Year:	2022-2023
Branch	n & Section:	ECE		Year / Ser	nester:	1/1
Course	Name:	<u>M&C</u>				
S.No	Roll Number	Marks Secured		S.No	Roll Number	Marks Secured
1	22X31A0401	9		36	22X31A0436	31
2	22X31A0402	48		37	22X31A0437	
3	22X31A0403	22		38	22X31A0438	27
4	22X31A0404	15	[39	22X31A0439	21
5	22X31A0405	25	[40	22X31A0440	11
6	22X31A0406	40	[41	22X31A0441	38
7	22X31A0407	12	Ĺ	42	22X31A0442	35
8	22X31A0408	5	[43	22X31A0443	12
9	22X31A0409	42	[44	22X31A0444	21
10	22X31A0410	43	[45	22X31A0445	11
11	22X31A0411	25	[46	22X31A0446	23
12	22X31A0412	24		47	22X31A0447	30
13	22X31A0413	21		48	22X31A0448	21
14	22X31A0414	32		49	22X31A0449	29
15	22X31A0415	37		50	22X31A0450	28
16	22X31A0416	17		51	22X31A0451	13
17	22X31A0417	14		52	22X31A0452	32
18	22X31A0418	7		53	22X31A0453	27
19	22X31A0419	23		54	22X31A0454	34
20	22X31A0420	13		55	22X31A0455	30
21	22X31A0421	25		56	22X31A0456	0
22	22X31A0422			57	22X31A0457	9
23	22X31A0423	34		58	22X31A0458	24
24	22X31A0424	6		59	22X31A0459	21
25	22X31A0425	32		60	22X31A0460	42
26	22X31A0426	27		61	22X31A0461	21
27	22X31A0427	22		62	22X31A0462	23
28	22X31A0428	26		63	22X31A0463	27
29	22X31A0429	6		64	22X31A0464	14
30	22X31A0430	21				
31	22X31A0431	21				
32	22X31A0432	22				
33	22X31A0433	42				
34	22X31A0434	28				
35	22X31A0435	28				
Max Ma	arks	60				
Class A	verage mark		24		Attainment Level	% students
Number	r of students pe	erformed above the target	31		1	40%
Number	r of successful	students	62		2	50%
Percent	age of students	scored more than target	50%	-	3	60%
Attai	nment lev	el	2			

SRI INDU II	NSTITU	TE OF EN	GINEEF	RING AND T	ECHNOLO	GY
STILL OF ENGINEERING	Departme	nt of Humanities	& Science	s		
		Course Out	tcome Atta	<u>ninment</u>	• • • • • •	
ABRAHIMPATINNE 2						
Name of the facult	T THIRUP	ATHI REDDY		Academic Year	2022-2023	
Branch & Section:	ECE			Examination:	I Internal	
Course Name:	<u>M&C</u>			Year:	<u>l</u>	
				Semester:	<u>l</u>	
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level	l
CO1	3.00		3.00	2.00	2.30	
CO2	3.00		3.00	2.00	2.30	
CO3	3.00	3.00	3.00	2.00	2.30	
CO4		3.00	3.00	2.00	2.30	
CO5		3.00	3.00	2.00	2.30	
CO6		3.00	3.00	2.00	2.30	
Inter	nal & Unive	ersity Attainment:	3.00	2.00		
		Weightage	30%	70%		
CO Attainment for th	e course (In	ternal, University	0.90	1.40		
CO Attainment for	the course	(Direct Method)		2.30		
Overall co	ourse	attainme	nt leve	el	2.30	

State of ENGINEERING	S	RI I	NDU	INS	STIT	UTE	OF]	ENG	INE	ERIN	G &	ТЕС	HNO	LOG	Y
SALAN SALAN	CHNOLOG			D	epartn	nent	of Hu	manit	ties &	Scier	nces				
18RAHIMPATNAN			l	Progra	am Ou	tcome	Attai	nme nt	(from	Cours	<u>e)</u>				
Name o	f Facu	lty:	<u>T THI</u>	RUPAT	HI RED	<u>DY</u>		Acade	emic Y	ear:	<u>2022-</u>	<u>2023</u>			
Branch 8	& Sect	ion:	<u>ECE</u>					Year:			1				
Course I	Name	:	<u>M&C</u>					Seme	ster:		1				
CO-PO r	nappi	ng													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2		1	1							1			
CO2	3	2		1	1							1			
соз	2	2		1	1							1			
CO4	2	3		1	1							2			
CO5	3	2		1	1							2			
CO6	3	2		1	1							2			
Course	2.67	2.17		1.00	1.00							1.50			
со					Cou	urse (Outcon	ne Atta	ainme	nt					
							2.3	0							
CO1															
							23	0							
CO2							2.3	0							
							2.3	0							
CO3							2.0	0							
05							23	0							
CO4							2.3	0							
							2.3	0							
CO5							_								
							2.3	0							
CO6								-							
Overall	cour	se at	tainm	ent le	evel				2	2.30	1		1		
DO 47															
PO-ATT		ENT	D 000	DO f	DOF	0.00	DC-	000	000	0.12	0011	DOSC			1
	104	PO2	PO3	1904	105	P06	P07	804	1909	1010	10011	PO12			
CO															
Attainm	2.04	1.66		0.77	0.77							1.15			
ent	2.04	1.00	<u>I</u>	0.77	0.77	<u> </u>	ļ					1.13			
CO contr	ibutior	n to PC) - 33%,	67%, 1	LOO% (Lo	evel 1/	2/3)								

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

<u>Attendance Link :</u> <u>https://drive.google.com/file/d/1WH73S_LC5ofUeH8xKsJ0bVj9liDuGNay/view?usp=sharing</u>