

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

ORDINARY DIFFERENTIAL EQUATIONS &

VECTOR CALCULUS

Course Code – MA201BS

I B. Tech Semester-II

A.Y. 2022-23

Prepared by

B. RAMA DEVI

Asst. Professor

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda(M librahimostnam (M) R.R. Dist-501 516

ESTD : 2007

EAMCET CODE: INDI

Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

EAMCET CODE: INDI Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Index of Course File

COURSE FILE INDEX						
S.No	Course/Subject Name					
1	Institute Vision & Mission					
2	POs /PSOs					
3	Course Structure					
4	Course syllabus					
5	Course Outcomes (CO)					
6	Mapping CO with PO/PSO; course with PO/PSO					
7	Academic Calendar					
8	Time table - highlighting your course periods including tutorial					
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book					
10	Gap within the syllabus - mapping to CO, PO/PSO					
11	Gaps beyond the syllabus - Mapping to PO/PSO					
12	Web references					
13	Lecture notes					
14	List of Power point presentations / Videos					
15	University Question papers					
16	Internal Question papers, Key with CO and BTL					
17	Assignment Question papers mapped with CO and BTL					
18	Scheme of evaluation with CO and BTL mapping					
19	Tutorial topics with evidence					
20	Result Analysis to identify weak and advanced learners					
21	Result Analysis at the end of the course					
22	Remedial class schedule and evidences					
23	CO, PO/PSO attainment					
24	Attendance register					
25	Course file (Digital form)					

https://siiet.ac.in

Sri Indu Institute of Engineering and Technology (Autonomous) (Formerly RVR Institute of Engineering & Technology) An Autonomous Institution Under UGC ESTD : 200' NAAC Accredited. Recognized Under 2(f) of UGC Act 1956 EAMCET CODE: INDI Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad. **JNTUH CODE: X3**

INSTITUTE VISION & MISSION

Vision:

To become a premier institute of academic excellence by providing the world class education that individuals transforms into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- > IM1: To offer outcome-based education and enhancement of technical and practical skills.
- **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- > **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- > IM4: To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

https://siiet.ac.in

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PROGRAM OUTCOMES

PO1: **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH beriouda(M) Ibrahimoatnam (M) R.R. Dist-501 510

I Year I Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	AP102BS	Applied Physics	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	ME102ES	Engineering Workshop	0	1	3	2.5
5.	EN104HS	English for Skill Enhancement	2	0	0	2
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	AP105BS	Applied Physics Laboratory	0	0	3	1.5
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EN107HS	English Language and Communication Skills Laboratory	0	0	2	1
10.	*MC101ES	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I Year II Semester

S. No.	Course Code	Course Title	L	Т	Р	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	CH203BS	Engineering Chemistry	3	1	0	4
3.	ME201ES	Computer Aided Engineering Graphics	1	0	4	3
4.	EE201ES	Basic Electrical Engineering	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7.	EE202ES	Basic Electrical Engineering Laboratory	0	0	2	1
8.	CS201ES	Python Programming Laboratory	0	1	2	2
9.	CS203ES	IT Workshop	0	0	2	1
		Total	11	3	12	20

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Course Code: MA201BS)

B. Tech. I Year II Sem.

Pre-requisites: Mathematical Knowledge at pre-university level **Course Objectives:** To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface andvolume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real worldproblems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , sin ax, cos ax, polynomials in x, $e^{ax}V(x)$ and xV(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits

UNIT-III: Laplace transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

10 L

SIIET

L T P C 3 1 0 4

8 L

10 L

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint,2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and CompanyLimited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

10 L

10 L

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course : ODE & VC (C121)

Class: I B TECH CSE-A

Course Outcomes

After completing this course, the student will be able to:

- C121.1 : find the orthogonal trajectories of the family of curves. (Remembering)
- C121.2 : solve the second and higher order differential equations, find the particular integrals for the given non-homogeneous differential terms (Evaluating)
- C121.3 : solve the differential equations by using Laplace Transforms. (Applying)
- C121.4 : Interpret the problems on gradient, divergent and curl of a vectors.(understanding)
- C121.5 : plan the vector and scalar point functions in vector identities.(creating)
- C121.6 : Recall the double and triple integrals. (Remembering)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C121.1	3	3	-	1	1	-	-	-	-	-	-	1
C121.2	3	2	-	1	1	-	-	-	-	-	-	1
C121.3	2	3	-	1	1	-	-	-	-	-	-	1
C121.4	2	3	-	1	1	-	-	-	-	-	-	2
C121.5	3	2	-	1	1	-	-	-	-	-	-	2
C121.6	2	3	Ι	1	1	-	-	-	Ι	-	-	2
C121	2.5	2.6	-	1	1	-	-	-	-	-	-	1.5

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.PROBLEM ANALYSIS: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO4. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C121.1 find the orthogonal trajectories of the family of curves. (Remembering)

	Justification
PO1	Student identify the different types of orthogonal trajectories and solve the equations. (level 3)
PO2	Student find the orthogonal trajectories for the given curves. (level 3)
PO4	Student can analyze the Differential equations
PO5	Student can use technical tools in solving D.E by using orthogonal trajectories.
C121.2	: solve the second and higher order differential equations find the particular integrals

for the given non-homogeneous differential terms (Evaluating)

	Justification
PO1	student get the knowledge of to find the solution of higher order D. E's(level 3)
PO2	Student can find the particular solutions using different types of forms (level 2)
PO4	Student can analyse non-homogeneous D.E and compare with homogeneous D.E with suitable examples
PO5	Student can select heat body materials and apply Newton's law concept in D.E
PO12	Student can use D.E concepts in electrical circuits also

C121.3 solve the differential equations by using Laplace Transforms. (Applying)

	Justification
PO1	Student get the knowledge of Laplace transform concepts and formulas and apply to get solutions of different functions (level 2)
PO 2	Student understand the concept of Laplace transform and its applications (level 3)
PO4	Student can analyze the applications of Laplace transforms and using of Differential equations
PO5	Student can use digital tools in solving Laplace transforms
PO12	Student can recognize the use of convolution theorem in various examples

C121.4 Interpret the problems on gradient, divergent and curl of a vectors. (understanding)

	Justification
PO1	Student can identify the problems of gradient of vectors.
PO2	Student can compare the formulas and problems in vector differentiation using curl and divergent.
PO4	Student can analyze the applications of vectors.
PO5	Student can recognize the problems on curl, gradient and divergence.

C121.5 plan the vector and scalar point functions in vector identities. (creating)

:	Justification
PO1	Student get the concept of vector and scalar point function.
PO2	Student can solve the problems of gradient, divergent and curl of a vector (lavel2)
PO4	Student can analyze grad, div and curl concepts in vector integral theorems
PO5	Student can use digital tools in solving gradient, divergent and curl of a vector field.
PO12	Student can recognize the use of divergent and curl of vectors in various examples

C121.6	::Recall	the	double and triple	integrals.	(Remembering)
			1	U	

	Justification
PO1	Student get the knowledge surface, volume, line integral concepts (lavel2)
PO2	Student can differentiate the theorems using gradient, divergent and curl of the vectors (lavel3)
PO4	Student can analyse surface integrals can be applied in double integrals and volume integrals can be applied triple integrals
PO5	Student can use digital tools in solving line, surface and volume integrals
PO12	Student can recognize the convertion of line to surface ,surface to volume in vector integral theorems

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR I B.TECH FOR THE ACADEMIC YEAR 2022-23 (BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

To, All the HOD's

Sir.

Sub: SIIET (Autonomous)-Academic & Evaluation-Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg. ******

The approved Academic Calendar for IB.Tech - I & II Semesters for the academic year 2022-23 is given below.

Y ON AND AND OFFICE	
	n
-SHIVIHSIH	ĸ

		Per	Duration			
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)	03.11.2022				
2.	1 st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before 16.03.20		16.03.2023			
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

II-SEMESTER

		Per	Period				
S. NO	Description	From	To	Duration			
1.	Commencement of II Semester class work		03.04.2023				
2.	1 st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks			
Summer Vacation		15.05.2023	27.05.2023	2 Weeks			
3.	I Mid Examinations	`12.06.2023	17.06.2023	1 Week			
4.	4. Submission of First Mid Term Exam Marks to the 23.06.2023						
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks			
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week			
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week			
8. Submission of Second Mid Term Exam Marks to the Autonomous Section on or before			26.08.2023				
0	II Semester End Examinations	End Examinations 28.08.2023 09.09.2023 2 V					

OF EXAMINATIONS i Indu Institute of Er ineering and Technology (An Autogomous Institution Under INTER Depts. & AO: Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

HUNTHUL KERPOF EXAMINATIONS Sri Indu Institute of Engineering and Technology

(An Autonomous Institution under JNTUH)

PRINCIPAL Sri Indu Institute oPEN RECTING Technology (An Autonomous Institution Under JNTUH) Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

TEATINELLAITEATEILTEATEILTE

Class	: CSE-A	Semester:	II <u>W.E.I</u>	<u>e-03-04-2</u>	023 LH	l:-D-107		
	I 9:40- 10:30	II 10:30 - 11:20	III 11:20- 12:10	12:10- 12.45	IV 12.45- 1.35	V 1.35- 2.25	VI 2.25- 3.15	VII 3.15-4.00
MON	ENG	EDC	AP	L	ITWS/EW	S LAB	PYTHON LAB(T)/ EWS(T)	
TUE	ODE	EDC	AP	UN	ITWS/EW	S LAB	AP(T)/ODF(T)	
WED	ODE	AP	ENG	C	PY	THON LAI	В	LIBRARAY
THU		AP/ELCS LAB	н	ODE	EDC	AP	EWS(T)/ PYTHON LAB(T)	
FRI	AP/ELCS LAB]	ODF	AP	ES	
SAT	ENG	ODE		ES	ENG	EDC	ES	

Course Code	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA201BS	ODE-Ordinary Differential Equations & Vector Calculus	B.RAMADEVI	AP205BS	APLAB-Applied Physics Laboratory	P.SRINIVASACHARY/ B.SANTHI/M.JANAIAH/ M.MANISHA
AP202BS	AP-Applied Physics	P.SRINIVASACHA RY	CS201ES	Python Programming Laboratory	D.SWAPNA/B.RAJASH WARI
EN204HS	ENG- English for Skill Enhancement	G.VENKAT REDDY	EN207HS	ELCS LAB-English Language and Communication Skills Laboratory	G.VENKAT REDDY/E.PRARTHAN A
EC201ES	EDC-Electronics Devices and Circuits	T.BHAVANI	CS203ES	ITWS-IT Workshop	K.UMAVYSHNAVI/B.R AJITHA
ME202ES	EWS-Engineering Workshop	B.SRINUNAIK/ M.V.B.KALYAN	MC201ES	ES-Environmental Science	K.MOUNIKA

Time Table Coordinator Head of The Department **Class In-Charge** Sri Indu Institute of Engg. & Tech Main Road, Sheriguda(V), Ibrahimpatnam(M), R.R. Dist. Telangana-501 510 SHERIGUDA

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course Title	ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS
Course Code	MA201BS
Programme	B. Tech
Year & Semester	I-year II-semester
Regulation	BR22
Course Faculty	Mrs. B. Rama Devi, Assistant Professor, H&S
sub	LESSON PLAN

S.NO	Торіс	Teahind Mathad/Tanahing Aid	No.of Sessions	Reference book
		Method/Teaching Ald	Planned	
1	Unitwise Introduction of ordinary differential equations and vector calculas Syllabus	Lecture Method	1	R-1
2	UNIT –I First Order ODE Intoduction of Ordinary D.E.	LectureMethod,web reference	1	R-1
3	Methods to solve first order D.E's(basic methods)	Lecture Method	1	R-1
4	Problems on ODE	Lecture Method/Black board	1	R-1
5	Exact D.E's and problems	Problem solving Method,video/Black board	1	R-1
6	Non exact D.E – method-I problems	Problem solving Method,video/Black board	1	R-1
7	Non exact D.E – method-II problems	Problem solving Method,video/Black board	1	T-1,T-2
8	Non exact D.E – method-III problems	Problem solving Method,video	1	R-1
9	Non exact D.E – method-IV problems	Problem solving Method,video/Black board	1	R-1
10	Linear D.E's- Problems	Lecture Method, Problem solving Method	1	R-1
11	Bernouli's D.E- Problems	Lecture Method, Problem solving Method/Black board	1	R-1
12	Applications of D.E's – Newton's law of cooling- problems	Lecture Method, Problem solving Method	1	R-1
13	Orthogonal trajectories - problems	Problem solving Method	1	T-1
14	Law of natural growth and decay – problems	Problem solving Method	1	T-1
15	Electric circuits- problems	Problem solving Method/Black board	1	T-1
16	UNIT – II ODE's of Higher order Inroduction	Lecture Method,web reference	1	R-1,T-1
17	Second order Linear D.E's with constant coefficients	Problem solving Method		T-1
18	Complementary Functions - Problems	Problem solving Method/Black board	1	T-1
19	Particular Integral : Non homogeneous terms of the type e ^{ax} Problems	Problem solving	1	R-1

		Method/Black board		
20	Particular Integral : Non homogeneous terms of the type sinaxProblems	Problem solving Method/Black board	1	T-1
21	Particular Integral : Non homogeneous terms of the type cosaxProblems	Problem solving Method/Black board	1	T-1
22	Particular Integral : Non homogeneous terms of the type polynomials in xProblems	Problem solving Method/Black board	1	T-1
23	Particular Integral : Non homogeneous terms of the type $e^{ax} V(x)$ Problems	Problem solving Method	1	T-1
24	Particular Integral : Non homogeneous terms of the type $xV(x)$ Problems	Problem solving Method/Black board	1	R-1
25	Method of variation of parameters - Problems	Problem solving Method	1	R-1
26	Equations reducible to linear ODE with constant coefficients :Legendre's equation - Problems	Problem solving Method	1	T-1
27	Equations reducible to linear ODE with constant coefficients :Cauchy-Euler equation - Problems	Problem solving Method/Black board	1	R-1
28	Equations reducible to linear ODE with constant coefficients :Cauchy-Euler equation - Problems	Problem solving Method/Black board	1	R-1
29	UNIT –III Laplace transforms -Introduction	Lecture Method	1	R-1
30	Laplace transform of standard functions	Lecture Method Problem solving Method/Black board	1	R-1
31	First shifting theorem - problems	Lecture Method	1	R-1
32	Second shifting theorem-problems	Problem solving Method/Black board	1	T-1
33	Unit step function	Lecture Method	1	T-1
34	Dirac delta function	Problem solving Method	1	T-3
35	L.T.of multiplication by t	Lecture Method Problem solving Method	1	T-1
36	L.T.of division by t	Lecture Method Problem solving Method	1	T-3
37	L.T. of derivative	Lecture Method Problem solving Method	1	T-3
38	L.T.of integrals	Lecture Method Problem solving Method	1	T-3
39	Evaluation of integrals by L.T.	Lecture Method	1	T-3
40	L.T.of periodic function	Lecture Method Problem solving Method	1	T-3
41	Inverse L.T.of different methods	Lecture Method Problem solving Method	1	T-3
42	Convolution theorem – problems	Lecture Method Problem solving Method	1	T-3
43	Solving IVP by L.T. method	Lecture Method Problem solving Method	2	T-3
44	UNIT-IV Vector Differentiation Introduction	Problem solving Method	1	T-1

45	Vector point functions and scalar point functions-	Lecture Method video video	1	R-1
46	Gradient Divergent and Curl of a vector-	Problem solving		B-1
	problems	Method.video.video		
47	Directional derivatives - Problems	Problem solving Method ,video	1	R-1,T-1
48	Tangent plane and Normal plane - problems	Lecture Method,video/Black board	1	R-1
49	Vector identities	Lecture Method,video	1	R-1
50	Scalar potential functions : Solenoidal and	Problem solving	1	R-1,T-1
	Irrotational vectors - problems	Method, video		
51	UNIT-V	Lecture	1	R-1
	Vector Integration	Method		
	Introduction			
52	Line integrals - Problems	Lecture Method	1	R-1,T-1,T-2
		Problem solving		
		Method,video		
53	Surface integrals - problems	Lecture Method	1	R-1,T-1,T-2
		Problem solving		
		Method, Video/Black		
54	Volume integrals problems	Lecture Method	1	P 1 T 1 T 2
34	volume integrais - problems	Problem solving	1	R-1,1-1,1-2
		Method video		
55	Green's theorem – Problems	Lecture Method	1	R-1.T-1.T-2
		Problem solving		7 7
		Method, video		
56	Gauss divergence theorem - problems	Lecture Method	1	R-1,T-1,T-2
		Problem solving		
		Method/Black board		
57	Stokes theorem - problems	Lecture Method	1	R-1,T-1,T-2
		Problem solving		
		Method,video/Black		
		board		

REFERENCES:

- Paras Ram, Engineering Mathematics, 2nd Edition, CBS Publishes
 S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

TEXT BOOKS:

- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
 Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,2006
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Variable-separable, Homogeneous and non-homogeneous equations, Transforms of the Heaviside function and the Dirac Delta function, Flux in 3D, Basic concepts of vectors, dot product, cross product

Course Outcomes

After completing this topic, the student will be able to:

1.student can apply methods like homogeneous, variable-separable in new methods (Application)

2.after knowing dot product and cross product student can easily understand vector differentiation and integration concepts (Knowledge)

3.student can understand application of Differential equation in laplace transform like Heaviside function ,Dirac function (Knowledge)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	-	-	Ι	-	-	-	-	Ι	-	-
2	2	3	-	-	-	-	-	-	-	-	-	-
3	2	2	-	-	-	-	-	-	-	-	-	-

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Regular industrial visits help students to know the information useful for knowledge upgradation.
- 2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
- 3. Teaching at least a few portions giving practical demonstration to create interest among the students
- 4. Introducing current Scientific and Technological innovations and development
- 5. Computer aided learning tools are also used for better visual display for the Mathematics

Mapping to PO/PSO:

High -3 Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	-	-	-	2	-	-	-	-	-		-	2
2	-	-	-	-	-	-	-	-	-	2	-	-
3	-	-	-	-	-	-	-	-	-	-	3	-
4	-	-	-	-	-	-	-	-	1	-	-	-
5	-	-	-	-	2	-	-	-	-	-	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

WEB REFERENCES :

- w-1: <u>https://www.researchgate.net/publication/240318908_The_Laplace_Transform_Theory_and_Applications</u>
- w-2: https://www.math.upenn.edu/~moose/240S2015/slides7-28.pdf
- w-4: https://www.math.utah.edu/~gustafso/laplaceTransform.pdf
- w-4: https://math.gmu.edu/~rsachs/math215/textbook/Math215Ch5Sec1.pdf

VIDEO REFERENCES :

- V-1 : <u>https://www.youtube.com/watch?v=TYYhBhF4biU</u>
- V-2: <u>https://www.youtube.com/watch?v=o2kbrqQgzOE</u>
- V-3: <u>https://www.youtube.com/watch?v=Qscs_AZTf7c</u>

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ODE&VC LECTURE NOTES

https://drive.google.com/file/d/18rY8iKvmuHVpRiynxEC7HM122SEt5ZiQ/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

POWERPOINT PRESENTATION

https://docs.google.com/presentation/d/1QIiuVTyDo UyhF3v3sXy8b etOEDAAV/edit?usp=sharing&ouid=100250344265646667814&rtpof=true&sd=true

https://docs.google.com/presentation/d/1q91VWiwCgRa0RtBqu9CLpyRVU7_oRIP2/edit?usp=sharing&ouid=1002503442656466678 14&rtpof=true&sd=true

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS QUESTION PAPERS

<u>Link :</u>

https://docs.google.com/document/d/1YwWbAYVccl7HM3QG_smcslxc6j9P8NCG/edit?usp=sharing&oui d=115477386604021184018&rtpof=true&sd=true

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. **BR22** (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501510 I B.Tech II SEM I-Mid Examination, June-2023 Set-II Year & Branch: Common to All Date & Session: 12-06-2023&FN Subject : ODE&VC Marks: 20 Time : 2 Hours Part-B Answer any FOUR Questions. All Question Carry Equal Marks. 4*5=20 Marks 1. Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$ (Applying (L3)) 2. A bacterial culture growing exponentially increases from 100 to 400gms in 10hrs. How much was present after 3 hrs from the initial instant? (Remembering(L1) 3. Solve $y'' + 4y' + 4y = 4\cos x + 3\sin x$ with y(0)=0, y'(0)=0(Applying (L3)) 4. Solve $\frac{d^2y}{dx^2}$ + y = e^{-x} + x³ + e^x sinx (Applying (L3)

- 5. Solve by the method of variation of parameters for $(D^2-2D+2)y = e^x \tan x$ (Applying (L3)
- 6. Find L{ $\cos^3 2t$ }

(Remembering(L1))

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I B.TECH II-SEM II-MID EXAMINATIONS, August-2023

		/ 0		
Year & Branch: Common to All Subject : ODE&VC	Set-I Marks: 20	Date & Ses Time	sion : 14-08-2023& FN : 2 Hours	
Answer any FOUR Questions. All Question C	<u>Part-B</u> arry Equal Marks.		4*5=20 Marks	
1. Using convolution theorem fir	$\operatorname{H} L^{-1}\left\{\frac{s^{2}}{(s^{2}+4)(s^{2}+9)}\right\} (E$	valuating (L5)		
2. Find the directional derivativ	re of 1/r in the direct	tion of $\bar{r} = x\bar{i} + (Rei$	$y\bar{j} + z\bar{k}$ at (1,1,2) membering(L1))	3.
Prove that $\operatorname{div}(r^n \overline{r}) = (n+3)r^n$. Hence	e show that $\frac{\bar{r}}{r^3}$ is sole	noidal. (Evalu a	ating (L5))	
4. Find (A. ∇) φ at (1,-1,1) if A =	$3xyz^2i + 2xy^3j - x^2yzk$	and $\phi = 3x^2 - yz$	Remembering(L1))	

- 5. Find the work done by the force $\overline{F} = 3x^2i + (2xz-y)j + zk$ in moving a particle in the
- force field along the straight line from (0,0,0) to (2,1,3) (**Remembering(L1)**)
- 6. Verify Gauss divergence theorem for $\overline{F} = x^3 i + y^3 j + z^3 k$ taken over the cube bounded by x=0,x=a,y=0,y=a,z=0,z=a (Analyzing(L4))

MID I & MID-II KEY link

https://drive.google.com/file/d/1SoE19BDUBviB1sb3fTk3XVgk7NZceYKI/view?usp=sharing

https://drive.google.com/file/d/1ZfITICpO_xcsYN6URrztQIz9FzMzaLZV/view?usp=sharing

MID-I & MID-II SAMPLE STUDENT SCRIPTS Link

https://drive.google.com/file/d/1dAdLFWIVI8TeVI4HCCUdw0s0U7WzCV_F/view?usp=sharing

https://drive.google.com/file/d/1uYLG-2DtMQ0yBWIsPhuRshGVS7CK5k_v/view?usp=sharing

BR22

UGC Autonomous Institution, Accredited by NAAC with A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510 X3 BR22

ODE & VC

I-MID ASSIGNMENT

<u>Unit-I</u>

- 1. Find a) $y(x^2y^2+2)dx + x(2-2x^2y^2)dy=0$ (Remembering(L1)
 - b) Solve $2xydy (x^2 y^2 + 1)dx = O(Applying (L3))$
- 2. Solve a) $(1+y^2)dx = (\tan^{-1}y x)dy$ b) $x\frac{dy}{dx} + y = x^3y^6$ (Applying (L3))
- 3. The temperature of the body drops from 100°C to 75°C in 10mins when the surrounding air is at 20°C temperature. What will be it's temperature after half an hour.When will the temperature be 25°C. (Remembering(L1))
- 4. A bacterial culture growing exponentially increases from 100 to 400gms in 10hrs.How much was present after 3 hrs from the initial instant? (Remembering(L1))
- 5. Prove that the system of parabolas $y^2=4a(x+a)$ is self orthogonal (Evaluating (L5))
- 6. Find the orthogonal trajectories of the family of circles passing through origin and Centre on x-axis. (**Remembering(L1**))

<u>Unit-II</u>

- 7. Solve $\frac{d^2y}{dx^2}$ + y = e^{-x} + x³ + e^x sinx (Applying (L3))
- 8. Solve $(D^{3}-7D^{2}+14D-8)y = e^{x}\cos 2x$ (Applying (L3))
- 9. Solve by the method of variation of parameters for $(D^2-2D)y = e^x sinx$

(Applying (L3))

10. Solve by the method of variation of parameters for $(D^2-2D+2)y = e^x \tan x$

(Applying (L3))

<u>Unit-III</u>

- 11. Find L{3cos3tcos4t} (Remembering(L1))
- 12. Find L{cos³2t} (Remembering(L1))

ST CHARGE ST CHA
BRAHIMPATHAM

Unit-III

2.

UGC Autonomous Institution, Accredited by NAAC with A+ Grade

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510 Х3

II-MID ODE&VC ASSIGNMENT

- 1. Find $L\left\{\frac{e^{-3t}sin2t}{t}\right\}$ (Remembering(L1))
 - Using convolution theorem find $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$ (Evaluating (L5)
- 3. Solve the following differential equation by using Laplace transform $(D^2 + 2D + 5)y = e^{-t}sint given y(0)=0, y^{I}(0) = 1(Applying (L3))$

Unit-IV:

- 1. Prove that $div(gradr^m) = m(m+1)r^{m-2}$ (Evaluating (L5)
- 2. Prove that $\nabla(r^n) = nr^{n-2}\bar{r}$ [Evaluating (L5)]
- 3. Show that $\nabla^2[\mathbf{f}(\mathbf{r})] = \mathbf{f}^{II}(\mathbf{r}) + \frac{2}{r}\mathbf{f}^I(\mathbf{r})$ where $\mathbf{r} = |\mathbf{r}|$ (Evaluating (L5))
- 4. Find the directional derivative of 1/r in the direction of $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ at (1,1,2) (Remembering(L1))
- 5. Prove that $\operatorname{div}(r^n \bar{r}) = (n+3)r^n$. Hence show that $\frac{\bar{r}}{r^3}$ is solenoidal.(Evaluating (L5))
- 6. a) Prove that $\operatorname{div}(\overline{a} \times \overline{b}) = \overline{b} \operatorname{curl} \overline{a} \overline{a} \operatorname{curl} \overline{b}$ (Evaluating (L5)) b) Prove that $(\overline{f} \times \nabla) \times \overline{r} = -2\overline{f}$ (Evaluating (L5))

7. Find (A. ∇) ϕ at (1,-1,1) if A = $3xyz^2\overline{i} + 2xy^3\overline{j} - x^2yzk$ and $\phi = 3x^2 - yz$ (Remembering(L1))

Unit-V:

- 1. Find the work done by the force $\overline{F} = (3x^2 + 6y)i 14yz j + 20xzk$ when it moves a particle from the point (0,0,0) to (1,1,1) along the curve x=t y =t² and z=t³
 - (Remembering(L1))
- 2. Evaluate $\iint \vec{F} \cdot \vec{n} ds$ if $\vec{F} = z\vec{i} + x\vec{j} \cdot 3y^2 z\vec{k}$ and S is the surface $x^2 + y^2 = 16$ included in the first octant between the planes z=0 and z=5 (Evaluating (L5))
- 2. Use Gauss divergence theorem to evaluate $\iint \vec{F} \cdot \vec{n} ds$ where $\vec{F} = 4x\vec{\iota} 2y^2\vec{j} + z^2\vec{k}$ and S is the surface bounded by region $x^2 + y^2 = 4$, z=0 and z=3(Evaluating (L5))
- Verify Gauss divergence theorem for F = x³ i + y³j + z³k taken over the cube bounded by x=0,x=a,y=0,y=a,z=0,z=a Analyzing(L4)
- 5. Verify Green's theorem in the plane for $\int (x^2 xy^3) dx + (y^2 2xy) dy$ where C is a square with vertices (0,0),(2,0),(2,2),(0,2). Analyzing(L4)
- 6. Evaluate by Green's theorem $\int (y sinx) dx + cosxdy$ where C is the triangle enclosed by the lines $y=0, x = \frac{\pi}{2}$, $\pi y = 2x$ (Evaluating (L5))
- 7. Verify Stoke's theorem for $\overline{F} = (x^2 y^2)i + 2xyj$ over the box bounded by the planes x=0,x=a,y=0,y=b(Analysing)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID & II-MID M&C ASSIGNMENT LINKS

I MID LINK : https://drive.google.com/file/d/1k0lpd-mcLgLKmhpPHthM6Nr4Ge-dwrVA/view?usp=sharing

II MID LINK:

https://drive.google.com/file/d/10TopN1jUsfohMkT_LdZ2xZiRP5UkW1jf/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-ODE&VC (MID-I)(Set-I)

Instructions:

a) Any answer by alternate method should be valued and suitably awarded.

b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn No	Description of Answer	Marks
1.	To convert into linear form (C121.1) (Analyzing)	2
1.	To convert into linear form (C121.1) (Analyzing)	2
	To find Integrating Factor (C121.1) (Analyzing)	1
	To write formula and get solution (C121.1) (Analyzing)	2
2.	To write natural growth formula (C121.1) (Analyzing)	1
	To collect data and calculations(C121.1) (Analyzing)	4
3.	To write the form $f(D)y = Q(x)$ and comparing(C121.2)(Analyzing)	1
	To get complementary solution (C121.2) (Analyzing)	1
	To get Particular solution (C121.2) (Analyzing)	2
	To use boundary conditions $y(0) = 0$, $y'(0)=0$ and get solution (C121.2) (Analyzing)	1
4.	To write the form $f(D)y = Q(x)$ and comparing(C121.2)(Analyzing)	1
	To get complementary solution (C121.2) (Analyzing)	2
	To get Particular solution and general solution(C121.2) (Analyzing)	2
5.	To compare the form with $y'' + Py' + Qy = R$ (C121.2) (Applying)	1
	To write y_c and comparing with $y_p = Au(x) + Bv(x)$ (C121.2) (Applying)	2
	To get A & B and writing solution (C121.2) (Applying)	2
6.	To use COS3t formula (C121.3)(Analyzing)	1
	To write Laplace transform formula (C121.3)(Analyzing)	1
	To solving and getting solution (C121.3)(Analyzing)	3
	TOTAL	20

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

		SCHEME OF EVALUATION-ODE&VC (MID-II)(Set-2)	
		Instructions:	
a) b)	An All ma	ny answer by alternate method should be valued and suitably awarded. I answers (including extra, stuck off and repeated) should be valued. Answers with aximum marks must be considered.	I
Qn No		Description of Answer	Marks
1.		To find $f(t)$ and $g(t)$ C121.3) (Creating)	2
		Using convolution theorem and solving (C121.3) (Remembering)	3
2.		To write directional derivative formula along 1/r (C121.5) (Creating)	1
		To get unit normal vector e (C121.5) (Creating)	2
		To get $grad(1/r)$ and getting directional derivative (C121.5) (Creating)	2
3.		To write relation between r and \hat{r} (C121.5)(Remembering)	1
		To find div $(r^n \bar{r})$ and to get $(n+3)r^n$ (C121.5)(Remembering)	2
		To show . \mathbf{r}/r^3 is solenoidal (C121.5)(Remembering)	2
4.		To write (A. ∇) φ formula (C121.6)(Remembering)	1
		To find A.∇ (C121.6)(Remembering)	1
		To find (A. ∇) φ at (1,-1,1) (C121.6)(Remembering)	3
5.		To write work done formula (C121.6)((Understanding)	1
		Calculations (C121.6)((Understanding)	4
6.		To write Gauss divergence theorem formula	1
		To get L.H.S	2
		To draw cube and to get R.H.S	2
		20 TOTAI	L

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

TUTORIAL TOPICS

S.No	Торіс	Teaching	No. of	Reference book			
		Method/Teaching Aid	Sessions				
			Planned				
1	Exact D.E's problems	Problem solving	1	R-1.			
	F	Method, video	_	,			
2	Non-exact D.E – method-I ,II,III,IV problems	Problem solving Method, video	3	R-1			
3	Linear D.E's- Problems	Lecture Method,	1	R-1			
		Problem solving					
		Method/Black board					
4	Bernoulli's D.E- Problems	Lecture Method,	1	R-1			
		Problem solving					
		Method					
5	Applications of D.E's – Newton's law of	Lecture Method,	1	R-1			
	cooling-problems	Problem solving					
		Method/Black board					
6	Complementary Functions - Problems	Problem solving	1	1-1			
7	Dortioulor Integral - Non homogoneous terms	Broblem solving	4	D 1			
/	of the type e^{ax} sines $\cos ax x^k = e^{ax}V(x)$ Problems	Mathad	4	K-1,			
0	of the type c , sinax, cosax, x, c $v(x)$ footents	Method					
8	Method of variation of parameters - Problems	Problem solving	1	R-1			
		Method					
9	L.T.of periodic function	Lecture Method	1	T-3			
		Problem solving					
10		Method/Black board					
10	Inverse L.T.of different methods	Lecture Method	1	Т-3			
		Problem solving					
11		Method	1	π 2			
11	Convolution theorem – problems	Droblem solving	1	1-3			
		Mathad					
12	Solving IVP by L.T. method	Lecture Method	2	Т 3			
14	Solving IVI by L.I. memod	Problem solving	2	1-5			
		Method/Black board					
13	Vector point functions and scalar point	Lecture	1	R-1			
	functions-problems	Method, video, video	-				
14	Gradient, Divergent and Curl of a vector-	Problem solving		R-1			
	problems	Method, video, video					
15	Directional derivatives - Problems	Problem solving	1	R-1,T-1			
		Method ,video					
16	Scalar potential functions : Solenoidal and	Problem solving	1	R-1.T-1			
-	Irrotational vectors - problems	Method, video		7			
17	Line integrals - Problems	Lecture Method	1	R-1,T-1,T-2			
		Problem solving					
		Method, video					
18	Surface integrals - problems	Lecture Method	1	R-1,T-1,T-2			
		Problem solving					
		Method, video/Black					
1.0		board					
19	Volume integrals - problems	Lecture Method	1	R-1,T-1,T-2			
		Problem solving					
20	Croop's theorem Ducklours	Ivietnod, video	1	D 1 T 1 T 2			
20	Green s theorem – Problems	Droblem solving	1	K-1,1-1,1-2			
		Method video/Black					
		board					
21	Gauss divergence theorem - problems	Lecture Method	1	R-1 T-1 T-2			
	Suuss aivergenee meerem - problems	Problem solving	±	IX 1,1 ⁻ 1,1 ⁻ 2			
		Method					

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana –501510

Result Analysis:

I CSE-A

Course Title	ORDINARY DIFFERENTIAL EQUATIONS & VECTOR CALCULUS
Course Code	MA201BS
Programme	B. Tech
Year & Semester	I-year II-semester
Regulation	BR22
Course Faculty	B. Rama Devi Assistant Professor, H&S

Weak Students:

S No	Roll no	I-Sem Marks	Internal-I Status	Internal-II Status
1	22X31A0519	Failed(3 subjects)	27/35	17/35
2	22X31A0522	Failed(3 subjects)	23/35	16/35
3	22X31A0548	Failed(3 subject)	17/35	21/35
4	22X31A0535	Failed(3 subjects)	26/35	21/35
5	22X31A0513	Failed(3 subjects)	21/35	28/35
6	22X31A0524	Failed(2 subjects)	16/35	15/35
7	22X31A0537	Failed(2 subjects)	17/35	15/35
8	22X31A0539	Failed(2 subjects)	18/35	25/35

Advanced learners:

S No	Roll No	I-Sem Marks	Gate Material
1	22X31A547	94%	Probability, Discrete Mathematics,
2	22X31A502	88.4%	Graph theory, Differential equations
3	22X31A504	87.7%	
4	22X31A531	85.2%	
5	22X31A551	85.1%	

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana –50151

RESULT ANALYSIS AT THE END OF SEMISTER

Branch : CSE-A

Subject: ODE&VC

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

DEPARTMENT OF HUMANITIES AND SCIENCE <u>REMEDIAL CLASSES TIME TABLE</u>

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
CSE-A	ODE&VC	ENG	EDC	AP	ODE&VC	AP
CSE-B	AP	EDC	ODE&VC	ENG	EDC	ENG
CSE-C	ENG	AP	EDC	ODE&VC	AP	ODE&VC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00		
DS	EDC	AP	ODE&VC	ENG	EDC	ODE&VC		
CYBER	ENG	EDC	AP	ODE&VC	AP	ENG		

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	ODE&VC	EC	EDC	BEE	EC	ODE&VC
AIML-B	BEE	EDC	ODE&VC	EC	BEE	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AI&DS	&DS BEE EC		ODE&VC	EDC	BEE	EC
ΙΟΤ	EC	ODE&VC	EDC	BEE	ODE&VC	EDC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
ECE	ODE&VC	BEE	EC	EDC	BEE	EC
CIVIL	ODE&VC	BEE	EC	AM	BEE	EC

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH beriouda(1/) Ibrahimostnam (M) R.R. Dist-501 516

SRI INDU INSTITUTE OF ENGINEERING&TECHNOLOGY Department of Humanities & Sciences																					
	STANS S			С	ourse	Out	come	e Att	ainn	ent	(Inte	rnal	Exa	mina	tion	-1)					
Nan	ne of the faculty	B.RAI	MA D	EVI					Aca	demi	c Ye	ar:						2022	-2023	3	
Bra	nch & Section:	CSE-	Α						Exa	minat	ion:							I Inte	ernal		
Cou	rse Name:	ODE&	۷C						Yea	r:	I							Sem	ester:	Π	
S.No	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c	Obj1	A1
Max	Marks ==>	5			5			5			5			5			5			10	5
1	22X31A0501	5			5			5						4						10	5
3	22X31A0502 22X31A0503	2			2			5			2			2						7	5
4	22X31A0504	5			5						5			5						10	5
5	22X31A0505	5			5						5			5						8	5
6	22X31A0506	4			2									2			1			8	5
8	22X31A0507 22X31A0508	5			5						5			5			3			8	5
9	22X31A0509				5						5			5			4			9	5
10	22X31A0510	4			4						5			5						8	5
11	22X31A0511	5			5						5			5			4			8	5
12	22X31A0512	2			3						5			3			3			5	5
14	22X31A0514						L							_						_	_
15	22X31A0515				3						3			2			4			6	5
16	22X31A0516	2									4			2			4			6	5
1/	22A31A0517 22X31A0518	2			5						_∠ ੨			3			2		-	9	5
19	22X31A0519	4			4						1						3			10	5
20	22X31A0520	4			4						5						2			10	5
21	22X31A0521	4			3						2						3			8	5
22	22X31A0522	2			2						4						2			8	5
23	22X31A0523	5			5						4			3			4			4	5
25	22X31A0525				4						3						2			10	5
26	22X31A0526	2			4						4			4						8	5
27	22X31A0527	1			2												1			10	5
28	22X31A0528	5			2						3			5						10	5
30	22X31A0530	5			5						5			5						10	5
31	22X31A0531				5						5			5			5			10	5
32	22X31A0532				-						-			-			-			10	5
34	22X31A0533	2			5						5			3			5			7	5
35	22X31A0535	5			4									2			-			10	5
36	22X31A0536	5			5						5			5						10	5
37	22X31A0537	5			-						-			4						8	5
38 39	22X31A0538 22X31A0539	2			2			1			5			5			1			7	5
40	22X31A0540				5						5			5			5			8	5
41	22X31A0541	5			5									2			4			7	5
42	22X31A0542	4			5									4			2			7	5
43	22X31A0543	4			3 4						5			4			1			9	5
45	22X31A0545	Ľ	L		Ŀ	L	L	5	L		5			5		_	5			9	5
46	22X31A0546	5	[4									4			2			4	5
47	22X31A0547	5					 				5			5			5			9	5
48 49	22X31A0548 22X31A0549	5			1			1 5			2			5			5			/ 10	5
50	22X31A0550	5			5						5			5			,		l	8	5
51	22X31A0551				5						5			5						8	5
52	22X31A0552	5	ļ		5		ļ				5			4			-			7	5
53 54	22X31A0553	5			5			<u> </u>			5			<u> </u>			4			10	5
55	22X31A0555	5			5						5			5			5			10	5
56	22X31A0556	3			4															7	5
57	22X31A0557				4	<u> </u>					2			2			3			7	5
58	22X31A0558	5			5						5			4						7	5
60	22X31A0559				4						2			3						9 10	5
61	22X31A0561	5			5						5			5						7	5
62	22X31A0562	5			5						5			5						8	5
63	22X31A0563	5			5			1			5			5						8	5
63	22A31A0565	4			2			4						4						9	5
																				_	
														1							

Targ facu	get set by the lty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Nur perf targ	nber of students formed above the et	36	0	0	48	0	0	4	0	0	37	0	0	39	0	0	19	0	0	59	63
Nur atte	nber of students mpted	49	0	0	56	0	0	7	0	0	45	0	0	47	0	0	30	0	0	63	63
Percentage of students scored more than target		73%			86%			57%			82%			83%			63%			94%	100%
<u>co</u>	Mapping with Exa	<u>m Que</u>	stion	<u>s:</u>																	
	CO - 1	Y			Y															Y	Y
	CO - 2							Y			Y						Y			Y	Y
	CO - 3													Y						Y	Y
	CO - 4																			_	_
	CO - 5																				
	CO - 6																				
		720/			9,694			570/			920/			020/			(20)			0.40/	1000/
CO	>1 arget %	/3%		estio	80%			57%			82%			83%			63%			94%	100%
		720/		CS LIO	<u>860/</u>															0.404	100%
	CO = 2	1370			0070			570/			570/						570/			0404	100%
	CO_2							5770			5770			570/			3770			9470	100%
	CO - 3													5/%						94%	100%
	CO_{-5}																				
	CO - 6																				
	со	Subj	obj		Asgn	(Overall			Leve	1									tainm	ent Le
	CO-1	80%	94%		100%		91%			3.00										1	40%
	CO-2	57%	% 94% 100% 84%			3.00										2	50%				
	CO-3	57%	94%		100%		84%			3.00										3	60%
	CO-4																				
	CO-5																				
	CO-6																				
	Attainment	(Int	ern	al 1	Exai	min	atio	n) =		3.00)										
		, <u>т</u> п	~110	ni i	L'AU					2.00	•										
						1															

	SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY																					
SOL	Department of Humanities & Sciences Course Outcome Attainment (Internal Examination-2)																					
A CONTRACTOR	Course Ourcoine Attainment (Internal Examination-2)																					
Nan	ne of the facu	B.RA	MA DE	EVI					Aca	demi	c Yea	ar:								2022-	2023	
Bra	nch & Section	I CSI	E-A						Exa	minat	tion:									ll Inte	ernal	
Cou	rse Name:	ODE	&VC						Yea	r:	Ι									<u>Seme</u>	ster:	<u>11</u>
																						· · · /
S.No	HT No.	010	01b	010	020	02h	020	030	03h	030	040	045	046	050	05h	050	060	06h	060	Obj	A2	viva/
Max	. Marks ==>	<u>Q1a</u>	QID	QIC	Q2a 5	Q20	Q20	Q3a	QSD	QSC	Q4a	Q4D	Q4C	Q5a 5	Qan	QSC	Qua 5	Qon	Que	10	5	<u></u> ρρι
1	22X31A0501				4			3			3			-			3			10	5	5
2	22X31A0502	5			5			5			5									10	5	5
3	22X31A0503	1 5			2			0			1									8	5	5
4 5	22X31A0504	5			5			5			5			5			5			10	5	5
6	22X31A0506	4			5			5			4									10	5	5
7	22X31A0507	5			5			-			5						5			10	5	5
8	22X31A0508	2			5			5			5					-	5			10 9	5	5
10	22X31A0500	2			5			3			3						2			10	5	5
11	22X31A0511	5			5						5						5			8	5	5
12	22X31A0512	5			5		<u> </u>	5	<u> </u>		5		<u> </u>		<u> </u>	<u> </u>				9	5	5
13	22X31A0513	+			5		<u> </u>	4			3				<u> </u>					9	5	5
15	22X31A0515	3						4			3						5			8	5	5
16	22X31A0516	5			5		\vdash	4		<u> </u>	5	<u> </u>	<u> </u>				<u> </u>			9	5	5
17	22X31A0517 22X31A0518	4			3			4			3									9	5	5
19	22X31A0519	4			0			5			5									9	5	5
20	22X31A0520	5			5			4			5									10	5	5
21	22X31A0521	5			5			4			5						4			9	5	5
22	22X31A0522 22X31A0523	5			5			5									4 5			10	5	5
24	22X31A0524	4																		8	5	5
25	22X31A0525	1			1			2			4						_			9	5	5
26 27	22X31A0526	5			5			5			4						5			10	5	5
28	22X31A0528	4			5			5			5									8	5	5
29	22X31A0529	5			5			5									5			10	5	5
30	22X31A0530	5			5			5			5						5			9	5	5
32	22X31A0532							5														5
33	22X31A0533	5			5			5			5									10	5	5
34	22X31A0534	4						1			3						1			8 9	5	5
36	22X31A0536	5			5			5			5						5			10	5	5
37	22X31A0537	3															1			8	5	5
38	22X31A0538	4			5			5			4			5						8	5	5
40	22X31A0539	4						5			4			5			5			7	5	5
41	22X31A0541	3			4			5			4									8	5	5
42	22X31A0542	3			1		_	1						3						9	5	5
43	22X31A0543	4			5		-	4	-		5				-					9	5	5
45	22X31A0545	5			5			5			5									10	5	5
46	22X31A0546	5			4		<u> </u>	3												8	5	5
47 48	22X31A0547	5			5		┣──	5	<u> </u>		2		<u> </u>		<u> </u>	-	5			10	5	5
49	22X31A0549	5			5			5								1	5			10	5	5
50	22X31A0550	5			5			5									5			9	5	5
51	22X31A0551	5			5			 -			5						5			9	5	5
52	22X31A0552	4 5			4 5		-	5							-		5			9 10	5	5
54	22X31A0554	5			5			5			4									9	5	5
55	22X31A0555	5			5			5		<u> </u>						<u> </u>	5			9	5	5
56 57	22X31A0556 22X31A0557	2			2 3		-	2	<u> </u>		5		<u> </u>		<u> </u>		2			9	5	5
58	22X31A0558	5			5			5								1	5			9	5	5
59	22X31A0559	5			5						5						5			9	5	5
60	22X31A0560	5			3		<u> </u>	5	<u> </u>		4	<u> </u>	<u> </u>		<u> </u>	<u> </u>				9	5	5
62	22A31A0561 22X31A0562	5			5 5			5	-		4 5					-	5			9	5	5
63	22X31A0563	5			5			5									5			9	5	5
64	22X31A0564	3		<u> </u>	4			4		<u> </u>	4	<u> </u>	<u> </u>			<u> </u>	<u> </u>			9	5	5
65	22X31A0565	2									3		1			1				8	5	5

Targ facu	get set by the lty / HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Nun stud perfe the t	nber of lents formed above target	54	0	0	45	0	0	44	0	0	38	0	0	3	0	0	25	0	0	61	63	63
Nun stud attei	nber of lents mpted	61	0	0	51	0	0	49	0	0	41	0	0	3	0	0	29	0	0	63	63	63
Perc stud more	entage of lents scored e than target	89%			88%			90%			93%			100%			86%			97%	100%	100%
<u>co</u>	Mapping with 1	Exam	Questio	ons:																		
	CO 1																					
	$\frac{1}{1}$																	<u> </u>				
	$\frac{1}{2}$	87	v																	v	v	*7
	CO-3	Y	r					v										<u> </u>		$\frac{1}{V}$	I V	y v
	CO - 5							1			Y	Y		v						Y	Y	y V
	CO - 6				Y												у			Ŷ	Y	y y
																						-
9 5.00	% Students								03%			100%			86%			07%	100%	100%		
CO	Attainment has	sed on	Exam (Questio	ns:			7070			1570			10070			0070)1/0	10070	10070
	CO - 1																					
	CO - 2																					
	CO - 3	89%	89%																	97%	100%	100%
	CO - 4		0,7,0					89%												97%	100%	100%
	CO - 5										89%	89%		89%						97%	100%	100%
	CO - 6				89%												89%			97%	100%	100%
	60	Ch:	a hi		nat	-)	1		Lovo	.1									A ## a	inmont	Lorni
<u> </u>	CO-1	Subj obj aasgn ppt Overall				/1									1 Aua)%					
	CO-2																			2	5()%
-	CO-3	89%	97%	100%	100%		96%			3										3	6)%
<u> </u>	CO-4	<u>4 89% 97% 100% 100% 96%</u>			3.00										5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	CO-5	-5 89% 97% 100% 100% 96%			3.00																	
	CO-6	89%	97%	100%	100%		96%			3.00												
	Attainme	ent (Inter	nal E	xamir	$\frac{100\pi}{2}$ =)											

AL ENGL	SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences														
SON	Department of Humanities & Sciences Course Outcome Attainment (University Examinations)														
STATES - BRANNES	Course Outcome Attainment (University Examinations)														
Name	of the faculty	B.RAMA DEVI		Academic	Year:	2022-2023									
Branch	a & Section:	CSE-A		Year / Ser	nester:	1/11									
Course	Name:	ODE&VC													
S.No	Roll Number	Marks Secured		S.No	Roll Number	Marks Secured									
1 22X31A0501		5		36	22X31A0536	30									
2	22X31A0502	43		37	22X31A0537	10									
3	22X31A0503	31		38	22X31A0538	25									
4	22X31A0504	42		39	22X31A0539	15									
5	22X31A0505	12		40	22X31A0540	29									
6	22X31A0506	9		41	22X31A0541	21									
7	22X31A0507	22		42	22X31A0542	5									
8	22X31A0508	35		43	22X31A0543	23									
9	22X31A0509	10		44	22X31A0544	15									
10	22X31A0510	21		45	22X31A0545	28									
11	22X31A0511	23		46	22X31A0546	22									
12	22X31A0512	21		47	22X31A0547	39									
13	22X31A0513	4		48	22X31A0548	11									
14	22X31A0514			49	22X31A0549	49									
15	22X31A0515	4		50	22X31A0550	48									
16	22X31A0516	22		51	22X31A0551	32									
17	22X31A0517	21		52	22X31A0552	23									
18	22X31A0518	6		53	22X31A0553	41									
19	22X31A0519	13		54	22X31A0554	46									
20	22X31A0520	21		55	22X31A0555	35									
21	22X31A0521	27		56	22X31A0556	23									
22	22X31A0522	4		57	22X31A0557	34									
23	22X31A0523	37		58	22X31A0558	30									
24	22X31A0524	2		59	22X31A0559	40									
25	22X31A0525	21		60	22X31A0560	37									
26	22X31A0526	21		61	22X31A0561	35									
27	22X31A0527	3		62	22X31A0562	44									
28	22X31A0528	16		63	22X31A0563	37									
29	22X31A0529	41		64	22X31A0564	31									
30	22X31A0530	38		65	22X31A0565	32									
31	22X31A0531	51													
32	22X31A0532														
33	22X31A0533	35													
34	22X31A0534	21													
35	22X31A0535	15													
Max Ma	arks	60													
Class A	verage mark	-	25		Attainment Level	% students									
Number	of students pe	rformed above the target	29		1	40%									
Number	of successful s	students	63		2	50%									
Percenta	age of students	scored more than target	46%		3	60%									
Attai	nment leve	e]	2												

SRI INDU	INSTIT	TUTE OF EN	NGINE	ERING AND	TECHNOLO	GY
IT OF ENGINEERING	Departme	ent of Humanities	& Science	es		
A CONTRACTOR OF A CONTRACTOR O		Course Ou	utcome A	<u>ttainment</u>		
The South of the second						
Name of the facult	B.RAMA	DEVI		Academic Year	2022-2023	
Branch & Section:	CSE-A			Examination:	<u>I Internal</u>	
Course Name:	ODE&VC			Year:	<u>l</u>	
				Semester:	<u>II</u>	
Course Outcomes 1st Exam		2nd Internal Exam	Internal Exam	University Exam	Attainment Level	
CO1	3.00		3.00	2.00	2.40	
CO2	3.00		3.00	2.00	2.40	
CO3	3.00	3.00 3.00		2.00	2.40	
CO4		3.00	3.00	2.00	2.40	
CO5		3.00	3.00	2.00	2.40	
CO6		3.00	3.00	2.00	2.40	
Inter	nal & Univ	ersity Attainment:	3.00	2.00		
		Weightage	40%	60%		
CO Attainment for th	e course (li	nternal, University	1.20	1.20		
CO Attainment for	the course	(Direct Method)		2.40		
Overall co	ourse	attainme	nt lev	el	2.40	

SR	SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY														
STATE OF ENGINEERING	Department of Humanities & Sciences														
A A A A A A A A A A A A A A A A A A A	Program Outcome Attainment (from Course)														
AUNIVER	and of Eaculture B BANA DEV/1 Academic Veen 2022 20														
Name o	me of Faculty: <u>B.RAMA DEVI</u> Academic Year: <u>2022-20</u>														
Branch &	& Sect	ion:	<u>CSE-A</u>	<u>\</u>				Year:			I				
Course I	Name	:	ODE8	kVC				Seme	ester:		П				
CO-PO n	nappi	ng													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12			
CO1	3	3	-	1	1	-	-	-	-	-	-	1			
CO2	3	2	-	1	1	-	-	-	-	-	-	1			
СОЗ	2	3	-	1	1	-	-	-	-	-	-	1			
CO4	2	3	-	1	1	-	_	-	-	-	-	2			
CO5	3	2	-	1	1	-	_	-	-	-	_	2			
CO6	2	3	-	1	1		-	-		-	_	2			
Course	3	2.6	_	1	1			-		-	-	1.5			
												-			
со					Course	Outco	me At	tainme	ent						
						2.	40								
CO1															
	2.40														
CO2	2.40														
	2.40														
соз															
						2.	40								
CO4	2.70														
CO5						2.	40								
CO6						2.	40								
Overall	cour	se at	tainm	ent le	evel				2.40						
ΡΟ-ΑΤΤ	AINM	ENT													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO Attainm															
ent	2.00	2.08		0.80	0.80							1.20			
CO contra	ibutio		. 220/	67%	100% (1 0/2	11/2/21									
	Sario	I LU PC	/0	, 0 / /0, .	TOO 10 ILENG	1 1/2/3	7				1				

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

Link

https://drive.google.com/file/d/1xlb_hsc2wqtPGqjNNQSwyZi7PliCpLiP/view?usp=sharing