

EAMCET CODE: INDI









(Formerly RVR Institute of Engineering & Technology)

#### An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

## **COURSE FILE**

**ON** 

# ORDINARY DIFFERENTIAL EQUATIONS & VECTOR CALCULUS

Course Code – MA201BS

I B. Tech Semester-II A.Y. 2022-23

Prepared by

Mrs.V.Sujatha, Assistant Professor

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda(\(^\) Ibrahimoatnam (\(^\) R.R. Dist-501 516

PRINCIPAL
Sri Indu Institute of Engineering & Tech.
Sheriguda(Vill), Ibrahimpatnam
R.R. Dist. Telangana-501 510.



**EAMCET CODE: INDI** 









(Formerly RVR Institute of Engineering & Technology )

#### An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

#### **Index of Course File**

|      | COURSE FILE INDEX                                                    |  |  |  |  |  |
|------|----------------------------------------------------------------------|--|--|--|--|--|
| S.No | Course/Subject Name                                                  |  |  |  |  |  |
| 1    | Institute Vision & Mission                                           |  |  |  |  |  |
| 2    | POs /PSOs                                                            |  |  |  |  |  |
| 3    | Course Structure                                                     |  |  |  |  |  |
| 4    | Course syllabus                                                      |  |  |  |  |  |
| 5    | Course Outcomes (CO)                                                 |  |  |  |  |  |
| 6    | Mapping CO with PO/PSO; course with PO/PSO                           |  |  |  |  |  |
| 7    | Academic Calendar                                                    |  |  |  |  |  |
| 8    | Time table - highlighting your course periods including tutorial     |  |  |  |  |  |
| 9    | Lesson plan with number of hours/periods, TA/TM, Text/Reference book |  |  |  |  |  |
| 10   | Gap within the syllabus - mapping to CO, PO/PSO                      |  |  |  |  |  |
| 11   | Gaps beyond the syllabus - Mapping to PO/PSO                         |  |  |  |  |  |
| 12   | Web references                                                       |  |  |  |  |  |
| 13   | Lecture notes                                                        |  |  |  |  |  |
| 14   | List of Power point presentations / Videos                           |  |  |  |  |  |
| 15   | University Question papers                                           |  |  |  |  |  |
| 16   | Internal Question papers, Key with CO and BTL                        |  |  |  |  |  |
| 17   | Assignment Question papers mapped with CO and BTL                    |  |  |  |  |  |
| 18   | Scheme of evaluation with CO and BTL mapping                         |  |  |  |  |  |
| 19   | Tutorial topics with evidence                                        |  |  |  |  |  |
| 20   | Result Analysis to identify weak and advanced learners               |  |  |  |  |  |
| 21   | Result Analysis at the end of the course                             |  |  |  |  |  |
| 22   | Remedial class schedule and evidences                                |  |  |  |  |  |
| 23   | CO, PO/PSO attainment                                                |  |  |  |  |  |
| 24   | Attendance register                                                  |  |  |  |  |  |
| 25   | Course file (Digital form)                                           |  |  |  |  |  |













## Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology )

#### An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

#### **INSTITUTE VISION & MISSION**

#### Vision:

EAMCET CODE: INDI

To become a premier institute of academic excellence by providing the world class education that individuals transforms into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

#### Mission:

- ➤ **IM1:** To offer outcome-based education and enhancement of technical and practical skills.
- ➤ **IM2:** To Continuous assess of teaching-learning process through institute-industry collaboration.
- ➤ **IM3:** To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- ➤ **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department
Department of H&S
SRI INDII INSTITUTE OF ENGS & TO

SRI INDU INSTITUTE OF ENGG & TECH 'reriguida(M) Ibrahimoatnam (M) R.R. Dist-501 516 Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.



(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **PROGRAM OUTCOMES**

PO1: **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesisof the information to provide valid conclusions.

PO5: **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assessocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader ina team, to manage projects and in multidisciplinary environments.

PO12: **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Perioudal M Ibrahimostnam (M) R.R. Dist-501 516

**B.Tech.** in Artificial Intelegence and Data Science

### **COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations)**

Applicable from Academic Year: 2022-23 Batch

#### I Year I Semester

| S.<br>No. | Course<br>Code | Course Title                                            | L  | Т | P  | Credits |
|-----------|----------------|---------------------------------------------------------|----|---|----|---------|
| 1.        | MA101BS        | Matrices and Calculus                                   | 3  | 1 | 0  | 4       |
| 2.        | AP102BS        | Applied Physics                                         | 3  | 1 | 0  | 4       |
| 3.        | CS103ES        | Programming for Problem Solving                         | 3  | 0 | 0  | 3       |
| 4.        | ME102ES        | Engineering Workshop                                    | 0  | 1 | 3  | 2.5     |
| 5.        | EN104HS        | English for Skill Enhancement                           | 2  | 0 | 0  | 2       |
| 6.        | CS106ES        | Elements of Computer Science & Engineering              | 0  | 0 | 2  | 1       |
| 7.        | AP105BS        | Applied Physics Laboratory                              | 0  | 0 | 3  | 1.5     |
| 8.        | CS107ES        | Programming for Problem Solving Laboratory              | 0  | 0 | 2  | 1       |
| 9.        | EN107HS        | English Language and Communication Skills<br>Laboratory | 0  | 0 | 2  | 1       |
| 10.       | *MC101ES       | Environmental Science                                   | 3  | 0 | 0  | 0       |
| 11.       |                | Induction Programme                                     |    |   |    |         |
|           |                | Total                                                   | 14 | 3 | 12 | 20      |

#### I Year II Semester

| S.<br>No. | Course<br>Code | Course Title                                        | L  | Т | P  | Credits |
|-----------|----------------|-----------------------------------------------------|----|---|----|---------|
| 1.        | MA201BS        | Ordinary Differential Equations and Vector Calculus | 3  | 1 | 0  | 4       |
| 2.        | CH203BS        | Engineering Chemistry                               | 3  | 1 | 0  | 4       |
| 3.        | ME201ES        | Computer Aided Engineering Graphics                 | 1  | 0 | 4  | 3       |
| 4.        | EE201ES        | Basic Electrical Engineering                        | 2  | 0 | 0  | 2       |
| 5.        | EC201ES        | Electronic Devices and Circuits                     | 2  | 0 | 0  | 2       |
| 6.        | CH206BS        | Engineering Chemistry Laboratory                    | 0  | 0 | 2  | 1       |
| 7.        | EE202ES        | Basic Electrical Engineering Laboratory             | 0  | 0 | 2  | 1       |
| 8.        | CS201ES        | Python Programming Laboratory                       | 0  | 1 | 2  | 2       |
| 9.        | CS203ES        | IT Workshop                                         | 0  | 0 | 2  | 1       |
|           |                | Total                                               | 11 | 3 | 12 | 20      |

#### ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Course Code: MA201BS)

B.Tech. I Year II Sem.

**L T P C** 3 1 0 4

**Pre-requisites:** Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface andvolume integrals

**Course outcomes:** After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real worldproblems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

#### **UNIT-I: First Order ODE**

8 L

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

#### **UNIT-II:Ordinary Differential Equations of Higher Order**

10 L

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type  $e^{ax}$ ,  $\sin ax$ ,  $\cos ax$ , polynomials in x,  $e^{ax}V(x)$  and xV(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits

#### **UNIT-III: Laplace transforms**

10 L

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

#### **UNIT-IV: Vector Differentiation**

10 L

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

#### **UNIT-V: Vector Integration**

10 L

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

#### **TEXT BOOKS:**

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36<sup>th</sup> Edition, 2010
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5<sup>th</sup> Edition, 2016.

#### **REFERENCE BOOKS:**

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9<sup>th</sup> Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.



#### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course : ODE & VC (C121) Class: I B TECH AI&DS

### **Course Outcomes**

After completing this course the student will be able to:

- C121.1 : Student can be able to find the temperature of the body by Newton's law of cooling(Remembering)
- C121.2 : solve the second and higher order differential equations, find the particular integrals for the given non homogeneous differential terms (Evaluating)
- C121.3 : By using concepts and formulae ,student can evaluate the Laplace Transforms to find different types of functions by using different methods. (Evaluating)
- C121.4 : Explain the problems on gradient, divergent and curl of a vectors (Understanding)
- C121.5 : Student can be able to select both vector and scalar point functions in vector identities(Remembering)
- C121.6 :Compare the line, surface and volume integrals and apply these concepts in integral theorems(Evaluating)





Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

### CO's Mapping with PO/PSO

#### Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

| PO/CO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| C121.1 | 3   | 3   | -   | 1   | 1   | ı   | ı   | ı   | ı   | -    | -    | 1    |
| C121.2 | 3   | 2   | -   | 1   | 1   | -   | ı   | ı   | -   | -    | -    | 1    |
| C121.3 | 2   | 3   | -   | 1   | 1   | -   | ı   | ı   | -   | -    | -    | 1    |
| C121.4 | 2   | 3   | -   | 1   | 1   | -   | -   | ı   | -   | -    | -    | 2    |
| C121.5 | 3   | 2   | -   | 1   | 1   | -   | 1   | ı   | -   | -    | -    | 2    |
| C121.6 | 2   | 3   | -   | 1   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| C121   | 2.5 | 2.6 | -   | 1   | 1   | -   | ı   | ı   | -   | -    | -    | 1.5  |



#### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **CO-PO mapping Justification**

**PO1. ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering Fundamentals, and an engineering specialization to the solution of complex engineering problems.

**PO2.PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**PO4**. **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**PO5. MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

**PO12**. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

## C121.1 : Student can be able to find the temperature of the body by Newton's law of cooling (Remembering)

|      | Justification                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------|
| PO1  | Student can recognize the use of Newton's law in various examples(level 3)                                       |
| PO2  | Student applies the Integration concept in Newton's law of cooling. (level 3)                                    |
| PO4  | Student can analyze the applications of D.E and compare with real life life examples(level 1)                    |
| PO5  | Student can use technical tools in solving Newton's law of cooling. (level 1)                                    |
| PO12 | Student can recognize the relationship between temperature and time of Newton's law in various examples(level 1) |

## C121.2 : solve the second and higher order differential equations find the particular integrals for the given non homogeneous differential terms (Evaluating)

|     | Justification                                                                    |
|-----|----------------------------------------------------------------------------------|
| PO1 | student get the knowledge of to find the solution of higher order D.E's(level 3) |

| PO2  | Student can find the particular integrals using different types of forms(level 2)                        |
|------|----------------------------------------------------------------------------------------------------------|
| PO4  | Student can analyze non homogeneous D.E and compare with homogeneous D.E with suitable examples(level 1) |
| PO5  | Student can select heat body materials and apply Newton's law concept in D.E(level 1)                    |
| PO12 | Student can use D.E concepts in electrical circuits also(level 1)                                        |

C121.3 : evaluate the Laplace transforms and apply the concepts and formulae to find different types of functions by using different methods(Applying)

|      | Justification                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PO1  | Student get the knowledge of Laplace transform concepts and formulae and apply to get solutions of different functions (level 2)                    |
| PO 2 | Student understand the concept of Laplace transform and its applications (level 3)                                                                  |
| PO4  | Student can analyse the applications of Laplace transforms and using of Differential equations(level 1)                                             |
| PO5  | Student can use digital tools in solving Laplace transforms first and second shifting theorems(level 1)                                             |
| PO12 | Student can recognize the use of convolution theorem in various examples when solving Initial value problems by Laplace Transform method. (level 1) |

### C121.4 : Use the Laplace transforms techniques for solving ODE's. (Applying)

|      | Justification                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| PO1  | Student can identify the application of Laplace transform in Differential equations(level 2)                                             |
| PO2  | Student compare the different problems with different formulae in Laplace transforms and Inverse Laplace transforms (level 3)            |
| PO4  | Student can analyse the applications of Laplace transforms and using of Differential equations and using of boundary conditions(level 1) |
| PO5  | Student can use digital tools in solving Laplace transforms for solving D.E's(level 1)                                                   |
| PO12 | Student can recognize the use of differentiation in L.T to solve D.E in various examples(level 2)                                        |

### C121.5 : Illustrate the problems on gradient, divergent and curl of a vectors (Remembering)

|     | Justification                                                                        |
|-----|--------------------------------------------------------------------------------------|
| PO1 | Student get the concept of gradient, divergent and curl of a vector field. (level 3) |

| PO2  | Student can solve the problems of gradient, divergent and curl of a vector (level2)                |
|------|----------------------------------------------------------------------------------------------------|
| PO4  | Student can analyse grad, div and curl concepts in vector integral theorems(level 1)               |
| PO5  | Student can use digital tools in solving gradient, divergent and curl of a vector field (level 1). |
| PO12 | Student can recognize the use of divergent and curl of vectors in various examples(level 2)        |

## C121.6 : Estimate the line, surface and volume integrals and converting them in theorems (Creating)

|      | Justification                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
| PO1  | Student get the knowledge surface, volume, line integral concepts (level2)                                                             |
| PO2  | Student can differentiate the theorems using gradient, divergent and curl of the vectors (level3)                                      |
| PO4  | Student can analyse surface integrals can be applied in double integrals and volume integrals can be applied triple integrals(level 1) |
| PO5  | Student can use digital tools in solving line, surface and volume integrals(level 1)                                                   |
| PO12 | Student can recognize the conversion of line to surface ,surface to volume in vector integral theorems(level 2)                        |



UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa lbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana - 501 510

https://siiet.ac.in/

Date: 15.12.2022

Lr. No. SIIET/BR22/Academic Calendar/2022/02

## REVISED ACADEMIC CALENDAR I B.TECH FOR THE ACADEMIC YEAR 2022-23

(BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

**X3** 

To. All the HOD's

Sir. Sub: SIIET (Autonomous)-Academic & Evaluation-Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg.

\*\*\*\*\*\* The approved Academic Calendar for I B.Tech – I & II Semesters for the academic year 2022-23 is given below.

|       |                                                                                   | Per         | Duration   |          |  |  |  |
|-------|-----------------------------------------------------------------------------------|-------------|------------|----------|--|--|--|
| S. NO | Description                                                                       | From        | To         | Duration |  |  |  |
| 1,    | Commencement of I Semester class work (including Induction programme)             | 03.11.2022  |            |          |  |  |  |
| 2.    | 1st Spell of Instructions                                                         | 03.11.2022  | 28.12.2022 | 8 Weeks  |  |  |  |
| 3.    | I Mid Examinations                                                                | `29.12.2022 | 04.01.2023 | 1 Week   |  |  |  |
| 4.    | Submission of First Mid Term Exam Marks to the<br>Autonomous Section on or before | 10.01.2023  |            |          |  |  |  |
| 5.    | 2 <sup>nd</sup> Spell of Instructions                                             | 05.01.2023  | 02.03.2023 | 8 Weeks  |  |  |  |
| 6.    | Second Mid Term Examinations                                                      | 03.03.2023  | 09.03.2023 | 1 Week   |  |  |  |
| 7.    | Preparation & Practical Examinations                                              | 10.03.2023  | 16.03.2023 | 1 Week   |  |  |  |
| 8.    | Submission of Second Mid Term Exam Marks to the Autonomous Section on or before   |             | 16.03.2023 |          |  |  |  |
| 9.    | I Semester End Examinations                                                       | 17.03.2023  | 01.04.2023 | 2 Weeks  |  |  |  |

#### II-SEMESTER

| 20 202  |                                                                                   | Per         | D          |          |  |
|---------|-----------------------------------------------------------------------------------|-------------|------------|----------|--|
| S. NO   | Description                                                                       | From        | To         | Duration |  |
| 1.      | Commencement of II Semester class work                                            |             | 03.04.2023 |          |  |
| 2.      | 1st Spell of Instructions (including Summer Vacation)                             | 03.04.2023  | 10.06.2023 | 10 Weeks |  |
| 2 rurkt | Summer Vacation                                                                   | 15.05.2023  | 27.05.2023 | 2 Weeks  |  |
| 3.      | I Mid Examinations                                                                | `12.06.2023 | 17.06.2023 | 1 Week   |  |
| 4.      | Submission of First Mid Term Exam Marks to the<br>Autonomous Section on or before | 23.06.2023  |            |          |  |
| 5.      | 2 <sup>nd</sup> Spell of Instructions                                             | 19.06.2023  | 12.08.2023 | 8 Weeks  |  |
| 6.      | II Mid Term Examinations                                                          | 14.08.2023  | 19.08.2023 | 1 Week   |  |
| 7.      | Preparation & Practical Examinations                                              | 21.08.2023  | 26.08.2023 | 1 Week   |  |
| 8.      | Submission of Second Mid Term Exam Marks to the Autonomous Section on or before   |             | 26.08.2023 |          |  |
| 9.      | II Semester End Examinations                                                      | 28.08.2023  | 09.09.2023 | 2 Weeks  |  |

OF EXAMINATIONS

MATTER EXAMINATIONS

Sri Indu Institute of Engineering and Technology (An Autonomous Institution under JNTUH)

PRINCIPAL = Sri Indu Institute of Parameeting and Technology (An Autonomous Institution Under JNTUH) Sheriquda (V), Ibrahimpatnam, R.R. Dist-501510.

Indu Institute of Engineering and Technology

(An Autonomous Institution under JNTUH)

(An Autonomous Institution under JNTUH)

Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.



(An Autonomous Institution under UGC)

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
KhalsaIbrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510 https://siiet.ac.in/

Class: AI &DS

Semester: II W.E.F-03-04-2023

LH:-D-210

|     | I<br>9:40-<br>10:30 | II<br>10:30 -<br>11:20 | III<br>11:20-<br>12:10 | 12:10-<br>12.45 | IV<br>12.45-<br>1.35 | V<br>1.35-<br>2.25 | VI<br>2.25-<br>3.15 | VII<br>3.15-4.00 |  |
|-----|---------------------|------------------------|------------------------|-----------------|----------------------|--------------------|---------------------|------------------|--|
| MON | CA                  | EG PRACT               | ICE                    |                 | EC                   | BEE                | LIBRARY             |                  |  |
| TUE | 1                   | EC/BEE LA              | В                      | L<br>U          | ODE                  | EC                 | BEE                 | BEE(T)/EDC(T)    |  |
| WED |                     | ITWS LAB               | E .                    | N               | ODE                  | EDC                | BEE                 | PYTHON(T)        |  |
| THU | ODE                 | EC                     | EDC                    | C<br>H          | Е                    | C/BEE LA           | В                   | ODE(T)/EC(T)     |  |
| FRI | BEE                 | ODE                    | ODE                    |                 | CAE                  | G PRACT            | TCE                 | EDC(T)/BEE(T)    |  |
| SAT | EDC                 | EC                     | BEE                    |                 | PYTHON LAB           |                    |                     | EC(T)/ODE(T)     |  |

| Course Code | Course Name                                                       | Name of the Faculty | Course Code | Course Name                                               | Name of the Faculty            |
|-------------|-------------------------------------------------------------------|---------------------|-------------|-----------------------------------------------------------|--------------------------------|
| MA201BS     | ODE-Ordinary<br>Differential<br>Equations &<br>Vector<br>Calculus | V.SUJATHA           | CH206BS     | EC LAB-<br>Engineering<br>Chemistry<br>Laboratory         | K.MOUNIKA/V.MOUNIKA            |
| CH203BS     | EC-<br>Engineering<br>Chemistry                                   | K.MOUNIKA           | EE202ES     | BEE LAB-<br>Basic Electrical<br>Engineering<br>Laboratory | G.BHARGAVI/K.RAJASHEKA<br>R    |
| ME201ES     | CAEG-<br>Computer<br>Aided<br>Engineering<br>Graphics             | A.MALLESH           | CS201ES     | PYTHON<br>Programming<br>Laboratory                       | M.TEJASWI/ P.BALU              |
| EE201ES     | BEE-Basic<br>Electrical<br>Engineering                            | G.BHARGAVI          | CS203ES     | ITWS-IT<br>Workshop                                       | N.KEERTHI<br>CHANDANA/B.SWATHI |
| EC201ES     | EDC-<br>Electronic<br>Devices &<br>Circuits                       | P.SRILATHA          |             |                                                           |                                |

Class In-Charge

erdinator

Head of The Department
Sri Indulinstitute of Engg. & Tech
Main Road, Sheriguda(V),
Ibrahimpatnam(M), R.R. Dist



### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

| Course Title    | ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS |
|-----------------|-----------------------------------------------------|
| Course Code     | MA201BS                                             |
| Programme       | I-B.Tech AI&DS                                      |
| Year & Semester | I-year II-semester                                  |
| Regulation      | BR22                                                |
| Course Faculty  | Mrs.V.Sujatha, Assistant Professor , H&S            |
| Sub             | LESSON PLAN                                         |

| .No | Торіс                                                                            | Teaching<br>Method/Teaching Aid                          | No.of Sessions<br>Planned | Reference book |
|-----|----------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|----------------|
| 1   | Unitwise Introduction of Engineering mathematics-II Syllabus                     | Lecture Method                                           | 1                         | T-1,R-1        |
| 2   | UNIT –I First Order ODE Intoduction of Ordinary D.E.                             | Lecture Method, web reference                            | 1                         | T-1,R-1        |
| 3   | Methods to solve first order D.E's(basic methods)                                | Lecture Method                                           | 1                         | T-1,R-1        |
| 4   | Problems on ODE                                                                  | Lecture Method/Black<br>board                            | 1                         | T-1,R-1        |
| 5   | Exact D.E's and problems                                                         | Problem solving<br>Method,video/Black<br>board           | 1                         | T-1,R-1,V-3    |
| 6   | Non exact D.E – method-I problems                                                | Problem solving<br>Method,video/Black<br>board           | 1                         | T-1,R-1,V-3    |
| 7   | Non exact D.E – method-II problems                                               | Problem solving<br>Method,video/Black<br>board           | 1                         | T-1,T-2,V-3    |
| 8   | Non exact D.E – method-III problems                                              | Problem solving<br>Method,video                          | 1                         | T-1,R-1,V-3    |
| 9   | Non exact D.E – method-IV problems                                               | Problem solving<br>Method,video/Black<br>board           | 1                         | T-1,T-2,V-3    |
| 10  | Linear D.E's- Problems                                                           | Lecture Method,<br>Problem solving<br>Method             | 1                         | T-1,R-1        |
| 11  | Bernoulli's D.E- Problems                                                        | Lecture Method,<br>Problem solving<br>Method/Black board | 1                         | T-1,R-1        |
| 12  | Applications of D.E's – Newton's law of cooling-problems                         | Lecture Method,<br>Problem solving<br>Method             | 1                         | T-1,R-1,W-2    |
| 13  | Equations of first order but not in first degree-<br>Solvable for p - problems   | Problem solving<br>Method                                | 1                         | T-1,R-2        |
| 14  | Solvable for y – problems                                                        | Problem solving<br>Method                                | 1                         | T-1,R-1        |
| 15  | Solvable for x- problems                                                         | Problem solving<br>Method/Black board                    | 1                         | T-1,T-2        |
| 16  | UNIT – II<br>OD E's of Higher order<br>Introduction                              | Lecture<br>Method,web reference                          | 1                         | R-1,T-1,W-3    |
| 17  | Second order Linear D.E's with constant coefficients                             | Problem solving<br>Method                                |                           | T-1,W-3        |
| 18  | Complementary Functions - Problems                                               | Problem solving<br>Method/Black board                    | 1                         | T-1,W-3        |
| 19  | Particular Integral : Non homogeneous terms of the type e <sup>ax</sup> Problems | Problem solving<br>Method/Black board                    | 1                         | R-1,W-3        |

| 20 | Particular Integral : Non homogeneous terms of the type sin axProblems                         | Problem solving Method/Black board                      | 1 | T-1,W-3         |
|----|------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|-----------------|
| 21 | Particular Integral : Non homogeneous terms of the type coaxProblems                           | Problem solving<br>Method/Black board                   | 1 | T-1,W-3         |
| 22 | Particular Integral: Non homogeneous terms of the type polynomials in x Problems               | Problem solving<br>Method/Black board                   | 1 | T-1,W-3         |
| 23 | Particular Integral : Non homogeneous terms of the type e <sup>ax</sup> V(x)Problems           | Problem solving<br>Method                               | 1 | T-1,W-3         |
| 24 | Particular Integral : Non homogeneous terms of the type $xV(x)$ Problems                       | Problem solving Method/Black board                      | 1 | T-1,T-2,R-1,W-3 |
| 25 | Method of variation of parameters - Problems                                                   | Problem solving<br>Method                               | 1 | R-1,W-3         |
| 26 | Equations reducible to linear ODE with constant coefficients :Legendre's equation - Problems   | Problem solving<br>Method                               | 1 | T-1,T2,R1       |
| 27 | Equations reducible to linear ODE with constant coefficients :Cauchy-Euler equation - Problems | Problem solving<br>Method/Black board                   | 1 | T1,R-1,R2       |
| 28 | Equations reducible to linear ODE with constant coefficients :Cauchy-Euler equation - Problems | Problem solving<br>Method/Black board                   | 1 | T-1,T2,R-1      |
| 29 | UNIT –III<br>Laplace transforms -Introduction                                                  | Lecture<br>Method                                       | 1 | T-1,R-1,W-1     |
| 30 | Laplace transform of standard functions                                                        | Lecture Method<br>Problem solving<br>Method/Black board | 1 | T-1,R-1,W-1     |
| 31 | First shifting theorem - problems                                                              | Lecture Method                                          | 1 | T-1,R-1         |
| 32 | Second shifting theorem-problems                                                               | Problem solving<br>Method/Black board                   | 1 | T-1,T2          |
| 33 | Unit step function                                                                             | Lecture Method                                          | 1 | T-1,T-2         |
| 34 | Dirac delta function                                                                           | Problem solving<br>Method                               | 1 | T-1, T-3        |
| 35 | L.T.of multiplication by t                                                                     | Lecture Method<br>Problem solving<br>Method             | 1 | T-1,R-1         |
| 36 | L.T.of division by t                                                                           | Lecture Method<br>Problem solving<br>Method             | 1 | T-1,T-3         |
| 37 | L.T. of derivative                                                                             | Lecture Method<br>Problem solving<br>Method             | 1 | T-1,T-3         |
| 38 | L.T.of integrals                                                                               | Lecture Method<br>Problem solving<br>Method             | 1 | T-1,T-3         |
| 39 | Evaluation of integrals by L.T.                                                                | Lecture Method                                          | 1 | T-1,T-3         |
| 40 | L.T.of periodic function                                                                       | Lecture Method<br>Problem solving<br>Method             | 1 | T-3             |
| 41 | Inverse L.T.of different methods                                                               | Lecture Method<br>Problem solving<br>Method             | 1 | T-3             |
| 42 | Convolution theorem – problems                                                                 | Lecture Method<br>Problem solving<br>Method             | 1 | T-3             |
| 43 | Solving IVP by L.T. method                                                                     | Lecture Method<br>Problem solving<br>Method             | 2 | T-3             |
| 44 | UNIT-IV Vector Differentiation Introduction                                                    | Problem solving<br>Method                               | 1 | T-1             |
| 45 | Vector point functions and scalar point functions-<br>problems                                 | Lecture<br>Method,video,video                           | 1 | T-1,T-2,R-1     |

| 46 | Gradient, Divergent and Curl of a vector-problems                           | Problem solving<br>Method,video,video                            |   | T-1,R-1,W-4             |
|----|-----------------------------------------------------------------------------|------------------------------------------------------------------|---|-------------------------|
| 47 | Directional derivatives - Problems                                          | Problem solving<br>Method ,video                                 | 1 | R-1,T-1                 |
| 48 | Tangent plane and Normal plane - problems                                   | Lecture<br>Method,video/Black<br>board                           | 1 | T-1,R-1                 |
| 49 | Vector identities                                                           | Lecture<br>Method,video                                          | 1 | T-1,R-1                 |
| 50 | Scalar potential functions : Solenoidal and Irrotational vectors - problems | Problem solving<br>Method,video                                  | 1 | R-1,T-1                 |
| 51 | UNIT-V Vector Integration Introduction                                      | Lecture<br>Method                                                | 1 | T-1,R-1                 |
| 52 | Line integrals - Problems                                                   | Lecture Method<br>Problem solving<br>Method,video                | 1 | R-1,T-1,T-2             |
| 53 | Surface integrals - problems                                                | Lecture Method<br>Problem solving<br>Method,video/Black<br>board | 1 | R-1,T-1,T-2             |
| 54 | Volume integrals - problems                                                 | Lecture Method<br>Problem solving<br>Method,video                | 1 | R-1,T-1,T-2,W-4         |
| 55 | Green's theorem – Problems                                                  | Lecture Method<br>Problem solving<br>Method,video                | 1 | R-1,T-1,T-2,W-4,V-1,V-2 |
| 56 | Gauss divergence theorem - problems                                         | Lecture Method<br>Problem solving<br>Method/Black board          | 1 | R-1,T-1,T-2,V-2         |
| 57 | Stokes theorem - problems                                                   | Lecture Method<br>Problem solving<br>Method,video/Black<br>board | 1 | R-1,T-1,T-2,W-4,V-2     |

### **REFERENCES:**

- 1. Paras Ram, Engineering Mathematics, 2<sup>nd</sup> Edition, CBS Publishes
- 2. S. L. Ross, Differential Equations, 3<sup>rd</sup> Ed., Wiley India, 1984.

### **TEXT BOOKS:**

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers,  $36^{\mbox{th}}$  Edition, 2010
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9<sup>th</sup> Edition, John Wiley & Sons,2006
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9<sup>th</sup> Edition, Pearson, Reprint, 2002.



(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Variable-separable, Homogeneous and non homogeneous equations, Transforms of the Heaviside function and the Dirac Delta function, Flux in 3D,Basic concepts of vectors, dot product,cross product.

#### **Course Outcomes**

After completing this topic the student will be able to:

- 1.student can apply methods like homogeneous, variable-separable in new methods (Application)
- 2.after knowing dot product and cross product student can easily understand vector differentiation and integration concepts (Knowledge)
- 3.student can understand application of Differential equation in Laplace transform like Heaviside function ,Dirac function (Knowledge)

#### Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

| PO/CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 1     | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
|       |     |     |     |     |     |     |     |     |     |      |      |      |
| 2     | 2   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
|       |     |     |     |     |     |     |     |     |     |      |      |      |
| 3     | 2   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
|       |     |     |     |     |     |     |     |     |     |      |      |      |



(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Regular industrial visits help students to know the information useful for knowledge upgradation.
- 2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
- 3. Teaching at least a few portions giving practical demonstration to create interest among the students
- 4. Introducing current Scientific and Technological innovations and development
- 5. Computer aided learning tools are also used for better visual display for the Mathematics

#### Mapping to PO/PSO:

High -3 Medium -2 Low-1

| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 1  | -   | -   | -   | 2   | -   | -   | -   | -   | -   |      | -    | 2    |
| 2  | -   | -   | -   | -   | -   | -   | -   | -   | -   | 2    | -    | -    |
| 3  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -    | 3    | -    |
| 4  | -   | -   | -   | -   | -   | -   | -   | -   | 1   | -    | -    | -    |
| 5  | -   | -   | -   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |

#### (UGC AUTONOMOUS INSTITUTION)



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

| WEB REFERENCES:                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| w1:                                                                                                                                          |
| https://web.uvic.ca/~tbazett/diffyqs/laplace_section.html#:~:text=The%20Laplace%20transform%                                                 |
| 20is%20a,gives%20us%20our%20desired%20solution                                                                                               |
|                                                                                                                                              |
|                                                                                                                                              |
| w-2:                                                                                                                                         |
| https://byjus.com/jee/newtons-law-of-cooling/#:~:text=Definition%3A%20According%20to%20Newton's%20law,the%20body%20and%20its%20surroundings. |
|                                                                                                                                              |
| w-3:                                                                                                                                         |
| https://tutorial.math.lamar.edu/classes/de/IntroHigherOrder.aspx                                                                             |
| nteps.//tutoriai.maui.iamar.edu/ciasses/de/mitorrigherOrder.aspx                                                                             |
|                                                                                                                                              |
| w-4:                                                                                                                                         |
| https://math.gmu.edu/~rsachs/math215/textbook/Math215Ch5Sec1.pdf                                                                             |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
| VIDEO REFERENCES:                                                                                                                            |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
| V-1:                                                                                                                                         |
| https://www.youtube.com/watch?v=6fJE3vvjB8o                                                                                                  |
|                                                                                                                                              |
| V-2:                                                                                                                                         |
| https://www.youtube.com/watch?v=o2kbrqQgzOE                                                                                                  |
|                                                                                                                                              |

V-3:

https://www.youtube.com/watch?v=Qscs\_AZTf7c





Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **ODE&VC LECTURE NOTES**

https://drive.google.com/file/d/18rY8iKvmuHVpRiynxEC7HM122SEt5ZiQ/view?usp=sharing





Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **POWERPOINT PRESENTATION**

1. Ordinary Differential Equations of First Order and First Degree

https://docs.google.com/presentation/d/1qdDbxZvco17Uuw9-TOOUE7yGzTXkYYsS/edit?usp=sharing&ouid=106039517343501825239&rtpof=true&sd=true

2. Newtons Law of Cooling

 $\frac{https://docs.google.com/presentation/d/1YXzJKu99wG9acUS1u17oe1LX9ueApUch/edit?usp=sharing\&ouid=1060395173435}{01825239\&rtpof=true\&sd=true}$ 

3. Laplace Transform

 $\frac{https://docs.google.com/presentation/d/1w4WySkvmtlzyJoupQXCW4Btt\_pZ4dkAU/edit?usp=sharing\&ouid=1060395173435}{01825239\&rtpof=true\&sd=true}$ 

4. Vector Differentiation

 $\frac{https://docs.google.com/presentation/d/1BtBca2dXCkIT-ea0s5jJ00Co0RGPlLXq/edit?usp=sharing\&ouid=106039517343501825239\&rtpof=true\&sd=true$ 

5.Greens Theorem

 $\frac{https://docs.google.com/presentation/d/1Dzmn7ftUw33ucBmtf35-}{TlPYLjmtI7XK/edit?usp=sharing\&ouid=106039517343501825239\&rtpof=true\&sd=true}$ 

(UGC AUTONOMOUS INSTITUTION)



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **PREVIOUS OUESTION PAPERS**

#### Link:

 $\frac{https://docs.google.com/document/d/1YwWbAYVccl7HM3OG\ smcslxc6j9P8NCG/edit?usp=sharling\&ouid=115477386604021184018\&rtpof=true\&sd=true$ 

#### (UGC AUTONOMOUS INSTITUTION)



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

 $(Approved\ by\ AICTE,\ New\ Delhi\ and\ Affiliated\ to\ JNTUH,\ Hyderabad)\\ Khalsa\ Ibrahimpatnam,\ Sheriguda(V),\ Ibrahimpatnam(M),\ Ranga\ Reddy\ Dist.,\ Telangan\underline{a-501510}$ 

I B.Tech II SEM I-Mid Examination, June-2023

BR22

Year & Branch: AI&DS
Subject: ODE&VC
Marks: 20
Date & Session: 12-06-2023&FN
Time: 2 Hours

#### Part-B

Answer any **FOUR** Questions. All Question Carry Equal Marks.

4\*5=20 Marks

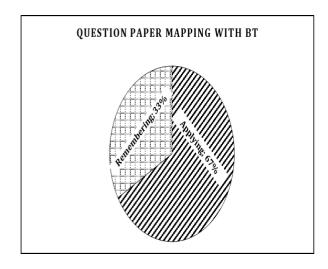
**1.** Solve  $(1 + y^2)dx = (tan^{-1}y - x)dy$ 

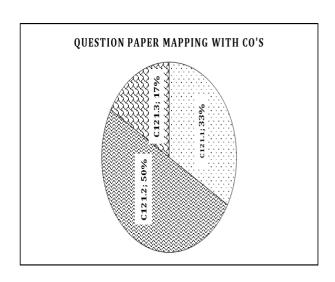
(Applying (L3))

**2.** A bacterial culture growing exponentially increases from 100 to 400gms in 10hrs. How much was present after 3 hrs from the initial instant? (Remembering(L1)

**3.** Solve  $y'' + 4y' + 4y = 4\cos x + 3\sin x$  with y(0) = 0, y'(0) = 0

(Applying (L3))


4. Solve  $\frac{d^2y}{dx^2} + y = e^{-x} + x^3 + e^x \sin x$ 


(Applying (L3)

**5.** Solve by the method of variation of parameters for  $(D^2-2D+2)y = e^x \tan x$  (Applying (L3)

**6.** Find  $L\{\cos^3 2t\}$ 

(Remembering(L1))





#### (UGC AUTONOMOUS INSTITUTION)

#### Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

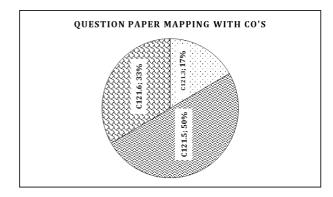
## STAND STANDS

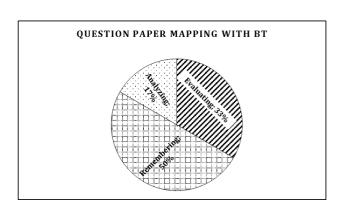
#### IB.TECH II-SEM II-MID EXAMINATIONS, August-2023

**BR22** 

Year & Branch: AI&DS Subject: **ODE&VC** 

Marks: 20


Set-I Date & Session: 14-08-2023& FN
Time: 2 Hours


#### Part-B

Answer any FOUR Questions. All Question Carry Equal Marks.

4\*5=20 Marks

- 1. Using convolution theorem find  $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$  (Evaluating (L5)
- 2. Find the directional derivative of 1/r in the direction of  $\bar{r} = x\bar{\imath} + y\bar{\jmath} + z\bar{k}$  at (1,1,2) (Remembering(L1))
- 3. Prove that  $\operatorname{div}(r^n\bar{r}) = (n+3)r^n$ . Hence show that  $\frac{\bar{r}}{r^3}$  is solenoidal. (Evaluating (L5))
- 4. Find (A.  $\nabla$ )  $\phi$  at (1,-1,1) if A =  $3xyz^{2}_{1} + 2xy^{3}_{1} x^{2}yzk$  and  $\phi = 3x^{2} yz$  (Remembering(L1))
- **5.** Find the work done by the force  $\overline{F} = 3x^2i + (2xz-y)j + zk$  in moving a particle in the force field along the straight line from (0,0,0) to (2,1,3) (Remembering(L1))
- **6.** Verify Gauss divergence theorem for  $\bar{F} = x^3 i + y^3 j + z^3 k$  taken over the cube bounded by x=0,x=a,y=0,y=a,z=0,z=a (Analyzing(L4))





#### MID I & MID-II KEY link

https://drive.google.com/file/d/1SoE19BDUBviB1sb3fTk3XVgk7NZceYKI/view?usp=sharing

https://drive.google.com/file/d/1eN4juuOf9RJfEv4youhPCCEcfTAy3f6-/view?usp=sharing

#### MID-I & MID-II SAMPLE STUDENT SCRIPTS Link

https://drive.google.com/file/d/1rcrEGQ0\_epHyQ2kyupZA7WcKqt\_A2kT0/view?usp=sharing

https://drive.google.com/file/d/1inMr5bprS7TUi8qYiO6tylLd9dLNrtAx/view?usp=sharing



#### UGC Autonomous Institution, Accredited by NAAC with A+ Grade

**X3** 

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510

**BR22** 

## ODE & VC I-MID ASSIGNMENT

#### **Unit-I**

- **1.** Find a) $y(x^2y^2+2)dx +x(2-2x^2y^2)dy=0$  (Remembering(L1)
  - b) Solve  $2xydy (x^2 y^2 + 1)dx = 0$ (**Applying** (**L3**))
- **2.** Solve a)  $(1+ y^2)dx = (tan^{-1}y x)dy$
- b)  $x \frac{dy}{dx} + y = x^3 y^6$  (Applying (L3))
- **3.** The temperature of the body drops from 100°C to 75°C in 10mins when the surrounding air is at 20°C temperature. What will be it's temperature after half an hour. When will the temperature be 25°C. (Remembering(L1)
- **4.** A bacterial culture growing exponentially increases from 100 to 400gms in 10hrs. How much was present after 3 hrs from the initial instant? (Remembering(L1)
- **5.** Prove that the system of parabolas  $y^2=4a(x+a)$  is self orthogonal (Evaluating (L5))
- **6.** Find the orthogonal trajectories of the family of circles passing through origin and centre on x-axis. (**Remembering(L1)**)

#### **Unit-II**

- 7. Solve  $\frac{d^2y}{dx^2} + y = e^{-x} + x^3 + e^x \sin x$  (Applying (L3)
- **8.** Solve  $(D^3-7D^2+14D-8)y = e^x \cos 2x$  (**Applying** (**L3**))
- 9. Solve by the method of variation of parameters for  $(D^2-2D)y = e^x \sin x$

(Applying (L3))

10. Solve by the method of variation of parameters for  $(D^2-2D+2)y = e^x \tan x$ 

(Applying (L3))

#### **Unit-III**

- **11.**Find L{3cos3tcos4t} (Remembering(L1))
- 12. Find L{cos<sup>3</sup>2t} (Remembering(L1))



#### UGC Autonomous Institution, Accredited by NAAC with A+ Grade

**X3** 

Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Sheriguda(V), Ibrahimpatnam(M), R.R Dist., Telangana – 501 510

#### **II-MID ODE&VC ASSIGNMENT**

#### **Unit-III**

- 1. Find  $L\left\{\frac{e^{-3t}\sin 2t}{t}\right\}$  (Remembering(L1))
- 2. Using convolution theorem find  $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$  (Evaluating (L5)
- Solve the following differential equation by using Laplace transform  $(D^2 + 2D + 5)y = e^{-t}$ sint given y(0)=0,  $y^I(0) = 1$ (**Applying** (**L3**))

#### **Unit-IV:**

- **1.** Prove that  $div(gradr^m) = m(m+1)r^{m-2}$  (Evaluating (L5)
- 2. Prove that  $\nabla(r^n) = nr^{n-2}\bar{r}$  [Evaluating (L5)]
- 3. Show that  $\nabla^2[f(r)] = f^{II}(r) + \frac{2}{r}f^I(r)$  where  $r = |\bar{r}|$  (Evaluating (L5))
- 4. Find the directional derivative of 1/r in the direction of  $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$  at (1,1,2) (Remembering(L1))
- 5. Prove that  $\operatorname{div}(r^n \bar{r}) = (n+3)r^n$ . Hence show that  $\frac{\bar{r}}{r^3}$  is solenoidal. (Evaluating (L5))
- **6.** a) Prove that  $\operatorname{div}(\bar{a} \times \bar{b}) = \bar{b} \operatorname{curl} \bar{a} \bar{a} \operatorname{curl} \bar{b}$  (Evaluating (L5))
  - b) Prove that  $(\overline{f} \times \nabla) \times \overline{r} = -2\overline{f}$

(Evaluating (L5))

7. Find (A.  $\nabla$ )  $\varphi$  at (1,-1,1) if A =  $3xyz^2\overline{\iota}_{+2xy^3j-x^2yzk}$  and  $\varphi=3x^2-yz$ (Remembering(L1))

#### Unit-V:

- 1. Find the work done by the force  $\overline{F} = (3x^2 + 6y)i 14yz j + 20xzk$  when it moves a particle from the point (0,0,0) to (1,1,1) along the curve x=t  $y=t^2$  and  $z=t^3$  (Remembering(L1))
- 2. Evaluate  $\iint \overline{F} \cdot \overline{n} ds$  if  $\overline{F} = z\overline{i} + x\overline{j} 3y^2z\overline{k}$  and S is the surface  $x^2 + y^2 = 16$  included in the first octant between the planes z=0 and z=5 (Evaluating (L5))
- 2. Use Gauss divergence theorem to evaluate  $\iint \vec{F} \cdot \vec{n} ds$  where  $\vec{F} = 4x\vec{\imath} 2y^2\vec{\jmath} + z^2\vec{k}$  and S is the surface bounded by region  $x^2 + y^2 = 4$ , z=0 and z=3 (Evaluating (L5))
- 3. Verify Gauss divergence theorem for  $\bar{F} = x^3 i + y^3 j + z^3 k$  taken over the cube bounded by x=0, x=a, y=0, y=a, z=0, z=a Analyzing(L4)
- 5. Verify Green's theorem in the plane for  $\int (x^2 xy^3) dx + (y^2 2xy) dy$  where C is a square with vertices (0,0),(2,0),(2,2),(0,2). **Analyzing(L4)**
- **6.** Evaluate by Green's theorem  $\int (y \sin x) dx + \cos x dy$  where C is the triangle enclosed by the lines  $y=0, x=\frac{\pi}{2}$ ,  $\pi y=2x$  (**Evaluating (L5)**)
- 7. Verify Stoke's theorem for  $\bar{F} = (x^2 y^2)i + 2xyj$  over the box bounded by the planes x = 0, x = a, y = 0, y = b. Analyzing(L4)

(UGC AUTONOMOUS INSTITUTION)



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **I-MID & II-MID ODE&VC ASSIGNMENT LINKS**

#### I-MID link:

https://drive.google.com/file/d/108eqIIRPtPNoW21FGYdHx\_d5cSF\_Y3VB/view?usp=sharing

#### **II-** MID link:

https://drive.google.com/file/d/1ewBvXSjJtRNyfv\_vjxb9gp93YcqGlj2d/view?usp=sharing



#### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **SCHEME OF EVALUATION WITH CO and BTL MAPPING**

#### SCHEME OF EVALUATION-MATRICES & CALCULUS(MID-I)(Set-I)

#### **Instructions:**

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

| Qn<br>No | Description of Answer                                                                   | Marks |
|----------|-----------------------------------------------------------------------------------------|-------|
| 1.       | To convert into linear form (C121.1) (Analyzing)                                        | 2     |
| 1.       | To convert into linear form (C121.1) (Analyzing)                                        | 2     |
|          | To find Integrating Factor (C121.1) (Analyzing)                                         | 1     |
|          | To write formula and get solution (C121.1) (Analyzing)                                  | 2     |
| 2.       | To write natural growth formula (C121.1) (Analyzing)                                    | 1     |
|          | Tp collect data and calculations(C121.1) (Analyzing)                                    | 4     |
| 3.       | To write the form $f(D)y = Q(x)$ and comparing(C121.2)(Analyzing)                       | 1     |
|          | To get complementary solution (C121.2) (Analyzing)                                      | 1     |
|          | To get Particular solution (C121.2) (Analyzing)                                         | 2     |
|          | To use boundary conditions $y(0) = 0$ , $y'(0)=0$ and get solution (C121.2) (Analyzing) | 1     |
| 4.       | To write the form $f(D)y = Q(x)$ and comparing(C121.2)(Analyzing)                       | 1     |
|          | To get complementary solution (C121.2) (Analyzing)                                      | 2     |
|          | To get Particular solution and general solution(C121.2) (Analyzing)                     | 2     |
| 5.       | To compare the form with $y'' + Py' + Qy = R$ (C121.2) (Applying)                       | 1     |
|          | To write $y_c$ and comparing with $y_p = Au(x) + Bv(x)$ (C121.2) (Applying)             | 2     |
|          | To get A & B and writing solution (C121.2) (Applying)                                   | 2     |
| 6.       | To use COS3t formula (C121.3)(Analyzing)                                                | 1     |
|          | To write Laplace transform formula (C121.3)(Analyzing)                                  | 1     |
|          | To solving and getting solution (C121.3)(Analyzing)                                     | 3     |
|          | TOTAL                                                                                   | 20    |



#### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### SCHEME OF EVALUATION-ODE&VC (MID-II)(Set-2)

#### **Instructions:**

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

| Qn<br>No | Description of Answer                                                      | Marks |
|----------|----------------------------------------------------------------------------|-------|
| 1.       | To find f(t) and g(t) C121.3) (Creating)                                   | 2     |
|          | Using convolution theorem and solving (C121.3) (Remembering)               | 3     |
| 2.       | To write directional derivative formula along 1/r (C121.5) (Creating)      | 1     |
|          | To get unit normal vector e (C121.5) (Creating)                            | 2     |
|          | To get grad(1/r) and getting directional derivative (C121.5) (Creating)    | 2     |
| 3.       | To write relation between r and $\bar{r}$ (C121.5)(Remembering)            | 1     |
|          | To find div( $r^n \vec{r}$ ) and to get (n+3) $r^n$ (C121.5)( Remembering) | 2     |
|          | To show . $\vec{\pi}$ r <sup>3</sup> is solenoidal (C121.5)( Remembering)  | 2     |
| 4.       | To write (A. ∇) φ formula (C121.6)( Remembering)                           | 1     |
|          | To find A.∇ (C121.6)( Remembering)                                         | 1     |
|          | To find (A. $\nabla$ ) $\phi$ at (1,-1,1) (C121.6)( Remembering)           | 3     |
| 5.       | To write work done formula (C121.6)( (Understanding)                       | 1     |
|          | Calculations (C121.6)( (Understanding)                                     | 4     |
| 6.       | To write Gauss divergence theorem formula                                  | 1     |
|          | To get L.H.S                                                               | 2     |
|          | To draw cube and to get R.H.S                                              | 2     |
|          | TOTAL                                                                      | 20    |

TOTAL





Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **TUTORIAL TOPICS**

| S.No | Topic                                                                                                                | Teaching<br>Method/Teaching Aid                                  | No.of Sessions<br>Planned | Reference book  |
|------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-----------------|
| 1    | Exact D.E's problems                                                                                                 | Problem solving<br>Method,video                                  | 1                         | R-1,T-1,V-3     |
| 2    | Non exact D.E – method-I ,II,III,IV problems                                                                         | Problem solving<br>Method,video                                  | 3                         | R-1,T-1         |
| 3    | Linear D.E's- Problems                                                                                               | Lecture Method, Problem solving Method/Black board               | 1                         | R-1             |
| 4    | Bernoulli's D.E- Problems                                                                                            | Lecture Method,<br>Problem solving<br>Method                     | 1                         | R-1             |
| 5    | Applications of D.E's – Newton's law of cooling-problems                                                             | Lecture Method,<br>Problem solving<br>Method/Black board         | 1                         | R-1,W-2         |
| 6    | Complementary Functions - Problems                                                                                   | Problem solving<br>Method                                        | 1                         | T-1,W-3         |
| 7    | Particular Integral : Non homogeneous terms of the type $e^{ax}$ , $sinax$ , $cosax$ , $x^k$ , $e^{ax}V(x)$ Problems | Problem solving<br>Method                                        | 4                         | R-1,W-3         |
| 8    | Method of variation of parameters - Problems                                                                         | Problem solving Method                                           | 1                         | R-1,W-3         |
| 9    | L.T.of periodic function                                                                                             | Lecture Method<br>Problem solving<br>Method/Black board          | 1                         | T-3,W-1         |
| 10   | Inverse L.T.of different methods                                                                                     | Lecture Method<br>Problem solving<br>Method                      | 1                         | T-3             |
| 11   | Convolution theorem – problems                                                                                       | Lecture Method<br>Problem solving<br>Method                      | 1                         | T-3             |
| 12   | Solving IVP by L.T. method                                                                                           | Lecture Method<br>Problem solving<br>Method/Black board          | 2                         | T-3             |
| 13   | Vector point functions and scalar point functions-problems                                                           | Lecture<br>Method, video, video                                  | 1                         | R-1,V-1         |
| 14   | Gradient, Divergent and Curl of a vector-<br>problems                                                                | Problem solving<br>Method,video,video                            |                           | R-1,V-1         |
| 15   | Directional derivatives - Problems                                                                                   | Problem solving<br>Method ,video                                 | 1                         | R-1,T-1,V-1     |
| 16   | Scalar potential functions : Solenoidal and Irrotational vectors - problems                                          | Problem solving<br>Method,video                                  | 1                         | R-1,T-1,V-1     |
| 17   | Line integrals - Problems                                                                                            | Lecture Method<br>Problem solving<br>Method, video               | 1                         | R-1,T-1         |
| 18   | Surface integrals - problems                                                                                         | Lecture Method<br>Problem solving<br>Method,video/Black<br>board | 1                         | R-1,T-1         |
| 19   | Volume integrals - problems                                                                                          | Lecture Method<br>Problem solving<br>Method, video               | 1                         | R-1,T-1,T-2,W-4 |
| 20   | Green's theorem – Problems                                                                                           | Lecture Method<br>Problem solving<br>Method,video/Black<br>board | 1                         | R-1,T-1,T-2,V-2 |
| 21   | Gauss divergence theorem - problems                                                                                  | Lecture Method<br>Problem solving<br>Method                      | 1                         | R-1,T-1,V-2     |



### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Result Analysis: I-AI&DS

| Course Title    | ORDINARY DIFFERENTIAL EQUATIONS & VECTOR CALCULUS |
|-----------------|---------------------------------------------------|
| Course Code     | MA201BS                                           |
| Programme       | B.Tech                                            |
| Year & Semester | I-year II-semester                                |
| Regulation      | BR22                                              |
| Course Faculty  | Mrs.V.Sujatha, Assistant Professor, H&S           |

#### **Weak Students:**

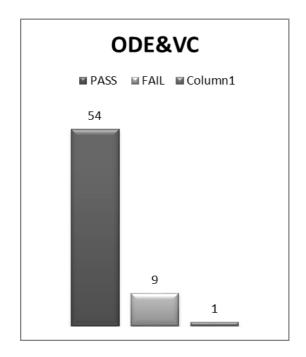
| S No | Roll no    | I-Sem Marks | Internal-I | Internal-II |
|------|------------|-------------|------------|-------------|
|      |            |             | Status     | Status      |
| 1    | 22X31A7214 | 13          | 27/35      | 10/40       |
| 2    | 22X31A7216 | 10          | 29/35      | 29/40       |
| 3    | 22X31A7230 | 11          | 26/35      | 28/40       |
| 4    | 22X31A7238 | 12          | 28/35      | 31/40       |
| 5    | 22X31A7240 | 0           | 26/35      | 10/40       |
| 6    | 22X31A7246 | 7           | 29/35      | 33/40       |
| 7    | 22X31A7247 | 14          | 27/35      | 10/40       |
| 8    | 22X31A7254 | 6           | 29/35      | 39/40       |
| 9    | 22X31A7256 | 16          | 29/35      | 31/40       |
| 10   | 22X31A7263 | 5           | 5/35       | 28/40       |
| 11   | 22X31A7264 | 4           | 28/35      | 25/40       |

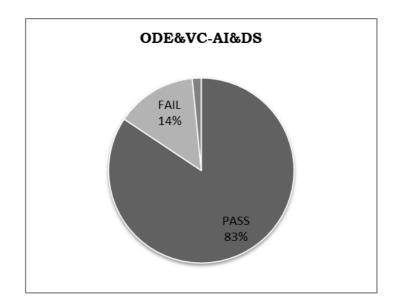
### **Advanced learners:**

| S No | Roll No    | I-Sem Marks | Gate Material                           |
|------|------------|-------------|-----------------------------------------|
| 1    | 22X31A7226 | 83/100      | Probability, Discrete                   |
| 2    | 22X31A7237 | 85/100      | Mathematics, Graph theory, Differential |
| 3    | 22X31A7257 | 85/100      | equations                               |
| 4    | 22X31A7259 | 86/100      |                                         |
| 5    | 22X31A7260 | 83/100      |                                         |



### (UGC AUTONOMOUS INSTITUTION)


Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.


(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### RESULT ANALYSIS AT THE END OF SEMESTER

Branch: AI&DS Subject: ODE&VC







#### (UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

## DEPARTMENT OF HUMANITIES AND SCIENCE REMEDIAL CLASSES TIME TABLE

| DAY/<br>PERIOD | MON<br>4.00-5.00 | TUE<br>4.00-5.00 | WED<br>4.00-5.00 | THUR<br>4.00-5.00 | FRI<br>4.00-5.00 | SAT<br>4.00-5.00 |
|----------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| CSE-A          | ODE&VC           | ENG              | EDC              | AP                | ODE&VC           | AP               |
| CSE-B          | AP               | EDC              | ODE&VC           | ENG               | EDC              | ENG              |
| CSE-C          | ENG              | AP               | EDC              | ODE&VC            | AP               | ODE&VC           |

| DAY/<br>PERIOD | MON<br>4.00-5.00 | TUE<br>4.00-5.00 | WED<br>4.00-5.00 | THUR<br>4.00-5.00 | FRI<br>4.00-5.00 | SAT<br>4.00-5.00 |
|----------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| DS             | EDC              | AP               | ODE&VC           | ENG               | EDC              | ODE&VC           |
| CYBER          | ENG              | EDC              | AP               | ODE&VC            | AP               | ENG              |

| DAY/<br>PERIOD | MON<br>4.00-5.00 | TUE<br>4.00-5.00 | WED<br>4.00-5.00 | THUR<br>4.00-5.00 | FRI<br>4.00-5.00 | SAT<br>4.00-5.00 |
|----------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| AIML-A         | ODE&VC           | EC               | EDC              | BEE               | EC               | ODE&VC           |
| AIML-B         | BEE              | EDC              | ODE&VC           | EC                | BEE              | EDC              |

| DAY/<br>PERIOD | MON<br>4.00-5.00 | TUE<br>4.00-5.00 | WED<br>4.00-5.00 | THUR<br>4.00-5.00 | FRI<br>4.00-5.00 | SAT<br>4.00-5.00 |
|----------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| AI&DS          | BEE              | EC               | ODE&VC           | EDC               | BEE              | EC               |
| IOT            | EC               | ODE&VC           | EDC              | BEE               | ODE&VC           | EDC              |

| DAY/<br>PERIOD | MON<br>4.00-5.00 | TUE<br>4.00-5.00 | WED<br>4.00-5.00 | THUR<br>4.00-5.00 | FRI<br>4.00-5.00 | SAT<br>4.00-5.00 |
|----------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| ECE            | ODE&VC           | BEE              | EC               | EDC               | BEE              | EC               |
| CIVIL          | ODE&VC           | BEE              | EC               | AM                | BEE              | EC               |

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda (M) Ibrahimostnam (M) R.R. Dist-501 516

Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.



Department of Humanities & Sciences

#### **Course Outcome Attainment (Internal Examination-1)**

Name of the facult V.SUJATHA Academic Year: 2022-2023

Branch & Section: AI&DS Examination: Internal

Course Name: ODE & V.C.

Year: I. Samester:

| Target set by the aculty / HoD                 | 3.00   | 0.00          | 0.00  | 3.00 | 0.00 | 0.00   | 3.00 |   | 0.00 | 3.00 | 0.00     | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | 0.00 | 6.00 | 3.00         |   |
|------------------------------------------------|--------|---------------|-------|------|------|--------|------|---|------|------|----------|------|------|------|------|------|------|------|------|--------------|---|
| Number of students performed above the target  | 42     | 0             | 0     | 57   | 0    | 0      | 1    | 0 | 0    | 37   | 0        | 0    | 32   | 0    | 0    | 49   | 0    | 0    | 61   | 64           |   |
| Number of students                             | 49     | 0             | 0     | 60   | 0    | 0      | 5    | 0 | 0    | 42   | 0        | 0    | 41   | 0    | 0    | 52   | 0    | 0    | 64   | 64           |   |
| Percentage of students scored more than target | 86%    |               |       | 95%  |      |        | 20%  |   |      | 88%  |          |      | 78%  |      |      | 94%  |      |      | 95%  | 100%         |   |
| CO Mapping with F                              | Exam ( | <u>)uesti</u> | ions: |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| CO - 1                                         | Y      |               |       | Y    |      |        |      |   |      |      |          |      |      |      |      |      |      |      | Y    | Y            |   |
| CO - 2                                         |        |               |       |      |      |        | Y    |   |      | Y    |          |      |      |      |      | Y    |      |      | Y    | Y            |   |
| CO - 3                                         |        |               |       |      |      |        |      |   |      |      |          |      | Y    |      |      |      |      |      | Y    | Y            |   |
| CO - 4                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              | t |
| CO - 5                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              | 1 |
| CO - 6                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| >Target %                                      | 86%    |               |       | 95%  |      |        | 20%  |   |      | 88%  |          |      | 78%  |      |      | 94%  |      |      | 95%  | 100%         |   |
| CO Attainment bas                              |        | Exam          | Ques  |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              | - |
| CO - 1                                         | 86%    |               |       | 95%  |      |        |      |   |      |      |          |      |      |      |      |      |      |      | 95%  | 100%         |   |
| CO - 2                                         |        |               |       |      |      |        | 20%  |   |      | 20%  |          |      |      |      |      | 20%  |      |      | 95%  | 100%         |   |
| CO - 3                                         |        |               |       |      |      |        |      |   |      |      |          |      | 20%  |      |      |      |      |      | 95%  | 100%         |   |
| CO - 4                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| CO - 5                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| CO - 6                                         |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| СО                                             | Subj   | obj           |       | Asgn | (    | Overal | 1    |   | Leve | el   |          |      |      |      |      |      |      |      | Atta | inment Level |   |
| CO-1                                           | 90%    | 95%           |       | 100% |      | 95%    |      |   | 3.00 |      |          |      |      |      |      |      |      |      | 1    | 40%          |   |
| CO-2                                           | 20%    | 39%           |       | 100% |      | 53%    |      |   | 3.00 |      |          |      |      |      |      |      |      |      | 2    | 50%          |   |
| CO-3                                           | 20%    | 58%           |       | 100% |      | 59%    |      |   | 3.00 |      |          |      |      |      |      |      |      |      | 3    | 60%          |   |
| CO-4                                           |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| CO-5                                           |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
| CO-6                                           |        |               |       |      |      |        |      |   |      |      |          |      |      |      |      |      |      |      |      |              |   |
|                                                | , (T   | <u> </u>      |       | 1 F  | •    |        |      |   | 2.01 |      | <u> </u> |      |      | -    |      |      |      |      |      |              |   |
| Attainme                                       | nt (11 | nter          | nal   | I EX | amıı | natio  | on)  |   | 3.00 | )    |          |      |      |      |      |      |      |      |      |              |   |

#### SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences **Course Outcome Attainment (Internal Examination-2)** Name of the facult V.SUJATHA Academic Year: 2022-2023 Branch & Section: AI&DS Examination: II Internal Course Name: ODE & VC Year: Semester: II viva/ S.No HT No. Obj **A2** Q2b Q2c Q3b Q3c Q4a Q4b Q4c Q5a Q5b Q5c Q6a Q6b Q6c Q1a Q1b Q1c Q2a Q3a ppt Max. Marks ==> 1 22X31A7201 2 22X31A7202 3 22X31A7203 22X31A7204 5 22X31A7205 6 22X31A7206 7 22X31A7207 22X31A7208 9 22X31A7209 10 22X31A7210 11 22X31A7211 22X31A7212 13 22X31A7213 14 22X31A7214 Α Α Α Α Α Α 15 | 22X31A7215 16 22X31A7216 17 | 22X31A7217 18 22X31A7218 19 22X31A7219 20 22X31A7220 21 22X31A7221 22 22X31A7222 23 | 22X31A7223 | 24 22X31A7224 25 22X31A7225 26 22X31A7226 27 | 22X31A7227 | 28 22X31A7228 29 22X31A7229 30 22X31A7230 31 22X31A7231 32 22X31A7232 33 | 22X31A7233 | 34 22X31A7234 35 | 22X31A7235 | 36 22X31A7236 37 | 22X31A7237 38 22X31A7238 39 22X31A7239 40 22X31A7240 Α Α Α Α Α Α Α 41 22X31A7241 42 22X31A7242 43 | 22X31A7243 | 44 22X31A7244 45 22X31A7245 46 22X31A7246 47 | 22X31A7247 | A Α Α Α Α Α Α 48 22X31A7248 49 22X31A7249 50 22X31A7250 51 22X31A7251 52 22X31A7252 22X31A7253 54 22X31A7254 55 22X31A7255 5 56 22X31A7256 22X31A7257 58 22X31A7258 59 22X31A7259 60 22X31A7260 61 22X31A7261 62 22X31A7262 63 22X31A7263 64 22X31A7264

| Target set by the faculty / HoD                | 3.00  | 0.00   | 0.00    | 3.00     | 0.00 | 0.00  | 3.00  | 0.00 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | ### | 0.00 | 3.00 | 0.00 | 0.00 | 6.00      | 3.00   | 3.00        |  |
|------------------------------------------------|-------|--------|---------|----------|------|-------|-------|------|------|------|------|------|------|-----|------|------|------|------|-----------|--------|-------------|--|
| Number of students performed above the target  | 54    | 0      | 0       | 46       | 0    | 0     | 38    | 0    | 0    | 47   | 0    | 0    | 9    | 0   | 0    | 20   | 0    | 0    | 61        | 64     | 64          |  |
| Number of students attempted                   | 60    | 0      | 0       | 51       | 0    | 0     | 42    | 0    | 0    | 55   | 0    | 0    | 13   | 0   | 0    | 26   | 0    | 0    | 64        | 64     | 64          |  |
| Percentage of students scored more than target | 90%   |        |         | 90%      |      |       | 90%   |      |      | 85%  |      |      | 69%  |     |      | 77%  |      |      | 95%       | 100%   | 100%        |  |
| CO Mapping with I                              | Exam  | Questi | ons:    |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
|                                                |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 1                                         |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 2                                         |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 3                                         | Y     |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      | Y         | Y      | Y           |  |
| CO - 4                                         |       |        |         |          |      |       | Y     |      |      |      |      |      |      |     |      |      |      |      | Y         | Y      | Y           |  |
| CO - 5                                         |       |        |         |          |      |       |       |      |      | Y    |      |      | Y    |     |      |      |      |      | Y         | Y      | Y           |  |
| CO - 6                                         |       |        |         | Y        |      |       |       |      |      |      |      |      |      |     |      | Y    |      |      | Y         | Y      | Y           |  |
| % Students Scored                              |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| >Target %                                      | 90%   |        |         | 90%      |      |       | 90%   |      |      | 85%  |      |      | 69%  |     |      | 77%  |      |      | 95%       | 100%   | 100%        |  |
| CO Attainment bas                              | ed on | Exam   | Questio | ns:      |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 1                                         |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 2                                         |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| CO - 3                                         | 90%   |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      | 95%       | 100%   | 100%        |  |
| CO - 4                                         | 20,0  |        |         |          |      |       | 90%   |      |      |      |      |      |      |     |      |      |      |      | 95%       | 100%   | 100%        |  |
| CO - 5                                         |       |        |         |          |      |       |       |      |      | 90%  |      |      | 90%  |     |      |      |      |      | 95%       | 100%   | 100%        |  |
| CO - 6                                         |       |        |         | 90%      |      |       |       |      |      |      |      |      |      |     |      | 90%  |      |      | 95%       | 100%   | 100%        |  |
| со                                             | Subj  | obj    | aacon   | ppt      |      | Overa | 11    |      | Leve | 1    |      |      |      |     |      |      |      |      | Atto      | inment | Lovel       |  |
| CO-1                                           | թայ   | ooj    | aasgn   | ppt      |      | overa | 11    | -    | LCVC | 1    |      |      |      |     |      |      |      |      | Atta<br>1 |        | Devel<br>0% |  |
| CO-2                                           |       |        |         |          |      |       |       |      |      |      |      |      |      |     |      |      |      |      | 2         |        | 0%          |  |
| CO-3                                           | 90%   | 95%    | 100%    | 100%     |      | 96%   |       |      | 3    |      |      |      |      |     |      |      |      |      | 3         |        | 0%          |  |
| CO-4                                           | 90%   | 95%    | 100%    | 100%     |      | 96%   |       |      | 3.00 |      |      |      |      |     |      |      |      |      | ,         | 0      | J / U       |  |
| CO-4                                           | 90%   | 95%    | 100%    | 100%     |      | 96%   |       |      | 3.00 |      |      |      |      |     |      |      |      |      |           |        |             |  |
|                                                | 90%   |        |         | <b>†</b> |      |       |       |      |      |      |      |      |      |     |      |      |      |      |           |        |             |  |
| Attainme                                       |       | 95%    | 100%    |          |      | 96%   |       |      | 3.00 |      |      |      |      |     |      |      |      |      |           |        |             |  |
| A 44 0 4 40 40 0                               | nt (l | ntar   | nal H∖v | vamir    | otic | າn_7  | ' \ — |      | 3.00 | ١    |      |      |      |     |      |      |      |      |           |        |             |  |

| TANNAS OF ENGINEERS                                               | SRI             | NDU INSTITUTE     |          |            |                  | CHNOLOGY         |  |  |  |
|-------------------------------------------------------------------|-----------------|-------------------|----------|------------|------------------|------------------|--|--|--|
| TORAHIMPATHAN                                                     |                 | •                 |          |            | & Sciences       |                  |  |  |  |
| .,                                                                | 6.1 6 1.        | Course Outcome At | tainment |            |                  |                  |  |  |  |
|                                                                   | of the faculty: |                   |          | Academic   |                  | 2022-2023        |  |  |  |
|                                                                   | & Section:      | AI&DS             |          | Year / Sem | ester:           | <u>    /    </u> |  |  |  |
|                                                                   | Name:           | ODE & VC          |          |            |                  |                  |  |  |  |
| S.No                                                              | Roll Number     | Marks Secured     |          | S.No       | Roll Number      | Marks Secured    |  |  |  |
| 1                                                                 | 22X31A7201      | 42                |          | 36         | 22X31A7236       | 40               |  |  |  |
| 2                                                                 | 22X31A7202      | 25                |          | 37         | 22X31A7237       | 46               |  |  |  |
| 3                                                                 | 22X31A7203      | 32                |          | 38         | 22X31A7238       | 16               |  |  |  |
| 4                                                                 | 22X31A7204      | 34                |          | 39         | 22X31A7239       | 28               |  |  |  |
| 5                                                                 | 22X31A7205      | 44                |          | 40         | 22X31A7240       |                  |  |  |  |
| 6                                                                 | 22X31A7206      | 51                |          | 41         | 22X31A7241       | 22               |  |  |  |
| 7                                                                 | 22X31A7207      | 42                | -        | 42         | 22X31A7242       | 42               |  |  |  |
| 8                                                                 | 22X31A7208      | 41                | +        | 43         | 22X31A7243       | 40               |  |  |  |
| 9                                                                 | 22X31A7209      | 52                |          | 44         | 22X31A7244       | 33               |  |  |  |
| 10                                                                | 22X31A7210      | 41                |          | 45         | 22X31A7245       | 36               |  |  |  |
| 11                                                                | 22X31A7211      | 43                |          | 46         | 22X31A7246       | 36               |  |  |  |
| 12                                                                | 22X31A7212      | 37                |          | 47         | 22X31A7247       | 14               |  |  |  |
| 13                                                                | 22X31A7213      | 35                |          | 48         | 22X31A7248       | 21               |  |  |  |
| 14                                                                | 22X31A7214      | 31                |          | 49         | 22X31A7249       | 21               |  |  |  |
| 15                                                                | 22X31A7215      | 36                |          | 50         | 22X31A7250       | 21               |  |  |  |
| 16                                                                | 22X31A7216      | 31                |          | 51         | 22X31A7251       | 16               |  |  |  |
| 17                                                                | 22X31A7217      | 27                |          | 52         | 22X31A7252       | 24               |  |  |  |
| 18                                                                | 22X31A7218      | 25                |          | 53         | 22X31A7253       | 22               |  |  |  |
| 19                                                                | 22X31A7219      | 25                |          | 54         | 22X31A7254       | 19               |  |  |  |
| 20                                                                | 22X31A7220      | 31                |          | 55         | 22X31A7255       | 27               |  |  |  |
| 21                                                                | 22X31A7221      | 24                |          | 56         | 22X31A7256       | 22               |  |  |  |
| 22                                                                | 22X31A7222      | 15                |          | 57         | 22X31A7257       | 46               |  |  |  |
| 23                                                                | 22X31A7223      | 22                |          | 58         | 22X31A7258       | 42               |  |  |  |
| 24                                                                | 22X31A7224      | 24                |          | 59         | 22X31A7259       | 42               |  |  |  |
| 25                                                                | 22X31A7225      | 22                |          | 60         | 22X31A7260       | 24               |  |  |  |
| 26                                                                | 22X31A7226      | 21                |          | 61         | 22X31A7261       | 15               |  |  |  |
| 27                                                                | 22X31A7227      | 29                |          | 62         | 22X31A7262       | 22               |  |  |  |
| 28                                                                | 22X31A7228      | 32                |          | 63         | 22X31A7263       | 8                |  |  |  |
| 29                                                                | 22X31A7229      | 31                |          | 64         | 22X31A7264       | 0                |  |  |  |
| 30                                                                | 22X31A7230      | 12                |          | 65         |                  |                  |  |  |  |
| 31                                                                | 22X31A7231      | 22                |          | 66         |                  |                  |  |  |  |
| 32                                                                | 22X31A7232      | 27                |          | 67         |                  |                  |  |  |  |
| 33                                                                | 22X31A7233      | 53                |          | 68         |                  |                  |  |  |  |
| 34                                                                | 22X31A7234      | 30                |          | 69<br>70   |                  |                  |  |  |  |
| 35   22X31A7235   37                                              |                 |                   | /0       | 1          |                  |                  |  |  |  |
| Max Marks 60                                                      |                 |                   | 30       |            | Attainment T 1   | 0/ students      |  |  |  |
| Class Average mark  Number of students performed above the target |                 |                   | 30       |            | Attainment Level |                  |  |  |  |
|                                                                   |                 |                   | 31       |            | 1                | 40%              |  |  |  |
| Number of successful students                                     |                 |                   | 63       |            | 2                | 50%              |  |  |  |
| Percentage of students scored more than target                    |                 |                   | 49%      |            | 3                | 60%              |  |  |  |
| Attai                                                             | nment leve      | <u> </u>          | 2        |            |                  |                  |  |  |  |

| SRI INDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INSTIT                  | UTE OF EN            | GINEER           | ING AND TE      | CCHNOLOGY         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------|-----------------|-------------------|--|--|
| CANAN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Departmen               | nt of Humanities &   | & Sciences       |                 |                   |  |  |
| SOLONIO SOLONI |                         | Course Ou            | tcome Atta       | <u>inment</u>   |                   |  |  |
| BRAHIMPATNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                  |                 |                   |  |  |
| Name of the faculty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V.SUJATH                | <u>4</u>             |                  | Academic Year:  | 2022-2023         |  |  |
| Branch & Section:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AI&DS                   |                      |                  | Examination:    | <u>I Internal</u> |  |  |
| Course Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ODE & VC                |                      | ı                | Year:           | <u>I</u>          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                  | Semester:       | <u>II</u>         |  |  |
| Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1st<br>Internal<br>Exam | 2nd Internal<br>Exam | Internal<br>Exam | University Exam | Attainment Level  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                    |                      | 3.00             | 2.00            | 2.30              |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                    |                      | 3.00             | 2.00            | 2.30              |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                    | 3.00                 | 3.00             | 2.00            | 2.30              |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 3.00                 | 3.00             | 2.00            | 2.30              |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 3.00                 | 3.00             | 2.00            | 2.30              |  |  |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 3.00                 | 3.00             | 2.00            | 2.30              |  |  |
| Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nal & Unive             | ersity Attainment:   | 3.00             | 2.00            |                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Weightage            | 30%              | 70%             |                   |  |  |
| CO Attainment for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e course (In            | ternal, University)  | 0.90             | 1.40            |                   |  |  |
| CO Attainment for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the course              | (Direct Method)      |                  | 2.30            |                   |  |  |
| Overall co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urse a                  | attainmer            | nt leve          | 1               | 2.30              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |                  |                 |                   |  |  |

Department of Humanities & Sciences

| WOUNT STATE OF THE PARTY OF THE | HNOLO  |        |           |             |          |         |         |             |       | Scien     |          |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|-------------|----------|---------|---------|-------------|-------|-----------|----------|------|------|------|
| 18RAHIMPATNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |           | Prog        | ram O    | utcom   | e Attai | inment      | (from | Course    | <u>)</u> |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| Name of Faculty:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        | V.SUJATHA |             |          |         |         | Academic Ye |       | 2022-2023 |          |      |      |      |
| Branch & Section:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | AI&DS  |           |             |          |         | Year:   |             | I     |           |          |      |      |      |
| Course N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lame:  |        | ODE 8     | <u>k VC</u> |          |         |         | Seme        | ster: |           | II       |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| CO DO :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| CO-PO m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | PO2    | PO3       | PO4         | PO5      | PO6     | PO7     | PO8         | PO9   | PO10      | D∩11     | PO12 | DS∩1 | PSO2 |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      | 3      | 103       | 1           | 1        | 100     | 107     | 100         | 103   | 1010      | 1011     | 1    | 1301 | 1302 |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      | 2      |           | 1           | 1        |         |         |             |       |           |          | 1    |      |      |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 3      |           | 1           | 1        |         |         |             |       |           |          | 1    |      |      |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 3      |           | 1           | 1        |         |         |             |       |           |          | 2    |      |      |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      | 2      |           | 1           | 1        |         |         |             |       |           |          | 2    |      |      |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 3      |           | 1           | 1        |         |         |             |       |           |          | 2    |      |      |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 2.67   |           | 1.00        | 1.00     |         |         |             |       |           |          | 1.50 |      |      |
| 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |           | 2000        | 2000     |         |         |             |       |           |          | 2000 |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             | Cor      | irse (  | )utcor  | ne Att      | ainme | nt        |          |      |      |      |
| СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |           |             |          |         |         |             |       | 11t       |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         | 2.3     | 30          |       |           |          |      |      |      |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         | 2.3     | 30          |       |           |          |      |      |      |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         | 2.3     | 30          |       |           |          |      |      |      |
| соз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         | 2.3     | 30          |       |           |          |      |      |      |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |           |             |          |         | 2       | ,,          |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.30   |        |           |             |          |         |         |             |       |           |          |      |      |      |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.30   |        |           |             |          |         |         |             |       |           |          |      |      |      |
| CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.30   |        |           |             |          |         |         |             |       |           |          |      |      |      |
| Overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cours  | e atta | inme      | nt leve     | el       |         |         |             |       | 2.30      |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| PO-ATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INME   | NT     |           |             |          |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO1    | PO2    | PO3       | PO4         | PO5      | PO6     | PO7     | PO8         | PO9   | PO10      | PO11     | PO12 |      |      |
| со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| Attainme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |           |             |          |         |         |             |       |           |          |      |      |      |
| nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50   | 2.67   |           | 1.00        | 1.00     |         |         | 1           |       |           |          | 1.50 |      |      |
| CO contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bution | to PO  | - 33%.    | 67%. 1      | .00% (Le | vel 1/2 | 2/3)    |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        | ,         | , -         | . ,      |         |         |             |       |           |          |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |           |             |          |         |         |             |       |           |          |      |      |      |

(UGC AUTONOMOUS INSTITUTION)



Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

#### **ATTENDANCE REGISTER**

#### Link

https://drive.google.com/file/d/1sEeHJdmT6yR16aARnJP5oj7876eW3ejl/view?usp=sharing